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CHAPTER 1

INTRODUCTION

1.1 WHAT THE BOOK IS ABOUT

The purpose of this book is to describe certain methods of analysis of statistical
data arising from multivariate samples. A basic aim of such data analysis is to
reduce large arrays of numbers to provide meaningful and reasonably complete
summaries of whatever information resides in sample aggregates. Another aim
is to draw inferences from sample aggregates to larger population aggregates
from which the samples are drawn; that is, to understand how certain informa-
tion about a sample provides uncertain information about a population. Usually
statistical analyses are part of a larger endeavor. For example, a scientist may
wish to test some scientific theory or hypothesis about a set of populations, or a
decision-maker may require the output of statistical data analyses as part of the
input for a cost-benefit study. Itisa characteristic feature of this book, however,
that the technical aspects of these larger endeavors are not explicitly treated.

Part 2 (Chapters 2 through 6) reviews the mathematical theory of vector
spaces, emphasizing geometric and computational aspects. Vector space theory
is fundamental both for purposes of description and illumination in the two
statistical parts of the book. Part 3 (Chapters 7 through 11) presents the basic
methods of data reduction while Part 4 (Chapters 12 through 15) is devoted to
random sampling theory and its implications. Numerical examples are inserted
throughout Part 3 and the same examples are reconsidered in the light of sam-
pling theory in Chapter 14.

Underlying the organization of Parts 3 and 4 is an attitude towards statistical
data analysis. While most books on statistical theory start out with sampling
theory and attempt to make methods of data analysis follow, the attitude in this
book is that the methods of data analysis are carried out largely because of the
intrinsic appeal of the sample quantities computed. Such, at least, were the
historical origins of the methods described here. Moreover, when viewed as
producing descriptive or summary statistics, the methods have value even when
assumptions like randomness of samples and normality of populations are quite
unwarranted. Mathematical statistics can provide justifications for the methods
used, and the main approaches to such justifications are sketched in Chapter 15.
Mathematical statistics also suggests modifications to those raw sample statistics
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4 INTRODUCTION 1.2

which are especially misleading as estimates of their population analogues.
Examples of such modifications are to be found in Chapter 14.

The next three sections of Chapter 1 relate to the third, second, and fourth
parts of the book and are designed to convey in a rough way the dimensions of
the subject matter. But the reader should recognize at the outset that the methods
described are, while fundamental, a very restricted class. For one, variables are
generally regarded here as producing numerical scores distributed along a line.
It is tempting to apply the methods to classification variables taking the values
0 and 1 only, and some applications of this kind are discussed in Chapters 8 and
9. But more tailored methods and theories exist for analyzing data arising from
crossclassifications. In addition, whole fields of data analysis methods which
have grown up in particular disciplines are barely touched upon here. For
example, there are several approaches to factor analysis and many variants of
these methods mostly coming from attempts to structure sets of psychological
variables. In this book, only one near relative—namely, principal component
analysis—is discussed. Likewise, economists have created highly developed
methods of solving sets of uncertain linear equations, whose only relatives in
this book are multiple regression analyses. Engineers and psychologists talk a
great deal about pattern analysis, which often turns out to be close to the
multiple discriminant analysis of Chapter 10. But there are other techniques
for clustering individuals which may be described as pattern analysis. Clearly
there are much wider horizons to be considered. By studying a narrower class
of proven methods in greater depth, this book aims to provide a framework to
enable the reader to proceed more easily to these wider horizons.

1.2 INDIVIDUALS, VARIABLES, QUANTITIES, AND RELATED CONCEPTS

A population is the collection of all entities belonging to some recognizable and
reasonably well-defined type or class, and a sample is a subset of a population.
The choice of an interesting population is largely determined by the development
of each individual scientific discipline. In this book, the entities which make up a
given sample or its parent population will be called individuals. A sample
individual is like a bird in hand, and it is not always clear what flock it came
from nor how it was selected. Some sample surveys are designed with great
care to be representative of a population under study, but samples of skulls such
as those analyzed in Example 10.3 must be collected where they may be found
and their representativeness is often a matter of hope. Thus, although the aim of
an investigation is generally to study some populations, the data analyst’s
first emphasis must be on understanding the various angles from which to view
a given sample. He may then be satisfied with a naive belief that what he learned
from his sample will be roughly or at least possibly true of a population, or he
may be willing to pay the price of assuming randomness of samples in order to
have formal mathematical tools of statistical inference which provide precise

probabilistic ways to think about the population.

1.2
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.The term variable will be reserved in this book for a quantitative real-valued
attnbgtc or f:haracteristic which is possessed by every individual of a population
A vana.ble. is defined by some rule or procedure whereby its numerical value.
on any individual may be established. The rule should be reasonably precise and
reasonably objective in the sense that different observers will generally feel that
they agree on what is meant by a given variable determined over a specified
populat_lon. A value of a variable may be directly observed, like the weight of an
ammal-m grams or the response of a human subject to a questionnaire item on a
ﬁve—polmt scale. Or a variable may be such that any value must be computed
from directly observable variables, like a scale formed by weighting and summing
the‘respogses to several questionnaire items. In any particular study, a set of
variables is usually dictated by the subject of investigation. The varia,bles ma
be of'the directly observable type or of the computed type. Usually there is ng
functhnal relation among them. A statistician may often suggest modifications
of a given set of variables, replacing some by transforms or other computed
variables. This‘ is generally done for technical rather than fundamental reasons
howeyer, and it is essentially assumed in this book that the set of variable;
entering an analysis is given.

The starting point of multivariate analysis is therefore a multivariate sample
o; s}f\fe?l .r:jwltli\{ariatehsamples with given individuals and given variables. For
each individual in each sample on i
Crefiod st of variables p e has (ideally at least) all of the values of a

.The concept of variable needs to be distinguished from a related concept
which w1l} be called here quantity. Actually, there are four different technical
terms which need to be distinguished and understood: namely, variable; set of
values of a.variable; quantity ; and value of a quantity. The term variable co’nnotes
math.ematlcally a function or mapping from the individuals of a population to a
re?.l line. 'The set of values of the variable is the set of real numbers associated
with the individuals of the population by the variable. The term quantity as
defined here also has the mathematical connotation of a function, but the real
world context of a quantity differs sharply from that of a variable’.

A §xmp?e and basic type of quantity will be defined first. Each pair consisting
of an individual and a variable defines a real number which is the value of the
varlab}e on that individual . Such a pair defines a quantity whose associated real
value is the vah{e of the quantity. For example, the weight of a specific rat in
grams is a quantity having a specific value. Inits applied context a variable really
does vary, for it takes different values over different individuals, while a quantity
actually takes only one value. The set of actual values of the variable becomes
the set of _pqssible values of the quantity. The quantity itself should be viewed
as a function which maps a generally hypothetical space of ali possible states of
the rejcll world into the real line which includes the set of possible values of the
quantity. Following a convention much used in probability theory, a single
symbol, sych as X, will be used ambiguously for a quantity or for the’ value of
the quantity. One thinks of X as standing for the value of the quantity, and

BB —————————



6 INTRODUCTION 1.3

rigorously speaking a function notation should be used for the quantity itself,
but in practice such double notation is awkward and unnecessary.

A function of a variable or of a set of variables defined over a common
population is again a variable over that same population. On the other hand, a
function of a set of quantities is a meaningful concept provided only that each
quantity may be regarded as defined over a common set of possible states of a
real world. It is natural therefore to extend the notion of a quantity to include
any function (or, in some theories, any measurable function) defined over the set
of possible states of the real world. As before, the range or set of possible values
of such a quantity is the real line while its actual value is a single number. Such
quantities are the daily bread of statistics. Indeed, a function of a set of sample
quantities is another quantity which is often called a sample staristic.

13 THE ROLE OF VECTOR SPACE THEORY

There is a strong emphasis in this book on geometric thinking as a means of
visualizing and thereby improving an understanding of methods of data analysis
and their associated normal sampling theory. At the same time, when precise
mathematical reasoning is required it will be carried out in terms of the theory of
finite dimensional vector spaces. This theory may be regarded as a precise
mathematical framework underlying the heuristic patterns of geometric thought.
Consider a multivariate sample defined by n individuals and p variables. If
this sample is observed, it may be represented by a set of np real numbers, whose
typical member X{?)is the value of the quantity defined by the ith individual and
the jth variable for i=1,2,...,n and j=1,2,...,p. These values are
usually regarded in this book as forming a rectangular array or data matrix with
n rows and p columns and with X{? in the ith row and jth column. For each i,

the row vector
(X2, x9 X 9] (1.3.1)

may be viewed as determining the coordinates of a point or a vector in a p-
dimensional geometric space. This point carries the sample information about
the ith individual, and the n points thus defined for i =1,2,...,n carry
information equivalent to the data matrix. Any point in the p-dimensional space
represents a potential sample individual and the space itself will be called the
individual-space corresponding to the given p variables. On the other hand, for
each j, the column vector

mxw

3

X(j2)
’ (1.3.2)

X (n)

SNCL Y S
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determines the coordinates of a point in an n-dimensional geometric space. The
p points thus defined correspond to variables, and, like the n individuals in
individual-space, these points also determine the whole data matrix. The a-
dimensional space thus defined is special to the n sample individuals, but when
p < n it contains a p-dimensional subspace which is abstractly equivalent to a
space called variable-space to be introduced shortly. Most methods of contin-
uous multivariate analysis have simple descriptions in terms of either individual-
space or variable-space, or both.

A restriction on this book is that almost all of the methods discussed are
based on sample mean vectors and sample covariance matrices. Excepting some
graphic techniques for plotting individuals, none of the information in each
multivariate sample is retained except that contained in a special set of linear
and quadratic statistics. Such a cutting operation should always be regarded
with suspicion, even though mathematical statistics offers some good justifica-
tions in the case of random samples from multivariate normal populations. The
attitude here is not meant to exclude more catholic approaches, but the range of
methods in our restricted class is nontrivial and is unified by its close ties with
vector space theory, and so these methods form a natural class for inclusion in
a single volume.

The sample mean vector is defined to be

[‘Yly YZ’ AR ] ‘X;a)], . (133)
where
X, =13 xw (1.3.4)
n =1
forj=1,2,...,p. The definition of this mean vector should be regarded as

illustrating vector space operations; specifically, the mean vector is found by
taking the vector sum of the n vectors (1.3.1) and multiplying by the scalar 1/n.
Simitarly, the sample covariance between the jth and kth variables is defined to be

n n
1 2 (X(:'i) - X)X — X)) = ! [Z Xg'i)le:n - n"i;:iyk:" (1.3.5)
n-—1ié1 n—1{i=1
When j = k, this is called the sample variance of variable j. The square matrix
whose element in row j and column k is the covariance (1.3.5) is called the sample
covariance matrix of the given sample. The diagonal elements of the covariance
matrix are variances and the matrix is symmetric in the sense that the covariances
(1.3.5) are unchanged by interchanges of j and k. In Chapter 3 the sample
covariance matrix will be identified with the vector space concept of an inner
product defined over variable-space and the inner product concept will in turn
be visualized geometrically in terms of an associated ellipsoid.

With such a choice of basic statistics it becomes natural to consider not only
the p given variables but also all linear combinations of them. This is natural



8 INTRODUCTION 1.3

because the means, variances, and covariances of the wider class of variables are

determined by those of the original set. Suppose that oy, oy, . . . , %, denotes a
given set of real numbers. Then
VeV + aVe+ -+ oV, (1.3.6)

defines a new variable over the same population. The rule for determining the
value of ¥ on a given individual asserts: first determine the values of each of
Vi, Vo» . - » Vpand then substitute these values for the variables in (1.3.6). For
example, if a sample is defined as above by the values X{? forj=1,2,...,p
andi=1,2,...,n, then the sample values of ¥ in (1.3.6) are given by

X9 = a X+ X+ o+ a X, (1.3.7)

fori=1,2,...,n The set of variables V¥ thus defined when oy, otp, . . . 5 &p
range over all sets of p real numbers will be called variable-space and will be
formally identified in Chapter 2 with a p-dimensional vector space.

It is now natural to generalize (1.3.4) to define the sample mean of ¥, namely

x=1 }nj X9, (1.3.8)
ni=1
It follows easily that 3 N B
X=X + Xs+ '+ a0y, (1.3.9)

which shows, as mentioned above, that the sample means of the given p variables
determine the sample means of the continuum of variables in variable.-space. -In
a similar way, if W= pV;+ BaVot -+ ByVs is another variable leth
sample values Yo, y® ., Y®and sample mean Y, then (1.3.5) generalizes
to

L Sx%— X9 -7, (1.3.10)
n—1iza

which will be called the sample covariance of V and W. The rea-der may easily

show that if (1.3.5) is denoted by cov (V;, V) and (1.3.10) is denoted by

cov (V, W), then

P »
cov(V, W) =3 3 a;ficov(V;, W), (1.3.11)
=1 k=1

which shows how the sarhple covariance matrix determines the covariance
between any pair of variables in variable-space.

Geometric or vector space reasoning avoiding unnecessary reference. to
particular sets of coordinate axes may often be carried out. Such reasoning,
called coordinate-free, can simplify both mathematics and upderstanc?mg‘ by
reducing matters to essentials. Concepts such as ellipsoids and linear projections
which appear repeatedly may be visualized in a coordinate-free way.

1.4 THE ROLE OF SAMPLING THEORY 9

Another important theme of vector space theory is duality. In Chapter 6
it will be seen that individual-space and variable-space stand in the formal
mathematical relation of a pair of dual spaces. Any concept or chain of reason-
ing in terms of one space has a dual image in terms of the other, and one of these
may sometimes appear simpler than the other. Alongside the mathematical
concept of duality there is a corresponding pair of dual attitudes which may be
assumed toward any variable. One common attitude to a variable is to regard it
as an entity in itself; for example, one commonly feels that the concept of height,
perhaps the concept of height of human beings in inches, is a very real thing
closely tied to a world view which integrates many such concepts. On the other
hand, a variable may be regarded as a device for producing a pattern of points
on a line, these points being the values of the variable for a sample or population.
More generally, a set of p variables may be viewed initially as entities in them-
selves, or they may be alternatively and dually regarded as a device for producing
a pattern of points in a p-dimensional individual-space. It is part of the flavor
of multivariate statistical analysis that it concentrates on the latter attitude by
providing some ways of looking at linear and quadratic aspects of patterns in
individual-space. This concentration is what makes statistics seem a dry subject,
since it may obscure the more fascinating aspects of what variables mean, what
motivated them, and how they relate to the world-picture of their associated
scientific disciplines. Statistical data analysts must in practice try consciously
to build better bridges between formal methods and their scientific contexts;
the examples of Chapters 8 through 11 may help the reader in this direction, but
they do not pretend to go very far.

1.4 THE ROLE OF SAMPLING THEORY

The final four chapters of this book are concerned with multivariate normal
populations and with formal procedures for statistical inference which assume
random samples from such normal populations. The mathematics of multi-
variate normal sampling theory is highly developed, and no attempt is made to
review all that is known. Instead, a selection is made which appears to the author
to provide those parts of the theory most relevant to data analysis. As always,
stress is laid on geometric arguments to bring out the simplicity and elegance of
the mathematics. )

It is rarely possible to believe with certainty either that populations are
normal or that samples are random. It is often possible to make data shed light
on the failures of such assumptions or, less often, on the effect of these failures
upon specific inferences. Such checking is not analyzed in a formal way in this
book, but a few specific examples are given. Inevitably, one must make careful
but informal judgments about how far any particular inference may be trusted.

Even accepting the assumptions of normality and randomness, the user of
formal methods of statistical inference must decide between two sharply
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contrasting approaches. To see the nature of the cleavage, suppose that a statistic
has been decided upon to define an interesting characteristic of a sample or a
population. The question which immediately arises is of the magnitude of the
sampling error of the statistic, defined to be the difference between the sample
value and the population value. Such a magnitude may be judged in one of two
ways which will be called postdictive and predictive, and which determine a basic
difference among schools of statistical inference. According to the first approach
the population is regarded as fixed but unknown, and the randomness of the
sample determines a probability distribution for the sample statistic and thence
for the sampling error of the statistic. These sampling distributions provide the
key to inference from sample to population. According to the second approach,
the population is regarded as unknown, but it is the sample in hand which is
viewed as fixed. A probability distribution is sought which may be used to pro-
vide judgments which are appropriate after the sample is given, and which con-
cern the uncertainties of knowledge of the population. Such distributions are
often called posterior distributions. Now the sampling distribution of a sampling
error is not at all the same concept as the posterior distribution of a sampling
error. The latter uses probability in the standard forward-looking mode (called
here predictive) which regards probability as a measure of the uncertainty of
some uncertain outcome or value. The sampling distribution on the other hand
may be regarded as having a predictive interpretation only before the sample is
observed, for it specifically reflects the randomness induced by the random
sampling hypothesis. The question therefore is: what meaning can be attached
to a sampling distribution after a sample is known? The answer is: for each
hypothesized population which determines a sampling distribution for a par-
ticular sampling error, one knows which point along the sampling distribution
was realized in the observed sample. To make this answer useful for statistical
inference, one must add a principle asserting that an observed point in the far
tail renders a sampling distribution implausible, and thus also renders im-
plausible the hypothesized population which produced the sampling distribution.
This form of reasoning, called here postdictive inference, includes significance
testing and confidence region methods. Note that the word “confidence”
may be misleading here because the argument proceeds in a double nega-
tive way, failing to reject certain hypotheses instead of positively supporting
them.

Predictive inferences are undoubtedly more desirable in principle than are
postdictive inferences. But the two main schools of predictive inference, namely
Bayesian inference and fiducial inference, are not yet available in a form appli-
cable in a routine way to multivariate data. Most statisticians feel unable to
specify the prior distributions required by the Bayesian approach, especially in
the presence of the large number of parameters required to specify a normal
population of even modest dimension. At the same time, the fiducial methods
are somewhat ambiguous. Thus, while predictive inference is analyzed further

1.5 RELATED WORKS: A VERY BRIEF SKETCH 11

in Chapter 15, the only applications of inference to data are those of Chapter 14
which rely on postdictive reasoning. .

One of the standard terms of probability theory clashes with the basic
terminology of this book. The offending terms are random variable and v.aria.ble.
Since the latter concept as defined in Section 1.2 is so basic to multivariate
statistical analysis, the probabilist’s term random variable will be a?tered here
to random quantity. This use of the term quantity coincides with that 1I}troduced
in Section 1.2. The adjective random signifies only that the quantity comes
equipped with a probability measure or a family of probability measures. The
value of a random quantity will be called a random value and denoteq by a
symbol like X. As already mentioned, X will be used in the familiar ambiguous
way to denote either the quantity or its value.

1.5 RELATED WORKS: A VERY BRIEF SKETCH

Along with Harold Hotelling, R. A. Fisher, John Wishart, and M. S. Bartl'ett,
one of the pioneers of multivariate statistical analysis among mathematical
statisticians was S. S. Wilks. Wilks (1962) remains an excellent source for some
of the basic work on multivariate normal sampling theory. A fuller exposition
of a similar approach is given by Anderson (1958). Other distinguished theoret-
ical statisticians have books which treat the subject, including Cramér (1946),
Kendall (1957), Kendall and Stuart (1961, 1966), Rao (1952, 1965), a'nd Roy
(1957). The review paper by Bartlett (1947) is of historic importance and interest.
Readers preferring mathematics of lower power may be helped bY the books_ of
Cooley and Lohnes (1962), Morrison (1967), or Seal (1964). Multiple reg_reSS}on
analysis and related analysis of variance ideas are fundamental to multivariate
analysis; a range of books on these topics is covered by the set Acton (1959),
Deutsch (1965), Plackett (1960), Scheffé (1959), Draper and Smith (1966), an-d
Williams (1959). Glimpses at a wide range of current work are to be found in
Krishnaiah (1966). An extensive bibliography of statistical literature on
multivariate statistical analysis will shortly be published by Anderson, Pas
Gupta, and Styan (1969). Other literature on multivariate analysis, especially
original sources in research papers, will be cited throughout the text.

While the treatment of vector space theory in Chapters 2 to 6 is nearly sellf-
contained and adequate for the purposes of this volume, many readers will
benefit from deeper coverage of different approaches. Excellent books for the
abstract mathematical content are Birkhoff and MacLane (1965) and Halmos
(1958). For matrix theory, see MacDuffee (1943), Gantmacher (1959), and Rao
(1965). Good sources for geometric orientation are Coxeter (1961) and Sommer-
ville (1958). Important computational theory is given by Householder (1964),
Varga (1962), and Wilkinson (1963, 1965). Books at a more down-to-earth level
include Aitken (1958), Dwyer (1951), Faddeeva {(1959), Horst (1963), Ralston
and Wilf (1960), and Searle (1966).
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CHAPTER 2

BASIC THEORY OF VECTOR SPACES

2.1 ABSTRACT VECTOR SPACES DEFINED

Most areas of applied mathematics lean heavily on the theory of vector spaces
over the field of real numbers. The abstract mathematical content common to
these applications is sketched below and briefly illustrated by the relation of
the theory to multivariate analysis. More complete sources of the theory are
listed in Section 1.5, while more detailed applications abound in the later parts
of this book.

A p-dimensional vector space over the field of real numbers is a mathematical
construct which specializes in the case p = 1 to the set of all real numbers with
their familiar operations of addition and multiplication. In general, the elements
of the vector space are called vectors and should be regarded for the moment as
abstract entities, although in applications they will be identified with or at
least labelled for concepts with a real world basis. Vectors will often be denoted
by capital letters such as U, ¥, W, ... The theory requires that any two vectors
may be added to give a third vector, i.e., given any pair of vectors U and V'
there exists a unique vector W which will be written in the familiar way as

W=U+V. @.1.1)

This operation may be called vector addition to distinguish it from the specialized
concept of addition of real numbers, but the term addition will be used for either
and the meaning will be clear from the context. The theory requires also that
any real number and any vector may be multiplied to give another vector, i.e.,
given any real number x and any vector U, the product of x and U is uniquely
defined to be a vector Z which will be denoted by

Z = xU. (2.1.2)

Real numbers are sometimes called scalars in vector space theory. The operation
of passing from U to Z may be called scaling by the factor x and the multiplica-
tion operation itself is often called scalar multiplication.

15
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The operations of addition and multiplication are required to obey the
following rules:

a) Vectors form an additive abelian group, i.e.,
There exists a zero vector @ such that

G+ V=V+0=V
for all V.
There exists a negative vector — ¥ for every V such that
V4 (=V)=0.

Vector addition is commutative, i.e., (2.1.3)

V4+U=U+V
for all U and V.
Vector addition is associative, i.e.,

V+OD+W=V+U+W)
forall U, V, W.
b) Multiplication of vectors by real numbers obeys:
x(U + V)= xU + xV, (x + )V =xV+yV, 2.14)
xpV = x(yV), and W=V
for all real numbers x and y and all vectors U and V.

These basic axioms together with some simple deductions from them make
up a set of working rules which are used almost automatically by anyone
familiar with vector spaces. Some of the simple deductions, not derived here,
are as follows:

oV =@, forall V,
x@0 = O, for all x, and (2.1.5)
(=)V =—V, for all V.

The notation U — V abbreviates U + (—V).
As indicated in Chapter 1, two applications of vector spaces will be used
repeatedly in this book:

Example 2.1.1. Suppose that ¥y, V,, ..., ¥, represent p different observable
or measurable variables. Here ¥, might be a symbol representing the concept of
the height of a human being in inches, ¥, might similarly represent arm length
in inches, etc. Then, as explained in Section 1.3, the notation

P
2 oV
t=1
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is to be understood to represent a variable for which a value may be computed
in the obvious way once Vy, ¥, ..., ¥, are assigned observed values. It is
clear that the elements >? «,V, can be regarded as the elements of a vector
space satisfying the axioms. That is, sums are defined by

Fi D ?
(Se) + (200) = Zeout AW @.16)
and multiplication by a real number is defined by
P P
x(zloctVt) = 3 GaVe 2.1.7)
fom =
Also, 37 oV, is defined to be the vector O when o =g =" = a, =0

and Y? (—p,)V, is defined to be the negative vector of >7 BV, The reader
may further check through the axioms. The space whose typical member is
37 «,¥, will be referred to as variable-space throughout the book.

Variable-space suffers from the disadvantage that it does not allow changes
of location of a variable although it does allow changes of scale. For example,
if ¥ represents a temperature variable in degrees Centigrade, then the same
variable measured in degrees Fahrenheit, namely ““32 4 1.8¥7,” is not in the
space of variables under consideration. This difficulty may be circumvented by
a device of adding an artificial variable ¥, whose observed value is always unity,
and replacing the space of variables X7 oV, by the augmented variable-space
32 «,V,. Then the variable loosely referred to above as “32 4+ 1.8/ can be
written precisely as 32¥, + 1.8V in the augmented space of variables. For the
most part, it will not be necessary to bring in the artificial variable ¥, and atten-
tion may be focused on the original variable-space defined above.

Example 2.1.2. Suppose that the p-tuple of real numbers
[0, X000 o0 5 Xp)

represents a set of measurements on the p variables V3, Vs, ..., V5. Again the

- reader may check that all such p-tuples form a vector space under the operations:

i) the sum of [xy, Xz, ..., X,] and {yy, Yo, . - - 5 Yl i8 defined to be

[x1+)’1,x2 +_y2"--sxn+y17]9

ii) the product of x and [xy, Xg, . . . , X,] i8 defined to be [xx;, xXg, ... , XX}

Each point of this space may be thought of as a set of possible measurements on
an individual, and the space will be referred to as individual-space throughout the |
book. In Chapter 6 the concept of duality which relates variable-space and |
individual-space will be discussed. '
Again, it would be possible to consider an augmented individual-space
consisting of (p + 1)-tuples
[x()’ X1y Xgs o0 v s xp]:
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where X, X, .. . , X, are as above and x, denotes an observed value of the
artificial variable ¥,. However, in the application of this mathematical structure
X, is always unity, and so it is clear that nothing essential can be gained by adding
X, to the p-tuple [x1, Xz, . .., X5}

2.2 SUBSPACES, HYPERPLANES, LINEAR
DEPENDENCE, BASIS VECTORS, AND DIMENSION

Any subset of the set of vectors in a vector space is a subspace if it forms a vector
space under the operations defined for the whole space. Clearly any linear
combination of the vectors of a subspace also lies in the same subspace, where
a linear combination of Uy, U,, ..., U, means any vector of the form 37 a,U,
where 4y, 4, . . . , 4, are any real numbers. Conversely, the set of all linear
combinations of any subset Uy, U,, ..., U, constitutes a subspace. This is
called the subspace spanned by Uy, U,, . . ., U,. The simplest examples of sub-
spaces are the whole space and the subspace consisting only of . The simplest
nontrivial example of a subspace is the set of vectors a U for any given vector U
as « ranges over all real numbers.

