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CHAPTER 6

DUAL SPACES

6.1 BASIC DEFINITIONS AND THEORY

Given any vector space &, it is possible to define as follows a new vector space
F whose elements consist of the set of all linear functionals over &. A linear
functional over & is a real-valued function v(V), defined for all ¥ in &, which
satisfies the requirement that

(g Vy + V) = ao(Vy) + a0 (V) (6-1-1)

for all vectors ¥, and V, in & and all real numbers «; and «,. The addition of
two linear functionals to give a linear functional and the multiplication of a
linear functional by a real number to give a linear functional are both defined
in the obvious manner, i.e., the relation v, = B0, + fyv, for linear functionals
v, v, and v, and real numbers $; and §, means that

va(V) = Broo(V) + ava(V) (6.1.2)

for all ¥ in &. It is easily checked that the set of linear functionals forms a
vector space under the operations defined by (6.1.2), and this defines the vector
space & , as promised above.

The mathematical interest in considering & is that & and & have the
mathematical properties of what will be called a pair of dual vector spaces. An
abstract definition of this concept will be given shortly. The statistical interest
in considering & is that if & is taken to be the variable-space of Example 2.1.1,
then % is essentially the individual-space of Example 2.1.2. Note that any
observation vector [x;, Xs, . . - , X,] on a basic set of variables [V, Vs, ..., V)]’
defines an observation ax’ on any variable aV in &, and that the observation
ax’ may be regarded as the value of a functional v, where

v(aV) = ax’. (6.1.3)

It may easily be checked that the functional v defined by (6.1.3) obeys (6.1.1),

and so is a linear functional. Moreover, the vector operations for observation

vectors defined in Example 2.1.2 and the vector operations for functionals
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defined in (6.1.2) determine the same operations on the functionals defined by
(6.1.3), so that the concepts of individual-space and the space of linear func-
tionals over variable-space are abstractly identical.

Returning to duality in general, any two vector spaces € and F will be
called dual with respect to each other if they are related by a proper bilinear
product function. A bilinear product function is a real-valued function {V, v}
defined for each ¥ in & and v in %, which satisfies the pair of linearity require-
ments that

{a Vi + apVs, v} = ay{Vy, v} + ao{Vs, v} (6.1.4)
and
{V, Bivy + Bova} = Bu{V, v1} + BolV, va}, (6.1.5)

where o, g, f;, and B, denote any real numbers, where V3, ¥, and ¥ denote
any vectors in &, and where v,, v,, and v denote any vectors in.%. From (6.1.4)
and (6.1.5), it is clear that for each fixed v the relation

L(V)y={V,v} (6.1.6)
defines a linear functional f, over &, and that for each fixed V the relation
Fp(v) = {V, v} (6.1.7)
defines a linear functional Fy, over % . Furthermore, the mapping
v—f, -~ (6.1.8)

from the space & to the space of linear functionals over & is a linear trans-
formation. Similarly the mapping

V- F, (6.1.9)

from the space & to the space of linear functionals over & is a linear trans-
formation. If the mappings (6.1.8) and (6.1.9) are both one-one in the sense
that they define an isomorphism between one vector space and the space of
linear functionals over another vector space, then the bilinear product {V, v}
is here called proper, and, in this case, the spaces & and & are dual spaces.

The definition of dual spaces treats & and % symmetrically, so that &
dual to & implies & dual to #. Unfortunately, however, it is not immediately
clear that individual-space & and variable-space & are dual according to the
definition. Specifically, it is clear that (6.1.8) is one-one but not that (6.1.9) is
one-one. In other words, it needs to be shown that each linear functional over
& corresponds to exactly one variable in & whose values are those given by
the linear functional over #. The missing link is provided by:

Lemma 6.1. Suppose that two vector spaces & and F are related by a
bilinear product {V, v} such that one of the mappings (6.1.8) and (6.1.9) is
one-one. Then the other mapping is also one-one, and & and & are dual
spaces.
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It need only be proved that if (6.1.8) is a one-one mapping then (6.1.9) is
also, for the symmetry of the hypotheses will then imply that the converse is
also true. Assuming that (6.1.8) is one-one, it follows that & is abstractly
identical to the space of linear functionals over &, so it may be assumed that %
is this space of linear functionals and that (6.1.6) holds. It is required to show
that only one ¥ corresponds to a given Fy,, or that the relation {V;, v} = {V,, v}
for all v implies that ¥, = ¥,, or, finally, that the relation v(¥;) = v(¥}) for
all linear functionals v implies that ¥, = ¥,. But this last version is obvious,
for, given ¥, % V,, one can easily construct a linear functional v such that
v(V,) ## v(Vs), and so the lemma is proved by contradiction.

It is now clear that the space & of linear functionals over & should be
regarded as a dual space for & according to the bilinear product

{V,v} = o(V) (6.1.10)

for ¥in & and v in #. The relations (6.1.1) and (6.1.2) imply (6.1.4) and (6.1.5),
so that {¥, v} in (6.1.10) defines a bilinear product. Moreover, from (6.1.6) and
(6.1.10) the functionals v and f, are identical, so that (6.1.8) is trivially a one-one
linear transformation, as required.

According to the given definition of dual spaces, it is possible for a given
vector space & to be dual to a number of different vector spaces, or even dual
to a given vector space % in a number of different ways corresponding to
different bilinear product functions. Still, it makes sense to speak of the dual
space Z of a given vector space €. The reason for this terminology is essentially
given by the one-one relation (6.1.8) which asserts that all dual spaces are
isomorphic to the dual space of linear functionals according to an isomorphism
which preserves the values of the bilinear product function.

Virtually every concept and entity concerning a vector space & has a corre-
sponding and generally different concept and entity in the dual space &.
Consequently, any statement concerning a vector space 6’ may be rewritten as
an equivalent but apparently different statement concerning the dual space
& . This translation is a useful device because certain statements may seem
more familiar and therefore more comprehensible in terms of one space than in
terms of the other. Some of these corresponding dual entities will be derived in
the remainder of this section, beginning with dual bases and dual subspaces.

Suppose that V = [V}, ¥, ..., V,] is any basis of a vector space & whose
dual space is #. Then a basis v = [vy, vy, ..., v,]" of # dual to the basis V
of & may be defined by the refations

Vovy=1 if i=j
= 0 if [ #j,
foriandj=1,2,...,p. Notethatthe set of relations (6.1.11), as i ranges while

jis fixed, determines the values of the functional v; in % for the basis elements
Vi, Vo ..., Vypin & Consequently, v,(V) is determined for any ¥ in &. The

(6.1.11)
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reader may easily check that the vy, v,, . . . , v, defined in this way are linearly
independent and that any v in & may be expressed as a linear combination of
vy, Vs, . . . , Up. In other words, v is in fact a basis of & and the concept of dual
basis is well-defined. It follows incidentally that & and its dual space # have
the same dimension, a fact already illustrated in the examples of variable-space
and its dual individual-space.

Suppose that % is an r-dimensional subspace of a p-dimensional vector
space & whose dual space is #. A (p — r)-dimensional subspace %, of # dual
to % in & may be defined by the condition that v is in %, if

{V,vo} =0 for all Vin %. (6.1.12)

Relation (6.1.5) is enough to ensure that %, is a subspace of #. To show that
%, has dimension p — r, suppose that V = [V, ¥,, ..., V,] is a basis of &
such that ¥, ¥y, ..., V, span %. It follows from (6.1.11) and (6.1.12) that the
elements ,,;, Uiq, - - - » Up Of the dual basis v = [v;, v, ..., 0,]" of F lie in
U,. Moreover, for any v = x;v, + X0 + * -+ + X,v, with some x; 5 0, there
exists a ¥ in %, for example ¥}, such that {V, v} # 0. Consequently %, is the
subspace spanned by 0,1, Uy, - - . , U and has dimension p — r.

A limiting case of the duality between % and %, occurs when 7% is taken to
be the subspace consisting only of & in &'; then %, is the subspace consisting
of the whole of #. Another important property of the duality is that, if %,
and ¥, in # are the duals of % and ¥ in &, then %, N ¥ ,in & is the dual of
U@V in & Of course, if %, is the dual of %, then % is the dual of %,.

Suppose that A is a narrow sense linear transformation from &’ to * whose
dual spaces are & and % *, corresponding to bilinear products {V, v} and
{V*, v*}*, respectively. Then there is a unique narrow sense linear trans-
formation A, from % * to # which satisfies

{V, v} = {V*, v*}* (6.1.13)

for all Vin & and v* in & *, where ¥* = AV and v = Aw*. The proof of this
assertion requires only simple checking: (a) that {AV, v*}* defines a linear
functional over & for each v*, i.e., defines a member v of & for each v*, and
(b) that the mapping v* — v = A v* so defined is a linear transformation. The
linear transformation A, will be called the dual linear transformation of A.
Clearly, if A, is the dual of A, then A is the dual of A,. If % is the subspace in&
which maps under A into the origin in &* while ¥ * is the range space in &'*
of the transformation A, then ¥°* is the subspace of % * which maps under
A, into the origin in & and %, is the range space in.# of the transformation A,.

Given an inner product function (¥, U) defined for each pair ¥, Uin &,
the next task is to define the dual inner product (v, u), for each pair v, u in the
dual space & of &. For any v in &, there exists a hyperplane of dimension
p — 1 in & such that {¥, v} =1 for all V in the hyperplane, and ¥'* may be
defined to be the orthogonal projection of @ into this hyperplane. Similarly,
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for uin & a corresponding U* in & may be defined. With this structure in hand
the dual inner product is defined by
(v*, U®)

(V*, VE(U*, U%)
To check that (6.1.14) defines an inner product, and incidentally to provide a
simple alternative definition, consider any orthonormal basis V of & and the dual
basis v of #. Representing v = xv, the hyperplane in & whose points V’ satisfy
{V, v} = 1 may be represented analytically as the set of points ¥V = aV such
that ax’ = 1; the point ¥'* on this hyperplane which is closest to the origin is
given by

(v,u); = (6.1.14)

V* = [(xx'y"x]V. (6.1.15)
Similarly, representing u = yv, the corresponding
U* = [(yy')'yIV. (6.1.16)

From (6.1.14), (6.1.15), and (6.1.16), together with the orthonormality of V,
one finds
(.1, = [oo) " xIMyy )y )
[y x][(xxy XY+ [(yy)yILyy) YT
= Xy’ (6.1.17)

It follows that (v, 1), as originally defined in (6.1.14) is identical to the inner
product defined by asserting that v is orthonormal. Having thus shown that
the coordinate-free definition (6.1.14) is legitimate, it follows that the dual basis
v of any orthonormal basis V is orthonormal according to the dual inner
product.

A Euclidean vector space & with a proper inner product is self-dual where
the bilinear product relating & with itself is simply the given inner product over
& which makes & Euclidean. The inner product is clearly a bilinear product
and a proper one because (V, W) = (V, W) for all ¥ implies that W, = W,.
The one-one correspondence between & and the space of linear functionals over
& implied by the representation of the dual space as &is

Wes vy, (6.1.18)

where
v (V)= (W, V) (6.1.19)
for Vand Win &. If W is an orthonormal basis of &, the isomorphism (6.1.18)

carries
W w, (6.1.20)

where w is the dual orthonormal basis of the space of linear functionals over &.
In this sense there is a natural isomorphism between any Euclidean vector space
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and its dual Euclidean vector space which carries every orthonormal basis into
its dual orthonormal basis.

The foregoing theory provides an inner product defined on individual-space
dual to a given covariance inner product on variable-space. Such a dual inner
product will be called a concentration inner product in Chapter 7 and is an
important concept in multivariate statistical theory.

6.2 DUAL GEOMETRIC SPACES

The idea of duality is often introduced in simple discussions of geometry. For
example, in plane geometry the concept of a line is thought of as the dual of
the concept of a point, the set of points on a line is the dual of a pencil of lines
through a point, and the proposition that every two points define a line joining
them is the dual of the proposition that every two lines intersect in a point.
When this kind of duality is applied to p-dimensional space it asserts that points
are dual to (p — 1)-dimensional hyperplanes, or, more generally, that r-
dimensional hyperplanes are dual to (p — r — 1)-dimensional hyperplanes for
r=0,1,2,...,p—1L

To arrive at such duality concepts in vector space terms, the dual of a point
V in a vector space ¢ may be defined to be the (p — 1)-dimensional hyperplane
consisting of points v in the dual space & of & which satisfy {V, v} = 1. The
dual of a hyperplane in & may then be defined as the hyperplane of intersection
of the family of (p — 1)-dimensional hyperplanes in & dual to the points of
its original hyperplane in &. The reader may wish to show that in this way a
one-one correspondence is defined between r-dimensional hyperplanes in & and
(p — r — 1)-dimensional hyperplanes in %, and that, if two hyperplanes inter-
sect in a third, then the duals of these two hyperplanes determine the dual of
the third as the smallest hyperplane containing them both.

Note that the above concept of dual pairs of hyperplanes does not apply
to hyperplanes through the origin, and is different from the concept of dual
pairs of subspaces (i.e., hyperplanes through the origin) defined in Section 6.1.
To see the relationship between these two types of duals, suppose that u + ¥~
in % denotes the dual hyperplane for the point ¥ in &. It is easily checked that,
if % in & denotes the one-dimensional subspace consisting of the points «} for
—o0 < o < o, then % and ¥~ are a pair of dual subspaces in the sense of
Section 6.1. Moreover, the dual hyperplane of oV is a~'u + ¥". In other
words, as ¥ moves along a line towards the origin, the dual hyperplanes are a
progression of parallel hyperplanes moving away from the origin, and vice
versa. If ¥ were to reach the origin then # + #~ would need to be a hyperplane
at infinity. The concept of hyperplane at infinity is rigorously introduced in
affine geometry, but need not be pursued here.

In this way the duality concept shows how the set of (p — 1)-dimensional
hyperplanes of a given vector space & may themselves be regarded as forming
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a vector space, i.e., one need only consider the corresponding operations on the
points of the dual space #. Multiplying a hyperplane by o results in a hyper-
plane 1/« times as distant from the origin, and the zero hyperplane is the hyper-
plane at infinity.

The dual of an origin-centered ellipsoid = in & is an origin-centered ellipsoid
m, in &, where 7 and =, are symbols for a pair of dual inner products or for
their corresponding ellipsoids. However, the dual of a point on the surface of
an ellipsoid 7 is a (p — 1)-dimensional hyperplane tangent to the dual ellipsoid
m,. To see this, consider any point ¥ on the surface of =, i.e., a point such that
(V, V) = 1 according to =r. Then V corresponds to a hyperplane v, + & in
&, where v, may be chosen orthogonal to %, according to 7, Applying the
dual form' of (6.1.14) yields

L=y = o ) = ) (62D
. (vys 1) oVps Vpla

so that v;- lies on the surface of 7, Since 5 is orthogonal to v} according to

mg, Uy + F 1 is tangent to m, at vy, as required. It follows that the dual ellipsoid

m, may be regarded as the envelope of the family of (p — 1)-dimensional

hyperplanes which are the duals of the points on .

It is illuminating to describe how to determine the length of line segment
GW in & from the dual ellipsoid 7, Recall that the length of O may be
regarded as the affine ratio of the length of @W to the length of the semi-axis
of m in the same direction, i.e., as the ratio of the length of @W to the length of
OV where V = oW and « = (W, W)"1/2, To dualize this characterization,
consider the dual v;- + F - of W where vy is orthogonal to & ;- according to
n,. The corresponding dual of V = «W is a7 'y + Fp-. Thus the length of
W is the ratio of v, = ooy on =, to the length of vy, This is pictured in
Fig. 6.2.1 in two dimensions. Note that, as pictured in Fig. 6.2.1, vy + F

vy + Fu

oy + F

'g.W

Fig. 6.2.1. The dual hyperplanes v, + #, and a~lpy, + Fy of the points W and V.
The length of W is the ratio of the length of vy to the length of ovy.
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lies outside =, which implies that W has length less than unity. In general, the
farther from the origin that vy, + & 5 moves, the smaller the length of W
becomes.

From (6.1.14) it is clear that if the inner product = is scaled, i.e., multiplied
by a factor 4, then the dual inner product is scaled by the factor 2. At the
same time, the ellipsoid = in & is scaled by the factor 272, i.e., the length of
each axis is multiplied by 2-1/2, but the ellipsoid =, in F is scaled by the direct
factor A1/2,

6.3 SOME RELATED MATRIX THEORY

Suppose that V = [Vy, Vp, ..., V,]" and W = [W;, W,, ..., W,]" are two
bases of & related by
V = AW,

R =aA,

(6.3.1)

where a and B denote coordinates of points of & relative to V and W respec-
tively. Then the corresponding dual bases v = [v;, s, ...,0,] and w =
[wy, Wy, ..., wy]" of & are related by

w=Alv, 632

x == yA', (€32)
where x and y are the coordinates of points of & relative to v and w, respec-
tively. To see this, note that either of the equations of (6.3.2) implies the other,
and that the second equation of (6.3.2) is an immediate consequence of the first
equation of (6.3.1); for, in the language of variable-space and individual-space,
if variables obey a certain linear relation V == AW, then values of those
variables obey the same linear relation x’ = Ay’

In matrix terms the concept of a dual linear transformation is very simple.

Suppose that A is a linear transformation from a p-dimensional space &' to a
g-dimensional space &*, and that A is represented by

V> AW, (6.3.3)

where V is a basis of &, W is a basis of &%, and A is the p X g matrix which
determines A relative to these bases. It is easily checked from (6.1.13) that the
dual linear transformation A; may be represented by

w— Ay, (6.3.4)

where v and w are the dual bases of V and W in the dual spaces % and & * of
& and &*, respectively.

Suppose that an inner product 7 on & has the inner product matrix Q
relative to a basis V. Then an important matrix result is that the dual inner
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product m, in F has the inner product matrix Q7 relative to the dual basis v
corresponding to V. To see this, suppose that U = CV is orthonormal relative

to 7, so that
CQC' =1 or Q= [C'C]™. (6.3.5)

Then the corresponding u, where v = C’u, is known to be orthonormal relative
to m,. Thus, if 7, has inner product matrix P relative to v, then

P=CIC=CC (6.3.6)
From (6.3.5) and (6.3.6),
P=Q1 6.3.7)
as required.

6.4 DUALITY ASPECTS OF THE
PROCESS OF SUCCESSIVE ORTHOGONALIZATION

Another example of the inversion phenomena experienced in passing from one
space to its dual is given by:

Theorem 6.4. Suppose that the basis U of a Euclidean space & is orthogon-
alized as in Section 4.1 to produce an orthogonal basis U* and then an
orthonormal basis U**. Suppose that U, U*, and U** have dual bases u,
u*, and w**, respectively, in the dual Euclidean space % of &. Then, if the
basis w is orthogonalized in the reverse of the given order, the resulting
orthogonal basis is u* and the corresponding orthonormal basis is u**.

Since U* is orthogonal in &, its dual u* is known to be orthogonal in &%, and
similarly, u** is known to be orthonormal in %. Thus it remains only to show
that u* and u** are the specific orthogonal bases indicated by the theorem.
Using the notation of Section 4.3, it is known that

U* = AU (6.4.1)

may be characterized as that orthogonal basis of & such that A is a triangular
matrix with unity along the main diagonal and zero above the main diagonal.
Similarly

U** = CU (6.4.2)

may be characterized as that orthonormal basis of & such that C is triangular
with zero elements above the main diagonal. From (6.3.2),

u* = B'u and u** = D'u, (6.4.3)
where
B=A" and D=C1 (6.4.4)

Thus B’ is triangular with unity along the main diagonal and zero below the
main diagonal and, similarly, D’ is triangular with zero below the main diagonal.

S
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These properties of B" and D’ are sufficient to imply, respectively, that u* and
u** are the particular reverse order bases specified in the theorem.

Theorem 6.4 supplies a concise explanation of the dual formulas which
were profusely displayed in Section 4.2. Any formula involving Q, P, T, T,
B, A, D, and C may be regarded as describing aspects of a basis U of a
Euclidean space &, where U has the inner product matrix Q. The same formulas
may equally well be applied to yield similar descriptions of the basis u of %,
treating the elements of u in the opposite order from the elements of U. Thus,
the dual of any formula may be immediately written down simply by replacing
Q,P, T, T, B, A, D, and C by P*, Q*, T*1, T* A*, B*, C*, and D*,
respectively, where the star notation means that the order of the rows and
columns has been reversed, i.e., P* is the same as P except for the reversing of
the order of the rows and columns of P, and so on.

Theorem 6.4 also suggests that the computational routines applicable to
Q, as described in Section 4.3, should also be interesting when applied to
P = Q-1 In particular, the dual of successively applying the sweep operator of
(4.3.13) to the rows and columns of Q in order is the operation of successively
applying the sweep operator to the rows and columns of P in reverse order.
After s stages of the former, one has (4.3.14), which may be written

-Qi QuQ:
[0 Gur) (042)

It follows dually that after p — s stages of the latter, one must have

Pll 2 P].ZP.{Z:[}
- . 6.4.6
[Pz;Pm —Pg (64.6)

From the relations in Section 4.2, it follows that (6.4.5) is simply the negative
of (6.4.6). Thus, the dual of the computations of the elimination method yields
the same quantities as the original except for the changed signs and reversed
order.

6.5 DUALITY RELATIONS
CONCERNING A PAIR OF INNER PRODUCTS

Suppose that =, and =, are two inner products defined over & with dual inner
products 7y, and m,y, defined over the dual space # of &. If W is an orthogonal
basis according to both my and m,, then the dual basis W of & is orthogonal
according to both my,; and myg, i.e., the dual of a basis of eigenvectors is also a
basis of eigenvectors for the dual space. The eigenvalues of =, relative to my,
are, however, the inverses of the eigenvalues of w, relative to m,. To see this,
suppose that W is scaled to be orthonormal relative to m,. Then, relative to my,

(Wi’ Wi)lzli, fO[' i=192a---aps
(W, W)y =0, for i#],

(6.5.1)
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where A,, A, . .. , A, are the eigenvalues of , relative to 7,. From (6.1.11), w
is orthonormal relative to m,,, but

1 .
Wy, Wy = Z for i=12,...,p, (6.5.2)
(W, wihy =0 for i#j,
whence the eigenvalues of m, relative to my, are 12, 1Ay, ..., 1A,

Geometrically, the basis W determines sets of conjugate axes for both of
the ellipsoids ; and m, in &, while w does the same for the dual ellipsoids 7,
and my, in . However, the ratio of the lengths of such principal axes is
inverted by the passage from one space to its dual.

The inversion of the eigenvalues is also clear analytically. For suppose that
Q, and Q, are the inner product matrices of w; and m, relative to a basis U
of €. Then the eigenvalues are roots of the equation

det (Q, — 1Q,) = 0. (6.5.3)

This equation is equivalent to

7 det Q,Q7 (i Q - Qz) Q:'Q, =0, or

(=2) det Q, det Q, det ( - i— Q;l) =0, or
det ( - % Qz'l) =0, (6.5.4)

which means that the inverses 14, are the roots of the determinantal equaticn
relative to the dual basis u for the eigenvalues of =y, relative to my,.

To pursue the analytic approach further, suppose that V is orthonormal
relative to m,, and has the inner product matrix Q according to =;. Then the
eigenvalues are the roots of the equation

det (Q — A) = 0, (6.5.5)

which is the standard form for solution. If the eigenvectors W are also chosen
to be orthonormal according to 7, then

W =EV, (6.5.6)

where E is an orthogonal matrix whose rows give the coordinates of
Wy, W, ..., W,relative to V. It is interesting to note that, since from (6.3.2)

v=Ew or w=Ey, 6.5.7)

the rows of E are also the coordinates of the dual eigenvectors wy, wy, ..., Wy
relative to v.
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A quite different theory relating two sets of eigenvalues will now be
presented. Suppose that = denotes an inner product over a p-dimensional space
&, and that =, denotes the dual inner product over &#. Next, consider a
separate g-dimensional Euclidean space §* whose inner product is denoted by
w* and whose dual and dual inner product are denoted by % * and ;. Suppose
that A denotes a linear transformation from &* to &. With this structure a
second inner product m, may be defined over & from

(U, V) = (AU, AV)* (6.5.8)
Dually, a second inner product w3, may be defined over # * from

*, "R, = (A", Ap™), (6.5.9)

Finally, suppose that A has rank r < min (p,q). Then there are r nonzero
eigenvalues of m, relative to w, and p — r zero eigenvalues. These same nonzero
eigenvalues Ay, Ay, . . . , A, together with g — r zeros make up the eigenvalues of
ma, relative to wy. If W, denotes an eigenvector in & associated with 1;, for
i=1,2,...,r, then an eigenvector wf in & * also corresponding to A; may be
constructed by passing from W in & to w;in F defined by the natural isomorphism
(6.1.18) and then setting

wl = AW, (6.5.10)

The proof requires constructing a z*-orthonormal basis W* of &* such
that A may be described as
W#* — JW, (6.5.11)

where W is a w-orthonormal basis of & whose first r elements W, W,, ..., W,
are eigenvectors as above and where J is a ¢ X p matrix whose elements are all
zero except that the (7, i) element is M2 fori=1,2,...,r. The construction
proceeds as follows: WX, Wk, ..., WF is any m*-orthonormal basis of the
(g — r)-dimensional subspace of &* which maps into @ in & under A. The
r-dimensional subspace spanned by W, Wf, ..., W} is then determined as
the *-orthogonal complement of the subspace spanned by W, Wi, ..., W
Under A, this r-dimensional subspace of &'* is in one-one correspondence with
an r-dimensional range space in &, and from (6.5.8) this range space must be
the space spanned by Wy, W, ..., W,. Finally W¥, WF,..., W} may be
defined from (6.5.11), and the =*-orthonormality of W, Wj,..., wr
follows from (6.5.8) together with the eigenvalue properties (W;, Wj)a = 4; or
0 depending on whether i = j or i # j.
In terms of the dual bases w* and w of W* and W, the dual of (6.5.11)
may be written
w— Jw* (6.5.12)

It follows directly from (6.5.9) and (6.5.12) that the eigenvalues and eigen-
vectors of 7%, relative to ¥ are as stated.
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The theorem just proved may be stated more simply in purely analytical
terms as follows.

Theorem 6.5. If A is a given q X p matrix of rank r, then the r nonzero
eigenvalues Ay, Ay, . . . , A, of A’A are the same as the r nonzero eigenvalues
of AA'. Moreover, if a set of eigenvectors of A’A is given by the rows of an
r X p matrix C,, then corresponding eigenvectors of AA’ are given by the
rows of the r X q matrix C;A’.

The proof here requires simply that A be interpreted as a linear trans-
formation V* — AV from a Euclidean space &* with m*-orthonormal basis
V* to a Euclidean space & with a 7-orthonormal basis V. Then A’A is the inner
product matrix of 7, relative to the bases V and, dually, AA’ is the inner product
matrix of =%, relative to the basis v* of F* dual to V* in £*. With this
identification, Theorem 6.5 is simply an analytic statement of the preceding
vector result.

6.6 THE DUAL OF A SEMI-DEFINITE INNER PRODUCT

The definition (6.1.14) of the dual inner product assumed that (V, V) > 0 for
all V. Suppose that an inner product = over & is of rank f < p and that
(V, V)= 0 for V in the (p — f)-dimensional subspace % of &. The dual of %
is an f-dimensional subspace %, in & . The natural dual of the semi-definite
inner product = is a partial inner product m,, defined only over the subspace
U, of F.

Consider any basis W of & such that W, W,, ..., W, span a subspace of
& complementary to % and Wy, Wy, ..., W, span %. Since the inner
product has full rank over this f~dimensional subspace, the firstset Wy, Ws, .. .,
W, may be chosen to be orthonormal according to 7, while Wy, Wyie, ..., W)
must have zero norms and zero inner products with every Vin &. The dual basis
Wy, Wa, - - . , Wy, has the property that wy, wp, . . ., w, span % ,, so that an inner
product may be defined over %, taking wy, W, ..., w, to be orthonormal,
thus defining the dual partial inner product mentioned above. The reader may
check that any basis W such that W, W,, ..., W, are orthonormal according
to 7 produces the same inner product m, on %,, so that the definition is unique.
He should also show that the uniqueness property does not hold if wy, w,, .. .,
w, are taken to be orthonormal to define an inner product over all of #.