Given two subspaces % and ¥~ one may consider their intersection % N ¥~
and union % U ¥". It may be checked that % N ¥ is itself a subspace but that
% U ¥ cannot be a subspace unless % and ¥ are identical. The elements of
different subspaces % and ¥ span a subspace which may be called the direct sum
of % and ¥ and written % ® ¥". Subspaces % and ¥~ are called complementary
subspaces when their intersection is as small as possible, i.e., consists only of &,
while their direct sum is the whole space.

Consider any subspace % of a vector space &. For a given vector V the
subset of & consisting of all vectors V' + U where U is in % will be called a coset
of % and will be written ¥ + %. If W belongs to the coset ¥ + %, then the
cosets V' + % and W + % are identical, i.c., there are as many different ways of
expressing the coset as there are vectors in the coset. Any vector V'in & belongs
to the coset ¥ + % and to no other coset of % ; in other words, the cosets of %
determine a partition of & into mutually exclusive subsets. Suppose that ¥~
is a subspace of & complementary to %. Any such ¥~ defines a one-to-one
correspondence between the vectors of ¥~ and the cosets of %, defined by making
V in ¥ correspond to V + % in the class of cosets. If desired, this corre-
spondence could be used to define vector space operations over the class of
cosets, and it could be checked that these operations do not depend on the
particular choice of #” complementary to the given %, i.., there is a natural way
to regard the cosets of % as forming a vector space. The group-theoretic term
coset will be replaced later in this chapter by the more familiar geometric term
hyperplane.

Vectors Uy, U,, . .., U, are said to be linearly independent if the relation

Ui+ U+ +6U, =0 .2.1)
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implies that ¢, = ¢, = - = ¢, = 0. Otherwise they are linearly dependent,
and at least one of them can be expressed as a linear combination of the rest. A
basis of a vector space is a linearly independent set of vectors which spans the
whole space. Any vector has a unique expression as a linear combination of the
vectors of a given basis. A basis always exists but is never unique; in fact, any
linearly independent set of vectors can be incorporated into a basis. Each basis
of a given vector space has the same number of elements. If this number is
finite it is called the dimension of the space, but otherwise the space is called
infinite-dimensional. There will be no discussion of infinite-dimensional vector
spaces in this book. At the other extreme, a vector space consisting only of ¢
is defined to have dimension 0. If % and ¥~ are subspaces, it can be shown that

AW +d¥V ) =dU V) + dU V), (2.2.2)

where d(. . .) denotes the dimension of a subspace. Thus, if % and ¥ are com-
plementary subspaces of a p-dimensional vector space,

dU) + d(¥) = p. (2.2.3)

It may be shown that a set of r vectors is a linearly dependent set if and only if
the subspace spanned by the set has dimension less than r.

It is clear that variable-space and individual-space in Examples 2.1.1 and
2.1.2 are both p-dimensional vector spaces. In Example 2.1.1, the vectors
Vi, Vo, ..., V, constitute a basis, and o, @, . . . , o, represent the coordinates
of ¥ = 37 a,V, relative to this basis. In Example 2.1.2 the p-tuples

(1,0,...,0)
©,1,...,0)

’ (2.2.4)
©,0,...,1)

form a basis. On the other hand, it is clear that the augmented variable-space
and the corresponding augmented individual-space are both (p + 1)-dimensional
vector spaces.

2.3 LINEAR TRANSFORMATIONS

A mapping
Vv (2.3.1)

from the elements ¥ of a vector space & to the elements v of a vector space F#
will be called a linear transformation of & into F provided that

o Vi + agVy— gy + ooty 2.3.2)
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for any real numbers «; and «,, and any V; and V; in &, where ¥V, — vy and
V, — v, under the mapping.

If O denotes the zero vector in & and @ denotes the zero vector in %, then
clearly © maps into ¢ under any linear transformation from & to #. More
generally, if % denotes the set of vectors in & which are carried into o in 7z,
then it is easily checked that % must be a subspace of &. U will, of course, be the
subspace of dimension zero if only @ in & maps into & in #. A basic property of
4 is that if ¥ in & maps into v in &, then the whole coset V' + % maps into v
and conversely the coset ¥ + % consists of all the vectors of & which map into
vin & . The range of the transformation, i.., the set of vectors of # reached by
mapping all ¥ in & into %, need not include all of # but must be a subspace v
of #. Thus, in general, a linear transformation is a many-one transformation
from & to a subspace of . It becomes a one-one relationship between &’ and
& if and only if % consists of @ and 7" consists of #, and in this case there is
a unique inverse mapping which is also a linear transformation. Such a one-one
relationship may be called an isomorphism.

Suppose that &, %, %, and ¥ defined above have dimensions p, r, ¢, and s,
respectively, where, since % is contained in & and ¥ is contained in F,

0Lr<yp and 0<s<yg. (2.3.3)

In particular, s is often called the rank of the linear transformation and obeys
s < paswell as s < ¢. This may be seen by noting that the transforms vy, s, . . .,
v, in F of a set of basis vectors V3, V,, ..., ¥, in & must span ¥", and no sub-
space of dimension s can be spanned by fewer than s vectors. Thus, the rank s
of a linear transformation from a p-dimensional vector space & to a g-dimen-
sional vector space % obeys

0 < s <min(p,q). (2.3.4)

An additional important relation is that
r+s=p (2.3.5)
To see this, consider a basis ¥y, Vs, ..., Vyof & such that Vy, Vs, ..., ¥V, span
%. Then it may be checked that the transforms vy, 05, . . . , U, of Vi, Voy ..., Vy
satisfy the requirements that v, = v, = -+ = v, = @and that v,,1, Vpyp, . - -, Up

are linearly independent, the latter set therefore forming a basis of ¥ with
s = p — r basis vectors.

Any given linear transformation may be completely specified by only the
transforms vy, vy, . . . , U, of an arbitrary basis ¥, V, ..., Vyof &. Conversely,
an arbitrary linear transformation may be constructed by picking an arbitrary
set of elements vy, vy, . . . , v, in F and asserting that they are the transforms of
abasis V3, V, . . ., V, of & By such constructions, it may be checked that any
r and s satisfying the inequalities (2.3.3) and (2.3.4) are possible. In particular, if
p = g and one chooses a basis vy, ¥y, . . . , U, of F to be the transforms of a
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basis ¥y, Vg, ..., ¥V, of &, then r = 0 and s = p. Since this clearly defines an
isomorphism between & and & , it follows that an isomorphism may be defined
between any pair of p-dimensional vector spaces, actually in infinitely many
ways. Also, such an isomorphism has rank p, which is the largest rank allowed
by (2.3.4).

It is sometimes useful to define vector space operations on linear trans-
formations from & to %. Thus, if A and B denote linear transformations from
& to F carrying V in & into v, and vg in &, then «A + fB may be defined as
the mapping which carries V into av, + fvg in F.

A product notation for linear transformations is also useful. If C denotes a
linear transformation from & to & and D denotes a linear transformation from
F to ¥, then CD will denote the transformation from & to % defined by first
applying C to & and then applying D to #. It is easily checked that CD is a
linear transformation.

An important special case of the foregoing theory concerns linear trans-
formations of & into itself, i.e., where the roles of & and & are both playéd by
&. Some additional concepts arise here. For example, one is led to consider the
identity transformation | which carries each ¥ in & into itself.

Clearly | satisfies

Al = [A = | (2.3.6)
for any A from & into itself.

A linear transformation A from & into itself which satisfies

AA = A (2.3.7)

is often called an idempotent transformation, or, in geometrically more natural
terms, a projection. Suppose that % and 7" denote, as before, the subset which
maps into @ and the range space of A. It is easily shown that if A is idempotent,
then % and #” must be complementary and thence that every vector in ¥ is left
unchanged by A. Any vector W in & has a unique expression as

W=V+U (2.3.8)
with ¥Vin 7" and U in %, where A carries ¥V — V and U — @ and thence
W—V. 2.3.9)

Thus A is a projection in the sense that it removes the %-component of W while
leaving the #"-component unchanged. To construct an idempotent transforma-
tion of rank s, one need only specify a pair of complementary subspaces %
and ¥~ of dimensions p — s and s and use (2.3.9). Note that the identity | is
a special projection—in fact the only projection with maximum rank p.

2.4 AFFINE GEOMETRY: VECTOR SPACE AS GEOMETRIC SPACE

It is often more natural to shed the formal abstract language of Sections 2.1,
2.2, and 2.3 and discuss vector spaces in geometric language. According to this
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language, vectors are called points, and, in particular, the zero vector  is called
the origin. A subspace % of dimension r is called a hyperplane of dimension r
through the origin, and the cosets ¥V + % are the r-dimensional hyperplanes
parallel to %. A line and a plane are hyperplanes of dimensions one and two
respectively.

A line is uniquely determined by any two points on it. Specifically, the line
through U, and U, may be written U, + % where % is the subspace spanned by
U, — U,. Alternatively, the points of this line may be written o, U; + a,U,
where oy + oy = 1. The subset of these points satisfying «; > 0 and «, > 0
define the line segment U,U, joining U, and U,

More generally, the smallest hyperplane containing a given set of points
Uy, Uy, ..., U, is Uy + % where % is the subspace spanned by the differences
among the U,. This hyperplane may also be characterized as the set of points

r

SoUs, (24.1)
g==1
where
Sa;=1. (2.4.2)
=1

This hyperplane has dimension r — 1 if and only if no U, lies in the smallest
hyperplane containing the remaining U;. In this case the set of points (2.4.1)
obeying (2.4.2) and

o; >0 for i=1,2,...,r (2.4.3)

defines the (r — 1)-dimensional simplex with vertices U;, U,, ..., U,. A one-
dimensional simplex is a line segment, a two-dimensional simplex a triangle,
and a three-dimensional simplex a tetrahedron.

A different generalization of the one-dimensional concept of a line segment
is that of a parallelotope, which specializes to a parallelogram in two dimensions
and to a parallelepiped in three dimensions. For any linearly independent

points Wy, W,, ..., W, of & and any point U of &, the set of points
D+ Y B, (2.4.4)
=1
such that

0<B <1 for i=1,2,...,r (2.4.5)

define the points of an r-dimensional parallelotope. The 27 points such that each
B, is zero or unity are called the vertices of the parallelotope. The set of points
such that 8, = 0 for a single specified i define an (r — 1)-dimensional parallelo-
tope, as do those points such that §; = 1. These subparallelotopes may be called
the ith pair of parallel faces. A point on at least one face of a parallelotope lies
on the surface of the parallelotope while the remaining points are interior points.
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The point (2.4.4) such that
B:=1% for i=1,2,...,r (2.4.6)

defines the center of the parallelotope.

A basis V4, Vs, ..., V, determines a coordinate system in the familiar sense
of analytic geometry. The line segments @V, @V, . . . , @V, are the coordinate
axes and the point ¥ = 7 oV, is said to have coordinates o, s, . . . , %y

The kind of geometry which can be carried on using only the operations
allowed by vector space theory is called affine geometry. Affine geometry is
characterized by the presence of concepts of parallelity of lines, planes, and
hyperplanes, but the absence of concepts of length, angle, and perpendicularity.
Note, however, that the ratio of the lengths of parallel line segments is an affine
concept. Suppose that UV and U,V are parallel line segments and that W =
V — Uand W, = V, — U,. Then W and W, must lie in the same line through
the origin, i.e., in the same subspace of dimension one, and hence W, = a W for
some «. This « is the ratio of the length of the line segment U; ¥, to that of UV

U,

sal;, + U,
/

Fig. 2.4.1. Construction of the vector

o Uy + cyUs. 9 U, U

The reader may object that although geometric language has been intro-
duced, nothing has been done to tie this language to his intuitive understanding
of two- and three-dimensional geometricspace. Consider therefore an “‘ordinary”
geometric plane, or space of two dimensions, which may be thought of as a flat
piece of paper extending to infinity in all directions. Suppose that a two
dimensional vector space with basis vectors U; and U, is to be represented
geometrically in this plane. The first step in the representation is to choose a
point in the plane to be called the origin. Then any two line segments from the
origin may be taken to represent the axes determined by GU, and @U,. With
these choices the correspondence between the vectors of the space and the
points of the plane is defined. In order to construct the point corresponding
to the vector ¢, U, + ¢,U,, as illustrated in Fig. 2.4.1, one needs only the notions
of (i) multiplying a line segment by a real number and (i) moving a line segment
parallel to itself. Note that (i) and (ii) are the geometric\‘versions of the funda-
mental operations (2.1.1) and (2.1.2) on abstract vectors. "This discussion could
be repeated in three dimensions and embellished by explicitly tying together the
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intuitive notion of a family of parallel lines or planes with the abstract notion
of a subspace and its cosets. Note that, in thinking this way about vector
spaces, care should be taken not to introduce concepts alien to affine geometry.
It is impossible to draw geometric diagrams without some intuitive notions of
length, angle, and perpendicularity, but if the space is regarded as affine these
notions must not be used.

In four or more dimensions it is not possible to make concrete geometric
representations of a vector space as illustrated in Fig. 2.4.1. However, it is
possible and useful to develop a geometric intuition in p-dimensional space
through trying to reason by analogy with two and three dimensional spaces,
resorting when necessary to the rigorous abstract language of vector space
theory.

In considering an affine plane or, in general, an affine p-dimensional space,
it is not required to think of the origin as geometrically different from any
other point. However, in order to regard affine geometric space as a vector
space, a specific origin must be chosen, and as stated in Exercise 2.1.4 different
vector operations result when different points are chosen as the origin. Thus,
the concepts of an affine geometric space and a vector space are not identical,
but the concepts of an affine geometric space with a specified origin and a
vector space may be identified. Strictly speaking, geometric affine properties are
those which continue to hold when defined in terms of a vector space arising
from different choices of the origin @.

When thinking in geometric terms with various possible choices for origin,
it is convenient to widen the notion of a linear transformation of & into itself
to include transformations which shift the origin as well as other points. Thus,
if @ is any point in an affine space & and the set V;, V5, . . ., ¥, together with
the origin @ forms a basis of the resulting vector space, then a mapping of & into
itself which carries

P » »
doaVy=0+ 3 a(V,— 0) into o* + Z“t(Vt* — %)
=1 =1 =1

for some set of p + 1 points @*, V¥, ..., V¥ will be called a wide sense linear
transformation. Note that the wide sense linear transformation carries an origin
@ into another point * whereas the narrow sense definition always requires 9
to be invariant.

The simplest type of wide sense linear transformation is a translation
V — ¥V + @*. In geometric terms, this translation simply shifts each point along
a line parallel to @0* by an amount equal to the length of J@*. It may be easily
checked that the general transformation of the previous paragraph may be
regarded as the net result of first carrying out the narrow sense linear trans-
formation carrying ¢ into itself and ¥, into v —0* fori=1,2,...,p,
and then carrying out the translation ¥ — ¥ 4 @*. In this sense, translations
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are the only new operations needed to define wide sense linear transformations
from narrow sense linear transformations.

As suggested in Section 2.3, idempotent transformations have a natural
geometric interpretation as projections. To define such a projection one needs
a pair of hyperplanes % and ¥~ of dimensions r and s where r + s = p and such
that % and 7~ intersect only in the origin. The operation of removing the
component of W along % may also be regarded as the operation of replacing
W by the intersection of the hyperplane W + % with the hyperplane ¥". Thus
the projection. is often described as projection along the family of hyperplanes
parallel to U into the hyperplane ¥”. The definition extends easily into a wide
sense linear transformation with ¥ replaced by a hyperplane ¥ + ¥ parallel to
¥ but not through the origin, i.e., the transformation carries W into the
intersection of W+ % and V + ¥,

2.5 MATRICES AND COORDINATE
SYSTEMS: ANALYTIC VECTOR SPACE THEORY

Matrix algebra can be introduced without reference to vector space theory
and has applications not related to vector space theory. Here, however, matrices
are introduced primarily as mathematical and computational tools for describing
and relating vectors. The elements of matrix theory are so widely known and
available that they are only lightly treated here. In general, an r X s matrix is
an array of r rows and s columns of real numbers and will be denoted by a
bold-face letter. Typical notation would be

My My~ My,
Mgy Mgy * " My

M = . , 2.5.1)
mrl er e mrs.

where m;; is often called the element in position (i, j). Occasionally the elements
may be taken to be abstract vectors. If r = 1, a matrix may be called a row
vector and if s = 1, a column vector. The matrix formed by interchanging the
rows and columns of M is called the franspose of M and is denoted by M.
When a matrix M is square, i.e., when r = 5, one may ask whether M is
symmetric, i.e., whether M = M'. The (i, /) elements of a matrix with i = j
will be called the diagonal or main diagonal elements and those with i ¢ j will
be called the off-diagonal elements. The sum of the diagonal elements will be
called the rrace of the matrix and denoted by tr M. The concepts of diagonal
and trace are especially relevant to square symmetric matrices.

Matrices whose elements are all zero or all unity will be denoted by 0 and
1, respectively. The dimensions of any specific 0 or 1 must be defined in each




26 BASIC THEORY OF VECTOR SPACES 2.5

case or be clear from the context. Similarly, a square matrix of specific dimen-
sion whose diagonal elements are all unity and whose off-diagonal elements are
all zero will be denoted by I and called an identity matrix.

Given an r; X s; matrix M, and an r, X s, matrix M, with s, = r,, the
product M = M;M, is defined to be the r; X s, matrix whose (i, j) element is
given by

81

my; = tgl My Moy (2.5.2)

where m;, my; and m,,; denote the (J, j) elements of M, M, and M,, respectively.
Two matrices of the same dimension may be added to give a third matrix of the
same dimension, N = N, + N, being defined by n,; = ny;; + ny;;, where n,,
ny;;, and ny;; denote the (7, j) elements of N, Ny, and Ny, respectively. The product
xM of a real number x and an r X s matrix M is defined to be an r X s matrix
whose (i, j) element is xm;; where m;; is the (i, j) element of M.

The first use of matrices is to represent the coordinates of individual vectors
in a vector space relative to a given coordinate system (i.e., basis). Suppose that
a vector space & has a basis V4, ¥,, ..., V,. Then any vector 3? «V, can be
written aV, where

Va

o= [o;, %,...,%] and V=] | (2.5.3)
Vs

It should be stressed that in this notation the elements of a are real numbers but

the elements of V are abstract vectors. 1t is easily checked that the operations

defined for vectors and those defined for matrices agree in the sense that if

U, = u,V and U, = w,V, then c,U, + U, = (c14; + c3l4)V. Thus one can

dispense with the basis column vector V and simply identify the vectors of &

with the p-tuples « in the obvious way. This gives a matrix representation of the
space &.

This matrix representation is different for different choices of a basis in &.

A second use of matrices is to relate the representations corresponding to

different bases. Suppose that the column vectors U and V represent different
bases Uy, Uy, ..., U, and ¥y, V,, ..., V,. Then any ¥V, has a unique expres-

sion as a linear combination of U,, U,, ..., U,, i.e.,
P
Vi=Ya,U,i=12,...,p, (2.5.4)
F=1

which may be written V = AU in matrix notation where A has the (i, j) element
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a; Any ¥V in & may be written 3? oV, or 3? B,U, where a and P are the co-
ordinates relative to V and U. Thus aV = BU, or AU = BU, so that

B = uA. (2.5.5)

Of course, one could equally well have expressed U in terms of V as U = BV
and have expressed

a = BB. (2.5.6)
Note that U = BV = BAU and V = AU = ABYV so that
BA = AB =1 .57

where I is an identity matrix. In (2.5.7) the result relating matrix multiplication
and successive coordinate changes has been used implicitly. The general result,
which may be easily checked, states that if the bases U and V are related by
U = BV and the bases V and W are related by V = CW, then the bases U
and W are related by U = DW, where

D = BC. (2.5.8)

A more general use of matrices is to represent linear transformations.
Suppose that A is a linear transformation from & to & where & has the p X 1
basis V and . has the ¢ x 1 basis U. Then V — AU for some p X ¢ matrix A.
Conversely, any p X q matrix A determines a linear transformation aV — aAU
from & to & in terms of the bases V and U. A further linear transformation B
from % to % defines and is defined by an associated matrix B relative to bases
U and W of & and %, respectively. The product transformation AB from &
to & is easily seen to be represented by the matrix product AB relative to the
bases V and W, for V— AU under A and U-»BW under B so that V —
AU — ABW under A followed by B.

The rank of any matrix A may be defined to be the rank of a linear trans-
formation A which it represents. A p X p matrix A of rank p defines an iso-
morphism A between & and & which has a unique inverse B, in turn represented
by the inverse matrix B. Since AB = BA = |, the inverse matrix B of A satisfies
(2.5.7). A p x p matrix of rank p is called nonsingular or of full rank, whereas
it is singular or of less than full rank if it has rank less than p. Every nonsingular
matrix A has a unique inverse B satisfying (2.5.7), but no singular matrix has
such an inverse.

Any p x p matrix A defines a transformation V — AV of ¢ into itself. A
is said to be idempotent if the transformation V — AV is idempotent, i.e., if

AA = A. (2.5.9)

Mathematical theory can often be derived either by using purely vectorial
or geometric reasoning, or by using analytic manipulations with matrices. The
former reasoning often makes use of no basis and may then be called coordinate-
free. The latter always must express vectors in terms of particular coordinate
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systems and may be called coordinate-dependent. Simplifications in analytic
arguments often result from the special choice of a basis or coordinate system.

2.6 PSEUDOINVERSION

From time to time it is useful to be equipped technically to handle matrices
of less than full rank. These arise in various ways which can usually be related
to linear transformations of less than full rank, and in geometric terms the
situation is often easy to understand. In particular, consider the following
generalization of the concept of inverse of a linear transformation.

Suppose that A denotes a linear transformation from a p-dimensional
vector space & to a g-dimensional vector space &. Suppose that %, ¥", r, and
s are defined as in Section 2.3 where s is the rank of A. Suppose that %* is any
(p — r)-dimensional subspace of & complementary to % and ¥ * is any (g — 5)-
dimensional subspace of # complementary to ¥". Define (%, %*) to be the
projection of & into %* along hyperplanes parallel to % and define I(¥"*, ¥")
to be the projection of # into ¥~ along hyperplanes parallel to #"*. Note that
these projections both have rank s. Now the points U* of %* are in one-one
correspondence with hyperplanes U* + %, and these hyperplanes are in one-
one correspondence under A with the points of ¥”. In other words, A defines
a one-one linear transformation from #* to ¥”; call this A; and call its inverse
B,. Finally, define the linear transformation

B = I(¥*,7V)B, (2.6.1)
from & to & to be a pseudoinverse of A.

It is clear that given A there is a different pseudoinverse B for each different
pair of chosen %* and ¥"*. Three basic and obvious properties of such a
pseudoinverse are

i) B has the same rank s as A,
i) AB = W%, U™, (2.6.2)
iii) BA = (¥ %, ¥"). 2.6.3)

These properties say that B comes as close to being an inverse as is possible
when A has rank s in the sense that a projection of rank s is as close to the
identity as can be managed with a transformation of rank s. The particular
definition is motivated by the following theorem.

Theorem 2.6.1. Suppose that A is a given rank s linear transformation from
& to F . Suppose that B has rank s and AB and BA are both projections of
rank s. Then B is a pseudoinverse of A as defined above.

To prove this, define ¥"* to be the subspace of # which maps under B into
@ in &, and define %* to be the range space of B in &. The objective is to prove
that B has the structure (2.6.1) with the ¥"* and %* as defined. Since B has
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rank s, ¥"* and % have dimensions ¢ — s and s = p — r. Also, AB carries any
hyperplane parallel to % into a single point in the range space #*, and since
AB is a projection of rank s it must be (%, %*). This proves, incidentally, that
% and %* must be complementary. Defining A, and B, as above, it follows that
B is defined by B, over ¥ and it remains only to show that ¥~ and 7" are
complementary. If, to the contrary, the intersection of ¥~ and ¥™* were to
contain more than the origin, then a larger subspace of ¥ than simply the
origin would map under B into the origin in &. From this, ¥” could not be in
one-one correspondence with %*, yielding a contradiction which completes
the proof.

In matrix terms, the analogue of A is a p X ¢ matrix A of rank 5. A
pseudoinverse of A is naturally defined to be any ¢ x p matrix B of rank s such
that AB and BA are both idempotent of rank s. Clearly, B is a pseudoinverse of
A if and only if B is a pseudoinverse of A where A and B are defined relative to
bases U and W of & and & by

U— AW and W —BU. (2.6.4)

The structure of A and its pseudoinverse B may be explored as follows.
Consider a basis U* of & such that the last p — s elements U} map into the
origin under U — AW, i.e., UF spans the subspace # defined for the trans-
formation A. Then the first s elements UF span a complementary subspace
*. Similarly, suppose that W* is a basis of & whose first s elements W} span
the range space ¥~ of A and whose lastg — s elements W} span a complementary
subspace #"*. Since U* and W* determine %* and ¥"*, they determine a
particular pseudoinverse B and its corresponding B. Now A may be described
as carrying

U} > CyWF  and U —o, (2.6.5)

where C,; is an s X s nonsingular matrix and o is the origin in #. The corre-
sponding pseudoinverse B carries

wW¥ D, Uf and W, —@, (2.6.6)

where D,, = C;! and @ is the origin in &
Now (2.6.5) and (2.6.6) may be written

U* — C;W* (2.6.7)
and
w* - Df,U* (2.6.8)

where C}, is a p X ¢ matrix with Cy; in the first s rows and columns and zero
elsewhere, and D, is a ¢ X p matrix with Dy, in the first s rows and columns
and zero elsewhere. Also there exist nonsingular matrices G and H such that

U*=GU and W*=HW. (2.6.9)
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From (2.6.7), (2.6.8), and (2.6.9), it follows that

A = G'CHH (2.6.10)
and
B = HDJ,G. (2.6.11)

These formulas provide the following prescription for finding a pseudoinverse
B for a given matrix A. First find G and H™* such that GAH™ has the form of
Ci,. Then find D,, = C;}} and use (2.6.11) to find B.

Finally, consider the special case where s = min (p, g). First suppose that
p < g while A has rank p. Then AB = | since AB is a tank p projection of &
into itself. Similarly, any pseudoinverse B of a p X ¢ rank p matrix A satisfies
AB = I The situation with ¢ < p is similar. When p = g, B is simply the
inverse of A, i.e., B = AL

2.7 EXERCISES

2.1.1 Derive the relationships (2.1.5) from the given axioms.

2.1.2 From the axioms (2.1.3) and (2.1.4) prove the theorem that xV = © forx #0
implies V = O. Conversely, show that this theorem together with (2.1.3) and (2.1.4),
excluding 1V = V from (2.1.4), is sufficient to imply that 1V = V for all V.

2.1.3 Show that variable-space and individual-space as defined in Examples 2.1.1 and
2.1.2 do in fact satisfy the axioms of vector space theory. What are the zero elements
of these two spaces? How does one define the negative of a vector in these two spaces?

2.1.4 Suppose that [a, a5, ..., a,] is a particular point in the vector space of
p-tuples of real numbers [x;, Xp, . . . , X;]. Show that this same space of p-tuples can
be regarded as a vector space in a different way, where

i) the zero vector is taken to be [4;, gy, . . . , apl,

ii) the sum of [xy, X, . - . » Xpland {3y, ya, . . ., yplis defined tobe [x; + y3 — ay,
Xo 4 Yo = Qgse v Xp T Yy — a,l, and

jii) the product alxy, x,, . . ., X5} is defined to be [ax; — (x — Da,, axp; —
(¢ — Day, ..., ax, — (& — Dayl.

What is the negative of (xy, Xy, ..., x,) in this vector space?

2.2.1 Prove the unproved statements in the first two paragraphs of Section 2.2.

2.2.2 Show that any set of vectors including the zero vector is a linearly dependent set.

2.2.3 Show that vectors V3, V,, . . . , ¥V, all different from O, are linearly dependent
if and only if some one of them may be expressed as a linear combination of the rest.
Under what circumstances can ¥y, Vs, .. . , V; be linearly dependent while ¥y is not
expressible as a linear combination of the rest?

2.2.4 Show that the cosets ¥ + ¥ and W + ¥, where ¥ is a subspace of a vector
space &, are identical if and only if ¥ — W belongs to 7.
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2.3.1 Show that the single condition (2.3.2) is equivalent to the pair of conditions that
oV > ov
for all real « and any ¥V in &, where ¥ — v, and that
V+U-—-v+u

forany Vand U in &, where ¥V —>vand U —u.

2.3.2 Show that the mapping ¥ — V* = —V, for all V' in a p-dimensional vector
space &, defines a linear transformation of rank p of & into itself.

2.3.3 Show that any linear transformation of a p-dimensional vector space ¢ into
itself has rank p if and only if it is an isomorphism.

2.3.4 Give an example of a specific linear transformation of rank 2 of the vector
space spanned by the basis V,, V,, V3, V, into itself. Specify # and ¥ in the example.

2.3.5 Show that the set of points left invariant by a linear transformation of ¢ into
itself is a subspace #” of 6. Show further that the dimension of %" is less than or equal
to the rank of the linear transformation, with equality only if the transformation is a
projection.

2.3.6 Suppose that A is a linear transformation from ¢ to #, and that B is a linear
transformation from % to ¢. Show that the rank of AB is no greater than the smaller
of the ranks of A and B.

2.3.7 Show that the vector space of linear transformations from & of dimension p
to # of dimension ¢ has dimension pg. '

2.3.8 Suppose that # and ¥" are complementary subspaces of the vector space &.
Suppose that | represents the identity mapping of ¢ into itself, 1(#%, ¥") represents the
projection along % into ¥7, and 1(¥", %) represents the projection along ¥~ into %.

Show that
| =@, %) = 1(v, ¥),

i.e., that the difference of | and a projection is another complementary projection.
What is the transformation (%, ¥)I(¥", %)?

2.4.1 Interpret geometrically the following statements:

i) % and ¥" are complementary subspaces of a three-dimensional vector space &,

ii)  and ¥ are subspaces of a three-dimensional vector space & such that % and
V + ¥ have no common point,

i) Uy, U,, U, and Uy span a subspace of dimension 2 of a p-dimensional space
¢, and

iv) U, Uy, Us, and U, are linearly dependent in a p-dimensional space &.

2.4.2 Give a definition of the statement that an r-dimensional hyperplane is paraliel
to an s-dimensional hyperplane in p-dimensional affine space.

2.4.3 Strictly speaking, a geometric property should not be called affine unless it is
proved to hold regardless of the choice of an origin. Examples of such properties are
(a) the parallelity or nonparallelity of two hyperplanes and (b) the ratios of lengths of
parallel line segment ratios. Can you prove that (a) and (b) are affine properties?
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2.4.4 Suppose that Uy, Uy, ..., Uy are any r points in p-dimensional affine space.
How would you define the center of gravity of these r points? Is this an affine concept ?

2.45 Define in a natural way the set of 27~° parallel s-dimensional faces of a given
r-dimensional parallelotope, including the vertices when s = 0 and the ordinary faces
when s = r — 1. What is the condition that a face of dimension ¢ be contained in
a face of dimension s for f < s? Show that a face of dimension s is the intersection of
all faces of dimension r — 1 which contain it.

2.4.6 Suppose that % and ¥” are hyperplanes through the origin of dimensions rand s,
respectively, in p-dimensional affine space &. What is the possible range of values of
dim (# N ¥")? What is the condition on r and s such that N ¥ must have dimen-

sion greater than zero?

2.4.7 Suppose that U + % and V' + ¥ are arbitrary hyperplanes of dimensions r and
s, respectively, in p-dimensional affine space &. Show that if r + s < p, then the
hyperplanes do not necessarily have a common point, but that, if r + s > p, then the
hyperplanes intersect in a hyperplane of dimension > r + s — p. (Note. The results of
Exercises 2.4.6 and 2.4.7 should be checked against three-dimensional geometric intuition.)

2.4.8 Show that any parallelotope is invariant under the wide sense linear transforma-
tion of reflection in its center. What other wide sense linear transformations carry a

parallelotope into itself ?
2.5.1 Show that the matrix product A;A, is not generally the same as A A, even
when both products are defined and have the same dimensions.

2.5.2 Show that matrix multiplication is associative, i.e., that (AJADA; = Aj(AAY)
provided that these products are all defined. Show how this property is used in deriving
(2.5.5) and (2.5.8).

2.5.3 Show thatany m X n matrix A has rank r < min (m, n).

2.5.4 Suppose that M is a p x g matrix of rank rand N is ag x g matrix of maximal
rank g. Show that MN is, like M, a p X ¢ matrix of rank r.

2.5.5 If A, and A, are matrices of dimensions p X gandg X s and of ranks ry and ry,
respectively, what is known about the rank of A;A,?

2.5.6 Show thatan m X nmatrix A has rank n — r if and only if there exist at most r
linearly independent # X 1 row vectors Yy, Yz, - - - » ¥r such that

Ay; =0 for i=1,2,...,r
2.5.7 Give a coordinate-free statement of the following result. The three equations
anxy + apXe + axg = 0,
Ay X; + GgpXy + agxy = 0, and
Qg Xy + GgpXy + Gggxy =0

have a set of roots not all zero if and only if the matrix A of coefficients has rank less
than 3. What is the nature of the set of all solutions if A hasrank 2?7 Or if A has rank 1?

2.5.8 Under what conditions does the set of equations

AX =B
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have a unique solution for X, given that A and B have dimensions n x p and p X r,
respectively ? '

'2.5.9 Show that the analytic form of a wide sense linear transformation of & into
itself relative to a basis V is

o -—>a* =B + aA.
2.5.10 Show that the rank of the sum of two m x n matrices is less than or equal to the
sum of their ranks.
2.5.11 Show that, if PQ, P, and Q™ exist, then (PQ)™? exists and equals Q~'P~.

2.6.1 Show that, if B is a pseudoinverse of A, then A is a pseudoinverse of B. What
st;b;l?)aces play the roles of %, #*, 7", and 7"* when A is regarded as a pseudoinverse
of B?

2.6.2 Express the result of Exercise 2.6.1 in matrix terms.
2.6.3 Suppose~ that A is a p x ¢ matrix of rank ¢ where p > ¢g. Suppose that a
p % 1 vector a is given and is known to have arisen as
a =ABp
for some g x 1 vector B. Show that  may be reconstructed from
B = Ba,
where B is any pseudoinverse of A.
2.6.4 Suppose that B is a pseudoinverse of A. Show that B’ is a pseudoinverse of A’

2.6.5 Supposethat Aisap x g matrix witha g x p pseudoinverse matrix B. Suppose
that C and D are nonsingular matrices of dimensions p x p and ¢ x g, respectively.
Show that D*BC~1 is a pseudoinverse of CAD.



CHAPTER 3

EUCLIDEAN VECTOR SPACES

3.1 ABSTRACT EUCLIDEAN VECTOR SPACES

Consider any p-dimensional vector space &. It is proposed to enrich the struc-
ture of this space by giving it an inner product. An inner product is defined by a
rule which assigns a real number (U, V) to each pair U and V of vectors in &,
i.e., an inner product is a function or mapping from the product space &x&
to the real line. The term inner product will be used ambiguously either for the
function or as an abbreviation for the value (U, V) of the inner product for given
Uand V.
The inner product must obey three simple rules:

i) symmetry, ie., :
(U, V)= (V,U) forall UandV, (3.L.1

i) bilinearity, i.e.,
(uUs + p2Us, V) = py(Uy, V) + pa(U, V) (3.1.2)
for all real numbers u; and y, and all vectors Uy, Us, and V,
iii) positiveness, i.e.,
(U, U) > 0 for all U different from ©. (3.1.3)

The term bilinearity in (i) is justified by the companion relation to (3.1.2)
which follows from the application of (3.1.1) to each term in (3.1.2).
Some simple deductions from the axioms are

@, V)= (V,0) = (3,0) = 0forall ¥, and (3.14)
(300 3,8%) = B Z 540 VD, (3.L5)
g=1 j=1 ga=] ga=
for any real numbers oy, o, ..., %, Pi, ... B, and vectors Uy, ..., U,
Vis ..., ¥, In particular,
P P p P
(3% 3 bY) =5 3, =% V) (3.1.6)
i=1 i=1 i=1 j=1
34
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where V4, . . ., ¥, denote any basis and 37 oV, and > ? fi,V; are any two vectors
in & Formula (3.1.6) implies that the inner product on & is defined by speci-
fying it for all pairs of elements of any basis. In fact, if Q is the p X p matrix
whose (i, j) element is (V,, V), then the inner product of aV and BV is given by

(aV,BV) = aQp’, (3.1.7)

a simple elegant formula. Such a matrix Q will be called the inner product
matrix relative to the basis V.

To show that the definition of an inner product is not empty, i.e., that an
inner product exists, simply set

@V, BY) = of". (3.1.8)

This is equivalent to choosing Q in (3.1.7) to be I. It is easily checked that the
quantities defined by (3.1.8) satisfy the axiomatic requirements for an inner
product. Using different bases in place of V, one can define an inner product
in different ways on the same space &. Conversely, it will be seen in Chapter 4
that any inner product can be characterized as in (3.1.8) for some basis, in fact
for an infinite family of bases.

A vector space with an inner product defined on it will be called a Euclidean
vector space. In Euclidean vector space terms, the square root of the inner prod-
uct (¥, V) is called the norm of V¥, and a pair of vectors U and V is said to be
orthogonal if (U, V) = 0. A set of vectors such that every pair of vectors in the
set is orthogonal will be called a (mutually) orthogonal set, and, if the set
constitutes a basis of &, it will be called simply an orthogonal basis. A set of
vectors is called orthonormal if it is orthogonal and each vector has unit norm.
For example, V is an orthonormal set according to the inner product defined
by (3.1.8). If an orthonormal set V constitutes a basis it is called an orthonormal
basis. Two subspaces % and ¥~ are said to be orthogonal if (U, V) = 0 for
every Uin % and Vin ¥

Example 3.1.1. Consider the variable-space of Example 2.1.1 where each
variable or linear combination of variables is a point. Unfamiliar as it may be
for a statistician to think of such variables as points, still it is very familiar to
think of an inner product on this vector space. Simply substitute the familiar
terms covariance and variance for the less familiar terms inner product and
norm squared, i.e.,

U, V)=cov (U, V) and (U, U) = cov (U, U) = var (U). (3.1.9)

It can be easily checked that the sample covariance function introduced in
(1.3.5) satisfies the requirement for an inner product provided that a variable
37 a,V, has zero variance only if o« = oy = - -+ = a, = 0. In fact, the co-
variance matrix whose (7, j) element is cov (V;, V;) plays the role of Q above
and gives the standard form of the definition of an inner product in terms of its

[ —
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values for a set of basis elements. The converse result that any inner product
function is a possible covariance function is easy to prove. Thus the notions of
covariance and inner product are abstractly identical.

Example 3.1.2. At this point, one might suspect that variances and covariances
could be used to define a natural inner product for the individual-space of
Example 2.1.2. This is true, but not trivial, and a discussion of this matter is
postponed to Chapter 6.

3.2 EUCLIDEAN GEOMETRIC SPACE

Euclidean geometry bears the same relation to affine geometry as Euclidean
vector spaces bear to ordinary vector spaces. The geometric terminology
introduced in Section 2.4 remains valid, and additional terminology becomes
possible when affine space is enriched to Euclidean space. For example, the
norm of ¥ may now be called the distance from @ to V or the length of the line
segment O V. More generally, the distance from U to V or the length of the line
segment UV is given by the norm of U — V, ie.,

JU-V,U=V). (3.2.1)
Similarly, the line segments UV and U, ¥;, or the lines determined by them, are
said to make angle 0 with one another, where
U=-VU—-¥)
(U= VU= V)*U, =V, Uy = WY
The line segments UV and U, ¥; or the lines determined by them are said to be
perpendicular if cos 6 = 0, i.e., if

(U =V, U, — V) =0, (3.2.3)

cos b = (3.2.2)

Two hyperplanes ¥ + ¥ and U + % are said to be perpendicular if the sub-
spaces % and ¥~ are orthogonal.

To check that these definitions of geometric terms agree with what one
intuitively regards as ordinary Euclidean geometry in p = 2 dimensions,
consider a Euclidean plane with an orthonormal basis W;, W, corresponding
to a pair of perpendicular line segments @ W,, W, of unit length, which define
perpendicular coordinate axes, as in Fig. 3.2.1. Given the coordinates of the
end points of any pair of line segments UV and U,V,, the standard formulas of
elementary analytic geometry for the length of UV, the cosine of the angle
between UV and U,V,, and the perpendicularity of UV and UV, are seen to
agree with (3.2.1), (3.2.2), and (3.2.3), respectively, when the inner product is
defined as in (3.1.8) using the basis W,, W,. Similar checking could be done
with three-dimensional Euclidean geometry. In the case of p dimensions, for
p > 3 geometric intuition must be backed up by abstract theory.

——

=
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The statistical importance of the present section is that the variable-space
of Example 2.1.1, together with a definition of covariance between each pair of
variables, may be regarded as an ordinary Euclidean p-dimensional geometric
space with its associated well-known concepts and propositions. For example,
variances may be regarded as squared lengths, zero covariance means perpen-
dicular, and the correlation coefficient

pi; = cov (V, V;)Ivar (V) var (V)}? 3.2.4)
between V; and V; is the cosine of the angle between @V, and OV

W, v,
U,
Fig. 3.2.1. The Euclidean plane with orthonormal co- li/.y
ordinate axes @ W, and © W,and arbitrary line segments -
UV and UV,. o L4

The concept of inner product is geometrically equivalent to the concept of
an ellipsoid centered at the origin. In the present development an ellipsoid
centered at the origin is defined to be the “solid figure” consisting of points V'
such that (V, ¥) < 1 according to some inner product. The points ¥ such that
(V, V) =1 are said to be on the surface of the ellipsoid while the remaining
points of the ellipsoid are interior points. Two different inner products cannot
give rise to the same ellipsoid. To see this, note that the set of norms determined
by an inner product uniquely define the whole inner product function, for

U, V)=HU+V, U+ V)= U=V, U=V (3.2.5)

Consequently, if two inner products are different, there must exist a vector W
with different norms under the two inner products. The vector « W for suitably
chosen « has unit norm under one inner product and norm greater than unity
under the other inner product, i.e., «W belongs to one ellipsoid but not to the
other, and so the ellipsoids are different. The notation = will often be used
either for an inner product or for its associated ellipsoid.

In terms of Euclidean geometry, the set of points at unit distance from the
origin defines the unit sphere centered at the origin. However, even if an inner
product is fixed in a space it is possible to consider a further range of inner
products and the corresponding range of ellipsoids of which the unit sphere is
just one. This idea is illustrated in the case p = 2 where a sphere is just a circle
and an ellipsoid is an ellipse. Figure 3.2.2 is intended to be an affine plane where,
because of an inability to draw such spaces without an implied Euclidean inner
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product, vectors W, and W, appear to be orthonormal. If an inner product is
defined by taking W,, W, as an orthonormal basis, then the set of points at
unit distance from & simply traces the unit circle. However, suppose that an
arbitrary pair of vectors Z;, Z, is chosen to be orthonormal for a different
definition of inner product on the same space. Then it may be checked that the
set of points at unit distance from the origin defines an ellipse as drawn. This
ellipse has the property that the tangent line at Z, is parallel to OZ, and the
tangent line at Z, is parallel to @&Z;, and no other ellipse has this property.
These tangency properties will be derived in the p-dimensional case shortly.
Note that the tangency properties appear obviously true in the case of the inner

N Fig. 3.2.2. Inner product ellipses associ-
ated with orthonormal bases W;, W, and
- Z,,Z,. Thelatter is shown as conjugately
contained in an associated parallelogram.

\ - Z,

product represented by the unit circle, and, since any two bases are equivalent
from an affine point of view, one might expect these properties to hold for
any basis in a reasonable mathematical theory.

Any line through the center of an ellipsoid intersects the ellipsoid in a line
segment which will be called an axis of the ellipsoid. The center divides such an
axis into two semi-axes of equal length. In discussing a p-dimensional ellipsoid
the word conjugate is often used in the same way that the word orthogonal is
used in vector space language. Thus if two lines through © are orthogonal
under an inner product, they determine conjugate axes of the associated
ellipsoid. The line segments GW,, OW,, ... , OW, defined by an orthonormal
basis W are a set of conjugate semi-axes of the ellipsoid.

Suppose that %7 is the (p — 1)-dimensional subspace of & orthogonal to
some unit vector ¥, according to a given inner product. Then ¥V, + 77 is
defined to be the tangent hyperplane at ¥, to the ellipsoid of the inner product.
This definition makes sense because (i) ¥, lies on both the hyperplane and the
surface of the ellipsoid and (ii) every other point ¥, + V lying on ¥, + 77 has

Vo + Vo Vo+ V)= Vo, Vo) +2(Vo, M) + (V. V)
= (VO’ VO) + (Va V)
> (V0> V0)5

and so is outside of the ellipsoid. Now suppose that W, and W, are any pair
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of orthonormal vectors. Then the tangent hyperplanes W, + #", and W, + ¥4,
clearly have the property that W, lies in#", and W, lies in’#",. More generally,
if Wy, W,, ..., W, constitute an orthonormal basis with tangent planes W, +
W, then each W, lies in %", for i 5 j. In fact, # ; may be characterized as the
subspace spanned by the W, for i # j.

It is also natural to say that the ellipsoid is conjugately contained in the
parallelotope with faces £ W, 4+ #7,, for the ellipsoid is tangent to each face of
the parallelotope, and these tangent faces have the property of being conjugate
to their points of contact. It is clear that only one ellipsoid can be conju-
gately inscribed in a given parallelotope, but it will be seen that many parallelo-
topes have this property relative to a given ellipsoid, i.e., a specified orthonormal
basis determines an inner product, but a given inner product has many
orthonormal bases.

In thinking of the ellipsoid of an inner product, it is instructive to note that
the size of the ellipsoid varies inversely with the size of the inner product. To
be more precise, changing the inner product from (U, V) to AU, V) has the
effect of multiplying the length of each axis by the factor 17%/2,

The foregoing discussion has defined only ellipsoids with center at . To
define an ellipsoid having an arbitrary center @*, simply translate an ellipsoid
with center @, i.e., if ¥ ranges over a given ellipsoid with center &, then O* + V
ranges over the translated ellipsoid with center G*.

3.3 ORTHOGONAL LINEAR
TRANSFORMATIONS AND ORTHOGONAL PROJECTIONS

An orthogonal linear transformation of a Euclidean space & into itself may
be defined as a linear transformation ¥ — ¥* (narrow sense) which leaves the
norm unchanged, i.e.,

WV, V)y= (Vs v% 3.3.1)

for all ¥in &. Itis left to the reader to show that not only is the norm preserved,
but every inner product is preserved, i.e.,

VvV, W)= (V*, W¥%) (3.3.2)

for every ¥ and W in &. Consequently, any configuration of lengths and angles
determined by a set of vectors U, V, W, ... is mirrored precisely by the set of
transformed vectors U*, V*, W*, ... It is obvious that every orthogonal linear
transformation of the p-dimensional Euclidean space & into itself has rank p, for
if the rank were r < p, then a subspace % including vectors having nonzero
norm would transform into the origin which has zero norm.

1t is easily checked that any translation of a Euclidean space & leaves all
lengths and angles invariant. Thus a translation followed by a narrow sense
orthogonal linear transformation may naturally be called a wide sense orthogonal
linear transformation because it leaves invariant all configurations of lengths
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and angles concerning a set of points. If Euclidean space is regarded as physical
space, then such a wide sense orthogonal linear transformation may be regarded
as a rigid motion in the space, perhaps followed by reflections. An analytic
approach to characterizing the class of all orthogonal linear transformations
involves orthogonal matrices which are taken up in Section 3.4, and methods
of constructing such matrices are presented in Chapter 4.

An orthogonal projection is a special type of linear projection where the
family of parallel hyperplanes along which the projected points move is orthog-
onal to the hyperplane into which points are projected. The definition of an
orthogonal projection requires that one have a pair of subspaces % and ¥~
which are both orthogonal and complementary. It will be proved in Section 4.1
that the set of vectors orthogonal to any subspace % defines a subspace ¥~ which
is complementary to %, and, since no other subspace can be both orthogonal
and complementary to %, the subspace ¥ may be called the orthogonal

complement of %. 1f ¥ is the orthogonal complement of %, then % is the -

orthogonal complement of #”. If W is an orthonormal basis, then Wy, W5, . . .,
W, and W,.,, W,.s, ..., W, span a pair of orthogonal complements. With
this theory in hand, it is clear that the concept of orthogonal projection into the
hyperplane V + ¥ is uniquely determined by ¥ + ¥~, for #” determines the
orthogonal complement % along which the projection takes place.

A different characterization of an orthogonal projection is the following.
The orthogonal projection W* of any point W into ¥ + ¥ is that point in
V + ¥ at minimum distance from W, i.e., that point W* such that

(W — W W — W*) < (W — V5, W — V¥) (3.3.3)

for any V* in ¥ + ¥ different from W*. To prove this, note that the line
segment WW* lies in the hyperplane W + % where % is the orthogonal
complement of #”, and hence WW* is perpendicular to any line segment in %"
Thus,
(W—W* V*— W*) =0, (3.3.4)

so that
(W—V*5,W—V*=(IW— W — [V* = W, W — W] = [V* = W)
= (W — W* W— W* —2(W— W V¥~ W+ (V*— W* V*— W¥
= (W — W*, W— W+ (V¥ — W, V*— W¥)
>(W— W* W— W, (3.3.5)
whenever V* is different from W*, as required.

A third characterization of an orthogonal projection is as follows: if W*
in ¥ 4 ¥ has the property that WW* is perpendicular toevery line segment V'V*

in ¥V 4+ ¥, then W* is the orthogonal projection of W into ¥ + ¥". The
proofs of this theorem and its converse are left to the reader.
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When V + ¥ is simply ¥7, ie., a hyperplane through the origin, the
orthogonal projection W* of W into ¥” is often called the component of W
along ¥ and W — W* s called the component of W orthogonal to ¥". Note that
W = W* 4 [W — W*]is the sum of these two components.

The reader should consider the intuitive meaning of the operation of
orthogonal projection in ordinary Euclidean space of two and three dimensions.

3.4 POSITIVE DEFINITE SYMMETRIC
MATRICES AND ORTHOGONAL MATRICES

A p x p matrix Q is said to be positive definite if aQa’ > 0 for every

1 x pvector a # 0. Given a Euclidean space & and a basis V, the inner product
matrix Q defined in Section 3.1 is clearly positive definite and symmetric.
Conversely, any positive definite symmetric matrix may be used to define an
inner product over a vector space & in terms of a basis V via (3.1.7)/Thus the/[
concept of positive definite symmetric matrix is the natural analytic coordinate-
dependent counterpart of the concept of inner product. When the inner product
is a covariance, the inner product matrix relative to V will be called the co- |
variance matrix of V. Thus the class of all possible covariance matrices is |
identical with the class of all positive definite symmetric matrices. Similarly,
in geometric terms the class of all ellipsoids centered at the origin is in one-one
correspondence with the class of all positive definite symmetric matrices. For |
given any basis V, the ellipsoid of the inner product with matrix Q consists of
points aV such that

aQa’ < 1. (3.4.1)

Since covariance inner products based on sample data must in general be
represented in terms of a covariance matrix Q, computations with such matrices
are basic for multivariate analyses. Chapters 4 and 5 are largely concerned with
operations on positive definite symmetric matrices.

A basic lemma which will be used over and over again, beginning in the
next paragraph, is that if Q and Q* denote inner product matrices of & relative
to a pair of bases V and V*, where V* = AV, then

Q* = AQA’. (3.4.2)
The proof is left to the reader.
A p x p matrix G is said to be orthogonal if

GG' =L (3.4.3)
Equivalent definitions are obviously

G =G (344
or

GG=1 (3.4.5)

Clearly G is orthogonal if and only if G’ is orthogonal. Orthogonal matrices
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arise in relating two orthonormal bases and in expressing an orthogonal linear
transformation in terms of an orthonormal basis. Thus, if U is an orthonormal
basis, then from (3.4.2) U* = GU is an orthonormal basis if and only if G is
an orthogonal matrix. Note that the rows of G express U* in terms of U while
the columns of G express U = G'U* in terms of U*. In a similar vein, it is clear
that the linear transformation aU — aGU where U is an orthonormal basis of &
is an orthogonal linear transformation if and only if G is an orthogonal matrix.

The simplest orthogonal matrix is no doubt I. Perhaps the simplest non-
trivial class of orthogonal matrices is defined by

G=1-2yY, (3.4.6)

where y is any 1 x p vector satisfying yy’ = 1. These matrices may be called
elementary orthogonal matrices and are playing an increasingly important role
in modern computational practice under the name Householder transformations.
(See Exercise 4.3.3 and Section 5.4. See also Householder (1964), Wilkinson
7(1965), and papers referred to by these authors.) Regarded as a linear transfor-
mation in Euclidean space, G in (3.4.6) expresses the simple geometric notion
of reflection. To see this, suppose that U is an orthonormal basis of &. Then
yU defines a unit vector and any ¥ = alU may be decomposed into a component
(ay')yU along aU and a component ¥ — (ay’)yU in the subspace orthogonal
to yU. The linear transformation of reflection in the subspace orthogonal to
yU is defined by changing the sign of the component orthogonal to the subspace
while leaving the component in the subspace unchanged. Thus V' = al =
(ay)YU + [& — (ay)YIU — —(ay)yU + [ — (ay)¥]U = a[l — 2Y'y]Uin
agreement with (3.4.6).

As a first illustration of the use of elementary orthogonal matrices, consider
the problem of finding an orthogonal matrix with a given first row. Anyl x p
matrix g satisfying gg’ = 1 is a candidate for the first row of an orthogonal
matrix. In terms of an orthonormal basis U of a space &, what is needed is an
orthogonal linear transformation U— GU carrying U; —gU. This is easily
accomplished by reflection in the subspace which bisects the angle between the
vectors U; and gU. Thus yU lies along U, — gU or

Yy=Ml — gy, —Zo —L&s> - > L) 347

where
A= 4201 — g2 (3.4.8)

and G is defined by (3.4.6).
The reader should check directly that G defined by (3.4.6) is orthogonal and

that, if (3.4.7) is used, the first row of G is g.