Conversely, if a partial inner product is defined over an f-dimensional
subspace of %, then one may recover the dual semi-definite inner product in
& by specifying a basis wy, wy, ..., w, of & such that wy, wy, ..., w, are
orthonormal according to the partial inner product. Note that wy, ws, . .., Wy
uniquely determine the (p — f)-dimensional subspace of & spanned by
Wii1s Weias . - . » Wy so that the subspace % of & on which (V, V) =0 is
uniquely determined. The reader may check that any orthogonal transformation
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of wy, wy, ..., w, yields the same semi-definite inner product over & when
Wy, Wa, . .., W, are taken to be orthonormal and % is uniquely determined as
described.

Geometrically, the above theory states that the dual of an ellipsoidal
cylinder extending to infinity along a family of (p — f)-dimensional hyperplanes
is an ellipsoid lying in an f-dimensional hyperplane. This might have been
expected, since to stretch an ellipsoid along conjugate axes by given factors is
to shrink the dual ellipsoid along the dual conjugate axes by the same factors,
so that infinite length axes in the original ellipsoid should result in zero length
axes in the dual ellipsoid. Note also that, although the dual inner product is
defined only over the hyperplane %, through the origin, it can be used to define
the concepts of length, volume, and angle in any hyperplane v + %, parallel
to %, One need only translate the geometric figures in v 4+ %, back to %,
and use the definitions applicable in %,.

Some related analytic theory follows. Suppose that Q is a positive semi-
definite p x p symmetric matrix of rank f which is regarded as an inner product
matrix relative to the basis U of €. It may be of interest to locate the subspace
U, of F over which the partial inner product is defined. A way to do this is to
find a p X f matrix D, such that

[wy, Wy, ..., W] = Dju, (6.6.1)
where u is the dual basis of U and wy, w,, . . . , w, is an orthonormal set spanning

%, as above. It will now be proved that a p X f matrix D, obeys the relation
(6.6.1) for some choice of wy, s, . . ., w, if and only if

Q =D,D;. (6.6.2)
Suppose first that (6.6.1) holds. Then D, is the first f columns of a matrix D
such that w = D’u or equivalently that U = DW. Now W has the inner product
matrix I, whose first f diagonal elements are unity and whose remaining elements
are zero. It follows that Q = DL,D’. But DI,D’ = D,D; and thus (6.6.2)
follows. To prove the converse result, noting that (6.6.2) implies that D, has
rank f, add any p — f columns to D, to make it a p X p nonsingular matrix D.
Then the argument simply operates in reverse.

The computations required to produce an instance of D, from a given Q
were essentially given in Section 4.4. By carrying out successive orthogonaliza-
tion on Q, one gets f columns of B corresponding to nonzero (UF, UY).
Dividing these f columns by the corresponding (Uf, UF)~/? gives a particular
choice of D,.

In Section 3.6 it was shown that a linear transformation may be used to
carry an inner product in the reverse direction in a natural way. Dualizing that
theory shows how to carry a partial inner product in the forward direction into
another partial inner product. Specifically, suppose that A; denotes any linear
transformation from % to % * and that =, is a partial inner product over #.
Denoting the duals of A;, #, % *, and =, by A, &, &*, and =, the theory of
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Section 3.6 shows how the transformation A from &* to & induces from 7 a
wide sense inner product =* over &*, whose dual in turn defines the desired
partial inner product =¥ over % * induced by A, from =,

The roundabout definition of =} from =, via dual theory may be replaced
by the simple and direct geometric characterization given in Theorem 6.6 which
follows. Let 7, and = denote ambiguously either the partial inner products
mgand 7} or their corresponding ellipsoids lying in the subspaces over which the
partial inner products are defined. Define the shadow of =, in F under the
transformation A, to be the set of points in % * which are the transforms of some
point in .

Theorem 6.6. =% is the shadow of =, under the transformation A,

In other words, the set of points v in.# for which (v, v), is defined and less
than or equal to unity maps into the set of points v* in % * for which (v*, v*)¥
is defined and less than or equal to unity. The proof requires consideration of
several subspaces: the subspace #"; in & in which =, lies, the subspace ¥,
in# which maps into the origin in % * under A, the subspace 4", of #~, orthog-
onal to #7, N %, according to =¥, and the subspace %} of & * consisting of
the maps of points in %,, this being the subspace in which the shadow lies.
Perhaps the most straightforward approach is to set up an orthonormal co-
ordinate system in #"; a part of which spans %, and a subpart of which trans-
forms into the range space %}. In these terms it is obvious that the shadow
7y of 7, is an ellipsoid in %F. To check that =} is the right ellipsoid requires
carefully setting up dual concepts and checking out the original definition of
m; by the roundabout route. Further details are left to the reader.

It is worth stating formally that:

Corollary 6.6. The shadow of any ellipsoid in a hyperplane under a linear
transformation is again an ellipsoid in a hyperplane. The center of the shadow
ellipsoid is the transform of the center of the original ellipsoid.

For hyperplanes through the origin and narrow sense linear transformations
the corollary is an immediate consequence of Theorem 6.6. But the corollary is
obvious for translations of a space into itself, and so holds for wide sense linear
transformations and for ellipsoids in arbitrary hyperplanes with arbitrary
centers.

Corollary 6.6 is illustrated in Figure 7.3.2.

6.7 EXERCISES

6.1.1 Show that a linear functional » defined over a vector space ¢ is uniquely
determined by its values over any basis of ¢.

6.1.2 What is meant by the assertion that two linear functionals v, and v, over & are
different? Show that v; and v, may agree on a subspace of dimension p — 1 and still be
different.
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6.1.3 Suppose that {¥, v} is defined to be zero for all ¥in & and v in #. Does this
define a bilinear product over ¢ and #? If so, can this bilinear product be used in
showing that ¢ and # are dual?

6.1.4 Suppose that Vy, V,, ..., ¥, isa basis of & and vy, vy, . . . , v, is the dual basis
in #. Express in terms of v;, v,, . . . , v, the dual basis in # of the basis V,, V, + V5,
Va+ Voo, Vo + Vyiné.

6.1.5 Suppose that # and ¥~ are complementary subspaces of €. Show that the dual
subspaces %, and ¥, are complementary in #.

6.1.6 Show that the isomorphism between ¢ and # defined by
a’V —a'v,

where V and v are dual bases, is not coordinate-free. Show further that the isomorphism
is the same for a basis W = CV and its dual w if and only if C is an orthogonal matrix.

6.1.7 Since variable-space is the dual of individual-space, it must follow that variable-
space has a natural isomorphism to the space of linear functionals over individual-
space. What is this isomorphism, and what is the bilinear product which it preserves?
In other words, how does a linear functional over individual-space determine a variable ?

6.1.8 Suppose that &€ and & are dual spaces with bilinear product {¥, v}. Suppose

that Vy, Va, ..., Vyand vy, 0y, . . . ., v, are dual bases of € and #, and that a is any
element of #. Show that

a =

M

{V3, a}v;.

k]

What is the statistical interpretation of this formula? What is the dual formula and
what is the statistical interpretation of the dual formula?

6.1.9 Suppose that & and # are dual spaces with bilinear ‘product function { ¥, v}
Show that ¢ and # are also dual spaces with the rescaled bilinear product function
MV, v} for any A 5 0. Show that the duality of a pair of subspaces % and %, is not
affected by rescaling the bilinear product function, but that the concepts of dual basis
and dual inner product are also subject to rescaling.

6.1.10 Show that the natural isomorphism between a pair ¢ and # of dual Euclidean
spaces defined in Section 6.1 is simply the identity relationship when ¢ is regarded as
self-dual.

6.1.11 Show that a definition of dual inner product alternative to (6.1.14) is given by

vV, v}?

6.2.1 What is the dual of the paralielotope in & with vertices W + Zf c;V; where
eachc;isOor 17

6.2.2 The dual of a pair of r-dimensional hyperplanes lyingin an (r + 1)-dimensional
hyperplane through the origin is a pair of (p — r —1)-dimensional hyperplanes with a
common intersection in the hyperplane at infinity. Show that these two (p — r ~1)-
dimensional hyperplanes are parallel.

6.2.3 Suppose that ¥ in & and v in # are said to be biorthogonal if {V, v} = 0. Show
that ¥ and v are biorthogonal if and only if the line V is parallel to the dual hyperplane
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in € of vin #. A subspace % of ¢ is said to be biorthogonal to a subspace ¥ of & if
{V,v} =0forall ¥in % and v in ¥. What is the geometric interpretation in & of the
relationship between # and the dual of ¥°?

6.3.1 Suppose that ¢ and # are dual p-dimensional spaces with bilinear product
function {¥, v} for Vin ¢ and v in #. Suppose that V is any basis in € and w any basis
in #. Define the bilinear product matrix R of V and w to be a p X p matrix whose
(i, j) element is {¥;, w;}. Show how to express {aV, 8w} in terms of &, 8, and R.
How is R related to the bilinear product matrix of bases V* = AV and w* = Bw?
What is the bilinear product matrix of a pair of dual bases?

6.3.2 Suppose that V and W are any two orthonormal bases of a Euclidean space &,
and that v and w are the corresponding dual bases of #. Show directly that the inner
products defined by regarding v or w to be orthonormal are identical. Show likewise
that the isomorphisms between ¢ and # defined by V — v or W — w are identical.

6.3.3 A linear transformation of ¢ into itself has rank p when it carries a basis V of
& into another basis V* of €. The dual linear transformation carries the dual basis v
of V into the dual basis v* of V*. Show that the correspondence between points of
¢ and (p — 1)-dimensional hyperplanes of # is preserved after dual linear transforma-
tions are applied to both € and #.

6.4.1 Show that Q is a positive definite symmetric matrix if and only if Q™ is also.

6.4.2 Show that the dual of formula (4.2.17) is
U =u +Hyu,
6.5.1 Draw the duals of Figs. 5.2.1 and 5.2.2, showing 4; and 4, as ratios of lengths
in &.
6.5.2 Give a purely analytic proof of Theorem 6.5.

6.6.1 Check the statements made in the last two sentences of paragraph two of
Section 6.6, and in the last sentence of paragraph three.

6.6.2 Show how definition (6.1.14) may be modified to provide alternative definitions
of the dual of a semi-definite inner product and the dual of a partial inner product.

6.6.3 Suppose that D; and Df are both p x f matrices satisfying (6.6.2). Show that
D, = D}G’ for some orthogonal matrix G.

6.6.4 Suppose that Qisa pseudoinverse of a positive semi-definite symmetric p x p

matrix Q. The inner products » and # defined by Q and Q relative to a pair V and v of
dual bases are both semi-definite. How does = relate to the partial inner product n;?

6.6.5 Suppose that & and # are a pair of dual spaces with full rank inner products
= and mg. Suppose that «* is an inner product of rank r < p over € and that =* is its
dual (partial) inner product over #. Show that the r nonzero eigenvalues of n*
relative to = are the inverses of the r eigenvalues of »* relative to =, in the subspace
over which =* is defined. Show also that the isomorphism (6.1.18) carries corresponding
sets of eigenvectors into one another, where if one set is w-orthonormal its image is
wg-orthonormal.

6.6.6 Demonstrate Corollary 6.6 directly.
6.6.7 Complete the proof of Theorem 6.6.

PART 3

DATA ANALYSIS




CHAPTER 7

ONE SAMPLE OF INDIVIDUALS:
BASIC THEORY

7.1 INTRODUCTION

This is a purely theoretical chapter, while the remaining chapters of Part 2 mix
theory with examples presenting analyses of observed data. The concern of this
chapter is to introduce various concepts related to the sample mean and sample
covariance of a sample of » individuals each observed on a set of p variables.
The sample individuals will be denoted by a;, a,, . . ., a, and the observable
variables by V1, V,, ..., V,. The term p-variate sample of size n will be used to
describe the resulting data.

Such a sample may be identified mathematically with a set of points a,,
d,, . .., a, in the individual-space # dual to the variable-space & spanned by
Vy, Voo ..., ¥p. The theory of Chapters 7 through 11 is completely derived from
this simple mathematical formulation.

The variables V5, V,, ..., V, and individuals a,, a,, ..., a, define p X n
quantities or statistics. The quantity associated with V; and a; may be denoted
by ¥, and the value of V¥ may be denoted by X{” for i =1,2,...,n and
j=1,2,...,p. In principle any numerical operation with the X defines the
value of another quantity which is a function of the V¥,

In practice it is unwieldy to carry along double notation and terminology
for such quantities and their values. Consequently, accepting the lesser evil of
some ambiguity, symbols appropriate to the values of quantities will be used
throughout. At the same time the names of quantities may be used in reference
to the values of those quantities. For example, X will be used to denote a
1 X p vector of sample mean values, but for brevity X will usually be referred to
simply as the sample mean vector.

Note that the methods of Chapters 7 through 11 may be applied to a finite
population in place of a finite sample. The methods can also be extended to
infinite populations through a limiting argument, but this is usually done within
the framework of probability theory, i.e., the concept of an infinite population

123
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may be related to the concept of a probability distribution. In this sense, the
discussion of infinite populations is postponed until Chapter 12.

7.2 DEFINITIONS

The sample mean (individual) m of a given sample ay, ay, . . . , 4, is

m == a;. (7.2.1)

1

.
it

N e
M=

The value of m on a variable V in variable-space ¢ will be denoted by m(}’) and
should be called the sample mean (value) of the variable V. 1f the values of the
individuals ay, 4, . . . , @, on a variable ¥ are denoted by X®, X® X",
then from (6.1.2) and (7.2.1)

n
mvy =13 x9, (7.2.2)

n i=1
where the right side of (7.2.2) is often abbreviated to X. The idea here is simple
and familiar, but note the distinction between a sample mean m, which is a
point in the individual-space F dual to &, and a value X of such a sample mean.
For purposes of computation rather than interpretation, it is convenient to
have terminology for an alternative but equivalent linear quantity and its

associated value. These are the sample sum individual

n

t=3Ya,=nm (7.2.3)

and its associated sample sum value

n

(V)= X9 =nk, (7.2.4)

for the variable V. .

The sample covariance is an inner product function defined over variable-
space &. If the sample values of the variables V and W on individuals a, a,, . . .,
a, are denoted by X, X®_ _ _, X® and YW, ¥Y®, ., Y, respectively
then the sample covariance (value) of V and W is defined to be

1 ; Z(X(i) - X)(Y(i) _ 7) — 1 " [z X(i)Y(i) — nX"y']
n — ii=1 n — i=1
(7.2.5)

In the special case where ¥ and W are the same, covariance is called variance
and is written cov (V, V) = var (V). The square root of var (V), which isa
quantity in the same units as ¥, is called the standard deviation of V. The reader
should recheck that the sample covariance defined by (7.2.5) satisfies the re-
quirements for an inner product over &, where this inner product may be
definite or semi-definite.

cov(V, W)=
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Terminology for several related sample-based inner products will also be
useful. The sample raw sum inner product may be defined, in the notation of
(7.2.5), by

V, W)g = 3 X¥y%, (7.2.6)
=1

and similarly the sample corrected sum inner product may be defined by

V, Wyp = ﬁ(X‘“ — (Y~ 7). (7.2.7)
=1

These different inner products are related by

(n—Decov(V, W) =V, W)y =V, W)g — nm(V)m(W).  (7.2.8)
The definitions of sample mean, sample covariance, and related concepts
have been given in coordinate-free terms. Most often, however, a sample is
specified by its n X p data matrix X whose (i, j) element X[ gives the observed
value of the variable ¥ on the sample individual a,, for i =1,2,...,n and
j=12,...,p.
The sample mean individual m is determined by its 1 X p coordinate vector
X relative to the basis v in & dual to V in &, i.e., by

m = Xv. (7.2.9)

If the rows of X are denoted by X for i=1,2,...,n, then the sample
individual g; may be expressed as

a; = X" (7.2.10)

for i = 1,2,...,n (cf. Exercise 6.1.8), whence X in (7.2.9) is given by the
ordinary mean of the n rows of X, i.e., by

X= L 3 X9 (7.2.11)
n =1
The elements of X are the values of m for the basis V of &, so that the value
m(V) for any ¥V = aV in & is given by
m(V) = aX’. (7.2.12)

The formulas analogous to (7.2.9), (7.2.11), and (7.2.12) when m is replaced by
the sample sum individual ¢ are left for the reader to express.

Similarly, the sample covariance inner product is determined by its inner
product matrix S relative to a basis V, i.e., by the matrix S whose (7, j) element
S, is given by

S;; = cov (V;, V). (7.2.13)
S will be called the sample covariance matrix of the set of variables V. For any
V=aVand W=BViné,

cov (V, W)= aSB’ (7.2.14)
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as in (3.1.7), i.e., as with any inner product only the covariance matrix for any
basis is required to determine the covariance between any pair of variables.

The additional inner products (¥, W)g and (V, W)y defined in (7.2.6) and
(7.2.7) have inner product matrices relative to V which will be denoted by Q
and T, respectively. In matrix terms, Q and T may be expressed using the data
matrix X via

Q = I XX = X'X (7.2.15)
=1
and
T=3X?- XX~ X)=XX - nXX, (7.2.16)
=1
while the relations (7.2.8) may be written
(n—1DS=T=Q —nXX. (1.217)

The dual of the sample covariance inner product over & will be called the
sample concentration inner product over . If the sample covariance matrix is
S relative to a basis V of &, and if the sample covariance has full rank p, then
the inner product matrix of the sample concentration relative to the dual basis
vin& of Vin & is given by S™%. The case of semi-definite sample covariance
is pursued further in Section 7.7. Dual inner products to the sample raw sum
inner product and the sample corrected sum inner products will occasionally
have roles to play, but no specific terminology will be assigned to them.

7.3 REPRESENTATION OF A SAMPLE WITH INDIVIDUALS AS POINTS

A given p-variate sample of size n may be visualized geometrically as consisting
of the n points @,, @, . . . , a, in the p-dimensional affine individual-space #.
The sample mean and sample covariance may be described geometrically by
the sample mean point m and the inner product ellipsoid of the sample con-
centration. This ellipsoid consists of points at unit distance or less from the
origin @ in & according to the concentration inner product, and will be called
the (origin-centered) ellipsoid of concentration. The result of translating this
ellipsoid into an ellipsoid with center m will be called the mean-centered ellipsoid
of concentration (cf. Cramér, 1946). The mean-centered ellipsoid of concentra-
tion consists of points at most unit distance from the mean, and provides a
method for representing the location and scatter of a sample in a single geo-
metric figure, at least to the extent to which the sample mean and sample co-
variance alone are able to provide such a representation.

Before illustrating these concepts with drawings it may help to be specific
about the mechanics of plotting the » sample points in & from an n X p data
matrix X representing a p-variate sample of size n. Each individual g; is repre-
sented by the corresponding row i of X, namely

X9 =[x X9 ..., X9, (7.3.1)
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which gives the coordinates of a; relative to the dual basis v of V as in (7.2.10).
The first step in plotting is to lay out the coordinate axes vy, vy, ..., Up forming
v. This may be done physically on a plane piece of paper if p = 2, or in space
if p =3, but may only be done conceptually for p > 3. The case p = 2 is
pictured in Fig. 7.3.1 where the axes v; and v, were first laid down and the
points a; were plotted using the formula a; = X{"v; + X;'», together with the
standard physical representations of vector multiplication and addition (cf.
Fig. 2.4.1). Note that while v; and v, are pictured in Fig. 7.3.1 as orthogonal,
this is merely a convention inessential in such representations of the sample.
The sample mean point is plotted in the same way from m = Xv. The points
v = xv belonging to the origin-centered ellipsoid of concentration satisfy the

relation
xS1x' <1 (7.3.2)

and those belonging to the mean-centered ellipsoid of concentration satisfy

the relation
x-—Xs'x~X)y <1, (7.3.3)

assuming of course that S exists.

The remainder of this section is concerned with the behavior of samples and
their associated mean points and concentration ellipsoids under linear trans-
formations operating on %. The important fact here, namely Theorem 7.3,
relates the shadow of a sample with the shadow of its mean-centered concentra-
tion ellipsoid. Recall the definition and theory of shadows given in Section 6.6.

0.73v, + 0.65v,
4

au A S >

Ay T R 0730 4 0600, 0.78v, + 0.600,

e V2 ﬁ o

Fig. 7.3.1. The sample data of ¥; and ¥, from Example 8.1 plotted as 12 points in the
individual-space dual to the variable-space spanned by V3, ¥,. The mean point and
mean-centered concentration ellipse of the sample are also shown.
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Theorem 7.3. Suppose that 7, is the mean-centered ellipsoid of concentration

of a sample ay, a,, . . ., a, in F. Suppose that a linear transformation A,
from F to F* carries the sample ay, a,, . .. ,a, in ¥ into a sample af,
at,...,a* in F* Then the mean-centered concentration ellipsoid n} of

a¥,af,...,a%in F* is the shadow of m, under the transformation A,.

This theorem holds when A, is a wide sense linear transformation, but it is
trivial under translations, and so need only be proved when the sample mean in
& is the origin and A, carries the origin in & into the origin in & *. In this case
the sample mean of af, a}, ..., a} is the origin in & * and both concentration
ellipsoids are origin-centered. The individual-spaces # and #* have dual
variable-spaces & and &*. The transformation A, determines its dual trans-
formation A from &* to & whose basic property (6.1.13) implies in the present
context that the sample values are preserved under the transformation A, i.e.,
that a,(V) = a*(V*)fori = 1,2,...,nwhere ¥ = AV*and V'* is any variable
in £*. This preservation of sample values means that the inner product over &
induced by A from the covariance inner product over &* of the sample af,
a¥,...,a} is the sample covariance inner product of the sample a;, @y, . . . , 4,.
Thus 7* may be produced by the roundabout route described in Section 6.6,
and Theorem 7.3 follows directly from Theorem 6.6.

The shadow theory is easily visualized when A, is a linear projection. For
example, consider projection along the family of hyperplanes parallel to the
subspace spanned by v,.1, Upp0, .. .5 Up into the subspace spanned by v, vs,
...,v, where v = [v;, vy, ...,0,] is a basis of #. Of course, any narrow
sense linear projection may be defined in this way for properly chosen bases.
Such a projection carries the sample defined by the data matrix X into the sample
defined by the same data matrix with the last p — r columns replaced by zeros.
Thus the projected sample provides a representation in & for the reduced
sample in which the data are available for V3, V,, ..., V,only. Fig.7.3.2isa
plane drawing for the case p = 3 and r = 2 of the type of lincar projection just
described. It also illustrates the shadow theory of Theorem 7.3.

The sample data for V3, V5, . .., ¥, may be equally well represented in F
by projection into any subspace complementary to the subspace spanned by
Uyi1> Vpias - - - » Uy OF, more generally, by projection into any hyperplane
parallel to such a subspace. For example, one could have projected in Fig. 732
into any plane making a positive angle with v;, and the projected sample would
have retained essentially the same information. The reason for this is that the
subspace spanned by Vi, V,...,V, determines only the dual subspace
spanned by v, rpp, - - -, Uy ON which all of Vy, V,, ..., V, assume zero
values, and consequently the choice of a complementary subspace is left open.
In other words, to say that the sample data are available on V, V,, ..., V,is
to say not only that the sample data on V., Vi, . . ., V', are unknown but
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also that the sample data on any complementary subspace to Vy, Vg, ..., V;
are unknown.

Sometimes it is helpful to consider projecting a sample into a hyperplane
which contains its mean. This provides a representation of the sample data
restricted to a subspace of variable-space, where the projected sample has the
same mean as the original sample.

0.73v, + 0.60v, + 2.03v,
A

*
:
i
i
i
i
|
i
1
|
i
i
i
|
i
!
60v, + 1.93v,
|
é

0.730, +
0.600, + 1930,

0.73v, 4 0.65v, + 1.93v,

Fig. 7.3.2. The data of Example 8.1 plotted in the 3-dimensional individual-space
spanned by vy, v,, 7. The projection along lines of constant x, and x, into the hyper-
plane x; = 1.93 is also shown, along with the original mean-centered ellipsoid of
concentration and its shadow.

7.4 REPRESENTATION OF A SAMPLE WITH VARIABLES AS POINTS

In contrast to the geometric representation of Section 7.3, a given p-variate
sample of size n may also be regarded as p points plotted in an n-dimensional
space, where the points correspond to the basic variables V5, Vs, ...y V.
To achieve this, create an n-dimensional vector space 4" by imagining n basis
vectors Ny, Ny, ..., N, which correspond to the n sample individuals a,, a,,
...,da,, and then plot the points

P,= XN, + X®N, +--- + X{"N, (7.4.1)
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for j=1,2,...,p. Here P; is a geometric representation in 4" of V; whose
coordinates are given by the jth column of the data matrix X. More generally,
any variable ¥ in & with sample values X, X3, ..., X may be represented
by
P =Y XYN, (7.4.2)
i=1
From a mathematical point of view, (7.4.2) determines a linear transforma-
tion
V—P (7.4.3)

from & to 4. Itis obvious but worth noting that knowing the linear transforma-
tion (7.4.3) is equivalent 1o knowing the sample data X. Note also that the range
space in 4" of the mapping (7.4.3) has at most dimension p which may be much
less than n.

The sample mean and sample covariance have special relationships with 4,
which suggests that 4~ be regarded as a Euclidean space with inner product defined
" by regarding Ny, Ny, . . . , N, to be orthonormal. Suppose that .4"; denotes the
one-dimensional subspace of 4" spanned by 37 N, and that .#";; denotes the
(p — 1)-dimensional subspace of #" orthogonal to .#"; according to the sug-
gested inner product. Then the components of P in (7.4.2) along A"y and A"y
are, respectively,

P;=2 XN, (7.4.4)
j=1
and
Py =3 (X" — X)N,. (7.4.5)
j=1

From these representations the following theorem is immediately apparent.

Theorem 7.4.1. Suppose that a given sample is represented by the linear
transformation (1.4.3) from & to the Euclidean space A" with orthonormal
basis Ny, Ny, ..., N,. Suppose that the variables V and W have sample
values X0, X® .., X and YW, Y, ..., Y™, Suppose that the trans-
forms P and Q of V and W decompose into P = P; + Prrand Q = Q; + Oy
along the orthogonal subspaces Ny and Ny defined above. Then

1/2
im(V)| = [-f; s, P,)] (1.4.6)

and similarly for W, while

1
n—1

cov(V, W) = (P11 Q11> (7.47)

where (Py, Py) and (Py;, Qpy) refer to the given inner product over A"

il
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Formula (7.4.6) simply says that the absolute value of N m_n(V) is the length
of Py, and this follows directly from (7.4.4). Similarly, from (7.4.5) and its
analogue for Q,

P11: Q) =§(X(i) - X))y - 7), (7.4.8)

which yields (7.4.7) directly.
Formula (7.4.7) suggests that for certain purposes the linear transformation

V—‘*_PII (7.5.9)

from & to A"y, may be more useful than (7.4.3). The reader may easily check
that the transformation (7.4.9) together with the sample mean uniquely deter-
mines the sample, while the transformation (7.4.9) by itself determines the
sample covariance. Indeed, the transformation (7.4.9) may be said to induce
the inner product (¥, W), on € from the given inner product on A" ;; by setting
V, Wyp = (Py1, Qrp)- Recall from (7.2.8) that the inner product (V, W)y is
simply cov (V, W) rescaled by the factor n — 1.

The sample correlation coefficient between the variables ¥V and W is defined
to be

_ cov (V, W)
Fo= var (V)% var (W) . (7.4.10)
Alternative expressions for r are
Ly
V, VYW, W)E*
P 3
Py Q1) (1.4.11)

 Pry P (Qr Q)
Any of the expressions (7.4.10) or (7.4.11) show that r should be thought of as
r=cosf, (7.4.12)

where 0 denotes the angle between ¥ and W in variable-space & with covariance
as inner product, or equivalently 0 is the angle between P;; and Qg in A ;.
A sample correlation coefficient between ¥ and W will sometimes be denoted by
cor (V, W).

From (7.4.12) it is clear that

—-1<r<1. (7.4.13)
Moreover r = #1 if and only if

PII = ;i:aQU (7.4.14)
for some § > 0. Since P;; = > (X — X)N, and @7y = D7 (YD — Y)N,,
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the condition (7.4.14) may be written
X? - X =46(Y?—-7¥) (7.4.15)

fori=1,2,...,n

Actual graphic plotting of a sample as p points in A" or A", is impractical
since n = 2 or n = 3 rarely occurs. Such plotting is, however, a useful concep-
tual device.

7.5 COMPUTATION-ORIENTED THEORY

This section considers some standard computations based on single sample data
matrices. The first concern will be to describe the computation of a sample mean
vector and a sample covariance matrix in terms of the computing language
introduced in Section 4.3. Later, the discussion wiil turn to deeper matters
involving partially swept inner product matrices together with the addition and
deletion of either variables or individuals.

Given an n x p data matrix X, the inner product matrix of the raw sum
inner product may be computed as indicated in (7.2.15) by the single matrix

multiplication
Q=XX (7.5.1)

Similarly, the mean vector X may be computed as indicated by (7.2.11), and
thence T and S from Q and X as indicated by (7.2.17). An alternative computing
scheme uses the device of adding a column to X whose n elements are all unity,
thus forming an augmented n X (p + 1) data matrix X,,. X, should be
regarded as the data matrix for a (p 4 1)-variate sample whose variables are

Vi, Vo ..., Vp, and ¥, whose value is unity for all individuals.
Extending (7.5.1) gives an augmented raw sum inner product matrix
Qi = XX (7.5.2)

of dimension (p + 1) X (p + 1). It is easily checked that the partition of
Q. into p and 1 rows and columns yields

i X
Six
Q(+) = Q : (7.5.3)
“ Xy
IDID CLDIP (LD IP ¥ _

so that the last row or column of Qy,, yields the sample sums of the p variables
Vi, Ve, . .., V, while the last diagonal element recqrds the sample size. Next,
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applying the sweep operator SWP[p + 1] defined in Section 4.3.2 yields
— b
X,

SWP[p + 11Q¢) = T s (7.5.4)

X,
Do an Ay

where T denotes the sample corrected sum inner product matrix and X, denotes
the sample mean value of V; for j= 1,2, ..., p. Clearly, the computing se-
quence of finding Q,, and then SWP[p + 1]1Q,, is an easily programmable
description of a way to find sample sums, sample means, sample raw sum
inner products, and sample corrected sum inner products. The final step of
computing S = T/(n — 1) is trivial. A word of caution is appropriate here.
T in (7.5.4) is found by subtraction of nX'X from Q in (7.5.3), and may be a
small difference between large values, thus acquiring a large component of
rounding error. In practice, therefore, it is usually preferable to compute X
directly and thence compute T directly from the first line of (7.2.16).

A device similar to that of creating X, from X is to add columns to X
corresponding to individuals in the sample. This device is computationally useful
for adding and deleting individuals from a sample. Suppose that the data matrix
X augmented by columns corresponding to individuals g, , 4, , . . . , 4, is denoted
by

X*=[X1,,1,...,1,} (1.5.5)
where 1, denotes ann X 1 vector with zero elements except for unity in position
i, for s=1,2,...,r. Again, X* should be regarded as a data matrix for a
sample with additional artificial variables, where the artificial variable cor-
responding to an individual is the indicator variable which takes the value unity
for that individual and zero for all other individuals. Next consider

QF = X¥X* (7.5.6)
whose rows and columns may be partitioned into p and r to produce
Q* = [S F] (7.5.7)
where F denotes the r X p data matrix of the individuals @, , a;,, ..., a; on
variables Vi, V,, ..., V, and I denotes the r X r identity matrix.
To see how Q* relates to adding and deleting individuals define
Q*=SWP[p+1,p+2,...,p+ rjQ% (7.5.8)

where, of course,
Q*=RSW[p+1,p+2,...,p+rlQ% (7.5.9)
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By directly carrying out the sweep operations indicated in (7.5.8), it is easily seen

that (7.5.7) is modified into
Q* = [g _f] (7.5.10)

where Q denotes the raw sum inner product matrix of the sample of size n — r
formed by deleting the individuals a; , a, , ..., a; from the given sample. Thus
it follows that the operations (7.5.8) and (7.5.9) may be used to delete and add
individuals, respectively, from a raw sum inner product matrix.

A somewhat deeper look at the computational problems of adding variables
or of adding or deleting individuals is facilitated by the use of the assimilation
operator defined in Section 4.3.3. With a given sample of size n, the addition of
variables V1, Vpres oo s Vg to 2 basic set V3, Vs, ..., ¥V, means that the
basic p x p raw sum inner product matrix Q acquires r additional rows and
columns and becomes a (p + r) X (p + r) raw sum inner product matrix Q¥
Suppose that earlier statistical analysis of the original p variables has produced

" SWP[1,2,...,5]Q. Then the ASM[p+1,p+2,...,p+7r; 1,2,...,5]

| operator is designed to assimilate the last r rows and columns of Q¥ together

. with SWP{1, 2, ..., slQ to produce SWP[1,2, ..., s]Q*.

~  The ASM operator is also useful in generalizing the operations of passing
between (7.5.7) and (7.5.10). The aim of the generalization is to pass back and
forth between SWP[1, 2, ..., s]Q and SWP[1,2,...,s]Q. The partition of
SWP{1,2, ..., s}Q will be denoted as usual by

— —_1 '
SWP[1,2,...,s]Q = [ H‘; gzzj (7.5.11)
and corresponding notation
P
SWP[L,2,...,5]Q = [ Hg g:: J (7.5.12)
and '
F = [F,, F,] (7.5.13)

will be used.

Theorem 7.5. The operator ASM[p+ 1L, p+2,...,p+r; 1,2,...,5]
followed by SWP[p + 1,p + 2, ..., p + r] carries

-Qi Hp, F
Hy, Qun, F; (7.5.14)
F, F, 1
into
— O I_:Im QﬁlF{
My,  Qu,  F-H,F | (7.5.15)
F,Q7 F,—FH, —I1-FQyF]
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Similarly, the operator ASM[p+ 1, p+2,...,p+r;1,2,..., s} fol-
lowed by SWP{p + 1,p + 2,...,p + r] carries

-Qi H,, F|
Hy Qn: Fp (7.5.16)
F, F, —I
into
Q3 H, —Qi'F,
H21 Q22.1 _F; + H21F; . (7‘5~17)
""Fl fll _F2 + F1H12 | FlerlF;

The first part of Theorem 7.5 is proved by noting that the three steps of passing
from (7.5.14) to (7.5.7) to (7.5.10) to (7.5.15) require the successive operations:

RSWI1,2,...,s] on the upper left p X p part only,
SWPlp+L,p+2,...,p+71], (7.5.18)
SWPI1,2,...,sl].

The last two operations in (7.5.18) may be carried out in reverse order, since
sweep operators commute, and after reversing this order the first two operations
combine to form ASM[p+ 1,p+2,...,p+r;1,2,... , 8], by the final
characterization of the ASM operator given in Section 4.3.3. The second part
of the theorem is proved in a similar way, so the details are omitted.

The computing rules of Theorem 7.5 may be made to yield a set of mathe-
matically elegant but computationally inefficient formulas concerning the addi-
tion and deletion of individuals. Carrying out the ASM operation as defined by
(4.3.31) and the SWP operations as defined by (4.3.23) on (7.5.14) and comparing
the result to (7.5.15) yields:

Qi = Qi + (F,Qu)(I — F,Qi F)(F,Qn), (7.5.19)

H,, = H;, — (F,Q5)'(I — F,QF'F)(F, — FH,,), (7.5.20)

Qui = Quy — (Fy — FHYJ — F.Q'F)7(F, — FiHyy), (7.5.21)

FQi = (I — F,QiF)(FQL), (7.5.22)

¥, — FH, = (I — F,QF)(F, — F;H,;), (7.5.23)
and

I+ FQuF) =1 - F,QF) ™ (7.5.24)

Following a similar procedure with (7.5.16) and (7.5.17) yields
Qi = Qi — (F,O( + F,Qi'F)(F.QL), (7.5.25)
ind H,, = H,; + (KO + F,Q5F)'(F, — FH,), (7.5.26)

Quy = Quy + (Fy — FF,Y (A + F,QF)(F;, — FiHy). (7.5.27)




136 ONE SAMPLE OF INDIVIDUALS: BASIC THEORY 7.6

The analogues of (7.5.22) and (7.5.23) are formed by substituting (7.5.20) into
(7.5.22) and (7.5.23).

Theorem 7.5 and the subsequent formulas are likely to be of most interest
and use when Q is replaced by Q,,, which means that the artificial variable ¥,
is introduced as a (p + 1)st variable. The important task is now to pass back
and forth between SWP[p+1,1,2,...,51Q., and SWP[p+1,1,2,...,
5]Qq,,. The parts of these matrices are worth noting. From SWP[1,2, ..., s]
applied to (7.5.4) it follows that

SWP[P + 1: 19 2’ DY S]QH-)

—T Jie _ TaX{
=| Jy _ Toon X, — J. X! » (7.5.28)
X1T1_11 X, - XJ, —1n-— XIT;IIX{
where
Jyp =35 =TTy, (7.5.29)
and
Tozy = Ty — Jpy Tho (7.5.30)

Similar formulas could be written down immediately for Q,, referring to the
reduced sample with r fewer individuals.

7.6 PRINCIPAL COMPONENT ANALYSIS

One possible attitude to multivariate statistics might hold that variable-space
and individual-space are fundamentally affine spaces and should be regarded
as Euclidean spaces only for inner products based on observed data. A different
attitude says that it is difficult to contemplate any space of variables without at
least some indefinite hints of Euclidean structure present. For example, a plot

like Fig. 7.2.1 presumes related scales of measurement in different directions,

50 as to yield a picture comprehensible to the eye. Likewise, the visual impact
of such a picture depends on the initial angle between the coordinate axes v,
and v,.

The user of a principal component analysis adopts the second of these two
attitudes. In fact, he must promote vague feelings about scales and angles among
vy, Uy, . . . » Uy into a precise inner product. This inner product is not determined
wholly by the sample data, and will be called here a reference inner product,
where the term will be used either for an inner product over variable-space or
for its dual over individual-space. The principal component analysis of a given
sample relative to a given reference inner product over variable-space consists of
finding the eigenvalues and eigenvectors of the sample covariance inner product
relative to the reference inner product. The eigenvalues found in this way will be
called sample principal components of total variance relative to the chosen reference
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inner product or, more briefly, principal components. The corresponding eigen-
vectors which form a basis of variable-space & will be called principal variables.
This terminology is slightly different from and more general than that of
Hotelling (1933, 1936) who first introduced the concept of a principal component
analysis.

The following discussion first explores the properties of principal compon-
ents and then finishes with a brief description of their statistical interpretation.

In practice, the reference inner product has usually been chosen in one of
two ways. In both of these ways, the directly observed set of variables V3, V5,
..., V, is regarded as an orthogonal set, so that only the reference norms of
Vi, Vs - .., ¥V, remain to be chosen. The first method chooses these norms
independently of the sample data to represent some vague opinion of what
should be comparable scales. Under the second method, the reference norms
of ¥, V,, ..., ¥V, have been taken to be their sample standard deviations, so
that the standardized variables u; = var (V;)"V*¥; have unit norms according
to the reference inner product. The second method depends on the sample
data through the choice of reference norms but not as regards the orthogonality
of V, while the first method is entirely free of the particular sample outcomes.
Other choices of a reference inner product may be reasonable, but it is clear
that arbitrary dependence on the sample data cannot be allowed, since this
would permit the user to produce completely arbitrary principal components
and variables. Perhaps a reasonable restriction is to require the initial data free
selection of some basis of variable-space to be an orthogonal basis for the refer-
ence inner product, where this basis need not consist of the basic observable
variables; the reference norms for the basis may then be chosen in terms of the
data.

In computing principal components and variables the first step is generally
to find the sample covariance matrix relative to a basis U orthonormal according
to the reference inner product. Calling this covariance matrix 8*, it is clear that
the eigenvalues of S* are the principal components and the corresponding
eigenvectors of S* are the coordinate vectors relative to U of the principal
variables. Recall the discussion of Section 5.4 at this point.

If the principal components are denoted by 4;, 45, . . ., 4,, then

P
S A, = tr 8%, (1.6.1)
=1
where tr S* denotes the sum of the diagonal elements of S*. Formula (7.6.1)
may be proved by showing that tr S¥ = tr CS*C’ for any orthogonal matrix C.
Since tr S* is a sum of variances, formula (7.6.1) explains the often used term
principal components of total variance. The 1, are themselves sample variances
of the principal variables. Another relationship similar to (7.6.1) is

P
T 4 = det S*. (1.6.2)

i=1
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Wilks (1932) introduced the term generalized variance for the quantity (7.6.2)
as a general overall measure of the variability of the set of variables U. Neither
the total variance (7.6.1) nor the generalized variance (7.6.2) tell the whole story,
however, and the generalized variance in particular suffers the disadvantage of
being close to zero when any 4; is close to zero even though the remaining 4;
may be large.

Under the second method of choosing the reference inner product, the
orthonormal basis U may be defined by U, = var vy vy, for i=1,2,
..., p. In this case the matrix S* becomes the sample correlation matrix R
whose (i, j) element is the sample correlation coefficient between V; and ¥; and
whose diagonal elements are unity. (See (7.4.10).) In this case

i = (7.6.3)
fe=1
and
P
TI 4 = detR. (7.6.4)
=1 -

The quantity (7.6.4) is sometimes called a scatter coefficient (Frisch, 1929).
Since the scatter coefficient is the product of p nonnegative real numbers with
a given sum, and since such a product is maximum if and only if the numbers are

all equal, it follows that
0<detRL 1, (7.6.5)

The idea here is that the scatter coefficient represents a general measure of the
degree of correlation among V5, Vs, ..., V, where the smaller the value, the
more correlation is present. Certainly, detR == 1 ifand only if V3, Vs, ..., V)
are uncorrelated. Note, however, that no single index can describe the whole
complex of R very well. For example, det R = 0 if any of the 4, is zero, so that
det R does not differentiate among the different possible dimensions of scatter
as measured by the rank of R.

Serious examples of principal component analyses are given in Examples
8.4, 9.1, and 10.3. Figure 7.6.1 shows the same concentration ellipse as Fig.
7.3.1 with the sample points omitted. When ¥; and V, are taken to be ortho-
normal according to the reference inner product, the principal components 2,
and 1, are simply the squared lengths of the major and minor semi-axes of the
ellipse, and these axes determine also the dual basis w of the principal variable
basis W.

Finally, consider what meaning a principal component analysis might have.
The aim of a principal component analysis is to provide a special basis of un-
correlated variables which provide a maximal range of importance. Usually the
eigenvalues are ordered according to Ay > Ay >+ 2> 1, and a subset ,, s,
..., A for r < p is selected as describing most of the variability in the sample.
The quantity

T D
Sk XA (7.6.6)

i=1 #=1
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0.730, + 0.650,
A

0.730, + 0.600, 0.780, + 0.60p,

Fig. 7.6.1. The mean-centered concentration ellipse of Fig. 7.3.1 shown together with
its major and minor axes which determine principal components of sample variance.

is commonly used to measure the fraction of total variance accounted for by the
first r principal variables.

The prime intent of principal component analysis is therefore the attempt to
simplify the study of multivariate samples by reducing their dimension in such
a way as to lose as little information as possible. Usually it is hoped that the 1,
drop off very rapidly, so that an r of two or three may be selected and the sample
represented in a greatly reduced individual-space of two or three dimensions.

There is a strong flavor of vagueness and arbitrariness about the technique
of principal component analysis. The reference inner product and the measure
(7.6.6) is somewhat arbitrary, and the means of choosing the reduced dimension
r is not rationalized. Moreover, the nature of the importance of the first few
principal variables is not defined. For example, it is mathematically possible
that the last principal variable corresponding to the smallest A, should be the
only one of use in predicting some separate but scientifically important variable.
An empirical basis for the technique is thus seen to rest on whether the first few
principal variables are those which are of value for predicting other variables.
The data of Examples 8.4 and 9.1 tend to offer limited support for such an
empirical basis. The evaluation of a particular sample principal component
analysis is further complicated by the presence of sampling variation. Even if a
population principal variable were closely aligned with some outside variable,
the strength of the relation would be less apparent when the population principal
was replaced by a sample analogue.

Principal variables are sometimes referred to as factors or underlying factors,
the idea being that apart from minor disturbances all variables may be repre-
sented as linear functions of a few basic underlying variables. Accordingly,
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principal component analysis is a particular method of factor analysis. Attempts
are sometimes made to regard the factors found in this way as hard well-defined
variables, but such attempts deserve skeptical scrutiny. It may be that principal
component analysis will some day be of use in locating hard underlying factors,
such as genetically determined factors. At present, however, the uses are largely
descriptive, explanatory, and empirical. Sampling theory and formal procedures
for drawing inferences from samples to populations are in an underdeveloped
and unsatisfactory state, both for principal component analysis and for methods
of factor analysis generally. Lawley and Maxwell (1963) and Cattell (1965)
are suggested as starting points for the reader wishing to pursue factor analysis
further.

7.7 SEMI-DEFINITE SAMPLES

The terminology of Section 3.5 may be extended by defining a p-variate sample
to be semi-definite if its sample covariance is a semi-definite inner product.
More generally, a p-variate sample will be said to haverank /for0 < f < pifits
sample covariance has rank f.

Theorem 7.7.1. A p-variate sample of size n has rank f if and only if the n
individuals all lie in a hyperplane of dimension f in % but do not lie in any
hyperplane of dimension less than f.

To assert that » individuals all lie in a hyperplane  + % in & is equivalent to
asserting that the n individuals have identical observed values for all variables ¥/
in the subspace ¥~ in & dual to % in #. Consequently the lowest-dimensional
hyperplane containing all 7 individuals has dimension f'if and only if the largest
subspace of & on which all n individuals have identical values has dimension
p — /- But the sample variance of a variable V' is zero if and only if all » indi-
viduals have identical values on V, so that the subspace of such variables ¥ has
dimension p — f if and only if the sample covariance has rank f, as required
to prove the theorem.

It follows from the theory of Section 6.6 that the concentration of a semi-
definite sample of rank f, being the dual of an inner product of rank f over &,
is a partial inner product over an f-dimensional subspace of & . Since this sub-
space is the dual of the (p — f)-dimensional subspace of & over which the sample
variance is zero, it is simply the hyperplane through the origin parallel to the
hyperplane containing the sample. Thus, Theorem 7.7.2 which follows is proved.

Theorem 7.7.2. The concentration inner product of a semi-definite sample of
rank f is a partial inner product defined over the f-dimensional subspace U
of F which is parallel to the f-dimensional hyperplane u + % which contains
the sample. The origin-centered ellipsoid of concentration lies in % and the
mean-centered ellipsoid of concentration lies inu + .
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A set of n points in % must lie in some hyperplane of dimension at most
n — 1. Consequently, if n — 1 < p, then the sample must be semi-definite of
rank at most » — 1 < p. Usually, with observational data, it will turn out that
the rank will achieve its maximal value, and, under this circumstance, a sample
of size n is semi-definite of rank » — 1 if and only if n — 1 < p.

The theory of Section 7.3 holds just as well for samples of rank less than p.
In particular, the shadow theory of Theorem 7.3 requires no change.

A p-variate sample of size n determines a linear transformation from é to
A" and also a linear transformation from & to /" as discussed in Section 7.4.
Conversely, the transformation from & to .4~ determines the sample. Alter-
natively, the transformation from & to .4#";; together with the sample mean m
determines the sample. From the foregoing it is clear that the transformation
from & to Ny has rank f if and only if the sample has rank f. Moreover, two
variables ¥ and W in & transform into the same point in .4 ;; if and only if
var (V — W)= 0.

Finally, principal component analysis has some special features in the case
of a semi-definite sample. Suppose that the reference inner product over &
asserts that U is an orthonormal basis. Then the principal component analysis
simply requires that the eigenvalues and eigenvectors of the sample covariance
matrix S relative to U shall be found. Alternatively, the matrix T = (» — 1)S
may be analyzed, since its eigenvalues are simply (» — 1) times those of S and
its eigenvectors are the same as those of S. From (7.2.16)

T=27Z, (7.7.1)

where Z is the n X p matrix with rows X — Xfori=1,2,...,n,ie,Zis
the data matrix X with the mean vector X subtracted from each row. From the
theory of Section 6.5 it follows that the nonzero eigenvalues of Z'Z are identical
to the nonzero eigenvalues of ZZ’ and also that the eigenvectors of ZZ' are simply
the sample values of the sample principal variables after the sample means are
subtracted out.

This result holds whether or not the sample is semi-definite, but its practical
importance lies in the case where n — 1 < p so that the sample must be semi-
definite. Insuch a case the matrix ZZ' is smaller thanZ’Z and so leads to a more
manageable task of computing eigenvalues and eigenvectors. An illustration
may be found in Example 10.3.

Semi-definite populations and, more specifically, semi-definite samples
are less susceptible to analysis by contemporary multivariate methods than are
samples where n — 1 > p, for reasons which will become apparent in later
chapters. Thus, for example, while one might think that as much could be
learned, in some rough scale of justice, from a 100-variate sample of size 30
as from a 30-variate sample of size 100, the statistical methodology for handling
the former type of data is less well developed and on the whole unsatisfactory.




142 ONE SAMPLE OF INDIVIDUALS: BASIC THEORY 7.7

The method of principal component analysis may be an exception to the rule,
but only as an empirical matter to be explored separately by fields of application.

7.8 EXERCISES

7.2.1 Suppose that a given sample a;, a3, . . . , @, has mean m, and that this sample is
translated into the sample a¥, af,...,a% by the translation a; —>af =a; +b.
Show that the mean of the second sample is given by m* = m + b, but that the
covariance inner product of the second example is the same as that of the first sample.
7.2.2 What is the condition on a sample which makes the sample covariance inner
product function identically zero?

7.2.3 Show that an alternative to the two expressions (7.2.5) for cov (V, W)is given by

cov (V, W) = ;(..n____.l_l) i i (X — XWy(y® — yuh,

=1 je=1
What is the analogous vector version of (7.2.16)?

7.2.4 For what quantities do the elements of the sample mean vector X and the sample
covariance matrix S represent values ?

7.3.1 Suppose that con (ay, a,) denotes the sample concentration of the sample
individuals @, and a,. Describe how to compute con (ay, a,) from the sample data
X. Compute con (ay, ay) for the data plotted in Fig. 7.3.1.

7.3.2 Make a graphic estimate of m(Vy + 2V3) and var (V; + 2V,) from the con-
centration ellipse plotted in Fig. 7.3.1. Check the estimates by computation.

7.3.3 What is the distance from the origin to the sample mean in Fig. 7.3.1 according
to the concentration inner product? For what variable ¥ does this distance equal
m(V)jvar (V)27

7.3.4 Show that there exists a (p — 1)-dimensional subspace ¥"; of variable space ¢
such that the sample values of individual a; coincide with those of the sample mean
individual. Show that the sample mean values and the sample mean corrected sum
inner product both restricted to variables in ¥’; are not changed if a; is removed from
the sample. Show that the one-dimensional orthogonal complement %; of ¥"; according
to the sample covariance remains the orthogonal complement according to the sample
covariance based on the sample with a; removed. Thus, if U; denotes a variable in %;,
the sample mean and sample variance of U; are altered by removing a; but the other
aspects of the first and second sample moments described above do not change. Use
the foregoing theory to describe how the sample mean-centered concentration ellipsoid
changes when a; is removed from the sample.

7.4.1 Show that the subspace /7, defined in Section 7.4 consists of those vectors
>, z;Njsuch that 37, z; = 0.

7.4.2 Show that the decomposition P = Py + Py; defined by (7.4.4) and (7.4.5) is in
fact the desired orthogonal decomposition.

7.4.3 Suppose that the range subspaces in 4" of the linear transformations (7.4.3) and
(7.4.9) are denoted by .# and .#;. What is the maximal dimension of .#7 Of .#;;?
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7.5.1 Suppose that the (p +n) % (p + n) matrix

5]

is formed from an n % p sample data matrix X, where 0 isa p x p matrix of zeros and
1is the # x nidentity matrix. What is the result of applying SWP[p +1,p+2,...,
p + n] to this matrix? Are the computations performed in this way inefficient ?

7.5.2 Write out the special application of formulas (7.5.19) through (7.5.27) when Q
is replaced by Q. and the role of indices 1,2, ...,sisplayedby 1,2,...,5,p + 1.
Note that the latter set of indices partitions naturally into1,2,..., sandp + 1 and
that the associated formulas should be further partitioned accordingly. Use the nota-
tion of (7.5.28).

7.5.3 Define the augmented data matrix X" to consist of X with a first column of ones
adjoined. Suppose that X’ = DHG defines the triangularization of X+ as defined
in Exercise 4.3.3. Show how to find X and T from DY and G.

7.6.1 Prove formulas (7.6.1) and (7.6.3).

7.6.2 Show that the product of p positive numbers with a given sum is maximum when
and only when the numbers are all equal. Deduce that the scatter coefficient det R is
unity if and only if R is the identity matrix.

7.6.3 Consider a principal component analysis of the correlation matrix of the pair of
variables ¥, and ¥,. Show that the principal variables are

1
A
Vvar (V) | Vvar (V)

Vs

What are the corresponding principal components?
7.7.1 Show that the following three assertions are equivalent:

i) ¥V — W has an observation vector lying along .#'; as defined in Section 7.4,

ii) the observations on ¥ and W differ by a constant for all individuals in the sample,

and

iii) var (V¥ — W) =0.
7.7.2 Construct an example of a 4-variate sample of size 3 which has rank 1. Describe
simply the set of points lying on the ellipsoid of concentration of this sample.
7.1.3 Suppose that the mapping (7.4.3) from & to 4" has the range space .# of dimen-
sion g. Show that the rank of the sample is either g — 1 or g depending on whether or
not .# contains .#7; as a subspace.
7.7.4 Consider the reduced data matrix Z with sample means removed. Show that the
sample has rank f'if and only if Z has rank f.
7.1.5 Show that ZZ’ can be computed directly from XX’ and describe the required
computations.




CHAPTER 8

ONE SAMPLE OF INDIVIDUALS:
MULTIPLE REGRESSION AND
CORRELATION ANALYSIS

8.1 INTRODUCTION

This chapter is concerned with the prediction of a value for a specified variable
given the values of a different set of variables on the same individual. A related
concern is with the nature of the covariation which makes such prediction
possible. By convention, the variable to be predicted will be denoted by ¥,
and the variables used for prediction will be denoted by ¥y, V5, ..., V4. In
this context ¥, will be called a predictand or dependent variable while Vy, Vs, . . .,
V,., will be called predictors or independent variables. 1t is assumed that an
individual g for which a prediction is desired is a member of the same population
as that represented by a given sample a,, 4, . . . , 4y, of n individuals observed
on all of the variables V;, Vs, . . ., ¥,. The prediction scheme is to be based on
the given sample.

The particular approach to prediction taken here is quite simple. A single
unknown value is to be predicted by a single predicted value rather than, for
example, by a probability distribution over the possible unknown values. The
single predicted value is to be based on a linear predictor wVy + wy¥y + -+ +
Wy_1V 1 chosen through the principle of least squares. The resulting analysis
of the given sample will be called multiple regression analysis of V, on
Vi Voso oo Vi

The restriction to linearity is not in itself very important, for the variables
called Vi, Vo, ..., ¥V,_, may be arbitrary functions of any set of directly
observable variables. A difficulty may arise, however, because the smaller the
sample size n the smaller is the number of predictors which can be used with a
given effectiveness. This issue can only be discussed inconclusively, for the art
of guessing scientific laws is not governed by well-established rules. In this
chapter the choice of V3, Vs, ..., Vg will be taken as given. Even so, there
remain questions concerning which of a possible set ¥y, V5, ..., ¥;; might
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better be left out of a linear predictor, and some discussion of this fits naturally
into Section 8.3. ‘

The term multiple regression is largely a historical accident. Galton (1886)

first used the word regression in connection with predicting the mature height
of children from the heights of their parents. Galton corrected for the sex
difference by multiplying all female heights by 1.08, and he used a single
predictor variable taken to be the mean of the father’s height and corrected
mother’s height. After some consideration of data it becomes apparent that the
heights of children of parents whose height exceeds average by x inches will
themselves, on the average, exceed average by less than x inches. In other words,
the children regress in an average sense back to the mean. By a gradual meta-
morphosis, the term linear regression analysis came to mean the least squares
prediction scheme when p = 2, and thence the term multiple regression came
to mean the general case with a multiple battery of variables Vi, Vy, . - ., Vpou
available as predictors.