3.5 DETERMINANTS AND VOLUMES

The concept of determinant plays an incidental role in the theory of this book,
usually in the context of describing a volume. A number called the determinant
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of A and denoted by det A may be associated with every square matrix A. If
A isa p X p matrix with (i, ) element a,;, its determinant may be defined by the
formula

det A =3 & ay;0) daji2) - - - Djin)s (3.5.1)
where summation is over the p! permutations j(1), j(2), . . . , j(p) of the integers
1,2,...,p and the signs + and — are used depending on whether an even or

odd number of interchanges of pairs is required to modify the permutation
1,2,...,pinto j(1),j(2), ..., j(p).

A few of the basic properties of determinants will be given without proof.
If A is a triangular matrix, i.e., either a;; = 0 for all i > j or a; = 0 for all
i < j, then det A is given by the product of the diagonal elements, i.e.,

det A = ﬁaii. (3.5.2)
If A and B are both p X p matrices, ther;
det AB = det A X det B. (3.5.3)
For any nonsingular matrix A
det A~ = 1/det A, (3.5.4)
while A is nonsingular if and only if det A 5 0. For any orthogonal matrix G,
det G = £1. (355

The concept of r-dimensional volume in p-dimensional Euclidean space
generalizes the concept of length, which is volume in the case r = 1. Two
parallel line segments have a ratio of lengths which is affinely determined, and
they have actual lengths in Euclidean space whose ratio coincides with the
affinely determined ratio of lengths. Similarly, it is possible to develop a theory
of r-dimensional volumes whereby regions of parallel r~dimensional hyperplanes
have affinely determined ratios of r-dimensional volumes and have consistent
actual volumes when the space is regarded as Euclidean. To derive this theory
would be to go too far afield into areas of measure and integration, so only a few
facts will be given with some heuristic justification.

A set of r linearly independent points Wy, Wy, ..., W, determines the
r-dimensional parallelotope consisting of the points 27 ¢, W; where 0 < ¢; < 1
for i=1,2,...,r. Suppose that U, U,, ..., U, is an orthonormal set
spanning the same subspace as W, W,, ..., W, and that W = [W,, W,
..., W) = DU = D[U,, Uy, ..., UJ for some r X r matrix D. Then it can
be shown (cf. Sommerville, 1958) that the volume of the parallelotope is given
by |det D]. Thus the square of the volume is given by det Q where Q = DD/ is
the inner product matrix of Wy, W,, ..., W,. The role of this formula as a
generalization of the familiar “area = base X height” rule for a parallelogram
will be pointed out in Section 4.1. ’
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An r-dimensional unit sphere consists of the set of points 37 «;U, such that

S <1 (3.5.6)

i=1
where Uy, Us, . . ., U, is an orthonormal set. By ordinary multiple integration
the volume of the region (3.5.6) is shown in many calculus books to be

777/2

K, =——-,

T2+ 1

where T'(...) denotes the gamma function given by I'(m + 1) = m! and

\/77(1/2)(3/2) ...([2m — 1}/2) form = 0,1,2, ... The integration for a general

ellipsoid is not essentially more difficult and may be facilitated by a special

choice of Uy, U,, . .., U, which are orthonormal not only for the given inner

product of the Euclidean space &' but are also orthogonal for the inner product

defined by the general ellipsoid. This amounts to locating the principal axes of
the ellipsoid, as discussed in Section 5.2.

A more heuristic argument will be used to derive an expression for the
volume of a general r-dimensional ellipsoid. Such an ellipsoid may be specified
by a set of conjugate axes GW;, OW,, ..., OW, where Wy, Wy, ..., W, are
any set of linearly independent vectors. This ellipsoid is conjugately contained
in the parallelotope of points 37 ¢,W; where —1 < ¢; <1fori=1,2,...,r.
This parallelotope is twice as long in every dimension as the parallelotope con-
sidered above and so has volume 27[det Q]'/2 where Q is the inner product
matrix of Wy, W, ..., W,. At the same time, the ratio of the volume of the
ellipsoid to the volume of the parallelotope is known to be K, /27, since the ratio
is affinely invariant and therefore the same as in the special case where W;.
W,, ..., W,form an orthonormal set. Thus the volume of the ellipsoid is

K, [det Q]*%, (3.5.8)

(3.5.7)

where K, is defined in (3.5.7).

It may be helpful in interpreting (3.5.8) to express the ellipsoid in terms of
an orthonormal set U. The point aU = BW lies in the ellipsoid if BB’ < 1.
But W = DU where DD’ = Q so that the desired definition of the ellipsoid in U

coordinates is
aQla’ < 1. (3.5.9)

3.6 SEMI-DEFINITE INNER PRODUCTS

The class of inner products over a vector space & may be widened by relaxing

the axiom (3.1.3) to
U, )>0 forallUiné. 3.6.1)

The additional inner products permitted by this relaxation will be called semi-
definite while the labels proper or definite will be used to distinguish the original
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class. The term wide sense inner product will be used to cover both types. The
general theory of semi-definite inner products is easily derived once the theory
of proper inner products is known.

A wide sense inner product is semi-definite if and only if there exists a
U # @ in & such that (U, U) = 0. From (3.1.1) and (3.1.2) it follows that the
set of vectors such that (U, U) = 0 forms a subspace % of &. A wide sense inner
product is semi-definite if and only if its associated % has dimension greater than
zero. Defining the rank of an inner product to be p — dim (%), it follows that a
proper inner product has rank p while a semi-definite inner product has rank s
satisfying 0 < f<p— L.

Any vector U in % has the following properties:

u,vy=>0 forall Vin é&, (3.6.2)

and

(V+ U V+U=(,V) forallViné. (3.6.3)

Conversely, if (3.6.3) holds for a given U, then U is in %. Thus, % may be
characterized as that subspace whose elements do not affect the norm when
added to any vector.

Suppose that ¥~ is any f-dimensional subspace complementary to U.
Clearly, if the inner product is considered only over ¥, it is no longer semi-
definite (although still of rank f). Furthermore, to specify a semi-definite inner
product completely, one need only specify it on any ¥~ complementary to U.
For, if W, and W, are any vectorsin & and W, = V; + Uyand Wy =V, + U,
where ¥, and ¥V, are in #” and U, and U, are in %, then from (3.6.2)

(W, Wy) = (V1, V). (3.6.4)

Thus the structure of semi-definite inner products as well as their means of
construction has been made clear.

In geometric terms, a semi-definite inner product may be thought of in
relation to the operation of projection along the family of (p — f)-dimensional
hyperplanes parallel to % into the f-dimensional hyperplane ¥". All those points
which project into the same point in ¥” are indistinguishable in relation to
the semi-definite inner product, i.e., lie at distance zero from one another. The
ellipsoid of a semi-definite inner product is an ellipsoidal cylinder based on the
f-dimensional ellipsoid in the subspace ¥~ and including all of the hyperplanes
V + % where (V, V) = 1.

A p x p symmetric matrix Q will be called positive semi-definite symmetric

provided that
aQa’ >0 (3.6.5)

for any 1 x p vector a with equality holding in (3.6.5) for some a 7 0. If such
a Q is used to define an inner product over a vector space & relative to a basis
V of &, then the resulting inner product is semi-definite, and conversely any
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inner product matrix for a semi-definite inner product is a positive semi-definite
symmetric matrix. It will now be shown that a semi-definite inner product and
its inner product matrix relative to any basis must have the same rank. Suppose
that a rank f inner product has the inner product matrix Q relative to a basis V
of &. Suppose that as above % is the (p — f)-dimensional subspace of vectors
with zero norm and that ¥” is any f~dimensional subspace complementary to %.
By the process of Chapter 4 there may be found an orthonormal basis U, of 7"
This basis U, of ¥ together with any basis U, of % determines a basis

U
U= [Uj (3.6.6)
of & whose inner product matrix I, is a p X p matrix whose first f diagonal
elements are unity and whose remaining elements are all zero. If V = DU, then

Q = DLD, (3.6.7)

which, since D has rank p, clearly has rank f.
Incidentally, from (2.6.10) and (2.6.11) a pseudoinverse Q of Q is given by

Q = CLC, (3.6.8)

where C = D~1. Note further that if D, denotes the p X f matrix consisting of
the first f columns of D and C, is an f* X p matrix consisting of the first frows of
C, then (3.6.7) and (3.6.8) may be written

Q = DD; (3.6.9)
and
Q=CcC, (3.6.10)

where C, is a pseudoinverse of D,.

As an illustration of the concept of a wide sense inner product, consider a
linear transformation A from a vector space & to a vector space &*. Curiously
enough, A provides a very simple mechanism for carrying an inner product in
the reverse direction from &* to &. For if =* is a wide sense inner product
defined over &* with (U*, V*)* denoting the corresponding value for U* and
V*in &%, then

(U, V) = (AU, AV)* (3.6.11)

for each U and V in & defines a wide sense inner product over . The subspace
% of & consisting of vectors with zero norm according to 7 may be characterized
as that set of vectors in & which map under A into the subspace U* of '* whose
vectors have zero norm according to #*. In particular, if #* is a proper inner
product, then % is determined by A alone to be the subspace of & which maps
into the origin in &*.
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3.7 EXERCISES

3.1.1 Derive the formulas (3.1.4), (3.1.5), and (3.1.6).

3.1.2 Check that the inner product defined by (3.1.8) satisfies the axioms.

3.1.3 Show that the covariance function over variable-space defined in Section 1.3
satisfies the axioms for an inner product function.

3.1.4 Suppose that Uy, Uy, . . . , U, are mutually orthogonal. Show that z{ ¢;U; has
norm [37 ¢3(U;, U)I'”* and that the pair X7 c,U; and X7 d,U; has inner product
z{ ¢ di(Uy, Uy).

3.1.5 Construct a p-variate sample of size n which has the covariance matrix L

3.1.6 Show that the sum of two inner product functions is always an inner product
function, but that the same is not always true of differences.

3.1.7 Show that any set of mutually orthogonal vectors, excluding @, is linearly
independent.

3.1.8 Suppose that % is a subspace of a Euclidean space 6. Show that the set of all V/
orthogonal to every U in # forms a subspace ¥ of €. Show that @ is the only element
common to both % and ¥,

3.1.9 Suppose that % is a subspace of a Euclidean space 6. Show that if Vin & can
be written ¥ = V; + ¥, with ¥, in % and ¥, orthogonal to %, then this decomposition
is unique.

3.2.1 Consider an arbitrary triangle in a two-dimensional vector space €. Show that
there is a unique inner product over & such that the triangle is equilateral with sides of
unit length.

3.2.2 Derive the Pythagoras theorem in p-dimensional Euclidean space, i.e., show
that the squared length of the hypotenuse of a right-angled triangle is equal to the sum
of the squared lengths of the other two sides.

3.2.3 Supposethat ¥V, Vs, ..., V), is a basis of an ordinary vector space, and suppose
that 4 is a given point in this space. In Exercise 2.1.4 it was shown that the same set of
elements may be regarded as a different vector space with origin A and basis 4 + ¥,

A+ V..., A+ V, Either of these vector spaces may be made into Euclidean
vector spaces by regarding the basis ¥y, V, .. ., V,, in one case, or the basis 4 + V1,
A+ V..., A+ V,, in the other case, as an orthonormal basis. Show that the

concepts of length of a line segment and angle between two line segments are the same
for these different Euclidean vector spaces, regardless of the choice of 4. That is, these
concepts may be regarded as belonging to Euclidean geometry proper, where no special
origin is singled out.

3.2.4 Suppose that UV and U,V are parallel line segments in an affine space whose
affine ratio of lengths is «. Show that this concept of length is consistent with the
definition of length in Euclidean space, i.c., show that for any choice of an inner
product over the affine space the ratio (U — V,U —~ MUy = Vy, Uy — Vy)is o2

3.2.5 Give a definition of the angle between a line and a hyperplane of dimension r.

3.2.6 Show that the intersection of an ellipsoid with a hyperplane is either empty or
is an ellipsoid in the hyperplane.
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3.3.1 Show that the operation of orthogonal projection into a given hyperplane
requires only the structure of Euclidean geometry, i.e., is independent of the choice of
an origin.

3.3.2 Suppose that ¥ is restricted to lie in a hyperplane U + % of a Euclidean space
&. How should V be chosen to minimize (V, V)?

3.4.1 Show that the sum of two positive definite symmetric matrices is itself positive
definite symmetric.

3.4.2 Suppose that BV, + BV, + -+ + BV, is the orthogonal projection of
@, Vy + ay¥Vy + - + a,V, into the subspace spanned by V3, V,, ..., V,, where the
inner product matrix is Q relative to V. Write down a set of r linear equations which
must be satisfied by 8y, s, ..., B,

3.4.3 Show that every p X p positive definite symmetric matrix has rank p.

3.4.4 Assuming that an orthonormal basis always exists, show that any positive
definite symmetric matrix Q may be represented in the form

Q =DD’

for some p x p matrix D of rank p. Deduce that any pair Q, Q* of positive definite
symmetric matrices stand in the relation

Q* = AQA
for some p x p matrix A of rank p.

3.4.5 Show that if Q and A are p x p rank p matrices where Q is positive definite
symmetric, then AQA’ is positive definite symmetric. (In particular, AA’ is positive
definite symmetric.)

3.4.6 Suppose that o, is a point on the surface of the ellipsoid defined by (3.4.1).
Show that the set of points « on the tangent plane to the ellipsoid at a, is characterized
by the linear equation

aQu(; = 1.

3.4.7 Suppose that Q is a positive definite symmetric matrix and C, is any p X p
matrix such that C,QC; = I. Show that Cis a p x p matrix satisfying CQC’ = T if
and only if C = GC, for some orthogonal matrix G.

3.4.8 Suppose that x is a given 1 x p vector and that Q is a given positive definite
symmetric matrix. Show that aQa’ is minimized over choices of & subject to ax’ = 1
by choosing

a =d2xQ,
where

d? = xQx’,
and that the resulting minimum is d—2.

3.4.9 Suppose that U and W are orthonormal bases of Euclidean spaces ¢ and #,
respectively. Suppose that a linear transformation A from ¢ to # is defined by

U - AW
and suppose that a linear transformation A’ from # to & is defined by
W > A'U.
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Show that the definition of A’ does not depend on the particular orthonormal bases
chosen, and so is a coordinate-free Euclidean concept.

3.4.10 Suppose that ¢ is a Euclidean space with an inner product denoted by =*.
Suppose that = denotes a new inner product defined over £, and that Q denotes the
inner product matrix of the new inner product relative to a basis V which is ortho-
normal relative to the original inner product. Show that the linear transformation

V- QV

is coordinate-free, i.e., does not depend on the particular choice of a m*-orthonormal V.

3.4.11 The concept of a pseudoinverse B of a given linear transformation A from ¢ to
& was defined in Section 2.6. When ¢ and # are Euclidean spaces it is natural to
choose one such pseudoinverse and call it the pseudoinverse. Recall that B was defined
in terms of subspaces %* and ¥"* complementary to % and ¥ in € and #, respectively,
where % and ¥ are determined by A. The pseudoinverse B of A may be defined as the
special case where % * and ¥ * are chosen to be the orthogonal complements of # and 7,
respectively. Correspondingly, given any p x g matrix A, the pseudoinverse B of A
may be defined by asserting that

W —BU
is the pseudoinverse of

U —~ AW,

where U and W are orthonormal bases of € and #, respectively. Show that B is the
pseudoinverse of A if and only if it can be represented in the form (2.6.10) and (2.6.11)
with G and H both orthogonal matrices.

3.4.12 Show that G = G’ = G™! for an elementary orthogonal matrix G. What
is the geometric explanation for this?

3.5.1 Show that the volume of the simplex 37 c;; where¢; > Ofori =1,2,....r
and 3% ¢, < 1is 1/r! times the volume of the parallelotope 37 ¢;W; where 0 < ¢; < 1
fori=1,2,...,r.

3.6.1 Derive the formulas (3.6.2) and (3.6.3).

3.6.2 Make a drawing of the ellipsoid of an inner product when p = Jand f = 2.

3.6.3 Show that Equation (3.1.8) may be interpreted by saying that-an inner product
of rank p may be expressed as a sum of p inner products each of rank 1. Show that the
sum of p arbitrary inner products may be an inner product of any rank from 1 to p.

3.6.4 Suppose that %, 7", and V are as defined in the discussion preceding (3.6.7).
Show that (3.6.8) defines the pseudoinverse of Q if ¥ is the orthogonal complement of
% according to the inner product which takes V to be orthonormal (cf. Exercises 3.4.10
and 3.4.11).

3.6.5 Suppose that ¥, is any subspace of € such that all non-@ vectors in ¥’y have
nonzero norm. Show that whatever the rank of the inner product, there is a unique
decomposition of any vector ¥'in & into a component in¥’; and a component orthogonal
to 7. (Assume, of course, the same result for the case of a full rank inner product.)

3.6.6 Show that if (3.6.9) is satisfied for any two different p x f matrices D, and Df,
then D, = D#G,, for some f x f orthogonal matrix Gy;. [Hint: express the desired
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relations first in terms of a basis U with inner product matrix I, rather than in terms of
V with inner product matrix Q.}

3.6.7 Suppose that A denotes a linear transformation of rank r from a p-dimensional
vector space € to a g-dimensional vector space &*, Show that (AU, AV)* defines a
rank r inner product over € if (U*, ¥'*)* denotes a rank ¢ inner product over &*.
What is the rank of the induced inner product over ¢ if the given inner product over
&* has rank f < g?

CHAPTER 4

SUCCESSIVE ORTHOGONALIZATION
AND RELATED THEORY

4.1 THE PROCESS OF SUCCESSIVE ORTHOGONALIZATION

This chapter defines and explores a tool of great importance for working with
Euclidean spaces, both for deriving mathematical theory and for carrying out
computations with numerical data. Essentially, it is a process for using an

ordered set of vectors Us, U, . . . , U, to produce a set of mutually orthogonal
vectors.
Consider a set of vectors Uy, U, . . ., U, in a Buclidean space & of dimen-

sion p. More general theory is outlined in Section 4.4, but here for simplicity it
will be assumed that Uy, U,, . . . , U, are linearly independent and that the inner
product over & has full rank p. Often s = p in applications so that Uy, Us, . . .,

U, is a basis of & From Uy, Us, . .., U, define in succession the set of vectors
U, Uk, ..., U¥ as follows:
Ur =0,
v* = v, — We Uy) *
T i oD
-1 * 4.1.1
U = U, - 3 e Uy @b

AUy, U

s—1 *
U, — 2 (U: Uﬂ*) Ua‘*'

=1(U3, Uy)
This process of producing U}, U, . . ., U¥ from the ordered set Uy, Us, . . . , U,
will be called the process of successive orthogonalization. To justify this termi-
nology, it will be proved in the next paragraph that Uy, U7, ..., U are mutually

U*

@

51
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orthogonal. In passing, note that the process of successive orthogonalization of
U,, Uy, ..., U includes the process of successive orthogonalization of U,
Us,...,Usfort = 1,2,..., s and that the U} produced by these processes,
for a given j, are identical.

An inductive proof that UY, U5, ..., U¥ are mutually orthogonal may be
based on the following useful theorem: if UF, UF, ..., U¥, form any set of
r — 1 mutually orthogonal vectors, V is any vector, and

-1 *
y=y Ui s (4.12)

(Vs B

then V — V is orthogonal to each of U¥, U¥, ..., U¥ , and therefore to the
subspace spanned by Uf, U¥, ..., U¥ .

The theorem follows from the direct calculation that

V=V, U5)= U5 —(V,U})

2 UD P—
= V,Ui* — ~(_’___7.M Ul U;
( ) ]gl(U:’U;)( i ) wis
=, UH _ o) wruhH -
Y owhuh Tt
== 0,

fori=1,2,...,r — 1. The theorem may be applied s — 1 times in succession
where V is chosen to be U,, Uy, ..., U;and r — lis chosen to be 1,2, ...,
s — 1, respectively. The first application of the theorem shows that U} is
orthogonal to UY. The second application shows that, assuming U} and U}
to be orthogonal, UY is orthogonal to U and U¥. In general, the (r — 1)st
application shows that, assuming U, U3, ..., U, to be mutually orthogonal,
U, Us, ..., U} are mutually orthogonal. Thus, from s — 1 applications,
it follows that UY, U, ..., UF are mutually orthogonal, as required.

An important detail was neglected in the preceding. If (U¥*, U¥) = O for
some r, then the definition (4.1.1) breaks down for ¢ > r. Actually, if this should
occur, then the terms involving such U} may simply be omitted from the right
hand side of (4.1.1) to provide a modified and foolproof definition of U¥, U¥,
..., U¥. However, this difficulty does not arise when the inner product has full
rank and Uy, U,, . .., U, are linearly independent. For under these conditions
(U¥, U}) = 0 implies that U¥ = &, and this together with the modified (4.1.1)
would mean that Uy, U,, ..., U, could be expressed in terms of fewer than s
nonzero U% which would imply linear dependence among Uy, U, . . . , U,.

The process of successive orthogonalization provides proofs for several
assertions left unproved in Chapter 3. First, it shows that every Euclidean space
possesses an orthogonal basis, for the UF, U%, ..., U: constructed as above
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from any basis U,, U,, . .., U, constitute an orthogonal basis. Further, one
may define
U = (U, UH " UF (4.1.4)

for j=1,2,...,p so that UF* U¥*, ..., UZ** constitute an orthonormal
basis. Finally, in connection with the definition of an orthogonal projection in
Section 3.3 it is required to show that the subspace ¥~ of vectors orthogonal
to a given subspace % is complementary to %, i.e., to show that the notion of
orthogonal complement is properly defined. To prove this, suppose that % has
dimension s, that U,, U,, . .., U, is a basis of %, and that U,, U,, . . . , U,isa
basis of the whole space & which includes the basis Uy, U,, . . ., U, of . From
these, construct the orthogonal basis UF, U¥, ..., U of £asin (4.1.1). Itis
clear from the construction that U¥, U¥, ..., U¥ is an orthogonal basis of %.
Also U}, U%,,..., U} clearly span a (p — s)-dimensional space both
orthogonal to and complementary to %. It remains only to show that any V'
orthogonal to % lies in the subspace spanned by U¥ , U*,,..., U*. Cer-
tainly ¥ may be written V = af U} + af U} + - - - + «¥U¥. But, taking inner
products of each side with UF yields af == 0 fori=1,2,...,s, as required.

The operation of orthogonal projection into a subspace % is especially easy
to carry out when an orthogonal basis of % is available. For, suppose that
Ut, U3, ..., U is an orthogonal basis of % and that U}, U%,,, ..., U is
an orthogonal basis of the orthogonal complement ¥~ of %. Then any vector
W may be written

2 WU . _ 4 *
W= L) Ut = W W 4.1.5
2w uh M @13
where

i < (m Uz*) *
=3 Ui ) 416
DA (416

is the orthogonal projection of W into % or the component of W along %, and

'3 *
wr=3 M;—Li*l Uf (4.1.7)
f=sq1 (U, N Ui )

is the component of W orthogonal to %. The proofs of these assertions are left
to the reader. Note that the coordinates of any vector relative to an orthogonal
basis are very simply expressed in terms of inner products, and that each co-
ordinate multiplied by its associated basis vector simply gives the orthogonal
projection of W into the one-dimensional subspace spanned by that basis vector.
The stepwise construction (4.1.1) of successive orthogonalization is a very
important computational device, and is explored further from the computational
viewpoint in Section 4.3. For pure mathematics, the ability to construct an
orthonormal basis for an arbitrary inner product has led to the derivation of
important theory such as the theorem: given any inner product defined on a
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vector space & there exists a basis such that the inner product is defined by
Sformula (3.1.8) in terms of that basis, and furthermore such a basis can be
constructed from an arbitrary basis in a finite number of steps.

The theorem on the existence of an orthonormal basis corresponds to the
geometric theorem that every ellipsoid has a set of p conjugate axes. In matrix
algebra, this existence theorem corresponds to the following famous result:
if Q is any positive definite symmetric matrix, then there exists a nonsingular
p X p matrix C such that

CQC' =1 (4.1.8)

To see this, suppose that Q is the inner product matrix of a basis V. Then there
exists a basis U = CV with inner product matrix 1 and (4.1.8) is simply an
application of (3.4.4).

It should be noted that the result of successive orthogonalization depends in
general on the order in which the vectors are presented. Thus, with p vectors
Uy, Us, ..., U, there are in general p! different orders of possible successive
orthogonalization. Although the theory is always presented using a given order,
the reader should keep in mind that in applications an order different from an
arbitrary given order may often be appropriate.

4.2 SOME MATRIX THEORY
RELATED TO SUCCESSIVE ORTHOGONALIZATION

Suppose that Q is a p X p positive definite symmetric matrix. By the device of
regarding Q to be the inner product matrix relative to some basis of a vector
space & and then applying successive orthogonalization to this basis, one is led
to a wealth of identities all based on the elements of Q. To begin, suppose that

U, U¥
Us Uy

U=| and Ut=| (4.2.1)
U, U,

denote the basis of & and its orthogonalization defined by (4.1.1) with r = p. In

matrix notation (4.1.1) may be written

ritten__
(;»U = BU*, (4.2.2)

e

where Bis a p x p triangular matrix with elements zero above the diagonal and
unity along the diagonal. It is clear from (4.1.1) that B is uniquely determined
by the inner product over & and therefore by Q.
For simplicity of notation, the inverse matrix of B will be denoted by A, so
that
U* = AU. (4.2.3)
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A may be found from B by a process of successive substitution to solve the
equations (4.1.1) or (4.2.2) for U* in terms of U, i.e., the first row of (4.1.1)
yields the first row of (4.2.3), the second row of (4.2.3) is found by substituting
the first row of (4.2.3) into the second row of (4.1.1), the third row of (4.2.3) is
found by substituting the already found first two rows of (4.2.3) into the third

Tow of (4.1.1), and so on. 1tis clear from this process of construction that A like

B is a triangular matrix with elements zero above the diagonal and unity along
the diagonal.

A matrix T may be defined as the inner product matrix of U*, where, of
course, T is a diagonal matrix with diagonal elements (U¥, U¥) in the (s, s)
position for s = 1,2, ..., p. It follows from (4.2.2) that

Q = BTB". 4.2.4)
The inverse of Q will be denoted by P, and, by inverting both sides of (4.2.4)
and replacing B~ by A, it follows that

P = A'TA. (4.2.5)

The above formulas also yield det Q as a by-product. For, since B is
triangular with diagonal elements unity, det B = 1, and hence

det Q = det BTB’
= det Bdet T det B i
= det T (4.2.6)

£
=TI, U

s=1
As discussed in Section 3.5, det Q may be interpreted as the squared volume of
the parallelotope generated by the basis Uy, Uy, ..., Us. Formula (4.2.6)
has special interest in this regard as the generalization to p dimensions of the
formula “Area = base X height” for a parallelogram. In fact, the product of
the first p — 1 terms of (4.2.6) simply gives the square of the (p — 1)-dimensional
volume of the (p — 1)-dimensional parallelotope based on Uy, Uy, . .., Uy
This corresponds to the “base.” The “height” is given by the component of U,
orthogonal to U, Uy, . .., U, 4, and the squared length of this component is
given by the last term of (4.2.6). Thus by repeated application of the “base X
height” formula to the parallelotopes spanned by Ui, U, ..., Us for s =
2,3,...,p one achieves an illuminating explanation of formula (4.2.6).