The history of the method, as opposed to that of its common statistical

name, is quite different. According to Gauss (1809), he first used the method
in 1795 in a different context and under the name method of least squares. The
early history of the method of least squares is somewhat confused because
Gauss did not publish his claim until 1809 and meanwhile Legendre (1806) had
independently described the method. According to Eisenhart (1963), the
method arose as a natural extension of the principle of averaging the results of
several observations of the same quantity to reduce measurement error. It has
been widely used in astronomy and the physical sciences since the time of
Gauss. It is interesting that the basic computational ideas of Section 4.3 may
be traced back to Gauss (1811) who derived them in connection with least
squares analysis and illustrated them with the data which he used to identify
the orbit of the asteroid Pallas from observations over the period 1803-1809.
The Pallas data are used in Example 8.3.

On the history of the correlation coefficient Pearson (1896) wrote:

The fundamental theorems of correlation were for the first time and 7
almost exhaustively discussed by Bravais (“‘Analyse mathématique sur les
probabilités des erreurs de situation d’un point,” Memoires par divers
Savans, T.IX., Paris, 1846, pp. 255-332) nearly half a century ago. He
deals completely with the correlation of two and three variables. Forty
years later Mr. J. D. Hamilton Dickson (Proc. Roy. Soc., 1886, p. 63)
dealt with a special problem proposed to him by Mr. Galton, and reached
on a somewhat narrow basis* (*The coefficient of correlation was assumed
to be the same for the arrays of all types, a result which really flows from
the normal law of frequency.) some of Bravais’ results for correlation of
two variables. Mr. Galton at the same time introduced an improved
notation which may be summed up in the “Galton function” or coefficient J
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of correlation. This indeed appears in Bravais’ work, but a single symbol
is not used for it. It will be found of great value in the present discussion.
In 1892 Professor Edgeworth, also unconscious of Bravais’ memoir, dealt
in a paper on “Correlated Averages” with correlation for three variables
(Phil. Mag. 34, 1892, pp. 194-204). He obtained results identical with
Bravais’, although expressed in terms of Galton’s functions. He indicates
also how the method may be extended to higher degrees of correlation. He
starts by assuming a general form for the frequency of any complex of n
organs each of given size. The form has been deduced on more or less
legitimate assumptions by various writers. Several other authors, notably
Schols, De Forest, and Czuber, have dealt with the same topic, although
little of first-class importance has been added to the researches of Bravais.
To Mr. Galton alone is due the idea of applying these results—usually
spoken of as “the laws of error in the position of a point in space”—to the
problem of correlation in the theory of evolution.

Karl Pearson had much to do with the popularity of the idea among statistical
data analysts. See Walker (1931), Seal (1967), and Pearson (1967) for more
historical detail.

This introduction concludes with some remarks on the concept of cause.
The ability to predict one variable from another, which accompanies non-
trivial correlation between the variables, is sometimes interpreted by saying
that the predictor is having a causal effect on the predictand. Itis clear, however,
that causal effects should be attributed only with great caution. For example,
height and weight will show positive correlation in many human samples. This
indicates that either variable can help to predict the other, but it does not
indicate that an increase in height causes an increase in weight, or vice versa.
It would be more natural to interpret a correlation between height and weight
as the result of a common causal factor.

The notion of cause appears to require belief in some mechanism whereby
the causal factor is acting while the influenced factor is reacting. Thus it is a
plausible hypothesis that a higher incidence of smoking causes a higher incidence
of morbidity of various kinds, and observed correlations do provide evidence
for this hypothesis. Such evidence may be challenged on the grounds that the
influenced factor is reacting to other causal factors whose variation in the
observed sample is not controlled in reaction to that of the alleged causal
factor. Such counterarguments may sometimes be finessed in part by the well-
known techniques of experimental design in the sense of Fisher (1966), i.e.,
by the collection of the right sort of data. Sometimes controlled experiments
are possible, and sometimes not. The examples in Chapters 8, 9, and 10 are of
the latter kind, while in Chapter 11 there are examples of the former kind.

In general, however, the notion of cause is relative and vague, with any
cause being partly or wholly replaceable by something more fundamental or
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more controversial. Issues of causation as distinct from prediction are scarcely
mentioned in the sequel.

8.2 BASIC DESCRIPTION

Suppose that X, Xz, ..., X, denote the values of ¥y, V,, ..., ¥, for an
individual a, where X;, X, ..., X,_, are known and X, is unknown. The
multiple regression analysis of ¥, on Vy, V,, ..., ¥, provides a predicted
value X, for the unknown value X, of the form

Xo=w+wXi +wXo+ -+ w, X, (8.2.1)

The coefficients w, wy, Wy, . .. , W,y in (8.2.1) are determined from the data
on a given p-variate sample of size n to minimize the sum of squares of the n
prediction errors resulting from the application of (8.2.1) to the n sample
individuals. In symbols, the criterion to be minimized is

I — Xy (8.2.2)
i=1
where
0= w4+ X+ wXP 4w, X, (823)

and X,.‘“ fori=1,2,...,nandj=1,2,...,p denotes as in Chapter 7 the
(i,j) element of the n x p data matrix X. The coefficients in (8.2.1), called
regression coefficients, are chosen according to the principle of least squares.
When the least squares regression coefficients are used to define X in (8.2.3)
the differences X — X W fori=1,2,...,n are referred to as residuals and
the minimized value of the criterion (8.2.2), namely the sum of squares of the
residuals, is commonly called the residual sum of squares.

In the language of variable-space, the prediction scheme defined above
provides the augmented best linear predictor

Vo=wVo+ w¥Vyi+ -+ wy Vo (8.2.4)

based on the sample data X, where V, refers to the artificial variable whose value
is always unity. Suppose that X, denotes the augmented data matrix X with a
column of ones added and that Q,, = X{, X(,, denotes the corresponding
augmented raw sum inner product matrix, as in (7.5.2). Then the criterion
(8.2.2) may be written

Klin) Xepdi) = 4y Qi (8.2.5)
where d,, is the I x (p + 1) vector of coefficients
Ay = [—wy, —wy, oo, —Wey, 1, =Wl (8.2.6)

Thus the least squares criterion is a squared length according to the sample
raw sum inner product over the augmented variable-space spanned by V,, V1,
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Vs, ..., Vp Furthermore, minimizing this criterion is seen to be equivalent
to choosing that variable in the subspace spanned by ¥y, V3, ..., V,_; which
lies at minimum distance from ¥, according to the raw sum inner product
over the augmented variable-space. In other words, the augmented best linear
predictor V, defined in (8.2.4) is the orthogonal projection of V, into the subspace
spanned by Vo, Vy, ..., V1, and the residual V, — V, is the component of V,
orthogonal to each of Vo, Vi, Va, ..., Vyoy, all in terms of the augmented
variable-space and an associated sample raw sum inner product.

The standard computational device for finding such an orthogonal pro-
jection is related to the process of successive orthogonalization as described
in Chapter 4. Starting from the appropriate inner product matrix Q,,, the
desired computations are provided by SWP[p + 1,1,2,...,p — 1]1Q,,. The
off-diagonal elements of row p in the resulting (p + 1) X (p + 1) matrix are
the coefficients of ¥y, Vs, ..., V.1, Vo in the orthogonal projection of ¥,
into the subspace spanned by Vi, Vs, ..., V4, Vo, e, they are wy, wy, .. .,
wy_3, w. The (p, p) diagonal element is the square of the raw sum norm of
V, — 17,,, i.e., it is the residual sum of squares.

The foregoing discussion defines the multiple regression analysis of V, on
Vi, Vas .. . » Vpy, but with the disadvantage of being given largely in terms of
the raw sum inner product, while statisticians are more accustomed to looking
at sample means and corrected sum or covariance inner products. Conse-
quently, the discussion will now be translated into the latter terms. The bridge
is rather easy, since the analysis is provided by

SWP[p+1,1,2,...,p — 11Qu, = SWP[L, 2, ..., p— 1ISWP[p + 1]Q),

and SWP[p + 11Q,,, is expressed in (7.5.4) in the desired terms.
For present purposes it is convenient to partition the rows and columns of
the right side of (7.5.4) into p — 1, 1, and 1 and to set

Ty T X
SWP[p+11Quy = | Ty t,, X, 8.2.7)
X, X, —1i/n

in an obvious notation where, for example, f,, denotes the (p, p) dlagonal
element of T, and X, denotes the 1 x (p — 1) vector [X;, X, ..., X, 4] of
sample means. Performing the SWP[1,2, ..., p — 1] operation on the right
side of (8.2.7) yields

SWP[p+13152:-'-sp—1]Q(+)

T T T T X{
= | TuTq ty, — TuTi T X, — T, THX; |0 (8.2.8)
X1 X, -XTiT, -1 /n - X T;fX’
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From the previous interpretation of row p of SWP[p + 1, 1,2,...,p — 1]Qq,
it follows that

(W1, Wa, s Wpy) = Ty Ty (8.2.9)
and

we= X, — TuyTaXi= X, —w X, —w Xy — - —w, X, 4, (8.2.10)
while the residual sum of squares is given by
tyy — To i3 Th. (8.2.11)

These results lead to the following alternatives to the first two paragraphs of

Section 8.2.
The predicted value (8.2.1) may be written as

‘X’}p = ‘Yp + w(X; — X))+ wi( Xy — X))+ + wy(Xpg — Xn—l)’

(8.2.12)
where wy, Wy, . . . , W,_; are chosen to minimize the criterion
S = £) = wiX{ ~ %)
— WX { — ) — = (G = K, )1t (82.13)
The criterion (8.2.13) may also be written
dTd’, (8.2.149)
where
d=[—wy, =W ..., =Wy_y, 1] (8.2.15)

and T denotes the sample corrected sum inner product matrix for the variables
Vi, Vay . .., V3. The variable

Vy=wiVy+ wVy+ o wp Vg (8.2.16)

will be called the best linear predictor for V, in terms of Vi, Vo, ..., Vs
Note that ¥, lies in the ordinary p-dimensional variable-space & in contrast to
the augmented best linear predictor V, defined in (8.2.4) which lies in augmented
variable-space.

In order to use the best linear predlctor for actual prediction it is necessary
to know also the vector of sample means, i.e., to know ¥,. On the other hand,
V, has an advantage over ¥, in that it belongs to the familiar variable-space &
on which the notion of covariance is relevant and meaningful. The best linear
predictor V., should be regarded as an orthogonal projection, for from (8.2.9) v,
and V, — V, are the componem‘s of V, along and orthogonal to the subspace of
& spanned by Vy, Vs, ..., V,_4 where the inner product assigned to & is the
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sample .corrected sum inner product. The above orthogonal components V,, and
V, — V, are the same whether the sample corrected sum inner product or the
sample covariance is used, since changes of scale of an inner product have no
effect on an orthogonal decomposition.

The decomposition (8.2.11) of 7, into Ty, T'T,, + (7, — T, T;T,,) is
sometimes described in analysis of variance terminology (cf. Scheffé, 1959) as
the decomposition of the total sum of squares about the grand mean into the
fitted or explained sum of squares plus the residual sum of squares.

In terms of familiar statistical quantities the computations of multiple
regression analysis may be described as: (i) finding the sample mean vector
X, (ii) finding the sample covariance matrix S, and (jii) finding the regression
coefficients S;IS,, and the residual variance from SWP[i,2,...,p — 1]S.
Still, the original description in terms of finding Q,, = X(,,X(,, and
SWP[p +1,1,2,...,plQy, is computationally more natural.

While both (8.2.1) and (8.2.12) produce identical predicted values, a modified
scheme yielding different results is occasionally appropriate. There may some-
times be theoretical reasons for omitting the constant term w from (8.2.1), i.e.,
for thinking that a predictor of the form

X =wi X A wiXo+ WX, (8.2.17)

may actually improve on the version (8.2.1). In this case the least squares
criterion becomes

z (X,(,i) _ W;‘X{i) _ W:X;i) — e W:,1X;i_)1)2 = d*Qd*’, (8218)
i=1

where
¥ = [—wfi —W;, sy '—w:—p 1] (8.2.19)

and Q is the sample raw sum inner product matrix. The required coefficients
together with the residual sum of squares here are given by the last row of
SWP[1,2,...,p — 11Q. This produces the reduced best linear predictor

Vi=V,—wii—wyVe— = waVo, (8.2.20)

whose interpretation as an orthogonal projection analogous to V,and V, is
left to the reader to describe.

Example 8.1. The following data were collected by the author in a kitchen
experiment with very rough measuring equipment. The length L in cm, the
width W in cm, and the volume ¥ in cc were measured on a dozen grade A
large eggs. From the directly observed variables, three transformed variables
Vy = logy, L, Vo = logy, W, and V3 = logy, (6/m)V were selected for analysis.
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The 12 x 3 data matrix with 12 eggs as individuals and ¥y, V,, V;, as variables
is:

v, Vs Vs
0.7659 0.6360 2.031
0.7353 0.6198 1.982
0.7416 0.6280 1.995
0.7600 0.6280 2.019
0.7861 0.6239 2.031
0.7539 0.6156 1.956
0.7747 0.6156 2.007
0.7718 0.6239 1.995
0.7889 0.6114 1.995
0.7659 0.6072 1.995
0.7689 0.6156 1.995
0.7478 0.6239 2.007

This first example is kept simple so that the reader may try to reproduce
the analysis on a desk calculator. The example is not intended to be representa-
tive of statistical practice. Note that the sample values are quite discrete,
belying the first impression of a glance.

The use of logarithms in defining V3, V3, Vs, and the factor 6/ in the
expression for V3 were suggested by the formula V' = (w/6)LW?* for the volume
of an ellipsoid with two principal axes of length W (i.e., a circular cross-
section) and one principal axis of length L. Thus, if the eggs were precisely
ellipsoids with circular cross-section, and if the measurements had been made
precisely without error, then V, + 2V, would be a perfect predictor for V.
In the following computations, the predictor ¥; + 2V, is compared with the
two least squares best linear predictors Vs = wVy + w, Vy + wo¥; and V§ =
WiV, + wiV,.

The computations begin by finding

69964 5.6861 183292 9.1608

| 56861 46246 149038 7.4489
Qv =|183292 14.9038 48.0368 24.0080 "
9.1608 7.4489 24.0080 12.0000

The computer then applied the operators SWPJ[1], SWP[2], SWP[3], SWP[4],
RSWI3], RSW[2], RSW]1], and RSW[4] and printed out the resulting 8
matrices:
—0.1429 0.8127 2.6198 1.3094

0.8127 0.003329 0.007217 0.003708

2.6198 0.007217 0.01756 0.008374 |

1.3094 0.003708 0.008374 0.005174

SWP[11Q, =
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-_198.5754 2441576 08577  0.4040
2441576 —300.4193 2.1682  1.1139
W -
SWPI1, 2]1Q,, 0.8577 2.1682 0.001910  0.0003347 |
0.4040 11139 0.0003347 0.001044
5833215 —728.5001  448.5989 0.2538
| 7285001 —2759.3479 11340810 0.7342
SWPIL,2,31Qu) = | 4485089  1134.0810 —523.0488 0.1751 |’
0.2538 0.7342 0.1751 0.0009849
SWP[19 2’ 33 4]Q(+) == QZ:)
C_648.7275 - —917.6850 4034707  257.6735
| —o17.6850 —3306.5594 10035490 7453128
=1 4034707  1003.5490 —554.1859 1777871
| 2576735 7453128 1777871 —1015.1307
-_3549839 —187.0591 0.7280 387.11007
_187.0501 —1489.2800 1.8109  1067.2590
SWP[L, 2, 41Qq = 0.7280 1.8109 0.001803 03208 |°
387.1100  1067.2590 03208  —958.0952
-_331.4886 —0.1256  0.5006 253.05847
_0.1256 00006713 0.001216 0.7166
SWPL, 41Qi) = 0.5006  0.001216  0.004005 1.6185 |’
253.0584 07166  1.6185  —193.2681 ]
- 0.003017 —0.0003790 0.001510  0.7634 7
00003790  0.0007189 0.001026  0.6207
SWPHIQu =1 001510  0.001026 0.004761  2.0007 |’
0.7634 06207 20007  —0.08333 ]
- 69909 5.6816 18.3148  9.1536
. = | 56816 4600 148921 74431
7 118.3148 14.8921 47.9990 23.9891 |
01536 7.4431 23.9891 11.9906

All of this output or even all of this computation is not necessary, but it is
shown to emphasize the repetitive nature of the calculation which the machine
finds easy. The calculations were done carrying roughly 8 digits; the output
shows 4 decimal places for numbers greater than 0.1 and 4 digits otherwise. The
final Q,,, resulting from 8 sweeping operations may be compared with the
original Q,, to gain some idea of the effect of rounding error on the output.
A rounding error of 5 in the fourth digit is roughly typical. The quantities
which are interpreted statistically are based on fewer sweeping operations and
should in general be correct to 3 digits at least.
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From the third line of SWP[1, 2, 4]Q,,, it follows that
v, = 0.3208V, + 0.7280¥, + 1.8109V,

while the residual sum of squares is 0.001803. From the third line of
SWP[1, 2]Q,, it follows that
Vi = 0.8577V, + 2.1682¥,

while the residual sum of squares is 0.001910. Finally, a simple desk calculation
on the original data matrix shows that the “theoretical” predictor

Vit =V, +2V,

has a residual sum of squares 0.002226.
The three predictors ¥y, V¥, and V¥* when applied to the sample yield the
following 3 columns of residuals, each calculated to 3 decimal places:

0.001 —0.005 —0.007
0.004 0.008 0.007
—0.003 —0.003 —0.003
0.008 0.006 0.003
0.008 0.004 —0.003
—0.028 —0.025 —0.029
0.007 0.008 0.011
—0.017 —0.020 —0.025
—0.007 —0.007 —0.017
0.017 0.022 0.015
0.000 0.001 —0.005
0.012 0.013 0.011

In considering these 3 vectors of residuals as points in the 12-dimensional
Euclidean space ./, it should be remembered that the first is constrained to lie
in the 9-dimensional subspace orthogonal to the vectors corresponding to
Ve, V1, and V,, and similarly that the second is constrained to lie in the 10-
dimensional subspace orthogonal to the vectors corresponding to ¥, and V,.
Consequently, the residual sums of squares 0.001803, 0.001910, and 0.002226 are
squared lengths constrained to 9, 10, and 12 dimensions, respectively. To make
them comparable, they are often divided by their associated dimension or degree
of freedom number, leading to the three residual mean squares 0.0002003,
0.0001910, and 0.0001855. On this measure, the theoretical predictor V3*
appears most accurate, although the differences are slight. Visual inspection of
the three columns of residual does not turn up any striking differencesin pattern.

Ignoring the crudeness of the data, the example illustrates a difficult
scientific question. Is it better to use a theoretical predictor with given regression
coefficients or a predictor from a wider model with fitted regression coefficients?
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With finite sample sizes the sampling error from fitted regression coefficients
may well exceed the actual error of the postulated theoretical regression
coefficients, and whether or not this happens is unknown. Consequently, a
real dilemma is posed. One imperfect solution to the dilemma is to prefer the
theoretical model unless there are sufficient data to contradict the theoretical
model in the sense of significance testing. Such significance tests will be discussed
briefly in Section 14.2, but meanwhile the analysis should convey the feeling that
fitting has not produced any clear cut improvement over the theoretical pre-
dictor, and correspondingly no denial of the ellipsoid model for these eggs.

In Example 8.1 use was made of the idea that variables may be represented
by points in the n-dimensional space .4". For example, various residual sums
of squares were interpreted as squared lengths in subspaces of .#". The dual
geometric representation of multiple regression analysis in p-dimensional
individual-space & is less obvious. Here the sample is represented either by the
n sample individuals or by the sample mean-centered concentration ellipsoid.
This description is dual to the description already given of V, in & as the
orthogonal projection of V,, into the subspace spanned by V3, Va, ..., Vg,
in accordance with the sample covariance inner product. It is therefore clear
at the outset that, whereas in & projection along a family of parallel lines was
involved, in & projection along a family of parallel (p — 1)-dimensional
hyperplanes will be involved.

Consider the hyperplane in % consisting of the points xv where the co-
ordinates x relative to the basis v dual to V in & satisfy the equation

Xp=w4 wXx; + 0 Wy X . 8.2.21)

According to the criterion (8.2.2), multiple regression analysis may be regarded
as the task of finding that hyperplane of the form (8.2.21) such that the sum of
squares of the deviations of the sample individuals @, a,, ..., a, from the
hyperplane along a direction parallel to v, is minimized. The resulting optimum
hyperplane may be called the sample regression hyperplane. Since the sample
regression hyperplane may also be expressed by the equation

Xp — Y,, = wy(x; — 71) + Walxe — 1\72) + o wp (X — X-F—l), (8.2.22)

it clearly passes through the sample mean point.

For any hyperplane such as (8.2.21), define av; to be its intersection with
the axis defined by v,, and define a,v,, a;y, - . . , 2,0, to be the linear projec-
tions of ay, a,, . . . , a, into the same axis along hyperplanes parallel to (8.2.21).
Then the least squares criterion may be expressed as

i (o — o) (8.2.23)

=1
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Thus the task of multiple regression analysis is that of finding the hyperplane
of the form (8.2.21) such that the projected sample a0, %505, . . ., ®,0p has
the smallest clustering in the sense of (8.2.23). Note that for this smallest
clustering

Sa (8.2.24)

because the regression hyperplane is known to pass through the sample mean.
Thus, the criterion (8.2.23) to be minimized may also be taken to be

(o; — @ (8.2.25)

M=

i=1

The final geometric characterization dispenses with the points a,,d,, .. .,
a, and makes use only of the sample mean-centered concentration ellipsoid.
Theorem 7.3 ensures that the mean-centered concentration ellipsoid of the
projected sample x,0,, ®a¥yp, - - . , A0y is the shadow cast by the mean-centered

Fig. 8.2.1. The data of Example 8.1 as plotted in Fig. 7.3.2, showing in addition the
fitted part of each point (marked by an arrowhead) and the best fitting hyperplane
through the sample mean.
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ellipsoid of concentration of the full sample under projection along the family
of hyperplanes parallel to (8.2.21). It is easily checked that the mean-centered
ellipsoid of concentration of the univariate sample x,v,, %50, . . . , %,V CODSists
simply of the line segment joining the two points

n 1/2
{ﬁ + [Z(rxz- — &)%/(n — 1)] ;v,. (8.2.26)
i=1

Consequently, minimizing the criterion (8.2.25) is equivalent to minimizing the
length of the shadow (8.2.26). It is easy to see in geometric terms how this
shadow is to be minimized. Consider the points m &+ fv, on the mean-centered
ellipsoid of concentration of the full sample, i.e., the points where the line
through the center of the ellipsoid parallel to v, meets the ellipsoid. Clearly
the shadow cast by the line segment from m — fiv, to m + fuv, lies in any
shadow cast by the ellipsoid. Also, if m & fv, + ¥~ denote the tangent
hyperplanes of dimension p — 1 to the ellipsoid at m + fv,, then projection
along hyperplanes parallel to ¥ casts a shadow identical to the shadow cast by
the line segment from m — fv, to m + fpv,. It follows that m + ¥~ must be
the desired regression hyperplane and, by comparing § with (8.2.26), that

n 1/2
B = [gl (0 — @(n — 1)] , (8.2.27)

where the right side of (8.2.27) is the sample standard deviation of the tightest
projected sample.

The results of the last three paragraphs are illustrated in Fig. 8.2.1 which
takes the data of Example 8.1 as plotted in Fig. 7.3.2 and adds the regression
hyperplane.

8.3 REGRESSION COEFFICIENTS, CORRELATION
COEFFICIENTS, AND THE MULTIPLE REGRESSION
ANALYSIS OF ¥, ON A SUBSET OF V., V,,..., V¥,

Up to now only the regression analysis of V, on the whole set ¥y, V5, ..., ¥y
has been explicitly considered. The realities of data analysis often require or
suggest several analyses of the same sample, so that it becomes advisable to
understand certain relationships among the regression analyses of ¥, on different
subsets of ¥y, Vs, ..., Vyq. The relevant quantities here are regression
coefficients and correlation coefficients,

In general, consider the multiple regression analysis of ¥, on Vsl, Vsz, cees
V,,. The best linear predictor for V in this analysis will be denoted by

t
Zl wrai(s;sg. . .8) nga (831)

where W, ., Will be called the regression coefficient of ¥, on ¥, in the

multiple regression analysis of ¥, on V,,V,,...,V,. In this more general

8.3 REGRESSION COEFFICIENTS, CORRELATION COEFFICIENTS 157

notation, the regression coefficients w; appearing in (8.2.1), (8.2.4), or (8.2.16)
are denoted by w,.,, - fori=12,...,p— 1L

A regression coefficient such as w,,,, which refers to the regression analysis
of ¥, on V, alone, may be called a simple regression coefficient and may be
denoted simply by w,,. Thus

cov (¥, V)

var (V) (8.3.2)

Wps = Wog(s) =

By contrast the general type of regression coefficient as appears in (8.3.1)
with ¢ > 2 may be called a joint regression coefficient. Suppose that V¥ = AV
denotes the basis of variable-space & resulting from the successive orthog-
onalization of the basis V = [V}, Vs, ..., V], where the inner product is
defined by the sample covariance. As in Sections 4.2 and 4.3, the matrix A
is a triangular matrix with elements zero above the diagonal and unity along
the diagonal. The remaining elements of A are all joint regression coefficients.
In fact, A may be written

B 1 0 0]
—Waiq1) 1 o0 0
—Ws1(12) ~—Wsa(12) -+ 0
A= . . , (8.3.3)
L= Wpae. . 720 " Wete.. - 7 1

for line r of A shows that V, — V¥ = w4, 75)V1 + Weee . 7V + 00 F
Wiiae. . 771 Ve Where ¥V, — V¥ is the component of ¥, along the subspace
spanned by ¥y, Vo, ..., Vg, ie, ¥V, — v} is the reduced best linear predictor
for V, in terms of V3, Vs, . .., V,_;, as is required to demonstrate (8.3.3).

It is illuminating to introduce a terminology of partial regression coeffi-
cients, even though it will subsequently turn out that all partial regression
coefficients are simply joint regression coefficients in disguise. After removing
the components along Vsl, Vsz, e from each of V, ¥V, qu, S
one may contemplate the regression analysis of V, . on V, .. .

esisn. s > Vamssg. s ACtually, since V,—V, . . is orthogonal
to the predictor variables ¥ Vegsssa. o0+ > Vimsisa. ..o HE

1.8189. . .5¢7

regression analysis of V, or V, . on these predictor variables produces the

7.5182. . .8

same best linear predictor whose coefficients may be denoted by

(8.3.4)

Wergi(a102. « -@m).5182. « .50

which represents the general form of a partial (joint) regression coefficient.
Examples of these are the elements of the matrix B produced by successive




158 MULTIPLE REGRESSION AND CORRELATION ANALYSIS 8.3

orthogonalization where V = BV*, namely

1 0 0 0
Wyp 1 0 0
Wap  Wgaq 1 e 0
B = . . - . (8.3.5)
L Wor  Wpex Wiz 0 1

Formula (8.3.5) follows by noting that column s on the right side of (8.3.5) may
be determined from
Wrsas, . ;—-1 = Wrs(s).12. . :1
_ Ccov Ve, 570 Voo, 1)
var (V10,52
forr=s+1,5s+2,...,p, and the rule for computing column s of B given
in Section 4.3.1 agrees with (8.3.6).
It is now time to remark that

(8.3.6)

Wigiarge. . am).s152. . .50 = Wrailaiaz. . @msise. . .5 (8-3-7)

so that all partial regression coefficients may be interpreted simply as joint
regression coefficients, and vice versa. Since dimensions may be relabeled and
subscripts may be permuted, it will be sufficient to prove that

Wop1 (‘;:1_;3 L2 = Wop 1 (2. . .o-1)-

To prove this, one need only follow through the computation of the right side
by successively applying the operations SWP[l], SWP[2],..., SWP[p — 1]
in stages to the covariance matrix S. One of the parts of SWP[1,2,...,5]S
which results from the first s stages is the covariance matrix S, , of the com-
ponent variables Vg-_l.lz, . .87 V;_Z‘.m. P LA Vp.12A . .5 and wz?;:l(:s?l- s+2...p)012. . .8
may be calculated by further sweep operations on this S, ). The reader
may check that these subsequent sweep operations on S,  are actually
included in the last (p — s — 1) stages of the original (p — 1) stages of sweep
operations on S and consequently produce the same result for w5, 5 OF
WopTi57 542, .p). 12, . .5

In view of (8.3.7) it may be simpler always to use the joint regression
coefficient notation, remembering, for example, that wispsn = Wipg =
Wiataar.a = Wize).s 1t also follows from (8.3.7) together with (8.3.5) that

M1 0 0 0 e 0
Wy 1 0 0 e 0
Wi Waeae) 1 0 e 0
B = War  Waeae)y  Wasaea 1 - 0 (8.3.8)

| Wp1 Wpeazy Wisazs) Weszan &7 1]
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From (8.3.8) and (8.3.3), together with AB = BA =1, numerous identities
involving regression coefficients may be deduced, but these are left for the
interested reader to explore.

There is a class of correlation coefficients comparable to the class of regres-
sion coefficients relating a set of variables V3, Vs, ..., ¥,. Simple correlation
coefficients have already been defined in (7.4.10). Thus, among V5, V5, ..., ¥,
there are p(p — 1)/2 different simple correlation coeflicients

r, =cor(V, V)
cov (V,, V))[var (V)12 var (V)12 (8.3.9)

= Ty

I

for 1 <5< t<p. These correlation coefficients together with var (V) for
s=1,2,...,p determine the covariance matrix of Vi, V,, ..., V). In
geometric terms, the correlation coefficient r, with the sample covariance inner
product determines the angle between ¥, and ¥, in variable-space &', as indicated
by (7.4.12). Alternatively, r,, determines the angle between the corresponding
pair of vectors in A 7.

The correlation coefficient r,, may be regarded as the covariance between

the standardized variables U, = var (V) V2V, and U, = var (V,)"**V,. In-

deed, the sample correlation matrix R of Vy, Vs, ..., V, is simply the
sample covariance matrix of the standardized basis Uy, U,, .. ., U, It follows
easily that r,, may also be interpreted as the simple regression coefficient of
either U, on U, or U, on U,. ’

The multiple correlation coefficient r,,, . , between ¥, and a set of m
variables V, , V,,..., V¥, is defined to be the simple correlation coefficient
between ¥, and the reduced best linear predictor for Vyintermsof ¥, , V,, ...,
V,. Denote this best linear predictor by V., > SO that the orthogonal
decomposition of ¥, along and orthogonal to the subspace spanned by V; ,
Vi oo V., 1s given by

Vy= Vs(tliz‘..im) + Vs.tltz...tm' (8.3.10)
Then
cov (Vo Vitsto. . tm
Pettstan ) = 1,(2 ) - (8.3.11)
var (V) “var (I/s(tltz. . .t,,.))

Since the angle between ¥, and ¥, ., is no greater than 7[2,
0 < Pty tm S 1 (83.12)
Since cov (Vs - Vs(tltg...tm)’ Vs(t;tz..‘tm)) = O’ or cov (Vs, Vs(i,tz...tm)) ==

var (V. . 1m)» it follows that

Fstiyty. . 1, = Var (V;(tltz. . .t,,.)) llzlvar (Vs)uz- (8.3.13)
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Or, since var (V) = var (szz” )+ var (V.

stits. .

1) it follows that

1— ri(tltgu.tm) = var (Vs.tltz...tm)/var Vo). (8.3.14)

Note that if r, , , , is regarded as cos 6, then (8.3.14) is sin® 6.

Partial correlation coefficients are simply correlation coefficients among
variables from which the same set of components has been removed. Thus
Teasta. . au)sssa. s 1S defined to be the multiple correlation coefficient between

$.5182. . .8m and the set Va;-s;sg.“sm’ qu.slsz...sm’ Tt un.slsz,..sm‘ Unlike partial
regression coefficients, partial correlation coefficients do not provide quantities
directly expressible as multiple correlation coefficients already defined.

It is often convenient to think of a correlation coefficient r in terms of the
quantity 1 — r? which may always be regarded as a fraction of variance
remaining after fitting a best linear predictor, as in (8.3.14). By considering
successive reductions in variance from fitting linear predictors, one may
immediately write down such identities as

2 2
1 - Tta1gs. - causise. s = (1 = Filsisn.. -~‘>‘m))(1 - r?(awz. . @y).8182. . -Sm)’ (8315)

and
p—1

1 - ":uz...B:I) = I:{(I - rii‘m...}:i)- (8.3.16)

The basic property of correlation coefficients which motivates their definition
is that they are dimensionless, i.e., if r = cor (V, W), then r = cor (uV, W)
for any u # 0 and » 5 0. In other words, linear changes of scale do not affect
a correlation coefficient. The appeal of correlation coefficients as a tool for
interpreting data is closely tied to this invariance property.

Regression coefficients, on the other hand, are always measured in the
units of a ratio of two variables. For example, if Vo= w¥y+ w,V, is a
predictor for ¥ where ¥, is height in inches and ¥ is weight in pounds, then
w, must be measured in units of inches per pound. Generally, w, (. ., is
measured in units of ¥ divided by V,. This dependence on units must be
remembered when regression coefficients are regarded as measures of associ-
ation between variables, for a large regression coefficient may only reflect a
particular choice of scale for the variables concerned. In this sense regression
coefficients require more careful interpretation than correlation coefficients.

Individual regression coefficients also require careful interpretation because
they can depend strongly on the set of variables included as predictors in the
multiple regression analysis. For example, although wy;, Wyia2)s -+ > Whiqe., 1)
all have the same dimensions, they may still vary greatly. The safest attitude
to assume toward an individual joint regression coefficient is to regard it as a
simple partial regression coefficient, i.e., to regard W, (o,  om 38 Wrors. . spe
In this way w, . is seen to be the weight applied to V, ,, ,, asa single
predictor for ¥,. In other words, any joint regression coefficient may always

SR
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be regarded as a weight applied to V,_after all the other predictors ¥, ..., V;
have been taken into account.

The multiple regression analysis of ¥, on Vi, ¥, ..., ¥,y has the as-
sociated fractional reductions of variance 1 — r2. . Wheres;, sp, ..., 5,18
any subsetof 1,2,...,p — 1. There are 2°~! — 1 such nonempty subsets, and
the corresponding set of 27~ — 1 fractional reductions in variance provides a
clear picture of the interaction of the variables Vy, ¥, ..., V1 in their ability
to jointly explain var (V). In statistical practice it often happens that a predictor
for ¥, is chosen which depends only on a subset of the available variables V5,
Va, ..., V,1. The reasons for such a restricted predictor may be of two dif-
ferent sorts. First, for reasons of time, money, or effort it may be deemed im-
practical to expect anyone to make use of a predictor requiring the observation
of the completeset V3, ¥, ..., Vg In such cases, a loss in prediction accuracy
may be judged to be offset by increased practicability. Secondly, it is possible
that deleting certain variables may result in an increase of prediction accuracy,
because predictors based on finite samples find it hard to digest larger and
larger numbers of independent variables. This issue was raised briefly in
Example 8.1. To take another more extreme example, it may be noted that
multiple regression analysis is not even defined when p —1>n — 1. For S
has rank at most n — 1, and fitting n — 1 predictor variables is sufficient to
reduce the residual variance of ¥, to zero, so that no further fitting can be done.
Theoretical understanding of this phenomenon of diminishing returns for
variables introduced remains imperfect, while the phenomenon itself can be
demonstrated empirically by making use of different predictors.

There are several standard methods for choosing a subset of the set of
possible predictors. To simplify a discussion of these, make the unrealistic
assumption that a decision has been made to include precisely k predictors.
(This assumption is unrealistic because, for example, only one predictor might
be of any value. Or, having chosen k predictors, it might be obvious that great
benefits would accrue from the inclusion of a (k + 1)st predictor.) There are
two popular methods of selecting k predictors. The first, which may be called
the forward method, selects variables one at a time by the following rule:

'm

i) Choose ¥, out of Vi, Vs, ..., V,y so that rﬁsl >r2 fori=1.2,...,
p—L
ii) Choose ¥, out of the remaining V; with i # s, so thatr} . > rles

iif) Choose ¥, out of the remaining V; with i 7 5y, 55 50 thatr?, . >rp

“ ' pi.8189?

and so onuntil ¥, V,,..., ¥, have been chosen. In other words, the var-
jables are chosen to yield the greatest reduction of residual sum of squares at
each step of the introduction of a single predictor variable into the multiple
regression analysis. The backward method begins from the complete regression
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analysis with predictor variables ¥y, Vs, ...,V and deletes one at a time
from the analysis in such a way as to leave the minimum residual sum of squares
at each stage or, equivalently, to leave the maximum multiple correlation
between ¥, and the predictor variables remaining at any stage. There are
many variations on these methods. For example, the best pair of variables
might be included at each stage in the forward method, and a similar mod-
ification could be made in the backward method. For a preselected £, it is
plausible but computationally burdensome to look at all (%) different sets
of possible predictors and choose that with the smallest residual sum of squares.

It is nearly obvious that the different selection methods may give different
results. For example, with three predictor variables Vy, Vs, and ¥, it may
happen that ¥; — V, is a perfect predictor for V, while neither V; nor ¥, alone
is as good as Vyalone. To construct such an example suppose that Uy, U,, U,
are an orthonormal set of variables and define the set Vy, Vs, Vs, V; as follows:
Vy=Us, Vi= (Us+ U2, Vo= (Us— U2, and V3= Us+ Upfd. Tt
follows easily that rZ = 1% while r2, =r} =}, and yet rf,, =1 while
r2us = ries = 1. This example illustrates the dilemma facing the user of
either the forward or backward methods—by following down single chains of
variables he must exclude examination of many pairs, triples, etc. which may
have high predictive content. On the other hand, he may doubt the existence
of such hidden combinations and be unwilling or unable to do the computations
necessary to find them.

The forward scheme requires the least computing labor and is therefore
the most used, especially for large p. Indeed the backward method may be
computationally impractical for large p because it requires first carrying out the
complete analysis. Theoretical considerations leading to a good method of
selection remain generally undiscovered. In many examples, of course, various
different methods of selection will produce effectively, if not exactly, the same
result.

Example 8.2. This example is based on the data used by Cochran (1938) to
illustrate the computations associated with the deletion or addition of a variable
in multiple regression analysis. The following description is quoted from
Cochran’s paper:

In a study of the effects of weather factors on the numbers of noctuid
moths per night caught in a light trap, regressions were worked out on the
minimum night temperature, the maximum temperature of the previous day,
the average speed of the wind during the night and the amount of rain
during the night. The dependent variable was log (number of moths + 1).
This was found to be roughly normally distributed, whereas the numbers
themselves had an extremely skew distribution. Further, a change in one
of the weather factors was likely to produce the same percentage change at
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different times in the numbers of moths rather than the same actual change.
Three years’ data were included. These were grouped in blocks of nine
consecutive days, so as to eliminate as far as possible the effects of the lunar
cycle. After the removal of differences between blocks, 72 degrees of free-
dom remained for the regressions.

Interest centered on the effect of including night cloud cover as a fifth pre-
dictor variable. The basic data culled from Cochran’s paperisa 6 X 6 corrected
sum inner product matrix, where to correct is to subtract out the block means of
each block of nine days. In this way certain dimensions in 4" were removed
from the data vectors before the analysis started in order to eliminate the
influence of factors not relevant to weather. This corrected sum inner product
matrix is

T =
0.14029E 02 0.56635E 01 0.19866E 01 0.27330E 01 —0.48670E 01 0.20744E 01
0.56635E 01 0.14537E 02 0.12710E-00 —0.13470E 01 0.20600E-00 0.15747E 01
0.19866E 01 0.12710E-00 0.20680F 01 0.29400E-00 ~0.54460E 00 —0.64400E 00
0.27330E01 ~0.13470E 01 0.29400E-00 0.17110E 02 —0.54200E 01 0.88500E 00
—0.48670E 01 0.20600F-00 —0.54460E 00 —0.54200E 01 0.78700E 01 —0.19330E 01
0.20744E 01 0.15747E 01 —0.64400E 00 0.88500E 00 —0.19330F 01 0.35520E 01

The numbers here are in “floating point” computer output where, for example,
an exponent E 01 means that the given number should be multiplied by 10 = 10
or an exponent E-02 means that the given number should be multiplied by
0.01 = 10~2. The 6 rows and columns of T refer to the variables ¥; = minimum
night temperature, ¥, = maximum day temperature, V= average night
wind speed, ¥, == amount of night rainfall, V; = percentage of starlight
obscured by clouds in a night sky camera, and Vg = log (number of moths
caught + 1).

The usual step-by-step process of finding the multiple regression analysis
of Vs on Vy, Vy, Vs, Vi, Vs was carried out in a computer by finding

SWP[I]T =

~0.71283E-01 0.40371E-00 0.14161E-00 0.19482E-00 —0.34693E-00 0.14787E-00
0.40371 E-00 0.12250E 02 —0.67491E00 —0.24503E 01 0.21709E 01 0.73724E 00
0.14161F-00 ~—0.67491E 00 0.17867E 01  —0.93022E-01 0.14462E-00 —0.93776E 00
0.19482F-00 —0.24503E01 —0.93022E-01 0.16578E 02 —0.44718E 01 0.48087E-00

—0.34693E-00 0.21709E 01 0.14462E-00 —0.44718E 01 0.61815E 01 ~—0.12133E 01
0.14787E-00 0.73724E 00 ~0.93776E 00 0.48087E-00 —0.12133E 01 0.32453E 01

SWP[I, 2]T =
—0.84587E-01  0.32955E-01  0.16385E-00  0.27557E-00 —0.41847E-00  0.12357E-00
0.32055E-01 —O0.81630E-01 —0.55093E-01 —0.20002E-00  0.17721E-00  0.60181E-01
0.16385E-00 —0.55093E-01  0.17495E 01 —0.22802E-00  0.26422E-00 —0.89714E 00
0.27557E-00 —0.20002E-00 —0.22802E-00  0.16087E02 —0.40376E01  0.62834F 00
—0.41847E-00  O.17721E-00  0.26422E-00 —0.40376E01  0.57968E 01 —0.13440E 01
0.12357E-00  0.60181E-01 —0.89714E00  0.62834E00 —0.13440E01  0.32009E 01
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SWP[1, 2, 3]T =

—0.99933E-01  0.38[15E-01  0.93657E-01  0.29692E-00 —0.44322E-00  0.20760E-00
0.38115E-01 —0.83365E-01 —0.31491E-01 —0.20720E-00  0.I8553£-00  0.31929E-01
0.93657TE-01 —0.31491E-01 —0.57159E00 —0.13033E-00  0.15103E-00 —0.51280E 00
0.29692E-00 —0.20720E-00 —0.13033E-00  0.16058E 02 —0.40032E01  0.51141E 00

—0.44322E-00  0.18553E-00  0.15103E-00 —0.40032E01  0.57569E01 —0.12085E 01
0.20760E-00  0.31920E-01 —0.51280E00  0.51141E00 —0.12085E01  0.27408E 01

SWP[1, 2, 3, 4]T =

—0.10542E-00 0.41946 E-01 0.96067E-01 0.18491E-01 —0.36920E-00 0.19814E-00
0.41946E-01 —0.86039E-01 —0.33173£-01 —0.12904E-01 0.13387E-00 0.38528E-01
0.96067E-01 —0.33173E-01 —0.57265E£00 ~—0.81166E-02 0.11853E-00 —0.50865E 00
0.18491E-01 --0.12904E-01 —0.81166F£-02 —0.62275E-01 —0.24930E-00 0.31848E-01

~—0.36920E-00 0.13387E-00 0.11853E-00 —0.24930E-00 0.47589E 01 —0.10810E 0i
0.19814E-00 0.38528E-01 —0.50865E 00 0.31848F-01 —0.10810E 01 0.27245E 01

SWP(1, 2, 3, 4, 5]T =

—0.13407E-00 0.52332E-01 0.10526 E-00 —0.84984E-03 —0.77581E-01 0.11428 E-00
0.52332E-01 —0.89805E-01 —0.36507E-01 —0.58905E-02 0.28131E-01 0.68938 £-01
0.10526 E-00 —0.36507E-01 —0.57560E00 —0.19071E-02 0.24908E-01 ~0.48172F-00

—0.84984E-03 —0.58905E-02 —0.19071E-02 —0.75335E-01 ~—0.52386E-01 —0.24780E-01

—0.77581 E-01 0.28131 E-01 0.24908 E-01 —0.52386E-01 —0.21013E-00 —0.22715E-00
0.11428E-00 0.68938E-01 —0.48172E-00 —0.24780E-01 —0.22715E-00 0.24790F 01

These calculations were done to roughly 16 digit accuracy, and as a result, when
RSWII1, 2,3,4,5] was applied to SWP[1,2,3,4,5], the original T was
reproduced exactly to the five digits shown in the output.

The output above provides the regression analysis of V; on each of the sets
V,to V; for i =1,2,3,4,5. The main point of Cochran’s paper was to
illustrate the computations required to add V; to the predictor based on
V1, Va, Vs, V, and to delete ¥V; from the predictor based on Vs, ¥y, Vs, Vi, Vi
These computations involve, in the language of this book, the operations
SWP[5] applied to SWP[1, 2, 3, 4]T and RSW[5] applied to SWP[1,2, 3, 4, 5]T.
Note, however, that in Cochran’s context it was necessary to assimilate Vj
before the 6 x 6 matrix SWP[1, 2, 3, 4]T was available.

The various simple and joint regression coefficients of Vg on ¥} produced
by this analysis are given by the (1, 6) elements of the above matrices:

W1 = 0.14787
Werazy = 0.12357
Weraeyy = 0.20760
Weiesgy = 0.19814
Wer12aa5) = 0.11428.

It is clear that the weight given to ¥; depends considerably on what other
predictor variables are used.

The initial corrected sum of squares of ¥ is shown as the (6, 6) element of
T to be 3.5520 and is seen to be reduced successively to 3.2453, 3.2009, 2.7408,
2.7245, and 2.4790 by successively adding Vy, V,, V3, ¥, and Vs to the set of
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fitted variables. The corresponding fractions of residual variance to total
variance are

1—rd = 3.2453/3.5520 = 0.9137
1 — iy, = 3.2009/3.5520 = 0.9012
1 — rles = 2.7408/3.5520 = 0.7716
1 — riesgy = 2.7245/3.5520 = 0.7670
1 — r¥isas = 2.4790/3.5520 = 0.6979.

Various partial correlation coefficients may also be deduced, such as

1 — 7%, = 3.2009/3.2453 = 0.9863
1 — 12y, = 2.7408/3.2009 = 0.8563
1 — 120 = 2.7245/2.7408 = 0.9941
1 — 1% 1050 = 2.4790/2.7245 = 0.9099.

To pursue the analysis of various correlation coefficients, the matrix T is
reduced to the corresponding correlation matrix R where

R =
0.10000F 01 0.39659E-00 0.36883E-00 0.17640F-00 —0.46320E-00 0.29387E-00
0.39659 E-00 0.10000E 01 0.23181 E-01  —0.85410E-01 0.19259E-01 0.21914E-00
0.36883E-00 0.23181E-01 0.10000F 01 0.49425E-01 —0.13499E-00 —0.23762E-00
0.17640E-00 —0.85410E-0! 0.49425E-01 0.10000E 01 —0.46708E-00 0.11352E-00
—0.46320E-00 0.19259E-01  —0.13499E-00 —0.46708E-00 0.10000E 01 —0.36560E-00
0.29387E-00 0.21914E-00 —0.23762E-00 0.11352E-00 —0.36560E-00 0.10000E 01

The largest correlation coefficients in this array are those relating ¥, with
V,, Vs, and ¥V and those relating V; with ¥, and V. None of these attain 0.5in
absolute value, however, so that no variable explains as much as 259 of the
variance of any other.

The computer then produced SWP[i,, i3, . . . , i,JR where i3, Iy, . . . , I, TUN
over all subsets of 1, 2, 3, 4, 5. The (6, 6) elements of these matrices yield
1 —r¥, .. . for these subsets as shown in Table 8.3.1.

It is now clear that the forward method of variable selection would choose
in order Vs, Vs, V1, Vs, Vi Also the backward method would drop in succession
from the complete set Vy, Vo, V5, Vs, Vi, j.e., the order of importance given
by the backward method is Vi, Va, Vs, Va, Va, which differs from the forward
method. If the best single predictor is desired, namely V5, it is that given by the
forward method but not by the backward method. On the other hand, among
all ten pairs of predictors, the best pair ¥, V3 agrees with the pair given by the
backward method but not with the pair given by the forward method.

None of this indicates what predictor should be used, but it appears from
Table 8.3.1 that very little is to be gained by including more than three, and
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Table 8.3.1

1— 7% =091364
1—rZ =0.95198
1—ri; =0.94354
1—rs =098711
1 —ri = 0.86634
1 — r¥y, = 0.90115
1 — rius = 0.77507
1 — riqg = 0.90972
1 — rius = 0.84659
1 — rig) = 0.89304
1 — riey = 0.93436
1 — riss = 0.81516
1 — riuy = 0.92781
1 — ris = 0.78246
1 — r,s = 0.86214

1 —
1 —
1—
1—
1 -
i~—
1 —
1 —
1 -~
1 —
1 —
1 —
1 —
1 —
1 —

r2ons = 0.72534
rinas = 0.71282
210 = 0.81142
Fiass) = 0.70021
sy = 0.76705
i = 0.77766
rioss = 0.81310
2o = 0.72777
r2osey = 0.87189
ris = 0.84327
riassy = 0.71604
riusn = 0.77190
rinss = 0.81343
renen = 0.89424
r2es = 0.77163

1 — rZugss = 0.69792

V,, Vs, Vs appears to be the best triple on the scene. Oddly enough, however,
V. Vs, Vs is nearly as good as Vy, V;, V5. At the present time, the science of

variable selection apparently can do no better than this.

8.4 A LEAST SQUARES EXAMPLE

ILLUSTRATING THE DELETION OF INDIVIDUALS

Example 8.3. This example will review the original calculations of Gauss (1811)
combining 12 observations on the asteroid Pallas to determine six parameters
governing its orbit. The example will be described without going into details
of the astronomical context in which least squares prediction first arose. The

computations for deleting individuals will also be illustrated.

A set of observed quantities, say y, fori=1,2,..., 12, is thought to be

expressible as

y: =fi(01, 03, - ..

,06) + 1.

8.4
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y; = fi(0y, s, . .., 0g) with the observed y,. The problem therefore is to
combine the 12 observations in order to come as close as possible to the unknown

values 0y, 0, . . . , 0 despite the known presence of error in the original obser-
vations.
The solution proposed by Gauss was to choose 0;, 05, . . . , 65 to minimize

D12 [y, =~ fi(0y, Oz, . .., 0512, The minimization problem was to be solved by
beginning with an initial guess 6, 6{, ..., 6 which is known to be close
to the desired answer, perhaps from physical understanding of the parameters.
Then the functions f; were to be approximated linearly by the first term Taylor
series approximation

[
(01, 0y, ..., 05) = a; + 2(91‘ - 650))@':"
j==1
where ’

a; = f(0", 05, . .., 05)
and

0
b = 55;ﬁ(0§°’, 0P, ..., 0.

The problem then became to find 66, = 6, — 6/ for j=1,2,...,6 which
minimized

12

E(yi —a; — b;; 66, — b;3 80, — - -+ — by 596)2-

=1

This is simply the least squares criterion (8.2.18) in a different notation, where
n = 12 and p = 7 and where the role of the n X p data matrix X is played by

Here /, is the error of measurement in the observable quantity y,;, where, if
measurement could be perfect, physical theories would predict that y; should
be a known function f; of six quantities 6., 0,, ..., 0 whose values are
unknown. The concept of measurement error arises here for the very practical
reason that no values for 6, 0,, . . . , 0 are sufficient to satisfy all 12 equations

by by ot by @
by by byg ye—a
bz b bs Y — 9
Gauss (1811) gave the above data matrix to be
X =
0.79363 143.66 0.39493 0.95920 —0.18856 0.17387 183.93
—0.02658 46.71 0.02658  —0.20858 0.15946 1.25782 6.81
0.58880 358.12 0.26208 —0.85234 0.14912 0.17775 0.06
0.01318 28.39 —0.01318 —0.07861 0.91704 0.54365 3.09
1.73436  1846.17 —0.54603 —2.05662 —0.18833 —0.17445 0.02
~0.12606  —227.42 0.12606  —0.38939 0.17176  —1.35441 8.98
0.99584  1579.03 0.06456 1.99545 —0.06040 —-0.33750 231
—0.08089 —-67.22 0.08089 —0.09970 —0.46359 1.22803 —-2.47
0.65311 1329.09 0.38994 —0.08439  —0.04305 0.34268 -0.01
0.69957  1719.32 0.12913  -1.38787 0.17130  —0.08360 317.73
—0.01315 —43.84 0.01315 0.02929 1.02138 027187 —117.97
—0.00218 38.47 0.00218  —0.18710 047301 —1.14371 ~38.12
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Rows 10, 11, and 12 of Gauss’s matrix are shown above as rows 12, 10, and 11
respectively. Gauss dropped his row 10 because he regarded the experiment
yielding that observation as suspect. In other words he took his data matrix to
be the first 11 rows of X shown above. If these first 11 rows are called X,
Gauss first calculated Q_, = X;_)X(_). He then followed out the first layer of
the elimination method of Section 4.3.1 which gave the residual sum of squares
96364.0 and essentially the triangular matrix B where V = BV*. By solving
back he got the last row of A, where V* = AV, which yielded

80, = —3.06
80, =  0.054335
80, = 166.44
80, = —4.29
80, = —34.37
80, = —3.15.

Such was the origin of the basic computing device of Section 4.3.1.

The present analysis was carried out along similar lines, but doing several
more steps for illustrative purposes. Twelve additional columns were added to
the data matrix X corresponding to the indicator variables of the 12 individuals,
thus giving the enlarged 12 X 19 data matrix

X* = [X,1],
where I denotes the 12 x 12 identity matrix. From this the 19 x 19 raw sum
inner product matrix

Q* = X*'X*
was found, for use as the basis for further calculations. Note that
Q X
*
Q - [X ]

where Q = X’X is the usual 7 X 7 raw sum inner product matrix.
The next step was to calculate SWPI[1, 2, 3,4, 5, 6]Q*. In its upper left

7 x 7 part, this has SWP[1, 2, 3,4, 5,6]Q which yields the least squares
analysis based on the full sample of twelve individuals. The (7, 7) element gives
the residual sum of squares 85850.82 and the elements 7,1),7,2,...,(,6)
give

60, = —15.46409

60, 0.0539589

60, = 216.1136

60, = —32.56353

805 = —55.26174

00 = —2.952751.

The remaining elements (7, 8), (7,9), ..., (7, 19) of row 7 of
SWPI1, 2, 3,4, 5, 6]Q*
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provide the residuals when the predictor is applied to the 12 individuals, namely

124.4295
3.8682
—85.7873
54.3330
—32.6659
—15.1287
—20.8007
—42.8145
—150.0130
171.8944
—62.0554
—24.0310.

Note that the observation which Gauss rejected does not appear to have a
suspicious residual.

In order to eliminate the twelfth individual from Q, recall from (7.5.2) that
SWP[19]Q* yields the desired reduced raw sum inner product matrix Q)
as its upper left 7 x 7 part. Consequently the further operation SWP[19]
applied to SWP[L, 2, 3,4, 5, 6]Q* yields the least squares analysis based on
the first 11 individuals. The resulting residual sum of squares is 85094.14
and the weights are

00y = —15.5884
00, 0.053991
86y = 218.4079
06, = —33.09147
865 = —51.19588
00y = —7.698775.

It

It

Again the residuals were found to be

125.7156
9.0136
—86.5398
53.1740
—32.4062
—22.7582
—21.1797
—35.3474
—149.1134
169.8026
—67.5134
—31.4876.
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Note that the last element here, which is the (7, 19) element of
SWPI1, 2, 3,4, 5, 6, 19]Q*,

is the residual when the predictor based on the first 11 individuals is applied to
the twelfth individual.

Since Gauss’s calculations produced results different from those given here,
both sets of calculations were checked. Gauss’s numbers are self-consistent in
that the original data matrix produces the raw sum of products matrix except
for two small discrepancies. However, much larger errors begin to appear in
Gauss’s computed values at the first stage of elimination. The change in the
outcome of the analysis when the twelfth individual is dropped is not striking.