The remainder of this section is devoted to a set of relationships concerning
the first s and last p — s elements of U and U*. These will be of use in under-
standing the computational aspects of successive orthogonalization to be dis-
cussed in Section 4.3. For any p X 1 column vector G, denote the first s rows by
G, and the last p — s rows by G, so that

G= [gﬂ (4.2.7)
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Similarly, for a p x p matrix K, write
K = [K“ K”} (4.2.8)

where K,;, K;», Koy, and Kypare s X 5,5 X (p — 5), (p — 5) x s,and (p — 5) X
(p — s) matrices, respectively. This notation will be applied in particular to the
p % 1 vectors U and U*, and to the p X p matrices B, A, Q, P, and T. Note
that A,, and B,, consist entirely of zeros, and that A;;, Ay, Byy, and By, are
triangular like A and B. In addition, the notation U, , will be used for the vector
of components of U, orthogonal to Uy, i.e.,

Us+1.12. . .8
Us+2.12. . .8
Upy = R (4.2.9)
Uz’.l?. . .8
where U, ., , denotes the component of U, orthogonal to the subspace
spanned by Uy, U,, ..., U, Finally, the inner product matrix of U, ; will be
denoted by Q, ;. Observe that the notation of this paragraph assumes a fixed
pands.
One may now write (4.2.2) as
U,=B,Uf and U, =B,U’ +B,U;, (4.2.10)

and (4.2.3) as
U*=A, U, and U = AU, + AU, (4.2.1D)

By substituting (4.2.10) into (4.2.11), one may express the submatrices of A in
terms of the submatrices of B as

Ay = Bﬁly
A, = —BB,; B}, and (4.2.12)
A, = B3
Similarly, one has
B, = Aﬁl’
By, = ~A§'21A21A1“11, and (4.2.13)
By, = A
From (4.2.12)
A21A1“11 = "'B2—21B21 = Ay By = —ApBy, (4.2.14)
and from (4.2.13)
B21]31_11 = "‘Agzl Ay = ByAy = —BpAg. (4.2.15)
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It will be convenient in the sequel to use the special notation H,, for the matrix
expressed by (4.2.15). Two special properties of Hy, are:

i) the first row of H, is the negative of the first row of Ay

ii) the last column of Hy, is the last column of By,.

These follow easily from the relations Hy = —BsAs and H, = ByA,,
respectively. Property (i) may be generalized by noting from (4.2.10) that

Upp = B22U:» (4.2.16)
and thence from (4.2.16) and (4.2.11) that

U,, = U, — H,U,. 4.2.17) %
Thus the rows of Hy, determine the linear combinations of Uy, U, . .., U, which
are the components of Uy, Uy, ..., U, along the subspace spanned by U,,

Uy, ..., U.
It is of interest to express Qyy, Qpys Qu, and Qyy in terms of B and T.
From (4.2.10) it follows that

Qu = BllTllBil’
Q. = B,,T;,B;,, and (4.2.18)
Q= B, T;;Bs; + B, T2,B5.

Also, from (4.2.16) it follows that the inner product matrix Qg of Uy, is
given by
Qs = By TopBis. (4.2.19)

From (4.2.19) it is clear that the first and second terms in the expression for Q,,
in (4.2.18) represent the contributions to the inner product matrix of U, from
the components of U, along the subspace spanned by U,, and from the com-
ponents of U, orthogonal to the subspace spanned by U, respectively.

Matrix formulas are often seen which contain the products Q,, Qi or
Q,,Q;1Q,,. It will be useful therefore to note the following alternative expres-
sions:

QmQﬁ1 = B21B1—11 = Hy, (4.2.20)
and
QQ:1'Q;; = Hy Qe = By TyyByy = Qe — Qa1 (4221}%

The reader may have noticed a duality between the formulas (4.2.4) and
(4.2.5) and between the sets of formulas (4.2.12) and (4.2.13). The nature of this
duality will be elaborated in Chapter 6, but it will be useful to give dual formulas
here for (4.2.18) and (4.2.19). From (4.2.5), rewritten as

[Pu Pu} ____I:Au 0 ]'[Tﬁl OJ[AH 0 ]
Py Py Ay Ap|| 0 T [[An An]’
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it follows that
Pu = A,21T;21A21 + AilTﬁlAu,
P = ALTor Ay, and (4.2.22)
P 22 = A§2T2—21A22-

The right side of the last line of (4.2.22) is now seen to be the inverse of the right
side of (4.2.19), so that

. Qg = P;zl- (4.2.23)

Dually, then, one might define
P, = Qi (4.2.24)
and by inverting the first line of (4.2.18) find the dual formula of (4.2.19) to be
P2 = ALTH An (4.2.25)

Note that the duality here interchanges the roles of B, Q, and T with their trans-
posed inverses, and also replaces the subscripts 1 and 2 with 2 and 1, respectively.

The formulas of this section all have analogues where the orthonormal basis
U** js used in place of U*. Here

U* = RU**, (4.2.26)

where R is the p x p diagonal matrix with diagonal elements (U, UF)"2
Consequently

U = DU** 4.2.27)
and
U** = CU, (4.2.28)
where
C =D, D = BR, and C = R1A. (4.2.29)

In words, this formula says that D is found by multiplying each column of B
by the corresponding element of R, and C is found by multiplying each row of A
by the corresponding element of R~ Thus, D and C are triangular like B and
A, but with the diagonal elements of R and R, respectively. In place of (4.2.4)
and (4.2.5), one now has

Q = DD’ (4.2.30)
and

P = C'C, (4.2.31)

and, in place of (4.2.10) and (4.2.11), one now has
U, =D, Uf* and U, = D,US* + DU, (4.2.32)

and also
U =C,U,  and  US* = CyU, + CpU,. (4.2.33)

The analogues of formulas (4.2.12), (4.2.13), (4.2.14), (4.2.15), (4.2.18), (4.2.19),
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(4.2.22), and (4.2.25) are found by replacing B with D, A with C, and T with L
These analogues are left for the reader to write down and check.

4.3 COMPUTATIONAL METHODS
RELATED TO SUCCESSIVE ORTHOGONALIZATION

Positive definite or semi-definite symmetric matrices may be computed from
multivariate data in many ways, usually in the context of covariance matrices or
their inverses. These ways will, of course, be discussed in detail in later chapters.
Certain much-used further computations with such matrices are closely related
to the process of successive orthogonalization. Beginning from a given Q, the
computations proceed by stages to produce the matrices which appear in the
various identities of Section 4.2. Many of these matrices have important statis-
tical interpretations and it is therefore important to have efficient computing
methods suitable for an electronic computer. Besides, these computing methods
often have a simplicity and elegance which is not obvious from the definitions
and identities of Section 4.2.

Q will denote throughout Section 4.3 a p X p symmetric positive definite
matrix of full rank p.

4.3.1. Elimination procedures. Following the rows of (4.1.1) in order to find
Uk, Uf, ..., U¥ corresponds to computing the rows of B in order. Such
a direct approach is possible and is presented in Section 4.3.3, but a more
convenient and widely used scheme computes the columns of B in order. The
Jatter scheme and various natural extensions of it are the subject of Section
43.1.

The idea behind elimination procedures is a set of p — 1 stages where at
stage s all of the terms in U¥ on the right side of (4.1.1) are subtracted out at
once, for s = 1,2,...,p — 1. After s such stages, one has in hand U¥, U¥,
..., U* in the first s tows of (4.1.1), U¥, = U y,e  , in TOW s+ 1, and
U,y sintowrforr=s+2,5s+3,...,p. In geometric language, the
procedure uses orthogonal projection to eliminate at stage s the components of
U1, Ugysy - - -, Uy, along UF so that after s stages only the components of
each of Uy, Usyo, - - -, Uy perpendicular to all of Uy, Us, . . ., U, remain.

The computations will be described in three layers whose complexity in-
creases as more quantities are carried along in the calculations. 1In the first
layer, the main objective is simply to calculate B from Q by producing the
columns of B one at a time. It turns out to be convenient to compute simul-
taneously the inner product matrices Qu, of Uy, 1 o (= U:)D, Ugnia o

cyUprs o fors=1,2...,p— 1 Thus, after s stages of the first layer,
one has in hand the first s columns of B, namely By, and By, together with
Q22.1'

Consider now how to carry out the computations of stage s + 1 of the first

layer while having in hand the output of stage s. Suppose that b,; denotes the
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(i, /) element of B and that the elements of Q,, ,; are denoted by g; 1». . s for
iandj=s+ 1,5+ 2,...,p. Suppose also that the elements of the analogue
of Qs , With s raised to s + 1 are denoted by g,;,, 77 for i and j=s5+2,
s+3,...,p.

From (4.1.1)
(Up UL _ (Usss. .o Usi)
U Ul (U U

_ Yistraz. . s

b=

(4.3.1)

dr1siraz. s
fori==s+ 2,5+ 3,...,p. This provides the nontrivial elements of column
s+ 1 of B. The justification of the first step in (4.3.1) is that U; — Ui1a. . s
consists of components along U¥, U¥, ..., UF which are orthogonal to U "
and therefore (U; — Uy, 0 Uk =001 (U, Uly) = (Uppe 0 Uh), 28
required. Similarly

Gija2. . 51 = Wi o1 Uz, jpore))
N R
= (Ui.12. .8 bi s+1Us+1’ U;i.12. R T b:i s+1Us+1)

(4.32)

= Gz .5 — bishidisnae. . s — b; iz s

+ b abisndi e

From (4.3.1), the last three terms here are equal apart from sign, and thus

_ Gisriae . s9isnae. s (4.3.3)

Gijaz. . .s+1 = Qijaz. .. PR
qs+1 s+1.12. . .8

or
Giiae. . 1 = Gijae.. s — b, 53 510, e (4.34)

foriand j=s-+2,5+3,...,p Formula (4.3.3) shows how to upstage
Q. ; from s to s + 1, but (4.3.4) is computationally more convenient assuming
that column s + 1 of B has already been computed from (4.3.1). The calculation
indicated by (4.3.3) is often called pivotal condensation. This completes the dis-
cussion of stage s + 1 of the first layer of the elimination procedure.

The second layer has the basic objective of computing A = B~ along with
B. Recall that A may be found in stages by solving (4.2.2) to produce (4.2.3)
where, at stage s, rows 1,2, ..., sof (4.2.3) are substituted into row s + 1 of
(4.2.2) to produce row s + 1 of A. Under the elimination approach, it is more
natural at stage s to substitute row s of (423 intorows s+ 1,5+ 2,...,p
of (4.2.2), i.e., to eliminate U* from the right side of (4.2.2). After s stages of this
elimination approach one has produced the first s rows of (4.2.3) from the first
s rows of (4.2.2), i.e., one has the first s rows A,; of A. Also, one has modified
the last p — s rows of (4.2.2) into expressions for Uy, Uges - - - U, in terms
of Uy, Ugy...,U,and U¥,,U¥,, ..., U%, ie., for U, in terms of U; and
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U, ;. From (4.2.17) the coefficients of U, here form Hy,. Thus, after s stages of
the second layer of the elimination method, one may expect to have A,y and
H,, together with the output B;;, By, and Q,, , of the first layer.

Consider now how to upstage A;; and H,, from s to s + 1. Finding row
s + 1 of A is trivial, for, as pointed out in Section 4.2 as property (i) of Hy,, the
first s elements of row s + 1 of A are simply the negatives of the first row of Hy,
while the remaining p — s elements are simply a one followed by zeros. It
remains therefore to consider only Hy,. Suppose that the elements of Hy, are
denoted by hy; fori=s+1,s+2,...,p and j=1,2,...,s, and the ele-
ments after upstaging s to s + 1 are denoted by A fori = s+ 2,5 + 3,...,p
and j=1,2,...,5+ 1. Now the stage s + 1 elimination procedure alters
the expression

U,=Sh,;U;+ ¥ b,U (4.3.5)
N J=1 t==541
into
s+1 i %
U, =Y hiU; + 2 b U, (4.3.6)
F=1 t=542

fori=s-+ 2,5+ 3,...,p, by substituting

8 8
Uba=Upn + zla;i WUs=Usgq— zlh;i Ui (4.3.7)
fm

Carrying out the substitution and comparing coefficients with (4.3.6) one finds

hf = hy; — b 7ahis (4.3.8)
fori=s+2,5s+3,...,pand j=1,2,...,5 An alternative to (4.3.8)

derived from (4.3.1) is
h;}-’ = h, — q; ;+—1..12. . .sh;%-.l J . (4‘3.9)

i B
Ast1s+132.. .5

Formulas (4.3.8) and (4.3.9) are analogous to (4.3.4) and (4.3.3), respectively;

the first is computationally more direct, assuming that b, 37 has already been

computed. This completes the discussion of stage s + 1 of the second layer of

the elimination procedure.

The third layer when added to the first two brings Q~* (= P) into the system
by finding after s stages Q' (= P, ;) and upstaging it from s to s 4+ 1. Denote
the elements of Q7 by p,; 77T, , foriand j=1,2,...,s and the upstaged
elements by p, 755 p,foriandj=1,2,...,s+ 1. Now Q7 could have
been calculated from (4.2.25) and the upstaged Q; could be calculated from the
upstaged (4.2.25). Note, however, that most of the labor in calculating the
upstaged (4.2.25) was involved in calculating the original (4.2.25). Indeed, by
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careful comparison of these two versions of (4.2.25) the reader may check that

a a. .
J— — oo e s+1i%s41 4
pii.s+2 s+3. .. piJls+1 342, . .0 + [

qs+l s+1.12. . .5

4.3.10)
. ki, (
= Pijoriore..p + IR
Gsi1s41.32. . .5
foriandj=1,2,...,s,and
[ Ao1:9501 5
Pissiams.. p = —l (4.3.11)

q$+1 s+1. 2. .8

when either 7 or j or both are s + 1. Note that (4.3.11) may be explicitly written

h s

Pist1.s+2548...p = = Pstli.s+2s+3...p

dsiisiiae. . s
fori=1,2,...,s and (4.3.12)
1

5194112, . .5

Formulas (4.3.10) and (4.3.12) express the upstaged Qg in terms of the output
of layers 1, 2, and 3 of the first s stages of the elimination procedures. This
process of upstaging Qg is sometimes called bordering.

The foregoing formulas provide computational routines for essentially all of
the matrices discussed in Section 4.2. Note that the first diagonal element of
Q,,, is (U¥,, U*)) which is the (s + 1,5 + 1) element of T, so that the
elements of T may be picked off from the successive Q, , as s increases. Know-
ing T, det Q may easily be computed from (4.2.6). From A, B, and T one has
R, and thence C and D from (4.2.29).

Before illustrating these calculations it will be helpful to provide a very

simple means of describing them.

Pst1s+1.542548...0 =

4.3.2. The sweep operator. A p X p matrix M will be said to have been swept
on row k and column k if M is replaced by another p X p matrix N whose (i, j)
elements n,; are related to the (i, ) elements m,; of M as follows:
Bogii-.
Ny = —ll/mkk y’w“

Ry = Mglm

" o (4.3.13)
Myey = Myeif Mgy,
Ry = My — My MMy,

for i # k and j % k. For brevity N will be denoted by SWP[k]M and the result
of successively applying the operations SWP[k,}, SWP[k,], ..., SWP[k] to
M will be denoted by SWP[ky, ks, . .. , k,]. The terminology here is borrowed
from Beaton (1964).
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With an electronic computer the operations (4.3.13) would usually be
carried out as follows, beginning from a set of p? registers containing the ele-
ments of M. First, my, is replaced by ny, = —1/m,,. Second, the remaining
elements m,, of column k are replaced by n,;, = —myny,. Third, the elements
m,; in neither row & nor column k are replaced by n,; = m;; — ngmy;. Finally,
the remaining elements m,,; in row k are replaced by n,; = —my;ny,. Each stage
here is designed to use only the output of the previous stages, so that no waste
motion of saving numbers in special registers is needed. Note, however, that
in the primary applications of this book M is a symmetric matrix, whence
(4.3.13) shows that N is also a symmetric matrix. It follows that only p(p + 1)/2
registers are required to store M, and the foregoing routine may be altered
slightly to fit this circumstance. In any case, it is clear that a computer sub-
routine can be readily programmed to carry out the sweep operations one at a
time and thence successively, i.e., SWP[ky, ks, . . . , k,JM is quite amenable to
electronic computation.

The calculations of each stage of the elimination procedure of Section 4.3.1

may be viewed simply as a sweep operation. To see this, set

(2111 II12
[§ ! = ’ 4.3.14
(012. . .s) H21 Q22.1 ( )

where H,, = H,,. (The remaining notation was introduced in Section 4.2.) The
notation (4.3.14) should be construed to include the limiting cases

Qo = Q (4.3.15)

- and

Quiz..0 = —Q7" (4.3.16)

The reason for the notation (4.3.14) is the following simple but powerful theorem
which is an immediate consequence of (4.3.1), (4.3.3), (4.3.9), (4.3.10), and
(4.3.12) together with the definition (4.3.13).

Theorem 4.3.1.
Qosz. . .7» = SWP[s + 1]Qqps2. ..oy 4317
fors=0,1,2,...,p — 1 and consequently
Q..o = SWP[L, 2,...,5]Q (4.3.18)

fors=1,2,...,p

The remarkable feature of Theorem 4.3.1 is that it shows how the same
computing operation is involved at each stage s. By simply carrying out the
operations SWP[1], SWP[2], ..., SWP|p], one can pick up A, B, and T along
the way and finally arrive at SWP[1,2, ..., plQ = —Q-1 (Recall that the
first diagonal element of Q,, , is (U¥,, U%,,), that column s of Hy, is that part
of column s of B below the diagonal, and that the first row of Hy, is the negative
of that part of row s + 1 of A to the left of the diagonal.)
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Example 4.3 The following is a 4 X 4 sample covariance matrix:

19.1434  9.0356 9.7634 3.2394

| 9.0356 11.8658 4.6232 2.4746
Q= 9.7634 4.6232 12.2978 3.8794|

3.2394 24746 3.8794 2.4604

The calculations of the elimination procedure to find B, T, A, and Q~* will be
illustrated on this Q. The reader should attempt to reproduce the numbers in the

subsequent matrices.
The first stage is essentially to compute

—0.0522373 0.471995 0.510014 0.169218
/0.471995 ] 7.60104 0.01492  0.94562
SWP[1]Q = %0.510014 \ 0.01492  7.31833  2.22726
’30,169_2_18 0.94562 2.22726 1.91224
At this stage one knows that
- 19.1434 0 0 0]
T = 0 7.60104 0 O
- 0 0 7 0/
0 0 0 7]
B 1 0 0 0]
B | 0.471995 1 0 0
- 0.510014 ? 1 0
| 0.169218 ? ? 1]
R S ) 0 0]
- T 1 o)
? ? 7 1]
and 19.143471 = 0.0522373.
The second stage is to compute
SWPI1, 2]Q = SWP[2]SWPI[1]Q
- —0.0815463 0.0620961 0.509088  0.110499
_ 0.0620961 —0.131561  0.0019629 0.1294067
o 0.509088 0.0019629 7.318301 2.22574
0.110499 0.1244067 2.22574 1.79460
from which
[19.1434 0 0 0
T = 0 7.60104 0 0
- 0 0 7.318301 0}
L 0 0 0 ?

4.3 COMPUTATIONAL METHODS 65
r 1 0 0 07
B = 0.471995 "“"‘”1'"“\/ 0 0
- 0.510014 0.0019629 1 oy
| 0.169218 . 0.1244067 ? 0]
i 1 0 0 0
A= —0.471995 1 0 0
~ | =0.509088 00019629 1 O)
- L7 7 7 1
and -
19.1434  9.0356 ] _ 0.0815463 —0.0620961
9.0356 11.8658 — | —0.0620961 0.131561 |’
The third stage produces
SWP[1, 2, 3]1Q = SWP[3]SWP[1, 2]Q
" —0.1169601 0.0619596 0.0695633 —0.044331
_ 0.0619596 —0.131562 0.0002682 0.123810
- 0.0695633 0.0002682 —0.136643 0.304132 §°
| —0.044331 0.123810 £0.3 1.11768
from which L _
" 19.1434 0 0 0
T = 0 7.60104 0 0
- 0 0 7.318301 0 ?
L 0 0 0 1.11768 |
B 1 0 0 o
B = 0.471995 1 0 0
- 0.510014 0.0019629 1 0 ’
| 0.169218 0.1244067 0.304132 |
i 1 0 0 0 7
A= —0.471995 1 0 0
~ | —0.509088 —0.0019629 1 0 ’
0.044331 —0.123810 —0.304132 1]
and
19.1434 9.0356 9.76347 0.1169601 —0.0619596 —0.0695633
9.0356 11.8658 4.6232 = | —0.0619596 0.131562 —0.0002682 |.
9.7634 4.6232 12.2978 —0.0695633 —0.0002682 0.136643
If desired, a final stage may be added to yield
Q1 = —SWP[4]SWP[1, 2, 3]Q
0.118718 —0.066871 —0.081626 0.039663
| —0.066871 0.145277 0.033422 —0.110774
-0.081626 0.033422 . 0.219400 —0.272110|
0.039663 0.110774 —0.272110 0.894710
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Other quantities of interest might be det Q = det T = 1190.04 and the
square roots of T, namely,

4.3753 0 0 0
R = 0 2.7570 0 0
0 0 2.7052 0

0 0 0 1.0572

From (4.2.9), D is found from B by multiplying each column of B by the cor-
responding element of R, giving

4.3753 0 0 0
2.0651 2.7570 0 0
2.2315 0.0054 2.7052 0
0.5712 0.3430 0.8277 1.0572

D=

Similarly, C is found from A by dividing each row of A by the corresponding
element of R, giving

0.22855 0 0 0

—0.17120 0.36271 0 0

—0.18819 —0.00073 0.36966 0
0.04193 —0.11711 —0.28768 0.94589

C=

These calculations were performed on a desk calculator. Variations on the
calculations—to be exhibited later in Section 4.3—were performed independently
on a desk calculator and show minor deviations from those given above due to
rounding error.

Two important properties of the sweep operator will now be demonstrated.
The first of these is commutativity, i.e.,

SWP[i, jIM = SWP[j, i]M, (4.3.19)

from which it follows that
SWP[i,, i, . . - » [ JM = SWP[jy, jo, .. ., j,IM, (4.3.20)
where iy, is, . . . , i;and jy, Ja, . . . , J, are permutations of the same set of integers.

Formula (4.3.19) may be deduced directly from (4.3.13), but it is interesting to
note also that it can be deduced from (4.3.18). The point is that while all of the
parts —Q;, H,,, and Q,,, of Q,, ) depend on the parts U, and U, of the
basis U they do not depend on the order of the basis elements of U, at least not
in any meaningful sense. Thus Qg is the inverse of the inner product matrix
of U,, and if Q' is computed using the basis elements in one order it can equally
well be computed using the basis elements in any other order. Similar remarks
apply to Hy, via (4.2.17) and to Q,,, which is the inner product matrix of the
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components of U, orthogonal to U,. These computations using the basis ele-
ments in a different order are, however, nothing more than the application of the
sweep operators SWP{1], SWP[2],...,SWP[s] in a different order. Con-
sequently, permuting the order of these operations cannot affect the outcome.

The second property of the sweep operator is that it is very easily undone.
Indeed, the equations (4.3.13) may be solved to yield

My, = —1[my

My = — N[Ny (4.3.21)
My = — Nyl My o
My = Ny — Nl Mg

for j s i and k # i. The operator defined by (4.3.21) may be denoted by
M = RSWIKIN (4.3.22)
and may be called the reverse sweep operator on row and column k. RSW opera-
tors commute with each other, and as with SWP operators, RSW[k;, k5, .. . , k]
will denote the result of successively applying RSW[k,], RSW[k,], . . . , RSW[k,]
in any order.
The formulas
Qu le:l [ - ;11 Qﬁlle }
SWP[1,2,...,s = = . and
[ ][Qm sz Q21Q111 Q22 - Q21Q111Q12
Qu le} |: - 1-11 _Ql_llQIZ ]
Qm, Q22 ""QmQﬁl Q22 - Q21Q1_11Q12
are useful mathematical characterizations of the general SWP and RSW opera-
tors.

(4.3.23)

RSWIL, 2,..., s][

4.3.3. The assimilation operator. In place of the elimination procedure described
above, it is possible to proceed in stages which produce after stage s the succes-
sive orthogonalization of Uy, Uy, .. ., U, without having touched U, ;, U,po,
..., U, Atstages, U,,, is assimilated into the picture, for s = 1,2,...,p— L
First, however, a more general assimilation problem is considered.

Suppose that computations on Q have proceeded to the stage SWPI[L, 2,

...,5]Q when the p-dimensional space & with basis Uy, Us, ..., U, is en-
larged to a (p + r)-dimensional space &* by the addition of new basis variables
Uit Upisy - - - » Upype At the same time the p X p inner product matrix
Qll Q12j|
= 4.3.24
Q [Qu Qs ( )
is enlarged to the (p + r) x (p + r) inner product matrix
11 QIZ Q13
Q* = a1 Qo2 Qusl (4.3.25)
QBI Q32 Q33
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The basic computing task considered here is to produce SWP[1,2,
..., 5]Q* from SWP[1, 2, ..., s]Q and the last r rows and columns of Q*,
i.e., to pass from

- 1_11 H12 QIB
Hy Quy Qs (4.3.26)
Q3l Q32 Q33
to
—-Qi H, | Hy
Hy Quy Quals (4.3.27)
H31 Q32.11~: Q33.1
where, from (4.3.18), '
H;; = Hy, = Q;/'Qua, (4.3.28)
Q21 = Q. = Qu — HyQy, (4.3.29)
and
Qs5.1 = Qg — Hy Qs (4.3.30)

It is convenient to introduce the operator notation ASM[p + 1,p + 2,
ce.,p+r;1,2,...,5] for the passage from (4.3.26) to (4.3.27) defined by
(4.3.28), (4.3.29), and (4.3.30). In general terms, the operator may be written

K11 K12 Kl3
ASMp+Lp+2,...,p+1r1,2,...,5]| Ky Ky Ky

1 Ky K
Ky, K;» —KpKys
= Ko K, Ky — KoKy [0 (4.3.31)
—K3 Ky Kse — KgKpp Ko + KK, Ky

The notation ASM stands for assimilate; more fully, the assimilation operator
ASMIp+ 1L, p+2,...,p+r;1,2,...,s]assimilates Upyy, Upp, .. ., Upyy
into a situation where U, U,, . . ., U, have already been swept out.

Two alternative characterizations of the ASM operator follow. First, it is
clear that the assimilation of Uy, Uj,s, - . . , Uy, may itself be carried out in
rsteps. Thus ASM[p+ 1,p+2,...,p+r;1,2,...,s] may be described as
the result of applying in order ASM[p + 1; 1,2, ..., s] to the first p + 1 rows
and columns, ASM[p + 2;1,2,...,s] to the first p + 2 rows and columns,
and soonto ASM{p +r; 1,2, ..., s]applied to the whole matrix. This is the
direct way to program the ASM operator for an electronic computer. The second
characterization of the ASM[p+ 1,p+2,...,p+r;1,2,...,s] operator
is that it is the result of applying RSWI1,2, ..., 5] to the first p rows and
columns followed by SWPI[I, 2, ..., s] applied to the whole matrix. The first
step here returns the first p rows and columns of (4.3.25) to Q, and the second
step then finds SWP[L, 2, ..., s]Q* directly from Q*. This second charac-
terization of the ASM operator is given for its mathematical interest; it is clearly
an inefficient way to carry out the calculations.

4.3 COMPUTATIONAL METHODS 69

As an example of the ASM operator consider the following operations
applied in sequence to Q:

SWP[1] applied to the upper left 1 X 1 submatrix,

ASM|[2; 1] applied to the upper left 2 x 2 submatrix,

SWP[2] applied to the upper left 2 X 2 submatrix,

ASM[s; 1,2,...,s — 1] applied to the upper left s X s submatrix,
SWP{s] applied to the upper left s X s submatrix,

ASMI[p;1,2,...,p— 1] applied to the whole matrix,
SWP[p] applied to the whole matrix.

Just before the SWP[s] operation, row s provides the negatiye of row s of A.
Just after the SWP[s] operation, the upper left s X s submatrix provides —Q7}.
The final result of the sequence of operations is —Q™.

Example 4.3 (First continuation) The computing sequence just described is
applied to the 4 x 4 matrix Q used to illustrate the SWP operator:

—0.052237,

—0.052237 0.471993
0.471993 7.601060 |’

—0.081546 0.062096
0.062096 —0.131561 {’

—0.081546  0.062096 0.509084
0.062096 —0.131561 0.001965 |,
0.509084  0.001965 7.318324

—0.116959  0.061959 0.069563
0.061959 —0.131562 0.000269 |,
0.069563 0.000269 —0.136643

[—0.116959 0.061959 0.069563 —0.0443107]
0.061959 —0.131562 0.000269 0.123809
0.069563 0.000269 —0.136643 0.304085
| —0.04431 0.123809 0.304085 1.117893 |

(—0.118715 0.066866 0.081616 —0.039637]
0.066866 —0.145274 —0.033409 0.110752
0.081616 —0.033409 —0.219359 0.272016 |
| —0.039637 0.110752 0.272016 —0.894540
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The final result here is — Q™. The reader should also locate in this sequence the
elements of A and T.

4.3.4. The multistandardize operator (cf. Beaton, 1964). For later computa-
tions involving eigenvalues and eigenvectors (to be discussed in Chapter 5) it is
often desirable to have in hand an inner product matrix where a subset of the
vectors U has been replaced by an orthonormal set spanning the same subspace as
the original subset. Usually any orthonormal set of linear combinations of the
specified subset will suffice, and the process of successive orthogonalization is a
convenient means to such an end.

Suppose that Q is the inner product matrix for a basis U and, for simplicity,
that the subset U, is to be replaced by the orthonormal subset UF* found by
orthogonalizing U, in the given order. The objectives are to find two p X p
matrices Qpy, ,; and Cpp  Where Qp, ., is the inner product matrix of
the new basis [Uj*, Uy] and Cp,, , expresses the basis [Uj*, U]’ in terms of
U, ie.,

U**
[U; ] = Cporz.. U (4.3.32)

The limiting cases Q,; and C,y, will be taken to be Q and L.

The multistandardize operator MST[1,2, ... ,s] is a computation which
modifies the pair [Q, I} in a set of 2p® registers into the pair [Quy5 . o Crone. . ol
It does this in s stages where stage r + 1 for r =0,1,...,s5s — 1 modifies
[Quosz.. 11> Crorz.. ) 1010 [Qpors 775y Crona. . 7753)- The following four para-
graphs will describe how to carry out stage r -+ 1 in such a multistandardize
operation.

First note that, when Qg,, = and Cy,, =, are partitioned in the usual way,
only one part of each is unknown at the outset. Thus

I Qr

Q .. .8] & [ * %k ! ] 4.3.33

o1 = | Q8 Qu (4.333)

where I and Q,, are the known inner product matrices of Uf* and U, and where

** or its transpose Qf;* contain the unknown inner products between UF*
and U,. Similarly

C, O
C[mz...s]=[0“ 1]’ (4.3.34)

where Cy; is the part of C which expresses UF* in terms of U, as in (4.2.33),
and where 0 and its transpose consist of zeros and I is the (p — 5) X (p — 5)
identity which expresses U, in terms of U,. These partitions may also be applied
with s replaced by rforr =0,1,2,...,5s — 1.
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Suppose that (U, UF*) is denoted by ¢};* for i > j. The formulas underly-
ing the computations at stage r + 1 are

% *E Lok R pokk KK ks
Ur+1 . Ur+1 —_ q;-;__ilUl — qr—;—mUZ — q1-+1rUr (4.3.3%5)
and
UL = (Uhy URD) ™20 (4.3.36)
From (4.3.35),
£ % *% o XX 2 L (gXE oy
U LU ) =dnm—(5) — (@ 3) — (a;5,) (4337
and from (4.3.36)
%% _ — * % %k
a5~ (qir+1 — 9 da
k% kk * * 2
- QEzq;* = =44, )/(Ur+1’ Ur+1)1/ (4.3.38)

fori=r+2,r+3,...,p

Passage from Qp, ., t0 Qy,  7i5; Tequires only modification of row
and column r + 1. The last (p — r — 1) elements of row and column r + 1
are modified by replacing ¢, — = ¢— . by qz*;:i calculated from (4.3.38) with
i=r+2,r+3,...,p. Note that (4.3.38) requires preliminary computation
of (U¥,, U}, via (4.3.37). The remaining elements of row and column r + 1
are modified to zeros except for the diagonal element which becomes unity.

From (4.3.32) it is seen that linear combinations of the vectors Uy* and U,
correspond to linear combinations of rows of Cy,, - It is therefore clear
from (4.3.35) and (4.3.36) that Cy,, _ 777 is produced from Cyy, by altering
row r + 1 of Cq, ., @s follows: first replace row r + 1 of Cpyy5 by

[row r + 1of C[mz. . .r]] - q;ﬁ Jfrow 1 of C[012- -t
- qu[row 20f Cpy .1']] - q;flr[row rof Cps.. b (4339

and then divide through the resulting row r + 1 by (U}, U% )2
This completes the definition of the multistandardize operator MSTII, 2,
..., 5] with the property

MST[L, 2,...,s][Q, I} = [Q[mz_ ..l C[012. . .s]]' (4.3.40)

Example 4.3 (Second continuation) Beginning from

19.1434 9.0356 97634 32394 1 0 0 O

0.0356 11.8658 4.6232 24746 0 1 0 0

Q.1 =1 97634 46232 122978 38794 0 0 1 O/
000 1

3.2394 2./4746 3.8794 2.4604

the multistandardize operatighs will be applied to yield in succession [Qq;ys
Ciorl [Quuzys Croneyls [ Qs> Cronzsnls and [Qporzsary Croreaat] = L CI-

DEYpTEST
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The first stage simply replaces U; by U** = 0.22855U, whence

1 2.0651 2.2314 0.7404

Q.. = 2.0651 11.8658 4.6232 2.4746
17 122314 4.6232 12.2978 3.8794
0.7404 24746 3.8794 2.4604

and
0.22855 0 0 0O
0 1 00
Coony = 0 01 ol
0 0 0 1

The second stage requires computing from (4.3.37):
(UF, U¥) = 11.8658 — 4.26460
== 7.6018, whence
(U3, UDHYE = 2.7571.
Next, following (4.3.33) and (4.3.38),

1 0 2.23143 0.74036

_ 0 1 0.00548 0.34300
Quorey = 2.23143 0.00548 12.2978 2.8794
0.74036 0.34300 3.8794 2.4604

Then, following (4.3.39),

0.22855 0 00

C = —-0.17119 036270 0 0
go1z1 ™ 0 0 1 of

0 0 0 1

The third stage follows the same general pattern as the second except with
increasing complexity. Thus

(U¥, UFy = 12.2978 — 4.97928 — 0.00003

= 7.3185, whence
(UF, UHH? = 2.7053.

Similarly,
1 0 0 0.74036
0 . 0 1 0 0.34300
foza1 ™ 0 0 1 0.82262

0.74036 0.34300 0.82262 2.4604
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and
0.22855 0 0 0
C _ —0.17119 0.36270 0 0
[01231 —0.18817 —0.00074 0.36964 01}
0 0 0 1

The final stage differs in that Qpy,.5,; is known to be simply I Thus, one
needs
(U, UH) = 1.11791,
(Us, UHY? = 1.0573,

and
0.22855 0 0 0
cC=cC — -0.17119 0.36270 0 0
[01234] —0.18817 —0.00074 0.36964 0
0.04190 —0.11709 -—0.28759 0.54581
It is clear that the rows and columns 1, 2, . . . , s were arbitrarily chosen and

that the definition may be extended to define MST[, &5, . . ., i;] where i,
fs, ..., I areany subset of theintegers 1,2, ..., p. The vectorial definitions all
proceed as before except that Uy, U, . . ., U, arereplaced by U, , Uy, ..., Uy,
and the desired orthonormal basis is that arising from the orthogonalization of
Uy, Uy, Uy in this order. Precise details are left to the reader, but clearly
(4.3.39) easily generalizes to

MSTIiy, iz, - - - » 1,][Q 1] = [Qoisis. . i Croizia. 1) (4.3.41)

The definitions were originally given in the special case only because the
partitions (4.3.33) and (4.3.34) are more easily displayed in that case.

A further observation is that the definition of the operator does not require
the initial pair to be [Q, I]; rather, any p x p matrix K may be substituted for L.
It follows that (4.3.41) generalizes to

MST[in [P is][Q’ K] = [Q[o irfe. . gD C[Oi;ig. . .i,)K]' (4-3-42)

The idea behind definition (4.3.42) is that the basis U may have been derived
from an initial basis V where U = KV. Then (4.3.42) extends to

urt
[Uz ] = Ciorz...s1KV (4.3.43)
so that Cyy;, K is an important matrix for relating back to the original basis
V. If (4.3.43) is used in place of (4.3.32) throughout the foregoing discussion,
one is naturally led to the generalization (4.3.42) rather than (4.3.41).

The term multistandardize was suggested by Beaton (1964) who recognized
the usefulness of the MST operator. The term arises as follows: if a single vector
U, in a basis U is replaced by (U,, U,)"/2U; having a unit norm, then the inner
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product matrix Q of U is replaced by dividing row and column i of Q by (U,
U;)~"2. This is the same as the operation MST[i] applied to Q. In the statistical
context where U, is a variable, the transformation U, — (U,, U,)"Y2U, reduces
U, to a rescaled variable with unit norm or standard deviation which is often
called a standardized variable, and so MST{/] is closely related to the standard-
ization of variable i. The term multistandardize is a generalization referring to
standardizing not a single variable but a block of variables, producing not a
single variable with unit norm but a block of orthonormal variables.

4.4 SITUATIONS WITH LESS THAN FULL RANK

In Section 4.1 it was pointed out that the definition (4.1.1) for U¥, U, ..., U*
may be made more general by agreeing to drop from the right side of (4.1.1) any
term which is a multiple of U¥ for any s such that (U¥, U*) = 0. By similarly
dropping terms in U} where (U¥, U¥) = 0 on the right sides of (4.1.2) and
(4.1.3) it is easily proved that U§, U¥, ..., U¥ are mutually orthogonal in the
general case. Recall, of course, that any U¥ such that (U¥, U¥*) = 0 is orthog-
onal to every Vin &.

The condition (U¥, U¥) = 0 means either that U ¥ = @, or that the inner
product is of less than full rank, or both.

The possibility U¥ = @ implies linear dependence among Uy, U,, . . . , U,
More precisely, if the inner product over & has full rank, if the subspace spanned
by Us, Us, . .., U, has dimension s < r, and if the number of U ¥ different from &
is q, then s = q and the subset of q non-3 U¥ constitute an orthogonal basis of the
subspace spanned by Uy, U,, ..., U,. To prove this it will be shown that the
subspaces spanned by Uy, U,, ..., U, and U¥, U¥, ..., U¥ are identical.
Clearly the latter is contained in the former because linear combinations of
Uy, Uy, ..., U, are used to define the latter. Also (4.1.1) expresses each U,
in terms of the U¥, U¥, ..., U¥, so that the former subspace is contained in
the latter, as required. To prove that the dimension of this subspace is ¢, one
need only show that the s non-@J U} which span it are linearly independent.
(This was left to the reader as Exercise 3.1.7.)

The theorem just proved shows how the process of successive orthogonaliza-
tion may, in principle, be used to check on the linear dependence of a set of
vectors and to find the dimension of the subspace spanned by these vectors.
Since the successive orthogonalization of Uy, U, . . . , U, contains the successive
orthogonalization of U, U,, ..., U, for every ¢t <r, it produces as a by-
product the dimension of each of the subspaces spanned by U,, U,, .. ., U, for
t=1,2,...,r. Itis of interest to note that while the dimensions of these
subspaces are affine properties, the structure of Euclidean vector spaces was
used in finding them. It follows that if the inner product were changed, resulting
in general in a different set of UF, Uy, ..., U¥, the property of whether a
particular UF = @ or not would not be changed.
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Turning now to the possibility that the inner product over ¢ has less than
full rank, suppose that U, U, . .., U, is a basis of & and that the inner produc.t
has rank f so that the inner product matrix Q of the basis V is positive semi-
definite symmetric of rank f. Since, as before, the U ¥ Us, ..., Uz deﬁ.ned by
the general version of (4.1.1) span the same space as Uy, Uy, - ¥ U,, it must
be that U*, U%, ..., U* form a basis of &, and U} = @ is impossible for any s.
Furthermore, it is clear that the set of U* such that (U¥, U *) = 0 must span the
(p — f)-dimensional subspace % of vectors with zero norm and that the‘ remain-
ing U¥ span a complementary f-dimensional subspace v Iq particular, it
follows that the number of U* with positive norm must be /. This result shows
how in principle to compute the rank of a given positive semi-definite symmetric
matrix Q.

The general definition of U* discussed above requires that U = BU* where
the elements b;, of B for i > s are chosen to be zero when (U}, U}) = 0.
However, if such zero elements were to be replaced by arbitrary numbers, the
U# would be altered only by the addition of vectors of zero norm. In particu-
lar, the diagonal inner product matrix of T of U* would be the same for each such
choice of B, and therefore (4.2.4) would continue to hold. Also, any such B
is triangular with elements unity along the main diagonal and zero above, so
that B has a unique inverse A. Defining T to be the matrix formed by inverting
the nonzero elements of T, it follows from (2.6.10) and (2.6.11) that

Q= A'TA @4

is a pseudoinverse of Q for any of the choices of B and thence of A. Formula
(4.4.1) is a generalization of (4.2.5). . .

The theory of this section has practical implications of several k1qu. It is
sometimes convenient in statistics to consider sets of variables including some
which are known to be linear combinations of others; in effect, this means that
linear dependence is built in. In such situations care must t?e taken not to pro-
gram an electronic computer to carry out (4.1.1) in its original form, since the
attempt to divide by zero will either produce wild results due to rounding error
or will stop the machine. _

Another possible complication arises when the input variables are not
linearly dependent and small values of (U7, U¥) are encountered d}le to empiri-
cal relationships among variables. In such situations, blind following of (4.1..])
may again lead to trouble because the value (U, UY) used at stage s may consist
largely of rounding error. In situations where the order O.f orthogonalization
has some latitude, programs may be written which determine the order as the
calculation proceeds in a way which controls the problem of small (UX, U¥Y).
But if the problem becomes too severe, the computation may r}eed to be aban-
doned or its precision increased. For the most part, such questions of accuracy
of computed values are beyond the scope of this book.
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4.5 EXERCISES

4.1.1 Show that the successive orthogonalization of U;, U, in general produces
different vectors from the successive orthogonalization of U,, U;. What is the ex-
ceptional case? Illustrate your answer with a plane diagram.

4.1.2 Show that the subspace spanned by Uf¥, U¥, ..., U¥ defined by (4.1.1) is the
same as the subspace spanned by Uy, U,, ..., U,

4.1.3 For any ¢ < s, show that

W, U S, Ut
U — Y —5—2-U¥ and Ei-f———il X
F=1 (Uj ¥ U,) el (Uj*a U,*) ’
denote the components of U, along and orthogonal to the subspace spanned by U,

Uy, ..., U, In particular, deduce that the mapping U, - U¥ is the orthogonal
projection of U, into the subspace orthogonal to Uy, U, . . ., Us s,

4.1.4 Show that, if ¥ is the orthogonal complement of %, then % is the orthogonal
complement of ¥".

4.2.1 Show that, given any basis U of a p-dimensional Euclidean space ¢, there
exists one and only one orthogonal basis U* = AU such that A is triangular with
elements unity along the diagonal and zero above the diagonal. Show also that there
exists one and only one orthonormal basis U** = CU such that C is triangular with
elements zero above the diagonal.

4.2.2 In the notation of Section 4.2, show that
T = AQA’ and T1 =BPB.

4.2.3 Write down the analogues of (4.2.12), (4.2.13), (4.2.14), (4.2.15), (4.2.18),
(4.2.19), (4.2.22), and (4.2.25) in terms of C, D, and X in place of A, B, and T. Show
that these may be derived from (4.2.32) and (4.2.33) in the same way that their analogues
were derived from (4.2.10) and (4.2.11). Show also that they may be derived alterna-
tively by the direct substitution of A = RC, B = DR}, and T = RR into the analogous
formulas.

4.2.4 Show that Q,Q; = B,B = —AGJA,, = D,Di = —C5lC,, and dually
that P,Pgl = Ay Azl = —BjiiBy = C;Ci3t = DDy,

4.2.5 Show directly that U, — Q,,Q;*U, is orthogonal to U,, and hence must be
U, ,. Then show that the inner product matrix of U, — QyQp!U, is Qy,Q'Q;, and
deduce that Qy, ; = Qg — Q,,Q71Qy,.

4.2.6 Show that U, = B, B;'U, + B,,U¥, and by looking at the expression for
U,,, given by the first row of this equality, show that the first row of B,,By* consists of

['““E 1 Ay e s TR s]’
i.e., of the negatives of the first s elements of row s + 1 of A. Note that the remaining
elements are known, for a;73 573 = 1and a7, =0forz >s + 1.
4.2.7 By writing B, B! = B, A, show directly that the last column of By B!

consists of [b;7 b33 40 - - - b, J,1e., of the elements below the diagonal element of

the (s + 1)st column of B.
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4.2.8 From Exercises 4.2.6 and 4.2.7 deduce that
agg, = b3, for s=12,...,p~1.
4.2.9 What are the dual results of Exercises 4.2.6 and 4.2.77

4.2.10 Show that Q,, , = Q,, — H,;,Q, H;, and dually that Qi = Py; — Hy, Py, Hy,.

4.3.1 How many additions or subtractions and how many multiplications or divisions
are required to compute B and T by the elimination procedure of Section 4317
How many are required to compute B, T, and A? How many are required to compute
B, T, A, and Q'? Compare the number of multiplications and divisions in each of
these three categories with the number of multiplications required to multiply two
p X p matrices, especially for p large.

4.3.2 The elimination method of Section 4.3.1 may be modified into the square root
method. This approach bypasses B and A and finds D and C directly. Finding D by
this method may be described as finding the coefficients in the set of equations

duUt* = Ut = U,
dpUs* =UF = U, — dy UT*

d U** = U* = U, — d,Ut* — dU* -+ —d, 55U,

PP D

Show that the column of coefficients of U¥* may be computed directly from Q as
U,, Upj(Uy, UP2 for s = 2,3,...,p. Show that this column multiplied by its
transpose may be subtracted from the last p — 1 rows and columns of Q to yield
Q,,, with s = 1, which completes the first stage of the square root version of the
elimination method of finding D. Describe the remaining steps required to find D, C,
and Q! by this method, illustrating your answer with the matrix Q of Example 4.3.

4.3.3 Triangularization. The process of successive orthogonalization leads to a
somewhat different set of computational procedures when the computations are based
directly on the coordinates of the set U relative to an orthonormal basis W of & rather
than on the inner product matrix Q of the set U. As in the text, there is a choice be-
tween expressions involving U*, and hence A and B, or expressions involving U**,
and hence C and D. Because of the convenience of having orthogonal matrices rep-
resent relations between the orthonormal sets W and U**, the latter representation is
used here.

Suppose that E is any 5 X p matrix of maximum rank s forsomesonl <s < p.
Then E may viewed as defining a set of linearly independent vectors U = EW where
W is an orthonormal basis of £&. The orthonormal set U** produced by successive
orthogonalization of U may be expressed as U** = GW where G is an s X p matrix
obeying GG’ = L. Since U = Dy, U** where Dy, is lower triangular,

E =D,G “4.5.1)

which may be called the triangularization of E.
There are various ways to compute G and Dy, of which three will be sketched here.

The reader is asked to supply missing details as an exercise.
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a) Triangularization by assimilation. Suppose that the rows of E are denoted by
E,,E,, ..., E,, that the rows of G are denoted by G;, G,, . . . , G, and that the (7, )
element of Dy, is denoted by d;; with d;; = 0 forj > i. From (4.5.1), E, = dy;G, and,
since G,G] = 1, d; = *(E;E)"?, thus determining G;. Now suppose that the first s
rows of both Dy; and G are determined. Then G, ;W is found by removing from
E,,, W components along G,;W, G,W, . . ., G,W and scaling for unit length. Thus

kG, =E,, — (E,,G)G, — (E,;G)G, - - - — (E,,G)G,, 4.5.2)

and after computing the right side of (4.5.2) one finds k from % = (6, +1G;+1). Note
that row r + 1 of Dy, is given by [E,,G1, E, ,G;, . . ., E, G}, k.

b) Triangularization by elimination. After finding G,, the components of each of
E,, E,, ..., E; along G; may be removed yielding, say, E; ;, Eg;, ..., E,,. After
scaling, E,, yields G,. Components of E; ;, Ey,, ..., E,, along G, are then re-
moved, and so on. Further details are left to the reader.

¢) Triangularization by Householder transformations (Householder, 1958). This
method produces an s x p matrix D* and a p x p orthogonal matrix G* such that
E = D*G* and the (i, /) elements of D* are zero for j > i. Dropping the last p — s
columns of D* yields Dy, and dropping the last p — s rows of G* yields G where (4.5.1)
holds. Because the last p — s columnsof D*are all0, dropping them along with the last
p— srows of G* does not affect the product D*G*, but the truncated product is thenin
the form required of D;;G and so must be D;;G. D* and G* are found using a sequence
of p x p orthogonal matrices H;, H,, . . . , H, and successively writing E = ED) =
(EHDH) = EHH)HH,) =+ = (EHH; - - - H)MHH__, - - - H) where D* =
EH,H,---H,and G* = HH,_, - - - H;. H, is chosen to be an elementary orthogonal
matrix such that EH] has a first row whose only nonzero element is its first. In other
words, the linear transformation X — XH; carries E, — [£,0,0,.. ., 0], or, since
such transformations are self-inverting, carries [k, 0,0, . . ., 0] — E,. The construction
of such an H, was described in Section 3.4. More generally, EH;H; - - - H has the
property that its (i,j) elements are zero forj>iandi=1,2,...,r Then H,,, is
chosen to be a matrix whose first  rows and columns are like an identity matrix but
whose remaining partis an (s —r) x (s — r) elementary orthogonal matrix such that
the superdiagonal elements of row r + 1 of EHjH; - --H, are climinated when
multiplied by H, ;. The definition of H,, for r = 1, 2,...,s5 — 1is essentially the
same as that of H, in a different context. The reader is invited to supply further details.

4.3.4 In addition to the sweep operator SWPIi], define the following operators on
p x p matrices:

IOP: the identity operation.
NOP: the operator which changes all signs.
MOPI[i]: the operator which changes the signs of the off-diagonal elements in
row and column i.
POPJ[i]: the operator which changes the signs of the (/, {) element and the
elements (j, k) with j # /and k #1i.
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Suppose that the operator defined by the successive application of the operators
A, B, ..., Cisdenoted by C--- BA. Show that
SWP[/ISWP[i] = MOP{{]
MOPI[i/]ISWP[i] = SWP[iIMOP[i]
SWP[iIPOP[i] = NOPSWPIi]
SWP[i/[NOP = POP[{]SWP{i]
NOP = SWP[{I[NOPSWP[i].

What are the analogous identities involving RSW[i] instead of SWP{i{]? Show that
the SWP[i] and RSW[;] commute except for confusion of signs. Describe this sign
confusion in detail.

4.3.5 Inversion of nonsymmetric matrices. Suppose that G is a p x p nonsingular
matrix and is regarded as carrying the basis V of a vector space & into a basis W = GV
of £. Suppose that U is the set of vectors Wy, Wy, ..., Wy, Viigy .., Vyp, and
suppose that U® is a basis of  fors = 1,2,...,p — 1. The basis V may be modified
by stages into W via

V=U® UL U 5.0 5 UP =W,

Define H'® to be a matrix with (i, j) element A whose row i fori =1,2,...,s
expresses — V; in terms of U®andfori =s + 1,5+ 2,...,p expresses W in terms
of U, ie.,
s D
-V = E hPW; + z W3V,
F=1 J=s+1
fori =1,2,...,p,and
s P
Wo= 3 HpW, + 3 WY,
j=1 J=s+1
fori=s+1,5 +2,...,p. Show that Hs+1) = SWP[s + 1JH'®), and deduce that
G = —SWP[L,2,...,p]G.
4.3.6 Solution of linear equations. The formulation of Exercise 4.3.5 will be continued
here. Suppose that Y is a g x p matrix; consider finding a ¢ x p matrix X such that

XG =Y.

The problem is thus to solve a collection of g sets of linear equations each having p
unknowns and each having the same matrix of coefficients G. In vector terms, YV
determines ¢ points in &, and the problem is to express these g points as XW in terms
of the basis W = GV. Suppose these g points are Z¥U in terms of the basis U\,
Then passage from Y to X may be achieved via

Y =270 70 572 ... > ZEP) = X,
His+1) H)
[Z(S—H)} = SWP[s + ”[Z(s)}

-Gt G
[ X ]L-SWP[I,Z,...,p][Y:l.

Show that

so that
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Note that although the sweep operator was defined in Section 4.3.2 for square matrices,
the same definition is used here for a (p + ¢) X p matrix.