It is of some interest to examine the residuals for individual i with i =
1,2,...,12 based on the predictor derived from the 11 individuals excluding
individual i. The residual —31.4876 above is the special case i = 12. The full
column of these residuals may be found directly from SWP[1, 2, 3, 4, 5, 6]1Q*
by dividing element (7 + i, 7) by element (7 4+ 4,7+ fori=1,2,...,12
These are

438.739
5.340
—138.768
103.534
—710.193
—24.196
—133.545
—58.661
—265.824
428.794
—110.159
—31.488.

‘; Since each of these residuals concerns an individual not included in the
1 associated predictor, its square is an estimate of the squared error expected for
| predictors based on a sample of size 11. It is strikingly clear that these residuals
I are much larger than those resulting when the regression hyperplane is fitted
{ directly to the twelve individuals. In fact the sum of squares of these residuals
? is 1,016,384, which is nearly 12 times the sum of squares of deviations from the
|
|

fitted regression hyperplane. See the further discussion of these residuals in

Chapter 14. —_ .5
i s

8.5 CORRELATION WITH A SINGLE CATEGORICAL VARIABLE

This section illustrates the use of regression and correlation techniques where
the variable ¥, to be predicted is a dichotomous variable. For simplicity,V,
will be assumed scaled to take the values zero or one.
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In such a situation, the usefulness of a multiple regression analysis might be
questioned. In particular, it makes little sense to use a predictor ¥, taking
continuous values to predict ¥, taking values zero or one only. Still, a formal
analysis leading to a multiple correlation coefficient between V, and its best
linear predictor can shed light on observed data. A correlation coeflicient
calculated for a pair of variables, one dichotomous and the other continuous,
is sometimes called in the psychological literature a biserial correlation coefficient
(cf. McNemar, 1962).

Consider a sample of n = n, - n, individuals where V, takes the value
zero for n, individuals and unity for n, individuals. Suppose that X, X2 |
Xam) apd X0 x@2  xGm) denote the sample observations on another
variable ¥V where the X% correspond to individuals having the value zero on
V, and the X®? correspond to individuals having the value unity on V,. It is
easily seen that the sample corrected sum inner product matrix of ¥ and V,, is
given by

g* (X9 — Xy f (X2 — gy mny (Xm— X
i=1 i=1 i n
mn, , o |
+ =R (Y - KRy (8.5.1)

My ) pe
| (R - £

where

o1 3’; X and X =L E e,

nyi=1 Rgi=1

It follows that the point biserial correlation coefficient r between ¥ and ¥,
may be expressed as

_ ("1"2/")1/2()?(1) — X(z))
[ZZ‘Q(X(”) — X(l))z + z:ﬁl (X(zi) . X»(z))z + (nlnz/n)(y(l) _ A‘/(z))2]1/2 :
(8.5.2)

r

The particular form (8.5.2) shows the relation of r to several other quantities
familiar to statisticians. In analysis of variance terminology the quantity

(nyny/n)(XD — Xy
G = zg,;l(xmy __1 ,ZY(n)z + zpil (X(zn _ X,(z))z (8.5.3)

is called a ratio of a between sample mean square on 1 degree of freedom to a
pooled within sample sum of squares on n — 2 degrees of freedom. The two
samples are of course X9V, X142 . XUm) and XY@V, x@» Y@ and
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G clearly depends only on their sample means and variances. Statistics equiv-
alent to G are

Fe (nlng/n)(x(l) — X/‘(Z))Z
[1/(n — YT (X" — XD) 4 Fin (X0 — X))
where the denominator sum of squares has been reduced to a mean square, and
W . e
b= {[1/(n — DIZr (X0 — XU 4 372, (X — PP

which represents the ratio of the difference of the sample means to a pooled
root mean square.
From these definitions it follows easily that

(8.5.4)

(8.5.5)

rt 1 _ MMy e
1—r n—2 n(n — 2)

(8.5.6)

so that any one of %, G, F, or D2 determines the other three. Also, r and D have
the same sign and so determine each other.

The foregoing quantities were defined for the pair of variables ¥ and ¥V,
where ¥, is dichotomous. In particular, they may be defined where V is chosen
to be the best linear predictor V,, for ¥, in terms of V3, Ve, ..., Vi1 Note
that ¥, has the property of maximizing each of r*, G, F, and D? among all V
in the subspace spanned by Vi, Vo, ..., ¥y This maximum D?® will be
discussed further from the viewpoint of two multivariate samples in Section
10.2. The case of a categorical variable with more than two categories will
be fully examined in Section 9.4.

Example 8.4 following also illustrates the use of principal component
analysis in connection with multiple correlation analysis. The question being
asked of the data is essentially: does a certain dichotomous variable exhibit
any correlation with a set of sample principal variables?

Example 8.4. The data of this example were collected by Dr. Gene Smith in
connection with his studies of the measurement of personality. The 264
individuals were freshman nursing students of whom 219 successfully completed
their year while the remaining 45 either chose to leave or were asked to leave
during or at the end of their freshman year. Fifteen dropouts were not included
in the study since they left either to marry or for health or financial reasons.

Two batteries of personality tests were given to these 264 students before
they entered nursing school. These resulted in 15 variables from the Edwards
Personal Preference Schedule (Edwards, 1959) and 16 variables representing
personality factors (Cattell, Saunders, and Stice, 1957). Two further variables
measuring reading and verbal ability were also provided in the data. Suppose
that ¥, and ¥, denote the reading and verbal ability variables, that Vs, V,, . . .,
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Vg denote the Edwards variables, that Vi, Vg, ..., Vg denote the Cattel
variables, and that V; denotes the dichotomous variable where pass is repre-
sented by a zero score and fail is represented by a score of unity.

Since the scales of measurement here have no absolute meaning, it is
convenient to work as much as possible in terms of standardized variables, i.e.,
variables scaled to have unit variances. The corresponding covariances become
correlation coefficients. Also, it was decided to remove from consideration all
components of these variables which are correlated with ¥, and ¥, in order to
escape at least partially the criticism that any correlation between success and
personality is due to the common influence of ability on both scores.

Accordingly, the first step was to form the corrected sum inner product
matrix of the variables Vi, Vs, ..., V5 which was then standardized to a
correlation matrix. This correlation matrix was next subjected to SWP[1, 2]
to remove components along ¥; and V,. The remaining 32 x 32 inner product
matrix was then standardized again to yield the correlation matrix of
Vares Vager -5 Viiie

The first standardization to a correlation matrix was strictly unnecessary,
although it did help to show how the ability variables ¥, and ¥, are correlated
with the rest. For example, it appeared that ri;,) = 0.0477, which is small
but greater than could reasonably be attributed to sampling fluctuations in a
sample of size 264 drawn from a normal population whose corresponding
Piias = 0. (By chance one would have expected roughly r; ;. ~ z&3 = 0.0076.
See Section 14.2 for a discussion of the sampling distribution.) On the other
hand, the correlations between V; or V, and the personality measures present
much more nearly the aspect of chance fluctuations with the possible exception
of the following subtable of correlation coefficients.

V5 Vll) V15 V19
Vi —0.185 0.178 ~0.189 0.330
V, ~0.140 0.163 —0.170 0.297

A simple correlation of V1 /263 = 0.062 is a rough guide to the sampling
fluctuation expected here. A high correlation with one of ¥, or V5 is usually
accompanied by a high correlation with the other. This is partly a reflection of
the initial high correlation r,, = 0.594, but is also due to the fact that all of these
variables measure somewhat similar attributes.

The main part of the analysis started from the 32 x 32 correlation matrix
Vi 1o Vasgs - - - » Vaiae- Denote this matrix by R. The pair [R, I] was subjected
to the eigenvalue and eigenvector operations SDGI1, 2,3,..., 15}, followed

by operations SDG[16, 17, . . ., 31] as defined in (5.4.21) in order to carry out
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principal component analysis on V15, V15 -« -, Vizpp @0d Vigies Vigaas -+
Vi1 Denote the outcome of these operations by [Q, K].

Then K has the form

K, 0 0
K=|0 K, 0]
0 0 1

representing a partition of rows and columns into 15 + 16 + 1 where the off-
diagonal matrices consist entirely of zeros. The rows of K,, express a set of

principal variables Uy, Us, . . ., Ug in terms of Vg Vit - - - » Vs 1 and the
rows of Ky, express a set of principal variables Wy, W,, ..., W, in terms of
* * * ® .
12 Visior + -+ » Vasnp Where V7,, denotes the standardized V, ,,.

Q provides the sample corrected sum inner product matrix of Ui,
Ug, ..., Ug, Wy, Wyy o .., Wiz, Vi o It partitions into

Q. Qe Qs
Q= Qu sz Q23 s
Qs Qs 1

where Q,, is a diagonal matrix of eigenvalues whose elements:

3.33, 1.86, 1.38, 1.19, 1.09, 091, 0.87
0.81, 0.74, 0.62, 0.60, 0.49, 048, 042, 0.001

are the principal components of variance for a principal component analysis of
the reduced Edwards variables V5, V4 155 - -+ » Vi7ge- Similarly, Qy, is the
diagonal matrix of eigenvalues:

293 176 135 1.22 110 1.00 0.88 0.5
0.80 0.74 0.68 0.67 0.59 047 040 0.32

representing a set of principal components from a principal component analysis
of the reduced Cattell variables Vi 15, Vi5400 - - - » Vazaer

The matrix Q was then standardized to provide the correlation matrix of
Uy, Uy ..., Ug, Wy, Wy, ..., Wig, Vg o Thisis a convenient form for in-
specting the three off-diagonal blocks of correlation coefficients which interrelate
the Edwards variables, the Cattell variables, and the pass-fail variable.

Now the reason for the principal component analysis in the first place was
to simplify the inspection of the overly large correlation matrix R by restricting
consideration to the first few principal variables of each kind. Visual inspection
of the correlation matrix of Vi, Vy, ..., Vs, Wi, Wa, oo s Wi, Viiqe does
indeed show a concentration of meaningful-appearing correlations in the restricted
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correlation matrix of U,, Uy, Uy, Uy, Wy, Wy, Wy, Wy, Vi ae which is reproduced
below.

1.000 0 0 0 0.350 0.363 —0.185 —0.021 -0.155

0 1.000 0 0 0203 —0.059 0.009 —0.116 0.005

0 0 1.000 0 -0.362 0216 —0.113 0.102 0.076

0 0 0 1.000 0.113 —0.061 ~—0.049 —0.030 0.129
0350 0203 —0.362 0.113 1.000 0 0 0 —0.171
0.363 ~0.059 0216 —0.061 0 1.000 0 0 —0.091
—0.185  0.009 -—0.113 —0.049 0 0 1.000 0 —0.056
—0.021 ~0.116 0.102 —0.030 0 0 0 1.000 -0.136

—0.155  0.005 0.076 0.129 —0.171 -0.091 -0.056 —0.136 1

Again it may be remembered that 0.062 is a rough guide for a typical meaningless
r value. There do appear to be meaningful relations among the two sets of
principal variables. Still, these relationships are weak. The reader should always
remember that weak relationships can be clearly demonstrated with large samples
even though the relationships have little or no practical value for subsequent
prediction. Even weaker are the relations between the pass-fail variable and the
personality variables.

The foregoing example has some interest for a statistical theoretician because
it demonstrates empirically that nontrivial correlation effects can be concentrated
by means of a principal component analysis. In this way, attempts at a better
theoretical understanding of principal component analysis may be encouraged.

No attempt has been made to draw conclusions for psychology from the
example. In particular, the psychologist usually assigns suggestive names to his
variables to give “meaning” to his analysis, and the discussion here does not
attempt to penetrate this name-meaning approach to interpretations. The data
are disappointing in that so little prediction capability appears to reside in the
personality measures. Nor, perhaps, is the small apparent capability any more
than might be expected from the leakage of ability measures into intended
personality measures.




CHAPTER 9

ONE SAMPLE OF INDIVIDUALS:
EXTENSIONS OF MULTIPLE
REGRESSION ANALYSIS

9.1 JOINT PREDICTION OF A SET OF VARIABLES

Rather than predict a single variable from a set of predictor variables, it may be
required to predict a battery of variables from a common set of predictor
variables, the prediction method being based on a sample observed on all of the
variables. Each member of the battery may be predicted separately, of course,
by a multiple regression analysis, and the methods discussed in this chapter are
essentially based on such an approach. Section 9.1 makes some introductory
remarks on joint prediction.

Suppose that the predictor variables are denoted by Vi, Vs, ..., ¥ and
that the variables to be predicted are denoted by Vi, Voo, o - o5 Vo Suppose
that a sample of size n on all p variables yields a p X p sample covariance
matrix S. Then the best linear predictors V5, Veyz, -+ .5 Vp0f Vs, Vipas o+
V, in terms of V;, Vs, ..., ¥, may be described as the orthogonal projec-
tions of V.4, Viss, ..., ¥V, into the subspace &, spanned by Vy, Vp, ..., Vs
in Euclidean variable-space &, where the inner product over & is the sample
covariance.

In order to understand fully the extension of multiple regression analysis
to the case of p — s predicted variables, it is important to notice the following
result. If Vi1, Vigas - . - » V,, are the best linear predictors for Vi, Voo, + -+
V, each in terms of Vy, Vs, . .. , V,, then the best linear predictor for a, Vi1 +
deVopa + 0+ agVy in terms of Vi, Vs, ...V, is tg1 Vs + %sr2Vorn +
coo 4 a,V, where oy, 0.y, . . ., &, are arbitrary real numbers. The proof
of this is trivial because the best linear predictors involved are all determined
by a linear transformation, namely orthogonal projection into &,. Every
linear transformation has by definition the property that the transform of
a linear combination of vectors is the same linear combination of their trans-
forms.

Suppose that the corrected sum inner product matrix T has been computed.
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Then

_[~Ta H,

SWP[1,2,...,s]T I: H,, sz] CARY
provides the multiple regression analyses of each of V4, Ve, ..., ¥, on
Vi, Vo, ..., V.. The rows of Hy, define the best linear predictors Viits Veros
o,V for Ve, Vg, ..., Vyinterms of Vy, Vs, ..., V. The matrix Ty, ; is
the corrected sum inner product matrix of ¥, — Vi=V,, fort=s+1,
s+2,...,p

In matrix terms, defining Vy = [V, Vo, ..., VI, Vo= [Von, Voo - - -
v,/ and Vy = [V,,.1, Vypa, - - ., V', One has

V, = H,,V,, (9.1.2)

and T,,, is the inner product matrix of V, — V.. In addition, from the result
italicized above, the best linear predictor of :

o;Vp = 0(3+1Vs+1 + O(s+2VS+2 +- o+ O(pr (913)
is given by
oV, = (a,H,) Vs, 9.1.4)

and the corresponding residual sum of squares is [

1t should be remembered of course that the use of these predictors also
requires knowledge of the sample mean vector, where such means are easily
computed along with T from (7.5.4). Indeed the augmented predictors may be
computed from SWP[L,2,...,s]Q, which includes (9.1.1) as a submatrix.

9.2 CANONICAL CORRELATION ANALYSIS

The analysis of Section 9.1 may be described as the determination of variables in
the space &, spanned by V; = [V, V5, . . ., V]’ which are best linear predictors
for variables in the space &, spanned by Vo = [V, Viya, o -+ V,). A natural
extension is the determination of that variable in &, which is “most predictable”
in terms of a variable in &;. The question here actually involves &; and &,
symmetrically in that it seeks that pair of variables, one in &, and one in &,
having maximal sample correlation coefficient. This question leads directly to
the method of canonical correlation analysis proposed by Hotelling (1935).

The required theory has already been derived in Section 5.6 in terms of the
relationships between a pair of subspaces of a Euclidean space, the subspaces
here being &, and &, in variable-space & and the inner product being sample
covariance. Using the theory of eigenvalues and eigenvectors relating a pair of
inner products, one determines special orthogonal bases W, = [W;, Wy, ...,
W, for & and W, = [W, .y, Wy, ..., W,] for &, with the property that

cov(W;, W) =20 9.2.1)
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fori=1,2,...,sand j=s+ 1,54 2,...,p, except when j=s4 i In
other words, only the pairs (W,, W,,,) for i=1,2,...,min(s,p — 5) may
make angles 6, different from /2 among all pairs with one member in W, and
one member in W,. The scaling may be chosen and the subscripts arranged so
that

0<6, L6, < < Umingenor (0.2.2)
The corresponding correlation coefficients
r; = cos 0, = cor (W, W,..), (9.2.3)
i=1,2,...,min (s, p — s) satisfy
I2rn2r " 2 ronwes 20 (9.2.4)

The pair W,, W, will be called the ith pair of canonical variables and the cor-
responding r; will be called the ith canonical correlation coefficient.

It is clear that the pair W), W,,, satisfies the original “most predictable”
criterion of Hotelling. With this pair fixed, the pair W,, W,,, is the most pre-
dictable pair where W, is taken from the subspace of &, orthogonal to W, and
W,,, is taken from the subspace of &, orthogonal to W,,,, and so on. The
special covariance matrix of the basis W = {W,, W,]’ implies that the best linear
predictor in &, for W, ; in & is [cov (W, W, )var (W)]W, and the best linear
predictor in &, for W;in &, is [cov (W, W, )fvar (W )W, fori=1,2,...,
min [s, p — s]. More generally, the best linear predictor in &, for any variable
=5 B W in &y is

1
min{s.p—s) cov (VV,, Ws+z‘)

i W, 9.2.5
i=1 T var W ( )

and the reader may easily supply the formula reversing the roles of &, and &,.
Note that W, and W, may be chosen to be orthonormal and in this case (9.2.5)
takes the simple form

min{s,p—s)

> BewiriWe (9.2.6)
i=1

The canonical correlation coefficients are uniquely determined and the
degree of uniqueness of the canonical variables may be deduced from Theorem
5.1.2. In general, with sample data the canonical correlation coefficients will all
be distinct and the pairs of canonical variables will therefore be uniquely
determined up to scale factors. The other case, which allows for sets of equal
r;, will not be described in detail. Note, however, that the shorter of the two
bases W, and W, has a set of |25 - p| variables at the end which are uncorrelated
with all of the other canonical variables of either set and which may be replaced
by any orthogonal basis of the subspace which they span. »
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Canonical correlation analysis has an obvious mathematical appeal;
whether or not it is a statistically useful tool is less easily discovered. A similar
question was raised when considering principal component analysis, which also
involves eigenvalue and eigenvector analysis. The canonical correlation analysis
method is less vague than the principal component method in the sense that it is
free of an arbitrary choice of a reference inner product, but the question of
meaning and usefulness of the artificial canonical variables remains. The hope
is that in a many-variable situation the first few canonical variables will prove to
be the important ones and thus provide a means for reducing the number of
variables under consideration to more easily comprehensible dimensions.

The computations required for canonical correlation analysis afford good
illustrations of the SWP, MST, and SDG operators. Consider an initial position
given the sample corrected sum inner product matrix

T T
T = 1 12:| 9.2.7
[Tu T ©-2.7)

of the basis V == [V,, V,}, where the partitions refer asusualtop = s + (p — 5).

According to the theory of Section 5.6 the canonical variables W, =
{Wie1, Weiss - - . » W,] are eigenvectors of an inner product w, relative to an
inner product m,. The roles of % and ¥~ in Section 5.6 are played here by &,
and &}, respectively. Using the sample corrected sum inner product to make &
Euclidean, the inner product matrix relative to V, for o, is Tps. Since m, refers
to the inner products among the components of V, in &, the inner product
matrix relative to V, for m, is Ty, — Ty, ;. The corresponding eigenvalues are
interpreted in (5.6.1) as cos? 8, or r? in correlation coefficient terms. It is com-
putationally more convenient to deal with Ty, ; rather than T,, — T,,,, and
thence to find the eigenvalues and eigenvectors of m, — ar, relative to m,. The
eigenvectors are the same, of course, while the eigenvalues cos® § or r® are
replaced by sin® 6 or 1 — r.

The calculations proceed in three steps each of which may be regarded as a
computer subroutine:

MST[s+1,s+2,...,p][T,11=[[%i f][g ‘I’(H (9.2.8)

5 1 —1
SWP[L, 2s][¥: 'Irm} - [T:Tl;} To, 12], (9.2.9)

and

T3 -1
SDG[s + Ls +2,..., P]HTZITT% TniTm} [(I) (I)(zzﬂ

—~Ti T, {I 0 ]
=[[7Ta Tulel . (9.2.10
HTMTH‘ i ] 0 czzxzz] ©-2.10)

The step (9.2.8) in effect replaces the basis V, of &, by the basis U, = K,,V,
whose 7, inner product matrix is I. The step (9.2.9) completes the preparation
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for the eigenvalue analysis by finding the m, — r, inner product matrix for the
basis U, which is denoted in (9.2.9) by I = I — T, T'T,,. The third computing
step (9.2.10) produces the diagonal matrix I whose diagonal elements are eigen-
values of the form 1 — r2 where r; is a canonical correlation coefficient. The
eigenvectors (CyKy)V, form a basis of canonical variables W, in &,; acor-
responding set of canonical variables in & is given by ("1.“21T;11)V1.

The only assertion here which is not obvious is that concerning the canonical
variables in &;. From (9.2.9) it is clear that (1"21T1‘11)Vl provides the best linear
predictors for U, in terms of V;, and it is easily checked that the operations
(9.2.10) modify ’i‘ngl"ll into i‘ZITﬁl by row operations in such a way that
(”.I.‘mTl’ll)V1 provides the best linear predictors for W, in terms of V. But, from
(9.2.2), these best linear predictors are simply specially scaled versions of the
corresponding canonical variables in &, as claimed above.

Some details deserve further explanation. For convenience of notation
suppose that the diagonal elements of I in (9.2.10) are arranged in increasing
order. If these diagonal elements are denoted byl —r1— rg o L=rk
then ry, Fa, « -+ 5 F'yints p—s) 8T€ the ordered canonical correlation coefficients
satisfying (9.2.4). If s < p — s, then only the first s of the diagonal elements
1L—r3l—r ..., 1 — r_, correspond to nontrivial canonical correlation
coefficients while the remaining p — 2s are simply unity, corresponding to zero
correlations. Also, if s < p — s then only the first s elements of (T, T;;)V, are
different from @ and these s non-@ elements define the basis W, of canonical
variables in &,. On the other hand, if s > p — s, there will in general be no
unit-valued elements of I, but only the first p — s elements of W, will be pro-
vided by (i:leﬁl)Vr The remaining 2s — p elements of W; may be chosen to
form any orthogonal basis of the subspace of &, orthogonal to &,, but they are
not provided by the above computations.

It is of interest to understand the choice of scale implied by the given com-
putations. Since the SDG operation modifies the (wy — my)-orthonormal basis
V, into another (w, — m;)-orthonormal basis W, and since r, is the sample
corrected sum inner product, it follows that the canonical variables W, =
(Cy:K,,)V; are scaled to have unit norm according to the sample corrected sum
inner product. The scaling of the corresponding (T,,T;)V, may be deduced
from their interpretation as best linear predictors for Wy, In fact, if the ith
element of ('.I.‘lel“ll)V]l were to be rescaled by dividing by r;, then it too would
have unit norm according to the sample corrected sum inner product while in its
given form it has norm r,.

A final observation on the computations is that the roles of &, and &, may
be-interchanged. Thus, there is a choice between an s-dimensional or (p — 5)-

_dimensional eigenvalue calculation, and for some purposes it may be better to
choose the smaller dimension.

e
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9.3 AN EXAMPLE ILLUSTRATING
EXPLORATORY USE OF CANONICAL CORRELATION ANALYSIS

Example 9.1. The data analyzed here were supplied by Dr. Gene Smith.
They consist of the scores of 221 nursing students on two sets of personality
measures. The first set provides the 16 personality variables of Cattell, Saunders,
and Stice (1957) which also appeared in Example 8.4, while the second set pro-
vides 31 variables devised by Dr. Smith. The purpose of analysis is to try to
throw light on the nature and extent of the covariation between the two sets of
variables.

The first analysis which comes to mind is to find the (16 + 31) x (16 + 31)
sample correlation matrix R of the two sets of variables combined. Then the
16 x 31 = 496 correlation coefficients relating the two sets of variables may be
examined with reference to the name-meanings of the individual variables to see
if large correlations appear where expected. For example, variables intended to
measure something like extroversion in the different sets should show large
correlations. The signs of the correlation coefficients are also subject to inter-
pretation. For example, a variable measuring extroversion should be positively
correlated with another variable measuring extroversion but negatively cor-
related with a variable measuring introversion.

By and large, this type of analysis is extrastatistical and subjective in that it
depends on the meaning which the psychologist attributes to his variables. It
can be very satisfying to see sets of nontrivial correlation coefficients (e.g. in these
data 0.3, 0.4, or occasionally 0.5) appearing in places where they seem to have
natural interpretations. On the other hand the initial impact of such correlation
coefficients may need re-assessment because they are often partial reflections
of one another, i.c., if ¥, and U, are correlated, then one may expect V, and
U, to be correlated if ¥, is correlated with ¥, and U, with U,. Thus there
remains a need for judging the significance of observed correlations. Strictly
speaking, this should mean displaying all the sets of interrelated correlation
coefficients which could have any psychologically sensible interpretation, and
then trying to determine how many of these sets of possible interpretations are
meaningfully supported by the sample data. Even more, there is a need to assess
in quantitative terms the strength of those relations which are deemed meaning-
ful.

All this is difficult if not impossible, at least in the current state of the art.
What is usually done is to carry out a significance test of the null hypothesis of
no correlation whatsoever between the two sets. If this null hypothesisis rejected,
then the psychologist will feel that at least the worst did not happen and he will
use his own judgment to make as many interpretations as he thinks the data will
support. Such interpretations are then used to deepen understanding of what
the given psychological measures are providing and to suggest new measuring
instruments.
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Analyses directly involving the name-meanings of the variables are not
discussed in this book, which is not to say that they are unimportant, but
only to admit that the science of statistics is not yet able to be of much assistance
in that area. Instead, more statistical explorations are carried out which ignore
the opportunities and difficulties of psychological interpretation.

The most obvious analysis is simply to find the sample canonical correlation
coefficients and corresponding canonical variables. This was done beginning
computationally from the 47 x 47 correlation matrix R whose direct inter-
pretation was discussed above. Applying the operations (9.2.6), (9.2.7), and

Table 9.1.1

1 —rf AND r, FOR THE 16 PAIRS OF

SAMPLE CANONICAL VARIABLES RE-

LATING THE 16 CATTELL VARIABLES
AND THE 31 SMITH VARIABLES

1 - rf ri

0.4352 0.7515
0.5742 0.6525
0.6547 0.5876
0.7063 0.5420
0.7418 0.5081
0.7728 0.4767
0.7932 0.4547
0.8132 0.4322
0.8237 0.4199
0.8539 0.3822
0.8852 0.3389
0.8996 0.3169
0.9261 0.2719
0.9453 0.2339
0.9489 0.2283
0.9724 0.1662

(9.2.8) to R instead of T means only that a standardized basis is used in place of
the original basis. The canonical correlation coefficients are the same, but the
canonical variables are expressed in terms of the standardized variables rather
than the original variables. To save space only the set of 1 — r? together with 7,
and not the coefficients defining the canonical variables are reproduced in
Table 9.1.1,/Judged as single simple correlation coefficients these sample canon-
ical correlation coefficients appear quite large. It should be remembered,
however, that each may also be interpreted as a multiple correlation coefficient
relating a canonical variable chosen from one set of variables with the other
complete set of variables. A typical meaningless multiple r* with 31 variables
is 31 times a typical meaningless simple r2.

st
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An additional analysis was carried out on the same 47 Xx 47 correlation
matrix R. To begin, a principal component analysis was carried out on the
Cattell and Smith variables separately by computing

R, RLITK:, 0
1,2,..., 16]SDG[17, 18, ..., 47][R, 1] = | | Ru 12],[ 1 ﬂ
Spol 1Spel P

where R is the diagonal matrix of principal components for the Cattell vari-
ables and R, is the same for the Smith variables. K}, expresses the 16 Cattell

Table 9.1.2

PRINCIPAL COMPONENTS OF THE 16 CATTELL VARI-
ABLES AND THE 31 SMITH VARIABLES

Cattell components Smith components

3.7618 11.4583 0.1726
2.2444 6.5800 0.1478
1.7615 4.6448 0.1368
1.2207 2.1822 0.1343
1.0256 1.1778 0.1211
0.9461 0.6819 0.1000
0.8869 0.4348 0.0973
0.7499 0.3997 0.0937
0.5944 0.3646 0.0918
0.5379 0.3164 0.0845
0.4991 0.2415 0.0783
0.4475 0.2191 0.0705
0.4249 0.2091 0.0671
0.3638 0.2079 0.0553
0.2945 0.1915 0.0551
0.2410 0.1834

Total 16,0000 Total 31.0000

principal variables in terms of the original standardized Cattell variables, and
K}, does the same for the Smith variables. If, as would normally be the case,
the original standardized variables were regarded as having unit sample variance,
then the sample principal components are also sample variances for the cor-
responding principal variables and the elements of RY; are the sample covariances
between the two sets of principal variables. The two sets of principal components
are shown in Table 9.1.2. Note that the Cattell components drop off more slowly
than the Smith components. For example, to achieve 959 of the total of
16.0000 requires 14 of the 16 Cattell variables, while to achieve 95 7; of the total
31.0000 requires only 16 of the 31 Smith variables. This suggests a greater
redundancy in the Smith variables than in the Cattell variables.
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The next stage of analysis is to reduce the sample covariance matrix of the
principal variables to a correlation matrix, i.e., to alter

RY Ry, [, Ry
R R Ry 1
by dividing through each row and column by the square root of its diagonal

elements. The 16 x 31 matrix R}* provides the set of 496 correlation coefficients
between the two sets of principal variables. In accordance with the hope that

Table 9.1.3

THE DISTRIBUTION OF THE 25 CORRELATION COEFFICIENTS AMONG THE

FIRST 5 PRINCIPAL VARIABLES OF EACH SET AND OF THE REMAINING 471

CORRELATION COEFFICIENTS AMONG PRINCIPAL VARIABLES. THE EX-

PECTED FREQUENCIES ARE CALCULATED ACCORDING TO THE (G, #3%)
DISTRIBUTION FOR r? (see Section 14.2.)