4.3.7 The computational methods in Exercises 4.3.5 and 4.3.6 may not be applied
with arbitrary G because the sets U'®) are not necessarily linearly independent. Show
that the method may be applied for some rearrangement of the rows of G, ie., that
for some W, the set Wy, V,, ..., ¥, must be a basis such that given sucha W,
there must be a W, such that the set W, ), W, 5, V3, . .., ¥, is a basis, and so on.
Show that this leads to performance of a sweeping operation at stage s where the row
#(s) and the column s selected for special treatment are in general different, i.e., the
definition of sweep operations must be slightly generalized. It may be further shown
that =(s) may be chosen to be any i such that #5135 0, where h{>~1) refers to the gener-
alized process with rows taken in the order #(1), =(2), . .., =(s — 1). It should now be
clear how to carry out matrix inversion and solution of linear equations for arbitrary G.

4.3.8 Describe in detail the set of calculations required to carry out the ASM{p + 1,
p+2,...,p+r;1,2,...,s] operator using the scheme of r successive stages.

439 SupposethatRSM|[p + 1,p +2,...,p +r;1,2,..., s]ldenotes the operator
inverse of ASMIp +1,p +2,...,p +r;1,2,..., sl. Describe the three characteri-
zations of the RSM operator analogous to the three characterizations of the ASM
operator given in Section 4.3.3.

4.3.10 What are the special features of the output of
MST(1,2,...,sIMST[s + 1,5 + 2,...,pllQ, 1}

and
MST[1IMST[2] ... MST[p][Q, 1]?

4.4.1 Suppose that the vectors Uy, U,, U;, U,, Uy are all nonzero and span a two-
dimensional subspace of a three-dimensional Euclidean space. How many and which
ofthe U¥, U}, . .., Uf produced by successive orthogonalization are @7 Suppose that
Q denotes the 5 x 5 inner product matrix of Uy, Uy, . . . , U;. Show that Q is a positive
semi-definite symmetric matrix of rank 2.

4.4.2 Describe a computing procedure to determine the rank of a symmetric positive
semi-definite matrix Q.
4.4.3 Suppose that a positive semi-definite symmetric matrix

0- [Qn Qlﬂ
Q: Qq
of rank fis regarded as an inner product matrix relative to a basis

U= [gﬂ of a vector space ¢,

where the partitions refer as usual to s and p — s rows and columns. Suppose that %,
denotes the intersection of the subspace % of & of vectors with zero norm with the
subspace spanned by U;. Suppose that ¥, is any complementary subspace to #; in the
subspace spanned by U;. Show that #; consists of vectors with zero norm and ¥
consists of vectors with nonzero norm. Show that the dimension f; of ¥, is the same
as the rank of Qy, and that f; < s and f; < f. Show that any V in & decomposes
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uniquely into a component in ¥; and a component orthogonal to ¥’ (cf. Exercise
3.6.5), and define the latter set of components of U, to be U,;. Show that the defi-
nitions of U, differ for different ¥, but only by vectors of zero norm. Show that the
inner product matrix Qg of Uy, is consequently well-defined in the sense of not
depending on the choice of ¥7;.

4.4.4 Following the notation of Exercise 4.4.3, suppose that (.211 is a pseudoinverse
of Qy, defined as in (3.6.8) with the roles of Q, %, and ¥ played here by Qy4, %, and
¥";. Show that

Q1 = Qs — Q01 Qs

In particular, Q,; may be taken as (4.4.1) with any choice of the null columns of B,
in which case

Qpy = BzszzBéa'
In another particular case Q,; may be the pseudoinverse of Qy; (cf. Exercise 3.6.4).

4.4.5 Suppose that the first s rows and columns of Q in Exercise 4.4.3 are further
partitioned into s = f; + (s — f}) so that

Qlll Q112 QlZl
Q = Q121 0122 Ql22
Qzu Q212 Q22

_ Qi Que
Qu = [0121 sz:l

Qy = [Qqyy, Q] = [gizﬂ = Q{z-

Suppose also that the first s rows and columns are arranged such that Qyy, has full

rank f3.
Show that SWP{1, 2, . .., f;]Q has the form

where

and

"‘Qf111 Huz Hy,,
0

Hg, 0
H211 0 Q22

where [Hyy, 0] = (I){m "is one choice for Hy, in Exercise 4.4.3 and Qp, is the

uniquely defined inner product matrix of Uy, arising from any choice of Hy. Note
that in computational practice a subset of f; of the first s rows and columns having a
full rank inner product matrix may not be known. In this case one need only set out
to perform SWP[1], SWP[2], . .., SWP[s] in order, omitting any operation which is
undefined because of a zero element in the pivotal diagonal position. Asa result one
will carry out just f; sweeping operations and arrive at a matrix like SWP[1, 2, ...,
f11Q above, except that generally a different subset of f of the first s rows and columns
will have been swept.

4.4.6 Supposing that A is any p x g matrix of rank ¢ < p, show how the idea of
triangularization may be used to find the pseudoinverse of A defined in Exercise 3.4.11.



CHAPTER 5

THE RELATION BETWEEN
TWO INNER PRODUCTS

5.1 BASIC THEORY

The statistical techniques of canonical correlation analysis, multiple linear
discriminant analysis, and principal component analysis are the most sophis-
ticated methods of multivariate statistical analysis considered in this book.
Each of these techniques may be naturally viewed as relating two different inner
products on the same vector space &. Consideration of such relationships leads
to a mathematical theory of eigenvalues and eigenvectors (sometimes called
characteristic values and characteristic vectors, proper values and proper vectors,
or latent roots and latent vectors) in Euclidean spaces.

Suppose that 7y and , are symbols for two different inner product functions
on a p-dimensional vector space &, and suppose that the inner product of U and
¥V according to =, is denoted by (U, V), for i = 1, 2. One might ask: for what
vectors V in & is the ratio

A=V, VWV, V), G.1.1)

maximized or minimized? The answer to this question and many related
questions comes from the following theory which indicates that in terms of a
specially chosen basis W of & the relationship between ; and m, is simply and
clearly displayed. Until stated otherwise, =, and , will be assumed to have
full rank p.

The theory depends on the following simple lemmas.

Lemma 5.1.1. The supremum of the ratio (5.1.1) is achieved for at least one
vector Vin &.

In proving this lemma, one need only consider vectors ¥ such that (¥, V), =

1, for the ratio (5.1.1) is invariant under multiplication of ¥ by a scalar; con-

sequently any value of (5.1.1) taken on by some U in & is also taken on by

V = (U, U);"2U, satisfying (V, V), = 1. Inanalytic terms, with reference to an

orthonormal basis of w, the problem is to find a which maximizes «Q,a’ subject
82
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to the restriction aa’ = 1. The existence of such an & follows because the
function aQ,a’ is continuous and finite over the closed domain aa’ = 1.

Lemma 5.1.2. Suppose that W, is a vector which maximizes (5.1.1) over all
Vin &. Then any vector orthogonal to W, according to m, is also orthogonal
to W, according to =, and vice versa, i.e., the (p — 1)-dimensional subspace
¥y of & orthogonal to W, is the same for w, and ,.

The lemma will be proved by contradiction. Suppose that ¥y, is the sub-
space of & orthogonal to W, according to =, for i = 1, 2, and suppose that
¥, and ¥, are different. This would imply that a vector W} orthogonal to
Y13 according to w, is not a multiple of W,. Thus W, may be decomposed into

Wy= Wi+ Wi, (5.1.2)

where Wy, lies along Wy, Wi, lies in ¥y, and (Wy,, Wis). = 0. Also, since
¥";; and ¥, are different, W, is different from . Thus

(Wl’ W1)2 = (Wu, W'u)z + (le’ sz)zs
whence
(Wi, Wie < (Wi, Wi, (5.1.3)

On the other hand, according to =y, W, and W;, are orthogonal, so that
(Wi, Wi = (W, Wi)y + (Wi, Wis)y, whence

(WII: Wll)l > (Wl, Wl)l' (514)
From (5.1.3) and (5.1.4) it follows that

Wy, Wiy (W, W),

, (5.1.5)
( Wll’ W11)2 ( Wl! Wl)2

which is impossible since W, maximizes (5.1.1). Thus the lemma is proved by
contradiction.
Lemmas 5.1.1 and 5.1.2 are used to prove:

Theorem 5.1.1. There exists a basis W of & which is orthogonal according
to both m, and ,.

The existence of such a basis is demonstrated by constructing it. For W,
take any vector which maximizes (5.1.1). Suppose that ¥", is the subspace
orthogonal to W, according to both 7; and .. Now consider 7, and , as inner
products over ¥7;. Choose W, to be any vector in ¥, which maximizes (5.1.1)
over V in #7;. Suppose that ¥7, is the subspace of ¥", orthogonal to W,
according to both m, and ,. Choose W, to be any vector in ¥, which maximizes
(5.1.1) over V in ¥",. Continue thus until W with the required property is
constructed.
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The vectors Wy, W,, ..., W, of a basis W which is orthogonal relative to
both =, and , will be called eigenvectors of w, relative to w,. The corresponding

}'i = (W, Wi)l/(Wia W)s (5.1.6)

will be called eigenvalues of m, relative to m,. The constructive proof of Theorem
5.1.1 leaves some latitude in the choice of eigenvectors. Theorem 5.1.2 will
describe in detail the range of possible bases W allowed by this constructive
proof and will show that the construction always produces the same set of
ordered eigenvalues 4, 4, . . ., 4,. Theorem 5.1.3 will show that, apart from
order, any basis of eigenvectors must belong to the class of such bases specified
in Theorem 5.1.2, and consequently that the set of eigenvalues of w, relative
to m,, again apart from order, is uniquely determined.

If [Wy, W,, ..., W,]is a basis orthogonal relative to both 7, and , and if
[¢1, €2y - - - » €] is any set of nonzero coefficients, then [¢; W), ¢:Ws, . . . 5 C, W]
is also a basis orthogonal relative to both =, and m,. The latter basis will be
called a scaled version of the former. It follows that a basis of eigenvectors may
be unique only up to arbitrary changes of scale. In other words, it is possible
only that the set of p one-dimensional subspaces spanned by Wy, Wy, ..., W,
can be uniquely determined. Necessary and sufficient conditions that such
uniqueness obtains are implied by the following theorem.

Theorem 5.1.2. Suppose that Ay, Ay, . .., Ay and Wy, W, ..., W, denote a
particular set of eigenvalues and corresponding eigenvectors of m, relative to
w, found by the construction procedure used in the proof of Theorem 5.1.1.
Then any other realization of the construction procedure (resulting from an
alternative choice of W, at any stage) yields the same set of 2y, s, . . . ; 4.
Suppose that s, < 5, < * * + < 8, denote the set of indices such that

Al S e e s m= Asl
Shp= =4,
>lsz+1 == Z’ss (5-17)
Shn=" =y

Then the subspaces Wy, W ..., W 1 spanned by [Wy,..., W],
Wors -5 Wl ..., Weiss oo W,] are uniquely determined under any
realization of the construction procedure. The inner product w, is a multiple
of w, over each of Wy, Wa... W 1. The sets [W,,..., W],
Weprs -5 WSQ], e Weqas vy W,] are any orthogonal bases of their
corresponding subspaces. In particular, if

AS>A> >4, (5.1.8)

then Wy, Wy, ... , W, are uniquely determined up to a set of scale factors.

5.1 BASIC THEORY 85

The proof of Theorem 5.1.2 is omitted, but requires only a careful following-
out of the constructive proof of Theorem 5.1.1. The difference is that one must
now check into the uniqueness of W, at each stage and show that the range of
possibilities is as specified by the theorem in terms of subspaces #7y, #7s, . ..,
#,., over which the ratio of norms is constant.

Theorem 5.1.3. The class of bases W defined as in Theorem 5.1.2 may be
characterized as the only bases which are orthogonal relative to both m, and
my. Consequently, the eigenvalues of m, relative to w, are a well-defined set
of numbers.

The proof will show that any contemplated basis element W must be a
member of a basis in the permitted class, where 8 = [0}, 05, .. ., 0,] and W
is a basis in the permitted class which is orthonormal relative to m,. The
subspace of vectors orthogonal to 8W according to =, consists of those aW
satisfying

> ;= 0. (5.1.9)
=1
Similarly
P
> Ado; =0 (5.1.10)
q=1

is the condition for 8W and aW to be orthogonal relative to ;. Since W is a
member of a doubly orthogonal basis, the vectors aW satisfying (5.1.9) must
coincide with those satisfying (5.1.10). When the A, are distinct, (5.1.9) and
(5.1.10) define the same subspaces only when all the §; are zero except one, i.e.,
8W is simply an element of W rescaled. If equality holds for a set of 4,, then the
corresponding 9, for this set may be nonzero while the remaining 9, are zero.
Again 8W is an element of a permitted basis. Thus Theorem 5.1.3 is proved.

It is often convenient to fix the arbitrary scaling of a basis W of eigenvectors
by making it orthonormal according to , or m,. For example, if W is scaled
so that (W,, W), =1 for i=1,2,...,p, then (W, W), =24, for i=
1,2,...,p, i.e., W has inner product matrix L according to m; where L is a
diagonal matrix with diagonal elements A1y Agy . .., Ap Inthis case, if U = aW
and ¥V = BW, then

P
(U, V) =3 Aap,, (5.1.11)
=1
whereas
P
U, V)= 3 a;f. (5.1.12)
i=1

Formula (5.1.11) shows that =, and w, are differently weighted sums of p
semi-definite inner products each of rank 1, ie., defining

W, V)i, = a.p; for i=1,2,...,p, (5.1.13)



86 THE RELATION BETWEEN TWO INNER PRODUCTS 5.2

it follows that

W, ¥y = E AU, V) (5.1.14)
and ‘“-‘;
(Us V)2 = Zl(Us V)(i)‘

The requirement that 7, and m, both have full rank will now be relaxed.
In the full rank case, each A, must be finite and nonzero. If =, or m, or both are
semi-definite, and if no non-@ ¥ has zero norm relative to both 7, and s, then
it may be checked that the full rank theory goes through unchanged except that
zero and infinite values of the A; are allowed. Finally, suppose that %, is the
subspace with zero norm according to =, for i =1, 2, and suppose that %, N
@, is larger than @. Then it may be checked that the theory goes through in any
subspace ¥~ complementary to %, N %,. Moreover, the eigenvalues do not
depend on the choice of ¥~ and the eigenvectors for different choices of ¥~
differ by arbitrary zero-norm vectors in #%; N %,.

The theory of this section treats 7, and =, asymmetrically only in that the
ratios of norms had , in the numerator and m, in the denominator. It is clear
that reversing the roles of 7, and i, results in reciprocal values for eigenvalues
but does not affect the eigenvectors.

5.2 RELATIONS BETWEEN TWO ELLIPSOIDS

Given an affine space &, two inner products m; and 7, on & may be defined
by specifying their respective ellipsoids in &. The symbols 7, and =, may be
used to denote the ellipsoids as well as the inner products. In ellipsoid language,
Theorem 5.1.1 may be expressed as:

Theorem 5.2.1. Given any two p-dimensional ellipsoids m and m, with a
common center, there exists a set of p lines through the center which define
sets of conjugate axes for both w; and ;.

The directions of these p lines are determined by the line segments OW,,
GW,,...,0W, where Wy, Wy, ..., W, is a basis of eigenvectors of
relative to . The eigenvalue 4, is the ratio of the squared length of the semi-
axis of m, in the direction of W; to the squared length of the semi-axis of =y in
the same direction for i = 1, 2, ..., p. This situation is pictured in Fig. 5.2.1in
two dimensions. It is left to the reader to rewrite similarly Theorems 5.1.2 and
5.1.3 in ellipsoid terms.

Consider the geometric picture of the ellipsoids m; and m, when & is regarded
as a Fuclidean space with inner product . In this Euclidean space, m, becomes
the unit sphere, and the special conjugate axes of m, are called principal axes.
The eigenvalues 2, are the inverses of the squared lengths of the principal semi-
axes. These concepts are familiar in two dimensions, as illustrated in Fig. 5.2.2.
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Note that, if equality among eigenvalues occurs so that the norms are in a
constant ratio over a subspace #~ as in Theorem 5.1.2, then the intersections of
the ellipsoids 7, and , with #" are ellipsoids which differ only by a scale factor.

Fig. 5.2.1. Ellipses =, and =, centered at
O in the plane. Lines/; and /, define a
pair of common conjugate axes. The
eigenvalues of = relative to =, are Ay o=
[DA;/QA B fori =1, 2.

, Ay Az

Fig. 5.2.2. The same picture as Fig. 5.2.1
Az drawn with ©A4,, and @4;; perpendic-
ular with the same (unit) length, so that
m is a (unit) circle.

ki
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The basic theory of Section 5.1 can be used to derive corresponding and
equivalent theory relating positive definite symmetric matrices. Suppose that
V is any basis of a vector space &, and that inner products 7, and m, are defined
in & using positive definite matrices Q, and Q, as inner product matrices
relative to V. For a basis W = AV the corresponding inner product matrices
are AQ,A’ and AQ,A’. Theorem 5.1.1 then yields the purely analytic theorem:

Theorem 5.3.1. Given any pair Q, and Q, of positive definite symmetric
matrices, there exists a nonsingular matrix A such that both AQ,A" and
AQ,A’ are diagonal matrices with positive diagonal elements.

Alternatively, the two inner products m; and , could be defined relative to a
basis U which is orthonormal relative to a,, so that only the inner product
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matrix Q of m, relative to U is needed to specify both u; and m,. If Theorem
5.1.1 is applied in this case, and if the basis W is scaled to be orthonormal
according to m,, then W = CU for some orthogonal matrix C. Thus:

Theorem 5.3.2. Given any positive definite symmetric matrix Q, there exists
an orthogonal matrix C such that CQC' is a diagonal matrix with positive
diagonal elements.

The reader may check that Theorems 5.3.1 and 5.3.2 can be deduced from
each other and so are equivalent, and that either Theorem 5.3.1 or 5.3.2 implies
Theorem 5.1.1.

Suppose that the diagonal elements of AQ;A’ and AQ,A’ as found in
Theorem 5.3.1 are denoted by gy, fhys, - - - » fhap a0 Uay, Mos, . . - 5 oy Then
one may define

2, =t (5.3.1)

]
HMa;

for i=1,2,...,p and, if desired, the rows of A may be arranged so that
A > A >---> 14, Note that the individual rows oy, a,,...,a, of A
determine the individual u,;, g, and ; because aQ,a, = yy; and a,Q,a; =
s, SO that

5, = Q% (53.2)

o, Q.0

If Q, and Q, are regarded as the inner product matrices of two inner products
m, and m, relative to a basis V of a vector space &, then it is clear that a,V,
a,V, ..., a,V form an orthogonal basis relative to m; and =, and

1= az‘Qﬁl; - (aiV, aiv)l
aQa, (oV,aV),

Thus the basis W = AV consists of the eigenvectors of m, relative to =, and
A, A2y ..., A, are the corresponding eigenvalues. Since they relate to the

(5.3.3)

corresponding vector space quantities, it is natural to say that ), A, ..., 4,
defined by (5.3.1) are the eigenvalues of Q, relative to Q, and that the rows
o, &, . . . , o, of A are the associated eigenvectors of Q, relative to Q,.

If Q, = I the eigenvalues and eigenvectors of Q, relative to I are referred to
simply as the eigenvalues and eigenvectors of Q, (with no reference to Q).
Thus it may be checked that the rows of C in Theorem 5.3.2 are a set of eigen-
vectors of Q, and the associated eigenvalues are given by the diagonal elements
of CQC'.

If the eigenvalues of a positive definite symmetric matrix Q are denoted by
Xy, Agy . .., Ay, and if corresponding orthonormal eigenvectors are denoted by

Yis Yoo - - - » Yoo then
€QC' =L (5.3.4)

5.4 COMPUTATIONAL METHODS 89

where C is an orthogonal matrix with rows Yy, Y», - - ., Yy and Liis a diagonal
matrix with diagonal elements 4,, 4, . . . , 4,. From (5.3.4),

C'cQC'C = CLC, or

P
Q= le'iY;Yi' (5.3.5)

This formula is equivalent to (5.1.11) or (5.1.14).

5.4 COMPUTATIONAL METHODS

5.4.1. A brief description of some basic approaches. The eigenvalues and
eigenvectors of a given Q may not be computed in a finite number of steps
based on the arithmetic operations of adding, multiplying, dividing, and
extracting roots, except when p < 4 and the approach of Section 5.5 is followed.
This is an important difference from the theory of Chapter 4. As a result, the
practical determination of eigenvalues and eigenvectors must ultimately involve
some iterative procedure of successive approximations, and this is rarely
feasible except with an electronic computer. There are many competing
approaches which have different advantages in different situations. The subject
is highly developed and highly technical; consequently, this section will attempt
only to convey some understanding without complete details of two methods,
namely the Jacobi and QR methods, which have seen considerable use in
recent years. Further theory, methods, and details may be found in Wilkinson
(1965).

The method of Jacobi (1846) is easily described from first principles. It
applies to any real symmetric matrix Q. The aim is to find an orthogonal
matrix C such that L = CQC’ is a diagonal matrix. Or in geometric terms, the
aim is to pass from an original orthonormal basis U of a Euclidean space Sftoa
new orthonormal basis W = CU such that the inner product defined by the
inner product matrix Q relative to U has a diagonal inner product matrix CQC’
relative to W. In these terms, the approach is to find a sequence of orthonormal
bases U = U — U® _, U@ — - - - such that lim_,,, U¥ = W. This means
that the corresponding sequence of orthogonal C* defined by U = CWU
converges to C and the sequence Q¥ = C9QC!” converges to CQC’ = L.

This basic idea is to make each transformation U — U™ a plane
rotation affecting only a pair of elements of U*. Thus at stage s, one chooses
indices r and ¢ and defines

UL = cos U + sin 6USY,
USt = —sin OUS + cos OU;”,  and (5.4.1)
ust =y for j#TIjFL
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The angle 0 is chosen to carry out the two-dimensional eigenvalue computation
in the space spanned by U!*' and U, i.e., 0 is determined by the requirement
that QD shall have zeros in the symmetric (r, ¢) and (¢, r) positions. (See
Exercise 5.4.1.) A rule must be established for determining r and ¢ at each stage
s, but the choice of a rule is not generally critical for convergence and many
such rules will be apparent once the proof of convergence is understood.

Passage from Q¥ to Q“*+V annihilates one pair of off-diagonal elements
(r,t) and (¢, r), but a later stage involving one of r and ¢ will in general bring
back a nonzero value in the (r, f) and (¢, r) positions. This explains why a
finite number of stages cannot be used to annihilate one by one all the sym-
metric pairs of off-diagonal elements. Nevertheless there is a very simple sense
in which each stage brings one measurably closer to the limiting diagonal form.
The theory depends on a lemma which asserts:

Lemma 5.4.1. The sum of squares of the p* elements of Q**Y is identical to
the sum of squares of the p* elements of Q', so that this sum of squares
is constant through all the stages. Moreover, at stage s, the invariant sum
may be broken into three sums each of which is invariant, these parts con-
sisting of the sum of squares of the 4 elements in both rows and columns r or
t, the sum of squares of the (p — 2)* elements in neither rows nor columns r or
t, and the sum of squares of the remaining 2(p — 2) elements in rows r or ¢ but
not columns r or t or in columns r or t but not rows r or t.

From the lemma it may be easily seen that one effect of the passage from Q¥ to
Q1 js to reduce the sum of squares of the off-diagonal elements by 2¢(5'
while increasing the sum of squares of the diagonal elements by the same
amount, where ¢% denotes the (r, 1) element of Q.

1t is natural, in view of the above lemma to measure the distance from U
to W by the sum of squares of the off-diagonal elements of Q‘*, for, if this sum
could be reduced to zero, then the required diagonalization would be precisely
achieved. Also, it is clear that many rules of choosing r and 7 at stage s will
result in this distance tending to zero as s — co. The most obvious rule is to
choose r and ¢ (r ¥ f) to maximize |g!?|. However, for large p, an electronic
computer may find it wasteful of time to locate this maximum for each s.
Consequently, a rule taking any (r, t) pair such that |¢?| exceeds some assigned
threshold is often used. When no values of |q§§’| exceed the threshold, then the
threshold may be lowered, and so on, until the distance from U'” to W is
arbitrarily small.

In the practical application of the method, one starts with Q and Lin a set
of memory locations in a computer. The contents of these registers are then
altered by stages so that [Q,I]— [QW, CW]— [Q®, C®] — - -, finally
stopping at a stage for which Q!9 is acceptably close to diagonal. For further
details see Exercise 5.4.1.
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Example 5.4. The eigenvalues and eigenvectors of

QW =

CW =

Q=

C® =

QY =

OB =

and so on to

QU =

CU8) =

19.1434  9.0356 9.7634 3.23%4
_ | 9.0356 11.8658 4.6232 2.4746
Q= 9.7634  4.6232 12.2978 3.8794
3.2394 24746 3.8794 2.4604
were computed as below by the Jacobi method:
725.245387 0 10.678569  4.0694975
0 5.7638128 —1.6328245 0.2377977
10.678569  —1.6328245  12.297800  3.879400 |’
| 4.0694975  0.2377977  3.879400  2.460400
© 0.8287229 0.5596592 0 O
—0.5596592 0.8287229 0 O
0 0 1.0 o)
L 0 0 0 1.0
M 31.259260  —0.8012371 0 5.4495008
—0.8012371 5.7638128 —1.4227210 0.2377977
0 —1.4227210  6.2839258 1.3832912
| 5.4495008  0.2377977 1.3832912  2.460400
[ 0.7220871 0.4876451 0.4907062 0
—0.5596592  0.8287229 0 0
—0.4066594 —0.2746282  0.8713251 O [’
i 0 0 0 1.0
32255954  —0.7453803  0.2488708 0
—0.7453803  5.7638128 —1.4227210 0.3780697
0.2488708 —1.4227210  6.2839258 1.3607196 |’
B 0 0.3780697 1.3607196 1.4637057
[ 0.7103045  0.4796880 0.4826991  0.179912
—0.5596592  0.8287229 0 0
—0.4066594 —0.2746282 0.8713251 0
| —0.1299122 —0.08773323 —0.08828395 0.9836827
[ 32.280122  —0.0000016 0 0 ]
—0.0000016  4.9317448 0 —0.0000005
0 0 7.5673957 0 ’
L 0 —0.0000005 0 0.9881297 |
[~ 0.7214751 0.4526087  0.4921702 0.1799647]
—0.6868510 0.4923919  0.4466156 0.2938031
—0.03142772 —0.7305346  0.6688321 0.1341453 |
| 0.08198438 —0.1378935 —0.3331163 0.9291380 ]
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732.280121 0 0 0
QU = 0 4.9317446 0 —0.0000005
0 0 7.5673957 0 ’
0 —0.0000005 0 0.9881297

- 0.7214751 0.4526087 —0.4921702 0.1799647
—0.6868510 0.4923919 0.4466156 0.2938031
—0.03142772  —0.7305346 0.6688321 0.1341453 |
| —0.08198438 —0.1378935 —0.3331163 0.9291380

At this point the iterations were stopped and Q%" declared diagonal to the
order of accuracy carried in these calculations. The diagonal elements of
QU7 are the computed (approximate) eigenvalues, and C%? is the computed
(approximate) matrix of eigenvectors.