Group of 471 Group of 25
Irl Observed Null expected Observed Null expected
frequency frequency frequency frequency

0-0.025 127 136.6 4 1.3
0.025-0.050 126 119.2 5 6.3
0.050-0.075 71 90.9 2 4.8
0.075-0.100 67 60.8 3 32
0.100-0.125 34 34.8 0 1.9
0.125-0.150 22 17.4 4 0.9
0.150-0.175 6 7.5 2 0.4
0.175-0.200 9 2.7 1 0.1
0.200 + 3 L1 4 0.1
471 471.0 25 25.0

only the first few principal variables of each set contain important variation,
these correlation coefficients were looked at in two groups, the first group of 25
being the correlation coefficients relating the first 5 principal variables of each
kind, and the second group being the remaining 471 = 496 — 25 correlation
coefficients. The two distributions of the absolute values of these correlation
coefficients corresponding to the set of 25 and the set of 471 are shown in Table
9.1.3. Two points should be kept in mind when considering Table 9.1.3. The
first is that these are correlations among two sets of variables where correlations
within each set are all zero. Consequently, no correlation in the table is con-
taminated by another in the sense of relating intracorrelated pairs of vari-
ables. The second point is that although an expected frequency is given for
each observed frequency under the hypothesis of no correlation at all between
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Cattell and Smith variables, it is obviously not appropriate to compare the
observed and expected frequencies by a x® goodness-of-fit test because the
observed correlation coefficients are not independently drawn from a population.
Still the agreement between observed and expected on the left side is quite
striking except for the two most extreme categories. On the right side the last 4
categories considerably exceed their null expectations. On the left side the three
values exceeding 0.2 are 0.243 between the first Smith principal variable and the
fifteenth Cattell principal variable, 0.227 between the twenty-second Smith and
the eleventh Cattell, and 0.205 between the thirty-first Smith and the fifth Cattell.
It is difficult to believe that these three correlations mean anything more specific

Table 9.1.4

THE SAMPLE CORRELATION COEFFICIENTS AMONG THE FIRST FIVE
PRINCIPAL VARIABLES OF EACH KIND

Smith principal variables
1 2 3 4 5
Cattell 1 —-0.227 —0.175 —0.041 0.017 0.138
principal 2 —0.296 0.557 0.087 —0.061 0.086
variables 3 0.140 0.040 -0.170 -0.134 0.021
4 —0.042 ~0.058 0.043 0.176 0.013
5 0.005 0.029 —0.079 0.360 0.128

than that some small residual tendency for correlation remains after the 25 more
promising elements have been removed. The four values exceeding 0.2 on the
right are 0.227, 0.296, 0.360, and 0.557 as may be seen from Table 9.1.4.

The fact that the largest value 0.557 relates the second principal variables in
each set is striking evidence that variables pulled out by a principal component
analysis have a tendency to be good variables for prediction purposes as well.
The other large value 0.360 shows that this tendency persists down to the fourth
and fifth principal variables. ‘

Next reconsider canonical correlation analysis. If the analysis applied to

R were applied to
I R}
Ry 1

instead, then exactly the same canonical correlation coefficients as those in
Table 9.1.1 would result, for these quantities are not dependent on the choice of
basis in &, or &,. Itis instructive to note how an array like R}, which Table 9.1.3
shows to be so close to a null distribution can produce canonical correlations as
healthy-appearing as those in Table 9.1.1. This in turn suggests doing the canon-
ical correlation analysis on smaller subsets of principal variables in the hope of
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Table 9.1.5
CANONICAL CORRELATION ANALYSES BASED ON TABLES.1.4

1 —-r ? r;
First 5 Cattell principal 0.5699 0.6558
variables versus first 0.8094 0.4366
5 Smith principal 0.8783 0.3489
variables. 0.9658 0.1819
0.9969 0.0559
First 2 Cattell principal 0.6028 0.6303
variables versus first 0.9209 0.2812
2 Smith principal
variables.

getting more meaningful sample canonical correlation coefficients. Two such
reduced canonical correlation analyses were done, the first relating the first
five principal variables from each set and the second relating the first two
principal variables in each set. The results are shown in Table 9.1.5.

9.4 THE CASE OF A SINGLE CLASSIFICATION
VARIABLE REPRESENTED BY ¥, . V, s, ..., Vy

A classification variable with p — s classes is defined by a rule such that each
individual is assigned to one of p — s classes. Such a variable could be reduced
to a standard real-valued variable by assigning a real value to each of the p — s
classes, but information is lost by doing so. A means of retaining all of the
sample information is to set up an indicator variable for each of the p — s
classes; more specifically, to define ¥, to be a variable taking the value unity
for a variable in class i and zero otherwise, for i=1,2,...,p —s. The
discussion of this section follows out special cases of the analyses described
earlier in this chapter which arise when such a classification variable is related
to s measured variables V5, Vs, . . . , V. Thestill more special case of p — s = 2
was introduced in Section 8.5. It will be seen that the notation and terminology
of multivariate analysis of variance is helpful in the present context.

A few remarks about classification variables may help clarity and perspec-
tive. A sample of male children of a certain age might be measured on height,
weight, and eye color, where eye color is reported in one of five categories. Such
a sample belongs to the type considered here where V; and ¥, refer to height and
weight while V3, ¥, Vs, Vs, and ¥, denote indicator variables for eye color. If
a second categorical variable were adjoined, say hair color classified into four
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categories, then the pair of classification variables together define a cross classi-
fication into 4 X 5 = 20 categories, and again the present analyses could be
carried out. Note, however, that the standard linear and quadratic analyses are
not suggested here for analyzing covariation between such a pair of categorical
variables. Nor are cross-classifications explicitly discussed except briefly in
Example 10.3.

The hypothetical sample on height, weight, and eye color may be compared
with another hypothetical situation providing height and weight for samples of
male children of a given age from five different nationalities. The classification
in the latter case would normally be conceptualized rather differently: rather
than regard nationality as one of many varying characteristics in a unitary
population, one would regard the nationality groups as five different popula-
tions from which five different samples were available. The line between these
two attitudes is not always firmly fixed. The former is adopted in this chapter,
but the terminology of analysis of variance developed for the latter attitude will
be introduced. Chapter 10 illustrates the separate population attitude, while
Chapter 11 illustrates a class of situations where it is appropriate to regard the
data as representing a single sample on some variables and several samples on
other variables.

Suppose that r; sample individuals fall in category ifori=1,2,...,p — s
where >7~°n, = n. Suppose that the scores on ¥, for the », individuals in
category i are denoted by X9 forj=1,2,...,n,i=1,2,...,p—s,and
r=1,2,...,s. The n sample individuals may be ordered so that the data
matrix X takes the form

Xil,l) - X;l’l) 1 0 - 0
X:(ll:’ﬂl) e X;l»"ll) 1 0 --- 0
X;Z,l) PN X§2,1) 01 --- 0
X = ) : o i (9.4.1)
X§2,n2) . Xé?,‘nz) 01 -0
__Xilws,n;:—s) N X§ﬂ~ssﬂp-s) 00 --- 1|

The sample means and inner products for ¥y, V3, ..., ¥, have the general
forms given in Section 7.2 while the remaining means and inner products have
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the special forms
Ysiﬂ' = n,~/n,
Vi, Viridg = nj,\”/z!f),
Ve Verdr = nj()_‘;zw - X,
Vors Vs+k)Q =0, (94.2)
Verir Vardr = —nm/n,
Vess Virsdo = i
and
Vigis Veridp = nin — ny)/n,

fori=1,2,...,s,andj# k = 1,2,...,p — s, where
X9 = (1fn) 3 X0, (943)
1=1

Best linear predictors may be sought either for the V,,; in terms of V3,
Vas ..., Vyorfor the V; in terms of Vyis Visgs - - - » V. The latter will be ex-
plored here. Such multiple regression analyses may be visualized geometrically
in the n-dimensional space .4 introduced in Section 7.4 where every variable V is
represented by a point P(V). The regression analysis of V;on Vyp, Voe, - -5 vV,
is clearly related to the orthogonal projection of P(V}) into the subspace spanned
by P(Vy), P(Ve1a), - - - » P(V). Usually this subspace would have dimension
p — s+ 1, but here ¥y and Vyq + Ve + -+ + V, are both variables which
take the value unity for all individuals; consequently, P(V)) lies in the subspace
spanned by P(V,1), P(Vei2)s - - - P(V,) which has dimension p — s. Thus one
of the variables V,, V.4, - . . , ¥, is redundant.

In computing terms, the desired orthogonal projection is carried out via any
p—sof thep—s+1 operations SWP[s + 1], SWP[s + 2], ..., SWP[p],
SWP[p + 1] applied to Q. (The remaining sweeping operation cannot be
carried out because there is a zero in the corresponding diagonal position.) By
carrying out the first p — s operations one finds that the augmented best linear
predictor for V¥ is

P8
V=3 X W, (9.4.4)
i=1
for i=1,2,...,s. But of course substitutions may be made by identifying
V, with V,,, + - -+ + ¥, to obtain equivalent expressions.

Similarly the (nonaugmented) best linear predictor may be determined by
orthogonal projection of Py( V,) into the subspace spanned by Pp(V; 1)s
Pr(Veio)s - » Pr(V,) which has dimension p — s — 1 since P (Vo +
Via+ -+ V)= @ in A". The reader may check that the best linear pre-
dictor may also be expressed by (9.4.4).
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The fitted part of the sample corrected sum norm of ¥; may be written

d
Vo Vp = Zn( X7 — X, (9:4.5)
i=1
and the residual part may be written
. . -8 nj . B
V= Vo Vo= Vr =3 2 (X" — X, (9-4.6)
g=1 1=1

so that the decomposition (Vi, Vg = (Vi, Vdp+ (Vi — Vi, Vi— Vop is
expressed here by the identity

P—s nj p—s P—s nj
33X — ) =30 (X — X+ 3 3 (X0 = X (047)
J=ll=1 J=1 J=11=1

More generally, in the spirit of Section 9.1 consider the joint prediction of
each of Vy, Vs, ..., Vyin terms of V4, Ve, ..., V. The sample corrected
sum inner product of ¥y, ¥y, . . . , ¥, decomposes accordingly into the sum ofan
inner product associated with the fitted parts of ¥y, V,, ..., ¥, and an inner
product associated with the residual parts of V3, Vs, . . ., V.. The (i, i) elements
of the matrices of the latter two inner products are respectively

P8
Vi Vi) 4 = 20X — X)X — X, (9.4.8)
A
and !
p—S N; i . . .
Vi Vi = 2 3 (X — X)X — X7, (9:4.9)
je=1 =1
where o
(Vz” Vh)T = (Vi! Vh)A + (Vi’ Vh)W (9-4-10)

foriandh=1,2,...,5s.

The quantities appearing above are all familiar to users of analysis of
variance ideas. The particular analysis of variance under consideration is the
simple case of a one-way classification into p — s groups. Expression (9.4.5)
may be called the among group sum of squares for V; while the term (pooled)
within group sum of squares is used for expression (9.4.6). Considering V7,
Va, ..., V,jointly, rather than just a single ¥;, the terminology and concepts
of analysis of variance are generalized to multivariate analysis of variance. Thus
the among group sum of squares is replaced by the among group sum inner
product defined by (9.4.8) and the within group sum inner product defined by
(9.4.9) and the analysis of variance decomposition (9.4.7) generalizes to the
multivariate analysis of variance decomposition (9.4.10).

Note that knowledge of the analysis of variance decomposition for every
variable in the space spanned by ¥y, Vs, . . ., V, is equivalent to the knowledge
of the multivariate analysis of variance decomposition (9.4.10). In other words,
multivariate analysis of variance may be described as the determination of the
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whole complex of univariate analyses of variance for all of the variables of a
subspace.

Recall, however, the remark made earlier that the concern of Section 9.4 is
with classifications which are more like bona fide variables rather than classifica-
tions which mark the individuals into separate samples. Since the terminology of
analysis of variance is more often used in the latter situation, its uses here should
be compared with the uses discussed in Chapters 10 and 11. Here the concern is
more with best linear prediction from one subspace to another and with correla-
tion analyses relating the two subspaces.

If the multiple correlation coefficient between V,; and the set V 4, Vs,
..., ¥, is denoted by ¢, then

D5 D8 mj
1= Vo V) (Vs Vg = I X — X[ 3 3 (X7 — X)* (9.4.11)
J=1

j=1=1
fori=1,2,...,s The equivalent ratio

H; = (V,, V) 4|V, Vg = £](1 — 1) (9.4.12)
is more familiar in analysis of variance contexts. The canonical correlation
analysis relating the sets Vy, V,, ..., Vyand V4, Voo, ..., ¥, produces sets
of canonical variables Wy, W,, ..., W, and W, ,, W,.,, ..., W,. Formulas

like (9.4.11) and (9.4.12) could also be written for the canonical correlation
coefficients r, and their associated

G, =rij(1 = r). (9.4.13)

This set of G, generalizes the single ratio G defined in (8.5.3).

Certain details need to be filled in. Since P;;(Vyyy), ..., Py (V,) span a
subspace of dimension p — s — 1, the among group sum inner product is said
to have p — 5 — 1 degrees of freedom. Similarly, the within group sum inner
product is said to have n — (p — s) degrees of freedom. The rank of the among
group sum inner product is the dimension of the subspace spanned by the com-
ponents of P(Vy), P(Vy), ..., P(V,) in the (p — s — 1)-dimensional subspace
spanned by Py;(V.4),...,P(V,), and so this rank is at most min (s,
p — s — 1). Similarly, the maximum rank of the within group sum inner product
is min (s, n — p + 5). These maxima are generally attained with sample data,
since precise linear relations among V4, V,, ..., V, are rare.

In the general theory of canonical correlation analysis of Section 9.2, the
number of nonzero canonical correlation coefficients is at most min (s, p — 5).
Here, because the among group sum inner product has rank at most min (s,
p — s — 1), the number of nonzero canonical correlation coefficients is at most
min (s, p — s — 1). Another way to see this is to note that the sample corrected
sum inner product of V,;, V,,s,..., ¥V, has rank p — s — 1 and 50 is a semi-
definite inner product over a (p — s)-dimensional space. The last canonical
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variable in the set W, ., W, ., ..., W, has variance zero, ie., is V., +
Viez + -+ + V, apart from a scale factor, and meaningful correlation coeffi-
cients may be associated only with W, W s, ..., W,y

9.5 THE FORWARD METHOD OF SELECTING PREDICTOR VARIABLES

The discussion in Section 8.2 of various methods for selecting a subset of a set
of available predictor variables is extended here to cover the selection of a subset
of Vi, ¥y, . .., V, for use in predicting the set V.3, Viya, - . . , V. For brevity
only the forward method will be discussed, but a similar discussion could easily
be supplied for the backward method or for other variants.
Having selected V,,V,,..., V;_, the forward method of Section 8.2
next chooses V;, to maximize the multiple correlation coefficient between V',
and the selected predictors. When ¥, is generalized to ¥y, Vip, ..., Vi
there is unfortunately no single multiple correlation coefficient to be maximized.
Instead there is such a multiple correlation coefficient between each variable in
the subspace spanned by V4, Viie, . .., ¥, and the set of selected predictors.
If the problem of choosing ¥; is regarded in a coordinate-free way, then
the aim is to make the subspace spanned by Vil, Viz, cee, Vi, as close as possible
to the subspace spanned by V1, Vi, . - - , Vs Where “close” is to be measured
in terms of the sample covariance inner product. Any set of quantities possessing
this degree of invariance is determined by the set of canonical correlation co-
efficients. These may be denoted by ry, 13, . . . , 7, some of which may be zero.
Thus the problem is reduced to the specification of a criterion C = C(ry, 1as
., ,_,) to be optimized by the choice of ¥;,. Some of the criteria which have
been proposed are

p—8

Cy= H (1 - r?),
i=1
P8 s L2
Co=2r, and Cyz=—"—. (9.5.1)
i=1 i1l —r;

These criteria may also be used for testing the null hypothesis that the two sets
of variables are uncorrelated. Note that large values of C, and C, are desirable,
while small values of C; are hoped for. Another criterion sometimes proposed
for testing is C; = max (ry, ry, . . . , ;) = ry, but this seems less desirable for
a selection criterion since it concentrates on a single dimension and ignores
possibly important ability to predict in other dimensions. C, also has the dis-
advantage of requiring that the canonical correlations be computed at each
stage, while this computation may be circumvented under C;, C,, or C3. In
some circumstances, one might abandon the coordinate-free approach and
specify a nonnegative quadratic form in the prediction errors to be minimized.
Such a quadratic loss would be equivalent to specifying a new basis U,

U,s, . . ., U, of the space spanned by ¥y, V., - - - , V¥, and maximizing the
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sum of the squares of the multiple correlation coefficients of Uy, Uyys, . .., U,
with the space spanned by V; , V;,,..., V..

Having decided on a criterion, the selection procedure is defined, except
for a rule saying when to stop. Such a stopping rule would be based on the
change in C at any stage, i.e., if the selection of a further predictor does not bring
about sufficient improvement in C, then the selection procedure is stopped. A
measure of what constitutes sufficient improvement may be deduced in a rough
and logically imperfect way by a consideration of significance tests.

Having selected a subset of predictors ¥; , ¥, , ..., V;, there are two further
reductions which need consideration. The real concern is with the best linear
predictors of V.5, Viis, . .., ¥V interms of Vi Vigs o =+ Vi, and,ifp — s < ¢,
these best linear predictors span only a proper subspace of the space spanned by
Vi»Viy-.-» Vi Consequently one need only retain this subspace. Moreover,
within this subspace one may isolate a set of canonical predictors with associated
canonical correlation coefficients given by the nonzero subset of ry,re, .. .,
r, . Again it may be judged, using a tenuous significance testing argument, that
only a smaller subset of ry, ro, . . . , 7, are large enough to represent more than
meaningless sampling fluctuations. If so, the space of effective predictors may
be further reduced to include only those canonical variables having apparently
adequate r. Note that the second stage of reduction here actually includes the
first, for a decision to retain all of the canonical variables which correspond to
nonzero canonical correlations automatically restricts consideration to the
appropriate space of best linear predictors.

To understand the computations required for forward variable selection, it
is necessary to have a convenient form for the chosen criterion C and then to find
a direct way to compute the revised C when a new variable enters the system.
Since the criteria (9.5.1) are symmetric between the two sets V; , V; ,..., V;
and V.4, Vyie, - - - » V, the following description may be applied with the two
sets interchanged. However, the prescription for revising C when a new variable
is added is different depending on whether the first or second set is swept. The
description here follows the latter path, but the reader may wish to work out the
former and compare the two.

Suppose that T = [Tu Tm} (9.5.2)
T21 T22
denotes the corrected sum inner product matrix of the two sets V; , Vi, ..., V;
and V1, Vya, - - - » V. Thecriteria C, and C, are, respectively, the product of

the eigenvalues of T, , = T,, — T,,T;IT,, relative to T,, and the sum of the
eigenvalues of Ty; — Ty, o relative to Ty;. These quantities are simply expressible
when ¥V, Viz, Vs replaced by an orthonormal basis U, Us, .. ., U, so
that the corrected sum inner product matrix of Uy, Uy, . . ., Uy, Vg, Veras o+ -

V, has the form [T
T = [ 1j. (9.5.3)
T21 T2
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Then C, is the product of the eigenvalues of I — TmT;zl'I"21 relative to I, or

C, = det (I — Ty, T Ty), (9.5.4)
and, similarly,

C, = tr (T1oT 5 Tor)

=t —tr (I — Ty T Ts). (9.5.5)

Note that T may be defined from T using MST{1, 2, . . ., t], while I — 'i“ngzl'i“n

follows from T using SWP[s + 1,7+ 2,...,¢ + p — s]. (One of these sweep-
ing operations must be omitted if ¥y, Viie, ..., V), represent a categorical
variable.) Finally det (I — 'i‘mT;g"i‘m) is a by-product of the successive sweepings
SWPI[1,2,...,¢] applied to I — 'i'ngzl'i‘m. The criterion C, is similar to C,
except that the eigenvalues being summed are those of T,, — T, , relative to
T,, , and different orthogonalizations are important.

Finally, consider the situation when V,, V..., V; have been selected
and a further ¥;_ is contemplated. Suppose that SWP[r+1,t4+2,...,¢t+
p—sIT and SWP[r+ 1,74 2,...,0+p—5, 1,2,...,¢T are both in
hand. Suppose that V, _ is assimilated into the system and that T, denotes
the ({ +p — s+ 1) X (t + p — s + 1) extension of T with V;  put into row
and column ¢ + 1. The ASM operator of Section 4.3.3 may be made to produce
SWP[t+2,t+3,...,t+p—s+1]T,, and SWP[t+ 2,74+ 3,..., 1+
p—s+1,1,2,...,6T,. Denotingthe (f + 1,7 + 1) elements of these two
matrices by 4,,, and By, respectively, it is easily checked that B,,;/4,,, is the
factor by which C, must be multiplied when V;, | is adjoined. The reader may
supply corresponding descriptions for C, and Cs, which are somewhat easier.
It should be stressed that the forward method requires that these assimilation
procedures be tried for all possible choices of V;,  at each stage. This means
that sums of products of each such ¥, | with each of V;, V,-z, cees Vi Vi
Virzs - - s Vp, Vo must be found. However, the sums of products for each pair
of unselected variables are not required, which can result in considerable saving
of computation when the number of unselected variables is large, as in the
following example.

9.6 AN EXAMPLE ILLUSTRATING PREDICTION OF A CATEGORICAL
VARIABLE AND FORWARD SELECTION OF PREDICTOR VARIABLES

Example 9.2. The following discussion summarizes an analysis of meteoro-
logical data by Dr. Robert Miller (1961, 1962). The objective of the analysis
was to provide a method of forecasting short term ceiling conditions at an air
force base. The specific data refer to McGuire Air Force Base, Wrightstown,
New Jersey. The forecasts were to be provided two hours in the future for the
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categorical variable determined by the five ceiling conditions:

. Closed: ceiling 0-200 feet.

Low instrument: ceiling 200-500 feet.
High instrument: ceiling 500-1500 feet.
Low open: ceiling 1500-5000 feet.
High open: ceiling 5000 feet and up.

SR LN

Any particular forecast is based on the values of 75 quantities measur-
ing 15 meteorological variables at each of five weather stations at the time of
forecasting. The five weather stations consist of McGuire Air Force Base and
four surrounding stations at Philadelphia, Newark, Lakehurst Naval Air Station,
and Atlantic City. The 15 meteorological variables are:

. Height of the lowest cloud layer.

. Height of the second cloud layer.

. Amount of lowest cloud layer.

. Amount of second cloud layer.
Height of ceiling.

. Visibility.

. Three hour change in ceiling height.
. Three hour change in visibility.

. Three hour change in pressure.

10. Temperature-dewpoint depression/temperature.
11. East-west wind component.

12. North-south wind component.

13. Three hour change in wind direction.
14. Total cloud cover.

15. Three hour change in temperature.

R Y N

=]

The past data to be used in setting up the forecasting method consist of 1874
time points falling at consecutive three hour intervals during the winter months
of 1954-55 and 1955-56. A further 926 time points from the winter months of
1956-57 were held in reserve for checking the forecasts on independent data.
At each of these 1874 + 926 time points the values of 75 variables are given, and
the corresponding ceiling category two hours later is also given. In the original
data the numbers n, in ceiling category i for i =1, 2,3, 4, 5 are 49, 84, 158,
228, 1355. In the independent data the corresponding numbers are 35, 76, 118,
124, 573. Evidently, the flying weather was worse in the winter of 1956--57 than
in the average of the two preceding winters.

Miller’s basic calculations with the original sample of size 1874 were those
described in Section 9.4 and 9.5. Miller used the terminology of multivariate
analysis of variance rather than the equivalent approach in terms of artificial
variables ¥,,1, Ve, - - - » ¥, and his computer programs were written directly

9.6 EXAMPLE ILLUSTRATING PREDICTION OF CATEGORICAL VARIABLE 195

rather than in terms of the operators described in this book. The forward
method of selection was used, the criterion being C; in (9.5.1). Note that
P8
Cs = 2 G,
=1
using the G measure (9.4.9) in place of the r measure. Miller reports that the
first five predictor variables chosen in order are:

. Height of ceiling at Philadelphia.

. Height of ceiling at McGuire Air Force Base.

. East-west component at McGuire Air Force Base.
. Height of ceiling at Newark.

. Total cloud cover at Newark.

R S S

The corresponding values of C; after selecting ¢ predictors forr =1, 2, 3,4, 5
are 2.369, 2.994, 3.171, 3.318, 3.419. Miller ceased selecting at this point because
he judged that the next few variables selected resulted in an insufficient increase
in the value of C;. The basis for this judgment has a tenuous connection with
significance testing, but it is doubtful whether the subsequent analysis would
have been much altered by the addition of a small number of additional pre-
dictors. Miller had found from experience that the inclusion of a large number
of predictors is often harmful in that forecasts based on independent data become
less accurate.

The next step was to carry out the canonical correlation analysis of the five
selected predictors against the artificial variables representing the classification.
This results in four nontrivial canonical correlation coefficients r; and the four
corresponding linear combinations of the five selected predictor variables.
Miller reports the values of G; = r?/(1 — r?) to be

G, = 3.312
G, = 0.087
G, = 0.020
G, = 0.001

and the corresponding canonical predictors to be

W, = —7.246V; — 6276V, + 1.898V,; — 3.008V, + 1.000V
W, = 0251V, — 0.271V, — 0.589¥; + 0.319V, + 1.000V;
W, = —2353V; + 2.664V,; + 0.980V; + 0.971V, 4+ 1.000V;
Wy= 7.105V, — 10.880V, + 4.427V; + 7.372V, + 1.000V5,
where Vi, V,, V,, V,, ¥V represent the five selected predictors listed above.

Note the scaling of each W, has been fixed arbitrarily by choosing the coefficient
of V; to be unity.
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The canonical correlation analysis provides four different potential sets of
predictors, i.e., W, alone or Wy and Wy or Wy, Wy, and Wyor Wy, W,, Wy, and
W, Miller again presents a tenuous significance-testing argument suggesting
that only W, need be taken into account. Later he shows empirically that the
best forecasts on the independent data result from the use of three or four
canonical predictors.