Can =

The QR method of Francis (1961, 1962) is a modern refinement of a very
old concept called powering. The idea is best understood in terms of the linear
transformation U — QU (cf. Exercise 3.4.10) which sends the eigenvectors
W = CU into CQU = CQC'W = LW, i.e., this is the transformation which
simply stretches the component along each eigenvector by a factor which is the
corresponding eigenvalue. In other terms, the transformation carries

aU — B Wy + BoloWe + - - + BoAo Wy (5.4.2)

where B = aC’ expresses the W coordinates of aU. Moreover, the result of
successively applying this transformation s times, namely U — Q*U, carries

QU — B AW, + BoliWa + -+ + B AW, (5.4.3)
Assuming for simplicity the strict ordering 4, > 4, > + = - > 4,, it is clear that,
provided a is chosen so that f; # 0, the first coefficient $,4§ in (5.4.3) comes to
dominate all the others as s — oo. Thus, the sequence of vectors aQ, aQ?, .. .,
aQ?, . .. must tend, after scaling for unit norm, to the first eigenvector, which
is the first row of C. At the same time the ratio of the norms of «Q**! and «Q°*
tends to 4,. This is an old method of computing the largest eigenvalue and its
associated eigenvector. It may be applied again to the right side of (5.3.5) with
the first term removed to yield the second eigenvalue and eigenvector, and so on.
Instead of starting from a single vector aU, the QR method starts from a
basis AU and determines all the eigenvectors in one sequence of iterations.
Formula (5.4.3) generalizes to

buiW, + bpiWy + -+ + bw}‘;Wp
by iW, + bophsWy + -+ - + bzplzwp

AU — ) , (5.4.4)

by AWy + bophiWy + -+ + by, AIWs
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where B = AC’. Assumingforr = 1,2, ..., pthatthe first rows and columns
of B define a nonsingular r X r matrix, because 4; > 4, >+ -+ > 4, it is clear
thatforr = 1,2, ..., p the subspace spanned by the first r elements in the right
side of (5.4.4) tends as s — oo to the subspace spanned by Wy, We, ..., W,
1t follows that, if the basis on the right side of (5.4.4) is orthogonalized to yield
an orthonormal basis, the sequence of orthonormal bases thus defined for
s=0,1,2,...tends to the basis W of eigenvectors as s — co. This sequence
of bases will be denoted by Ut = C*U for s = 0, 1,2, ... where the co-
ordinate matrices C'® tend to C and the inner product matrices Q) = C¥QC!*"
tend to L as s — 0.

The computations are carried out by following the steps [A, Q] —
[C®, QW] — [C®, QW] — -+, and these computations are conveniently
described using the concept of triangularization discussed in Exercise 4.3.3.
Thus C® is defined by

A = DCW, (5.4.5)
where D is triangular with zeros above the diagonal, and
Q© = COQCW", (5.4.6)

For s =0,1,2,..., the orthogonal matrix K'® such that U+ = K&yt
may be defined by

Q= DK, (5.4.7)
where again D' is triangular with zeros above the diagonal. Having K}, one

finds
CHHD = K(C® (5.4.8)
and
QU+l = KWQWK'® = KOD®, (5.4.9)

and is ready for the next stage. The justification of (5.4.7) is provided by showing
that it leads to the correct C'®, i.e., that

AQ* =FC®, (5.4.10)
where F is a triangular matrix with zeros above the diagonal. To demonstrate

(5.4.10), note that

Q(s) — K(s—l)Q(s—l)K(s—l)/
— K(s—-l)K(s—2)Q(s~2)K(s~2)/K(s—-l)l

(5.4.11)

— K(s—l) . K(l)c(O)QC(O):K(l)/ . K(s—l)r
. C(S)Qc(s)/
from which
QBICH® = CIQ. (5.4.12)
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Applying (5.4.8), (5.4.7), and (5.4.12) in order yields
DD@DW - . . DEOCHHD = [DDODW | || DEDCEHQ (5.4.13)
and applying (5.4.13) fors — 1,5 — 2, ..., O followed by (5.4.5) yields
DDODW® | DEUCHE = AQ?, (5.4.14)
which is in the form (5.4.10) with
F = DDODW D&,

Obviously, the initial choice of A can greatly affect the rate of convergence
of the QR method. For example, if by a lucky guess A were exactly C then one
iteration would produce the exact correct answer. Likewise, if A were near C
in some sense then one would expect fewer iterations to be needed. The
usefulness.of the QR method is greatly enhanced by a trick choice of A which
tridiagonalizes Q.

The p x p symmetric matrix Q is said to be tridiagonalized by the orthogonal

matrix G provided that
T = GQG’ (5.4.15)

has (i,j) elements 1,; = 0 if | j — i] > 1.

A happy combination of circumstances makes this idea important for
eigenvalue calculations. First, it may be carried out by a succession of p — 1
elementary orthogonal transformations and is therefore computationally highly
tractable. Second, it obviously yields an inner product matrix T which will in
general be much closer to the derived L than is the original Q, so that it is
attractive as a first step in several approaches to eigenvalue computation,
Third, the QR method has the property that, if Q¥ is tridiagonal, then the
whole sequence Q'* for s = 1, 2, . .. is tridiagonal, so that the choice of A to
be the tridiagonalizing G of (5.4.15) means that the whole QR iteration pro-
cedure involves only tridiagonal inner product matrices. This may be especially
important for large p because it means that Q" may be stored in 2p — 1
memory registers of a computer rather than the p(p -+ 1)/2 registers required
in general. The procedure for tridiagonalizing Q by Householder transforma-
tions will be described in the following paragraph. For a proof that the QR
method preserves the tridiagonal form the reader is referred to Wilkinson
(1965).

T in (5.4.15) is produced by a sequence of steps T = T® -» T® — - - - —
T8 = T, where T¢V has zeros in positions (/,j) and (j,7) for j > i+ 1
and i = 1,2,...,5 — 1. The next stage uses an orthogonal matrix J to
create T = JOTE-1UJE) which has the required zeros in the sth row and
column. The end result after p — 1 stages is then (5.4.15) with

G = Jr-uJe-2  Jo,
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J) has the form

g (10
IO = {0 Lm]’ (5.4.16)

where I has dimensions s X s and L® is a (p — s) X (p — 5) elementary
orthogonal matrix. J‘ carries the basis V1 with inner product matrix
T2 into the basis V) == J9V(-1 with inner product matrix T but operates
only on the last p — s elements of V*~, Consider any orthogonal transformation
leaving V-1, ..., V5 fixed and sending V&Y into V= 37  tlstpfsd),
where £~ denotes the (i, j) element of TV, Any vector W = 32, ¢ ViV
is orthogonal to ¥V according to the original inner product if and only if
>2, ¢, t% P =0 and is orthogonal to V& if and only if [0,0,...,0,
Corgs - » CpITE0][0,0,...,1,0,...,0] =0. But these two conditions are
identical, so that any transformation of this type is a candidate for J®. The
suggested J'® employs for L in (5.4.16) the (p — 5) X (p — s) elementary
orthogonal matrix which reflects in the bisector of the angle between V571 and
‘:;;1 téi_l) [/i(s~1)_

The QR method may be conveniently and elegantly carried out using a long
sequence of Householder transformations. The first p — 1 of these reduce Q
to tridiagonal form. Then each iteration of the QR method proper requires a
triangularization which can be carried out by p — 1 Householder transforma-
tions as described in part () of Exercise 4.3.3. The QR method now appears to
be favored by numerical analysts, since it generally performs well, regarding
both speed and round-off error. Because of its dependence on powering,
however, the rate of convergence of the QR method is sensitive to the ratios
among A3, 45, . . . , 4, which are of course initially unknown. For example, if
AfAs>> 1 and A,/23>> 1 but A4, 44, . .., 4, have ratios close to unity, then the
QR method will quickly find the first two eigenvalues and eigenvectors, but
may be slow to converge to the rest.

The Jacobi method was used in the examples of Chapter 9, 10, and 11.

5.4.2. The SDG operator. The computing operation of finding L and C from
Q will be written in this book as an operator SDG applied to the pair [Q, I]
yielding the pair [L, C]. SDG abbreviates step-diagonalize as in Beaton (1964).
More precisely, the notation

[L, Cl=SDGIL,2,...,plQ,1] (5.4.17)

will be used. The bracket [1, 2, ..., p] indicates that all p rows and columns
of Q were used. In many statistical applications, the eigenvalue analysis is
applied only to a subset of the rows and columns of Q. For example, selecting
rows and columns 1, 2, ..., s, one would write

[L, C] = SDGIL, 2, . .., s1[Q, 11, (5.4.18)
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where

. [Cy O

C= [0 J (5.4.19)

with Cy, the matrix of eigenvectors of Q,; and
L = CQC, (5.4.20)

the partitions referring in the obvious way to the first s and last p — s rows and
columns. The extension of the SDG operator to any subset of rows and columns
should now be clear.

One further extension of the operator notion is often used. Foranyp X p
matrix K, define

[L, K] = SDGI[L, 2, .. ., 5][Q, K] (5.4.21)

to be a generalization of (5.4.16) where K = CK. Thus, if the eigenvalue
analysis starts with a basis U = KV, then the SDG operator (5.4.21) produces

the bases W = CU = CKV directly in terms of V. For example, if Q, and Q,
are inner product matrices relative to a basis V and if the eigenvalues and
eigenvectors of Q, relative to Q, are required, then one might first compute
MSTIL, 2, ..., pllQ:, Il = [ILK]. In terms of the basis U = KV, one then
needs the eigenvalues of KQ,K' relative to I, so the operator SDGI1, 2, ..., p]
[KQ,K’, K] produces [L, CK] where CK expresses the eigenvectors in terms of
the original basis V.

5.5 AN ANALYTIC DEFINITION
OF EIGENVALUES AND EIGENVECTORS

Eigenvalues are often defined as roots of a certain determinantal equation,
and the corresponding eigenvectors are defined by a corresponding set of linear
equations. Since different definitions have been given already, these analytic
definitions may be derived as a theorem.

Theorem 5.5.1. Suppose that Q, and Q, are positive definite symmetric

matrices, that Ay, A,, . . ., A, are the eigenvalues of Q, relative to Q,, and
that &, &, . .., O, are corresponding eigenvectors. Then Ay, Ay, ..., A,
are the roots of the equation

det(Q, — 1Q,) = 0, (5.5.1)
and o, &, . . . , &, satisfy the equations

2;(Q; ~ 2,Q;) = 0 (5.5.2)

fori=1,2,...,p.

To prove this theorem, think of Q, and Q, as inner product matrices of ; and
m, relative to a basis V of . Then consider changing to the basis W = AV
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where the rows of A are &, a5, ..., &,, i.e., W is the basis of eigenvectors
oa,V, oV, ..., a,V. The inner product matrices of 7, and , relative to W are
M, = AQ,A’ and M, = AQ,A', where M, and M, are diagonal matrices with
diagonal elements fiyy, fys, - - - 5 Myp A0A oy, fhgg, . . - » fhop SUch that 4; = py,fps;
fori=1,2,...,p. Thus
det (Q, — AQ,) = det (AT'A(Q, — 1Q)A’A™™)
= [det A% det (AQ,A’ — AAQ,A")
= [det A]* det (M — AM,)

= [det AT TT (s — )
= (1Mt AP T IT G = 20, (553)

so that the roots of (5.5.1) are 4;, 4;, ..., 4, Similarly

o, (Q, — 4,Q;) = 0, A7TA(Q; — L,Q)A’A™!
= p1,(M; — L,Mp)A"?

= 0A1 = (5.5.4)
where 1, is the ith row of I. The only unexplained step in (5.5.4) is the step
o, A"t = u1, 1f a denotes coordinates relative to V and 8 denotes coordinates

relative to W = AV, then f = aA~% But relative to W, the ith eigenvector has
coordinates u,1;, and hence a;A! = u,1, for some p;. This completes the proof
of the theorem. Theorem 5.5.1 is often given in the special case where Q; = L

It is not necessary that =, should be of full rank, ie., Q, need only be
positive semi-definite of rank r. In this case there are r nonzero eigenvalues,
i.e., the equation (5.5.1) has a zero root of multiplicity p — r. :

The equations (5.5.1) provide an alternative to the iterative method of
computation. Given Q, and Q,, however, it is not easy to compute the left
side of (5.5.1). As with the iterative computational methods, difficulties may be
eased by changing to a basis U = KV which is orthonormal according to m,.
This requires finding K such that KQ,K’' = I and then finding Q = KQ,K'".
Applying (5.5.1) and (5.5.2) to the simplified situation leads to

det(Q — A) =0 (5.5.5)
and
Q- 4D =0, (5.5.6)
where the roots of (5.5.5) are the same as those of (5.5.1), and the v, found from
(5.5.6) are related to the a; in (5.5.1) via U =KV, i.e,
a, = v,K. (5.5.7)

Even in this form it is not easy to compute the polynomial det (Q — ZI).
A further simplification is produced by the tridiagonalization device of (5.4.14).
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Thus (5.5.5) may be transformed further into
det (T — 2I) = 0, (5.5.8)

which, being the determinant of a tridiagonal matrix, is more easily computed.
The eigenvectors are then determined by

5(T — 4D =0, (5.5.9
where
a, = §,GK. (5.5.10)

According to (5.5.5) or (5.5.8) the eigenvalues may be found as the roots of a
polynomial of degree p in A. Having these roots, each corresponding eigen-
vector may be deduced from a set of linear equations as in (5.5.6) or (5.5.9).
Note that only p — 1 of the equations (5.5.6) or (5.5.9) for a given { are linearly
independent and that, because of the arbitrary scale factor, any element of v,
or 8, may be arbitrarily fixed, yielding p — 1 equations in p — I unknowns.

This approach to computing eigenvalues and eigenvectors is not pursued
in detail because for most statistical purposes one requires both eigenvalues and
eigenvectors, and the methods of Section 5.4.1 are generally faster.

5.6 AN APPLICATION TO ANGLES
BETWEEN SUBSPACES OF A EUCLIDEAN SPACE

Consider a p-dimensional Euclidean space & with two specified subspaces
% and ¥ of dimensions m and n, respectively. The theory of eigenvectors and
eigenvalues provides an easy means to an understanding of the system of
angles between the hyperplanes % and ¥". One may ask, for example, what is
the smallest angle between % and #°? In other words, how does one find a
vector U in % and a vector V in ¥ such that the angle between U and V is
minimum, and what is the angle?

Given any U in %, a vector in ¥~ making the smallest angle with U is given
by the orthogonal projection of U into ¥°, which may be denoted by U.
Moreover, if § is the angle from U to U
(v, 0)
(U, U)’
and the problem is to choose U to maximize cos? §. To place the problem in
the same form as that considered at the start of this chapter, one need only define
a pair of inner products 7, and , over % where, for any Uand Win %,

U, W)= (U, W) (5.6.2)

cos? 0 = (5.6.1)

and

(U, W)y = (U, W). (5.6.3)

Here, the brackets subscripted by i refer to =, for i = 1,2 and the brackets
without subscripts refer to the inner product implied by the assertion that & is

S

S
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Euclidean. As before, U and W refer to the orthogonal projection of U and W
into #”. The reader should check that =, as defined in (5.6.3) is an inner product,
albeit possibly semi-definite. It follows that the largest eigenvalue of =, relative
to m, maximizes cos® 6 in (5.6.1). The general picture is provided by the
following theorem.

Theorem 5.6.1. Suppose that U and ¥~ are subspaces of dimensions m and n
of a p-dimensional Euclidean space & where m < n. Then there exist an
orthonormal basis Uy, U,, . . . , U,. of % and an orthonormal basis V,, V,, . . .,
V. of ¥ with the properties that

U, V)=0 for i# ] (5.6.4)
If the angles 0; between U; and V, for i = 1,2, ..., m are ordered so that
6,<6,< - <0,, (5.6.5)

then 0, is the smallest angle between % and V", 0, is the smallest angle
between the subspace of U orthogonal to U, and the subspace of ¥ orthogonal
to Vy, and so on. If the inequalities in (5.6.5) are strict inequalities, then the
orthonormal sets Uy, U,, ..., U, and V,, Vaso o, V), satisfying (5.6.4)
are unique. On the other hand, if for some s and 1,

03—1 < Gs = 034—1 == 63+t~1 < 03+t’ (566)

then only the subspaces spanned by U, U,yy... , Uyyyand V., Viets oo s
Virra are uniquely determined, and any orthonormal basis of one such
t-dimensional subspace corresponds to an orthonormal basis of the other such
t-dimensional subspace satisfying (5.6.4) and (5.6.5). In either case, any
orthogonal transformation of the set V, ,,, Viszs - - . » V,, leads to another
possible choice of V.1, V, s, . .., V., whose only requirement from (5.6.4)

is that they shall be orthogonal to U.

As already indicated, the basic idea leading to this theorem is that
Uy, U, ..., U, shall be taken as a basis of eigenvectors of =, relative to o
For some s on 0 < s < m, the orthogonal projections U,, Us, . . . , U, will have
positive length, and V1, V,, ..., ¥, may be taken to be that orthonormal set
found by rescaling Uy, Uy, . .. , U, to unit length. It follows that the subspace
of ¥~ orthogonal to ¥y, V,, ..., V, is orthogonal to %, and any orthonormal
sets Ugys Ugpas oo, Upyand Vo, Vi, oL, W, may be chosen to complete
the required bases of % and ¥". The uniqueness properties claimed for the bases
Uy, Uy, ..., U, and Vy, V,,...,V, in the theorem follow directly from
Theorems 5.1.1, 5.1.2, and 5.1.3. The extremal properties of 0,, 0,, . . . follow
from the constructive proof of Theorem 5.1.1 (cf. Exercise 5.1.3).

In this geometric framework, the powering procedures of Section 5.4.1 have
a simple, elegant interpretation. Because the bases U,, U,, ..., U, and
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Vi, Vs ..., V, are orthonormal, the orthogonality relations imply that
U, =cos 0V, for i=1,2,...,m. Thus, if 4 is any vector in # and A =
> a,U,, then the orthogonal projection A of A into ¥” is given by

A= g a,U; = % [a; cos 6,]V. (5.6.7)
i=1

t=1
Similarly, if B = Y7 b,V, is any vector in ¥ and the orthogonal projection of
B into % is denoted by B, then one may deduce that V, = cos B,U; for i =
1,2,...,mand ¥V, =@ fori=m+1,...,n Thence

B= i bV, = g; [b, cos 8,]U,. (5.6.8)

=1

If one performs the transformations 4 — A and B— B in succession one has

m m m
S a,U;— Y [a; cos 6,1V, — . [a; cos® 6,]U;, (5.6.9)
t=1 t=]1 i=1
which has the form of the transformation U — QU considered in connection
with the powering methods. It follows in particular that if a vector 4, is
projected orthogonally into %7, then back into % and so on back and forth,
the pair of vectors in % and ¥~ converges to a pair of vectors which make the
smallest angle between ¥~ and %.

In the sequel it will be convenient to call the angles 0,, 6y,...,0,In (5.6.-5)
the canonical angles between % and ¥". Corresponding bases U and V as in
(5.6.4) will be called canonical bases. The angles 0,,,3, 0,12, . - > 6,, between

Vyits Vinizs « - - » Vo and % are all 7/2, but may also be called canonical angles.

5.7 EXERCISES

5.1.1 Suppose that 4, and 4, are the largest and smallest eigenvalues, respectively, of
m, relative to m,. Show that any value of 1 = (¥, ¥),/(V, V), between 4, and 4, occurs
for some Vin €.

5.1.2 Suppose that Xy, %, . . . , A, denote the eigenvalues of my relative to m,. For any
U and Vin &, define =, from

(U, V)3 = ey(U, V) + (U, V).

What is the condition on ¢;, €3, A1, A, - - . , 4, such that (¥, ¥)3 > 0 for all ¥in & and
(U, V), defines an inner product? Show that any basis orthogonal relative to both
=, and =, is orthogonal relative to m,, whether or not g defines a proper inner product.
What are the eigenvalues of m relative to mp?

5.1.3 Suppose that W), W, . . . , W,y denote a subset of a set of eigenvectors of
relative to m,, where the corresponding eigenvalues Ay), 4z, - - - , 4, are taken in non-
increasing order. Suppose that % denotes the subspace of ¢ spanned by W), Wiy, - -5
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Wy. Show that (¥, V)/(V, V), has maximum value 4, and minimum value 4, for
Vin#.

5.1.4 Prove Theorem 5.1.2.

5.1.5 Characterize the set of all inner products w, which have a given set of eigenvalues
relative to a given inner product ;.

5.2.1 Suppose that the ellipsoid =; has eigenvalues 4, 4,, ..., 4, relative to the
ellipsoid =, in affine space £, Show that the affine ratio of the volume of m to the

volume of =, is given by
P —1/2
IRl
=1

Consequently, deduce that, if Q, and Q, are inner product matrices of m; and =,
relative to a basis U, then the product T2, 4; may be expressed as det Q,/det Q,.
5.2.2 Consider a general ellipsoid « in a Euclidean space €. Show that any axis of the
ellipsoid which is perpendicular to the tangent plane at its intersection with the ellipsoid
is a principal axis of the ellipsoid.

5.3.1 Suppose that Q, and Q, are positive definite symmetric matrices. Given the
theory proving the existence of an orthogonal basis of a Euclidean vector space, show
that the problem of findinga 1 x p matrix a to maximize aQ,a’/aQ,a’ can be reduced
to the problem of findinga 1 x p matrix £ to maximize BQP’ subject to the condition
BB’ = 1, where Q is a certain positive definite symmetric matrix.

5.3.2 Show that a positive definite symmetric matrix Q has the same eigenvalues as
DQD’ if and only if D is orthogonal. Show also that if the eigenvectors of Q are
denoted by therows of ap x p matrix C, then the eigenvectors of DQD’ for orthogonal
C are given by the rows of CD".

5.3.3 State and prove the extension of Theorem 5.3.2 to cover positive semi-definite
symmetric matrices.

5.3.4 Suppose that P is any symmetric p x p matrix, and that
u = inf [BPR’],
where B ranges over all row vectors such that " = 1. Set
Q=P+

where v is any real number greater than #. Show that Q is positive definite symmetric.
Deduce also that there exists an orthogonal matrix C such that

CPC’ =L,

where L is a diagonal matrix whose diagonal elements v, »,, . . . , ¥, are not necessarily
positive.

5.3.5 Suppose that the positive definite symmetric matrix Q is operated on by the
orthogonal matrix C to produce CQC’. Show that Q and CQC’ have the same trace,
i.e., the same sum of diagonal elements. Deduce that the sum of the eigenvalues of Q
is given by the trace of Q. Can this result be extended to any symmetric matrix P
(cf. Exercise 5.3.4)?
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5.3.6 Suppose that a positive definite symmetric p x p matrix Q is the sum Q; +
Q, + - - - + Q, of p positive semi-definite matrices each of rank 1. Show that the Q;
are necessarily the terms in the sum (5.3.5) corresponding to an eigenvalue analysis of Q
(Cochran’s theorem).

5.4.1 Show that the angle 0 in (5.4.1) is determined by the equation
g9 cos? 0 + [g — g?] cos 6 sin 8 — g{3 sin® 6 = 0,
and that the following relations describe how to compute Q“*+? from Q) and 6:
gist = gls) cos? 0 + 2g%9) cos 0 sin 6 + g5 sin® 9,
gistl = go sin® § — 2g{5+1) cos B sin 8 + gif cos? 0,
g =g =0,
gt =glstD) =g cos 6 +¢ifsinf  for  iErt,
gt =glstl) = —gldsin 6 + g cos 0 for  iFn,
gty =49 for is#rt, and jFnt
Check also that the rows of Cts*1) are computed from the rows of C') in the same way
that the rows of Us*1) are computed from the rows of U, as in (5.4.1).

5.4.2 Suppose that D is any ¢ x ¢ orthogonal matrix and P is any g X ¢ symmetric
matrix. Show that the sum of squares of the elements of P and of DPD’ are the same.
Show how this result can be applied to prove Lemma 5.4.1.

5.4.3 Check the first stage of computation in Example 5.4.

5.4.4 Carry out the tridiagonalization of Q in Example 5.4 using a pair of elementary
orthogonal transformations.

5.4.5 Starting from the tridiagonalized version of Q computed in Exercise 5.4.4,
carry out one stage of the OR method.

5.5.1 Show how to compute directly from determinants of submatrices of Q the
elementary symmetric functions of the eigenvalues of Q, namely,

PIV IRy

5.5.2 Use the calculus method of Lagrange multipliers to show that the maximum of
the quadratic form aQa’, subject to the condition aa’ = 1, must satisfy

aQ = ia, (5.7.1)
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where 4 satisfies
det (Q — i) = 0. (5.7.2)

Show also that the resulting maximum is 4.
5.5.3 Show that eigenvectors Y; and y; satisfying (5.5.6) for eigenvalues 4; and 4;
satisfying 4; % 1; must also satisfy

v:Qy; = 0. (5.1.3)

5.5.4 Suppose (5.7.1) and (5.7.2) are used to define eigenvectors and eigenvalues for an
arbitrary matrix Q. Show that, in general, the eigenvectors ¥, v5, ..., Y} of Q" are
different from the eigenvectors vy, Yz, - - - , Y, of Q, but that

QY =0 if A A (5.7.4)
is the appropriate generalization of (5.7.3). , ° -

5.5.5 Show, as an alternative to (5.5.5) and (5.5.6), that formulas (5.5.1) and (5.5.2)
may be written

det (Q,Q;* — AD) =0 (5.1.5)
and

v(QQ5* — 4D =0. (5.7.6)

Show that Q,Qj” is not in general a symmetric matrix, so that its eigenvalues as defined
by Qngl may not be found by iterative methods designed for symmetric matrices.

5.6.1 What becomes of the theorem of Section 5.6 when m = 1?
5.6.2 Show that (5.6.4) defines a definite or semi-definite inner product over Z.

5.6.3 Show that the inner products defined in (5.6.4) and (5.6.5) satisfy (W, W),/
(W, W), < 1 and that such ratios may be interpreted as cos? 6 for some 6.

5.6.4 Show that the angles 6y, 0,, . . ., 0,, defined in Section 5.6 may all be zero, may
all be /2, or more generally may all be equal to any 6 on 0 < 6 < #/2. Relate the
number of 8; which are zero to the dimension of the intersection of % and ¥".

5.6.5 Suppose that U denotes a basis of % and V a basis of ¥". Suppose that the
orthogonal projections of U into ¥” into % are denoted by SV and RU, respectively,
where U, V, R, and S have dimensions m x 1,n x 1, n x m,and m x n. Show that
the iteration procedure is equivalent to computing a product of the form SRSR .. . SR.
What would be an efficient way to compute such a product?