The analysis was also made to produce the sample mean vectors and sample
covariance matrices of the five selected predictors for each of the five sub-
samples corresponding to the five ceiling categories. From these the sample
mean vectors and sample covariances of the four canonical predictors were
found, again for each of the five subsamples. Rather than reproduce these
numbers, a graphical analysis of the first two canonical variables is reproduced.
Suppose that W} and W denote rescaled versions of W, and W,, chosen to
have pooled within sample mean squares of 1 and G/G,, respectively. The
corresponding dual two-dimensional individual-space is represented in the
following graphs where wf and w} are drawn to appear orthonormal. Figure
9.6.1 shows the mean-centered concentration ellipses of the five subsamples,
except that the radii have been rescaled by the factor 1.18, which is the factor
required to rescale the ellipse of concentration of a bivariate normal probability
distribution so that half of the probability is contained within the ellipse. In
other words, it is the factor such that roughly half of the sample points should
lic inside the ellipse if the subsample distributions resemble bivariate normal
distributions. The subsequent Figs. 9.6.2, 9.6.3,9.6.4, 9.6.5, and 9.6.6 show the

w

Fig. 9.6.1. Concentration ellipses (after scaling by the factor 1.18) corresponding to
the five weather categories, and defined by the canonical variables W3, W5 and the
original sample of 1874 time points.

.
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Fig. 9.6.2. Same as Fig. 9.6.1, showing the concentration ellipse of the first weather
category only, and showing the original sample points (dots) and independent sample
points (crosses) of the first weather category.

actual sample individuals in the five subsamples, including both those in the
original data and those in the independent data. ‘

Miller remarks that these pictures show clearly that the subsamples do not
follow bivariate normal distributions. He also notes that the two sets of data
coincide fairly well except possibly for ceiling category 2, and points out the

W-*

— W

Fig. 9.6.3. Same as Fig. 9.6.2, replacing the first weather category by the second.
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double clustering in category 5, apparently due to discreteness in the predictors.

For a detailed discussion of how these preliminary stages of data reduction
lead to actual forecasts the reader is referred to Miller’s monograph, but the
general approach is clear from Fig. 9.6.1. Each time a forecast is desired, the
values of the canonical predictors W} W are computed and a point in the plane
of Fig. 9.6.1 is located. One must then decide how probable it is that this point
belongs in each of the five subsamples. Roughly speaking this is to be based on

we
1
.‘. . ] - - .
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Fig. 9.6.4. Same as Fig. 9.6.2, replacing the first weather category by the third.
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Fig. 9.6.5. Same as Fig. 9.6.2, replacing the first weather category by the fourth.
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wSr

Fig. 9.6.6. Same as Fig. 9.6.2, replacing the first weather category by the fifth, and
separating the original and independent data.

distance from subsample means. The scaling of W} and W} to have sample
variances 1 and G,/G, was chosen so that the distance measure reflects the
relative importance of the canonical variables as measured by G. Miller had
some empirical backing for the specific choice of 1 and G,/G,, i.e., other choices
have produced less accurate forecasts in a variety of examples.

Corresponding to the canonical variables Wy, W, Wy, W) is another set of
canonical variables which are linear combinations of the artificial variables
which represent the ceiling categories. These corresponding canonical variables
are determined up to scale changes to be the best linear predictors of Wi, W,
W, W, in terms of the artificial variables, and the form of these best linear
predictors is clear from (9.4.5), i.e., the subsample means of the canonical pre-
dictors provide the other set of canonical variables. These subsample means for
at least W, and W, may be seen in Fig. 9.6.1. Drawing a rough curve through
these means suggests that the first canonical predictor may be thought of as
discriminating between high and low ceilings while the second canonical pre-
dictor separates the middle range from the two extremes.

The fact that the sample means in Fig. 9.6.1 do not lie in order on a simple
smooth curve may plausibly be regarded as a consequence of sampling variation.
Recall that the ceiling categories 1 and 2 have relatively few individuals. This
sampling variation is a very complex phenomenon for several reasons. For one,
the effect of the procedure for selecting variables on sampling variation is very
difficult to understand. In addition, the individuals in these data are successive
time points at only three hour intervals. Since weather conditions often change
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little over such periods, there is a sense in which there are many fewer than the
apparent number of sample individuals, and correspondingly greater sampling
variatign could be expected than for random samples from a population of the
same size.

Much as with the psychological examples 8.4 and 9.1, it is tempting to try
to interpret the selected predictors and canonical predictors in terms of physical
or meteorological theories. For example, the selection of the Philadelphia ceiling
and the east-west wind component suggests the importance of looking west for
future weather. No direct tie with a physical theory seems possible, however.

CHAPTER 10

TWO OR MORE SAMPLES OF INDIVIDUALS

10.1 INTRODUCTION

A set of k samples on a common set of p variables may be determined by their k
data matrices XV, X®, ..., X®  If the sample sizes are iy, g, . .+ , M then
the data matrices have dimensions n; X p, #y X p, . .., M X p, respectively.
The ith row of XV representing the ith individual in sample / will be denoted by
X fori=1,2,...,mand/l=1,2,...,k

Each of these samples yields the basic statistics which were described in
Section 7.2 for a single sample, namely

ny

X0 = 3 X%0n,, - (10.1.1)
i=1
QW = 4‘2 XA g, (10.1.2)
f=1
TW = QW — n XWX, (10.1.3)
and
S(l) — T(l)/(nl — 1)’ (10]4)

forl=1,2,...,k.
If the k samples are combined to form a single sample of size

ng, (10.1.5)

=

n =

I=1

i

then there is a total mean or grand mean vector

S X, (10.1.6)

1

M=
MS

»

.
il

=1

and a corresponding total sum of products corrected for the grand mean inner
product matrix .

M=

T=3 X — Ry(x“ — X), (10.1.7)
d=1

201

I=1

i
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and thence a total sample covariance matrix

S =T/(n — 1). (10.1.8)

It is often unnatural to pool k samples into a single sample, and corre-
spondingly the statistics X, T, and S may not have much direct appeal. They do,
however, relate closely to the analysis of variance formulation which was intro-
duced in Section 9.4. Thus T decomposes into

T=T,+ Ty, (10.1.9)
where

k
T, = 21 n (X — Xy X" - X) (10.1.10)
and =

k =
Ty =3 EZ(X“”') — ROy(X®N — gy

1=1 j=1

&

= le, (10.1.11)

11

[

This is mathematically natural in the sense of representing the inner products of
components in special orthogonal subspaces in .4~ which are defined in terms
of the indicator variables of the k groups. The theory was given in Section 9.4,
where s was used in place of p and p — s in place of k, and will not be repeated.
Here T, defines the among group inner product on & — 1 degrees of freedom
with rank at most min (p, k — 1) while Ty, defines the within group inner
product on n — k degrees of freedom with rank at most min (p, n — k). In the
special case k = 2, nX = n,X® + n,X® and substitution in (10.1.10) leads to
the inner product matrix

T, = X% — X®y &Y — X®/1/n, + 1/ny) (10.1.12)

with rank unity (or zero if X® = X@),
Analysis of variance considerations also suggest the weighted average
Sy = Ty/(n — k), (10.1.13)

which may be written in the form

x k
Sy = zlwls‘“ Sw, (10.1.14)

1= =

where ' -
w,=n, — 1 (10.1.15)

for I=1,2,...,k The particular weights (10.1.15) are suggested by the
sampling theory of statistical inference for circumstances where it may be
assumed that the k& populations being sampled have essentially the same co-
variance inner products.
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In general, the grand mean X defined in (10.1.6) or the pooled within sample
covariance Sy, defined in (10.1.13) are not directly interesting quantities unless
the underlying population means or population covariances, respectively, are
common. Both X = (,X® + n,X® 4 -+ + 7, X®)/n and Sy weight the
contributions from each sample roughly in proportion to sample size. But the
variation in sample size may be accidental and irrelevant to the subject of in-
vestigation. Equal weightings of X and S could be interesting, as could be
weightings which reflect population sizes. For any set of constants ¢, ¢y, - - - 5
¢;, the weighting w, = ¢%/n, in (10.1.14) would lead to an Sy, appropriate for
judging the sampling variation of (X0 4 ¢,X® 4 -+ + ¢ X¥)/(ey + ¢ +
co e

10.2 TWO-SAMPLE ANALYSIS

Consideration will be given first to the comparison of a pair of sample means
m® and m® and later to the more complex task of describing similarities and
differences between a pair of sample covariance inner products. Viewed as two
points in individual-space # , with no reference to any coordinate system or to
any inner product, the relative positions of m and m'® cannot be compared in
any meaningful way. Consequently an inner product m, over &, or equivalently
its dual inner product 7 over &, will be assumed. The dual pair = and =, will be
assumed to have full rank unless otherwise stated, but their source need not be
specified exactly. They might be sample-determined in various ways, or they
might be reference inner products determined apart from the sample data. The
initial aim is to study the information provided by m®, m®, and m,.

Two important concepts arise here, namely that of distance which was
introduced by Mahalanobis (1936) and that of best linear discriminator which
was independently introduced by Fisher (1936, 1938). The close relations
between these concepts, to be explored below, quickly became clear.

The distance D between m™ and m‘® may be defined simply to be

D = (mV — m®, mH — m@®)2 (10.2.1)

where (a, @)}/ denotes the norm of @ under 7,. A more general approach is to
define a distance D(#") for every subspace W~ of variable-space &, so that D
defined by (10.2.1) is the special case D(&). D(¥#") is defined in the same way as
D(&) in terms of the same sample means m® and m(® and the same inner prod-
uct m, considered as linear functionals and an inner product over the restricted
variable-space #". If #” has dimension unity, then D(#") will also be denoted
by D(W) for any W different from & in #°, and in this case (10.2.1) may be

written
D(W) = |mO(W) — mD(W)|[(W, W)z, (10.2.2)

Note that the substitution of oW for W, with a 5 0, does not alter the right side
of (10.2.2).
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A best linear discriminator may be defined to be any variable ¥ in & with
maximum D(V), the idea being that such a variable makes the sample means
appear as far apart as any variable can. In fact, as shown in Theorem 10.2, such
a variable has as much separating power in the sense of distance as the whole
space & of variables.

Theorem 10.2. The best linear discriminator V defined by m%, m®, and
7y is unique up to a scale factor. The unique one-dimensional subspace of best
linear discriminators is the dual space of the orthogonal complement of the
one-dimensional subspace of % spanned by mY — m®. For any best linear
discriminator V,

D(V)= D(6), (10.2.3)
and, for any variable U in the subspace of & orthogonal to V,
DU) = 0. (10.2.4)

Fig. 10.2.1. Mean-centered concentration ellipses and associated tangent lines (p = 2)
as described in the text.

The theorem follows simply because there is only a small amount of mathe-
matical structure present, which may be characterized geometrically in individual-
space % as in Fig. 10.2.1, i.e., by the pair of points m'" and m® and the pair of
ellipsoids consisting of points at distance unity or less from m® and m®
according to ;. Define %, to be the one-dimensional subspace of % spanned
by ml) — m'®. Define ¥, to be the orthogonal complement of %, in #. Note
that the family of parallel (p — 1)-dimensional hyperplanes including ¥7; also
includes the four tangent hyperplanes to the two ellipsoids where the line
joining m*Y and m® meets these ellipsoids, as illustrated in Fig. 10.2.1. The
subspaces % and ¥ in & dual to %, and ¥, in & are those which Theorem 10.2
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claims to consist of variables U such that D(U) = 0 and of best linear discrim-
inators ¥ such that D(V) = D(&), respectively.

The claim about % is the more obvious of the two. Each U in % defines a
family of parallel (p — 1)-dimensional hyperplanes in & on which U takes
constant values. The duality of % and %, means that the family includes a
hyperplane containing the line joining m™® and m®. Consequently mB(U) =
m®(U), and, from (10.2.2), D(U) = 0.

Consider now any variable W as a candidate for a best linear discriminator.
Such a W has a unique expression as ¥ + U with ¥V in ¥" and U in .
Now mD (W) — m®(W) = mW(V) — mP(V) because m(U) = m®(U), and
(W, W) > (V, V) because ¥ and U are orthogonal. Consequently from (10.2.2)

DW) < D(V) = D(¥), (10.2.5)

which shows that ¥ is a space of best linear discriminators. Furthermore, the
inequality in (10.2.5) is strict unless W belongs to 7", so that ¥ is the unique
space of best linear discriminators. Finally, D(&) = D(U) + D(¥") because %
and ¥~ are orthogonal complements, and D(%) = 0 because D(U) = 0 for all
Uin %, so that D(V) = D(¥") = D(&), as required to complete the proof.

An alternative proof could proceed more directly in terms of the geometry
illustrated in Fig. 10.2.1. If the line joining m™® and m* intersects the ellipsoid
centered at m'V in @ and b, and the ellipsoid centered at m? in ¢ and d, then
D = D(&) is the ratio of length of the line segment m®@m® to the length of any
of the equal line segments (semi-axes) m®a, m™Mb, m®c, and m®d.  Any
variable W is characterized by the family of parallel (p — 1)-dimensional hyper-
planes on which it takes constant values, and this family includes four tangents
to the two ellipsoids, as illustrated in Fig. 10.2.1. Projection along the family of
parallel hyperplanes into the line joining m® and m'? carries individuals having
common values on W into a single individual, so that the line becomes a par-
ticular representation of the one-dimensional individual-space of W. The two
samples still have means m® and m® after projection, so that m't and m'®
represent the sample means in the individual-space of W (and do so for every
choice of W). From Theorem 6.6, the shadows a'b’ and ¢’d’ cast on the line
joining m® and m® by the projection represent the one-dimensional ellipsoids
of points having distance at most unity from m® and m® according to the inner
product dual to the inner product induced by 7 on the one-dimensional space
spanned by W. This means that D(W) s the ratio of lengths of the line segment
mWm® to any of the line segments mVg’, mOp | mc’, md’.

The geometric proof of Theorem 10.2 is now obvious. Clearly the ratio
D(W) is maximized whena = d’, b= b, c = ¢', d = d’, which is achieved by
making W that variable ¥ whose corresponding hyperplanes are tangent at a,
b, ¢, and d. Also D(V)= D(&) for such a V. Moreover, the line segment
mWg’ has infinite length when W is any U orthogonal to V, so that DWU)=10
for such U.
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Some readers may object that the foregoing discussion does not give simple
formulas or computing rules for distances or best linear discriminators. But such
concrete descriptions are trivial, and not in themselves very illuminating. If
V and v are dual bases of &€ and &, if mV = XMy and m® = X®y, and if 7 is
represented by Q relative to V, then

D? = (Xu) — X(Z))Q—I(X(l) — X(z))’, (10.2.6)
and
V= [(XD - X®)QV (10.2.7)

defines a best linear discriminator. The reader should check directly that
D(V)? = D2 for V defined in (10.2.7), and that this particular choice of V' is
scaled to have norm D?. To compute D* and V, given X¥, X® and Q, a con-
venient approach is to set up a (p + 1) X (p + 1) matrix

XW — x@y
[)—qn —_xX® 0 }

and to apply SWP[1,2,...,p]. The last row of the result yields Xo —
K@)Q-1 and — D2 Moreover, the successive stopping points SWP[1,2,...,s]
along the way for s == I, 2, ..., p provide best linear discriminators and dis-
tances for subsets of V, making it possible to see how D increases as variables
are successively put into the system.

It may sometimes be useful to produce a full orthogonal basis whose first
member is a best linear discriminator and whose remaining members span the
orthogonal space %. From Theorem 10.2, such a basis may be characterized as
a basis of eigenvectors of the among sample inner product (10.1.12) relative
to . The reader may check that the corresponding eigenvalues are (1/n; +
1/n)"*D%0,0,...,0.

Sample-based inner products will now be considered more fully, first as a
means of choosing = in the analyses just described, and then as sample properties
which merit comparison in their own right.

The most common choice for = is the pooled within sample covariance with
inner product matrix Sy;. In this case (1/n, + 1 [ny)"t D(W)? is immediately seen
from (10.2.2) and (10.1.12) to be the familiar ratio of among sample mean square
to pooled within sample mean square (or F statistic) as used in the analysis of
variance. The alternative choices for = defined by the inner product matrices
Sy, Ty, S, or T are all closely related. By expressing the data in terms of a basis
of eigenvectors of T, relative to Sy- it is easily seen that all four choices for =
lead to the same best linear discriminators while the corresponding distances D,
D', D", and D" are related by

D% = (n, + ny — 2)D, (10.2.8)
D' = (n, + ny — D", (10.2.9)
and D" = D¥[L + D¥(1jny + 1/np). (10.2.10)

O —
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The various distances D, D', D", and D" are all in the tradition of analysis
of variance thinking. If it is presumed that the samples come from populations
with essentially different covariance structures, then other distances may be
interesting. For example, the use of the individual sample covariances 8% and
S® determines a pair of directed distances D™ and D®. The directed distance
D® measures how far away the mean of sample 2 appears from the center of
sample 1 when viewed in relation to the spread of sample 1, and so measures the
extent to which X® might or might not appear a plausible member of sample 1.
A similar observation applies to D®. Note that X could easily appear a
plausible member of sample 2 while X® did not appear a plausible member of
sample 1, or vice versa. More generally, weightings as in (10.1.14) for various
w, could sometimes be of interest. In particular, for judging the significance of
the difference X — X® irrespective of the difference in covariance matrices,
one would be interested in D, defined from

S(l)/n1 + S(2)/n2
§, =>4 T> 2
i/n, + 1/n,

Direct comparison of S® and S® may be approached in several ways.
Simple direct comparison of corresponding elements will give first indications.
Another possibility would be to examine the eigenvalues and eigenvectors of
SW relative to S®. Note that these eigenvectors are also orthogonal with respect
to any weighted combination of S and 8, such as Sy and S,. A third
approach relating the apparent differences to m'D and m'® is discussed below.

Four possible relative positions and shapes of a pair of mean-centered con-
centration ellipsoids are illustrated in Fig. 10.2.2, for p = 2, as cases a, b,c,d.
In case @, S = S® while in cases b, ¢, and d increasingly general differences
between the two covariance structures appear. The tangent lines to the ellipses
in Fig. 10.2.2 represent (p — 1)-dimensional hyperplanes in & on which the
corresponding best linear discriminator is constant, while, by the shadow theory
of Theorem 6.6, the semi-axes of the ellipsoids along the line joining m* and
m® represent the sample standard deviations when the individual-space of the
best linear discriminator is represented as the line joining m® and m®. Case b
refers to a situation where the best linear discriminators defined by S and S
are the same and even have the same standard deviations, while the covariance
structures differ in other respects. Under case ¢, the two best linear discrimina-
tors are again the same, but this common best linear discriminator has different
sample variances in the two samples, as is shown by the different lengths of the
semi-axes of the ellipses. Finally, case d represents a general situation where the
sample best linear discriminators defined by S and S@ are different.

Although case d will almost always occur with actual sample data, it is of
interest to ascertain how close to situations &, b, or ¢ the data come. Several
statistics which may partly serve this purpose will now be defined. Suppose that
the origin-centered concentration ellipsoids defined by S, S®, and Sy are

(10.2.11)
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denoted by 7%, 7, and my, respectively. Suppose that the line joining & and
m® — m® cuts these ellipsoids in s©, s, and sy. Two further points s,
and s, on this line may be defined to be the intersections of the line with the pair
of (p — 1)-dimensional hyperplanes tangent to 7 and #® and parallel to the
hyperplane which is tangent to mp at s This situation is pictured in Fig.

10.2.3 for the general case d. Note that Fig. 10.2.3 includes the information of
the kind given by case d of Fig. 10.2.2 along with additional information.

mm m
(@

®) my m

(© my m
N

W

Fig. 10.2.2. Four possible relative positions of a pair of concentration ellipsoids.

m

@

igig&gig\

Under case a described above, the three ellipsoids #, #®, and 7y are
identical, and consequently the five points s, 5%, sy, 5;, and s, are likewise
identical. Under case b, the three ellipsoids are no longer identical, but they still
define the same best linear discriminator and assign it the same variance, so
that s, s®, 5., 5, and s, are still the same. Under case ¢ ambiguity begins to
appear, not in the concept of best linear discriminator which is the same for
SW, S®_ and any weighting thereof, but in the variance to be assigned to this
best linear discriminator; for s® = s, and s® = s,, while the ratio of the lengths
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of the line segments @5, and @5, deviates from unity and is therefore a measure of
deviation from case b towards case c¢. These lengths are proportional to the
standard deviations of the common best linear discriminator under S and
S® _je., proportional to the distance-like quantities D, and D, expressible as

D? — [(X(l) _ X‘”)Sﬁ}]S(”[(X‘“ X(2))S ]/ (10212)
for i == 1, 2, and a suggested measure is

= (o5,)%/(e55)? = D2/ D%, (10.2.13)

Fig. 10.2.3. Two origin-centered sample
concentration ellipses and their associated
pooled within sample ellipse, together
with a mean difference vector and related
points and tangent lines.

The ratio of the lengths of the line segments @s; and s is unity when case
¢ holds, but greater than unity under case d, and similarly for os, and o5,
Consequently the ratios @s,/es) and @s,/es® may serve to indicate deviations
from case ¢ toward case d. By noting that D;, D,, and D are directly propor-
tional to the lengths of @s,, ©5;, and @s, and also that D, DW_ and D® are
inversely proportional to the lengths of the line segments os, o5, and os? one
may deduce that

= (os)"/(es"")? = DYDY D* (10.2.14)

for i = 1, 2, thus relating the suggested measures K; and K, to easily computed
distance measures.
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10.3 EXAMPLES OF TWO-SAMPLE ANALYSIS

Example 10.1. This example is based on data collected by Tagiuri (1965) in a
study of the values of research scientists in industry, the managers of scientists in
industry called here research managers, and executives of a more traditional kind.
Values are defined quantitatively as the scores obtained on the “Study of values™
questionnaire of Allport, Vernon, and Lindzey (1960). Each questionnaire
yields six numerical scores intended to measure the relative importance for the
individual of theoretical, economic, aesthetic, social, political, and religious
values. Each of the individuals in a sample from each of the three categories of
individuals filled out the questionnaire in the normal way to reflect their own
values. In addition, subsamples of individuals from each category filled out the
questionnaire a second time to rate their conception of a typical individual in a
different category. In this fashion executives rated a typical research manager,
research managers rated both a typical scientist and a typical executive, and
scientists rated research managers. Here, only the self-rating scores of 204
scientists and the self-rating scores of 236 research managers will be discussed
but see Section 11.3 for further aspects of these data.

The Allport-Vernon-Lindzey questionnaire has the special feature that the
six scores yielded by each questionnaire are constrained to have a constant sum
of 240 points, implying that an elevated score on one variable is necessarily
accompanied by an average depressing effect on the scores arising from the
remaining variables. The same phenomenon applies to sample averages. Also,
the sample covariance matrix is necessarily of less than full rank because the sum
of the variables, having a constant value, necessarily has variance zero. The
absence of full rank covariances causes only a minor complication for the
standard multivariate analysis to be described, because the variable-space &
may be considered from the beginning to have dimension five instead of six, and
the sample covariances do have rank 5. Thus, while it is convenient to display
means, variances, and covariances for all six variables, the analyses involving
inversion, such as distance and best linear discriminator computations, will be
carried out using only the first five variables. The choice of a variable for omis-
sion is arbitrary but has no effect on the resulting analyses which are coordinate-
free in & and so may be based on any five linearly independent basis variables.

An examination of the basic linear and quadratic statistics yields much use-
ful information. The mean vector for the self-rating data on the 204 scientists is

[51.21, 40.73, 38.11, 34.27, 40.43, 35.26],
and for the 236 research managers is

[48.97, 43.67, 37.62, 32.14, 42.11, 35.50].

10.3

The same pair of samples in the same order yielded sample covariance matrices

EXAMPLES OF TWO-SAMPLE ANALYSIS

477 —1.2 58 70 =32 —420]
—1.2 827 -—385 -—31.2 82 -20.0
58 —385 82.1 1.7 —138 -—-373
—-7.0 —31.2 1.7 540 —149 =25
—3.2 82 —138 —14.9 46.1 —22.5
—420 —200 —-373 25 225 124.4]
and
404 22 —42 -—163 3.1 —25.37
2.2 775 —33.0 -—29.8 199 —36.8
—4.2 —33.0 80.0 7.7 —20.8 —29.8
—163 —29.8 7.7 51.5 —16.5 341
3.1 199 -20.8 -—16.5 41.0 —26.8
-253 —368 -—29.8 34 —268 1152]

The standard deviations computed from the two covariance matrices are

respectively
[6.91, 9.09, 9.06, 7.35, 6.79, 11.15]

and
[6.36, 8.80, 8.94, 7.18, 6.40, 10.73].

Similarly the corresponding correlation matrices are

1 ~0.019 0.093 -—0.138 —0.068 —0.546
—0.019 1 —0.468 —0.467 0.133 —0.197
0.093 —0.468 1 0.026 —0.224 —0.369

—0.138 —0.467 0.026 1 —~0.299 -—0.031
—0.068 0.133 —0.224 -0.299 1 —0.281
—0.546 —0.197 —0.369 —0.031 -—0.281 1

and
1 0.039 —0.074 —0.357 0.076 —0.371
0.039 1 —0.419 -—0472 0.353 —0.390
—0.074 —0.419 1 0.120 —0.363 —0.311

-0.357 —0472 0.120 1 —0.359 0.044 |
0.076 0.353 —0.363 —0.359 1 —0.390
-0.371 —0.390 —0.311 0.044 —0.390 1

The questionnaire is designed so that a score of 40 on each value-scale
should be roughly typical. Thus both the scientists and research managers show
high average scores for theoretical values, with the scientists slightly higher. The
other five value scales may be discussed in similar terms. In general the self-
rating average scores of the two groups differ from 40 in directions which might




212 TWO OR MORE SAMPLES OF INDIVIDUALS 10.3

have been expected, and differ between groups as might have been expected
from a priori judgments about the tastes and attitudes of the two sets of subjects.

The various distance quantities defined in Section 10.2 were computed for
the chosen pair of samples. The pooled within sample covariance matrix was
found to be

43.71 0.62 044 —12.00 020 —33.04
0.62 79.89 3552 —30.48 14.50 —29.01
0.44 —-3552 80.09 491 —17.53 —33.31

—12.00 —30.48 4.91 52.66 —15.75 0.66 |’
0.20 1450 —17.53 —15.75 4336 —24.79
—33.04 —29.01 -33.31 0.66 —24.79 119.48

Sy =

whose first five rows and columns have inverse

0.0250 0.0030 0.0012 0.0080 0.0023
0.0030 0.0208 0.0086 0.0122 0.0009
0.0012 0.0086 0.0171 0.0054 0.0060 |.
0.0080 0.0122 0.0054 0.0300 0.0090
0.0023 0.0009 0.0060 0.0090 0.0284

The vector of mean differences is
[2.24, —2.94, —0.49, 2.13, —1.69, —0.24],

whose first five elements multiplied by the above 5 x 5 inverse covariance
matrix yielded the standard best linear discriminator

0.06092V, + 0.02575V, + 0.01285V; — 0.03339V, + 0.02338V.

Equivalent expressions omitting a different ¥; may be obtained by dropping a
different row and column from the matrix inversion. Multiplying the first five
elements of the mean difference vector by the vector of best linear discriminator

coefficients yielded
D?=0318 or D = 0.564.

Thus the sample means on the best linear discriminator differ by 0.564 standard
deviations where standard deviation is defined in terms of the pooled within
sample covariance structure.

An alternative distance analysis is provided by

44.30 0.37 1.17 —11.33  -—-026 —34.26

0.37 80.28 —35.92 —30.59 13.64 —27.79

S = 1.17 —3592 81.15 447 —17.02 —33.85
A7 1 —11.33 —30.59 4.47 52.84 —15.63 0.23
—0.26 13.64 —17.02 —15.63 43.74 —24.48

—~3426 —27.79 ~—33.85 023 —24.48 120.15
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in place of Sp.. (See 10.2.11.) The resulting best linear discriminator is
0.0593¥,; — 0.02679V, — 0.01352¥, + 0.03142V, — 0.02393V,
and the related distance is
D =0312 or D, = 0.559.

The smallness of the difference between D and D, results from similarity of the
two sample sizes as well as the similarity of the two sample covariance matrices.
Distances were also computed using the individual sample covariances,

giving

and

DW? = 0286 or DY = 0.533,

D®? = 0367 or D® = 0.606.

The range from D™ to D® indicates the possible range of distances resulting
from different weightings of the two sample covariance matrices.

The covariance structures of the two samples are at first sight quite similar.
For another look at the differences inherent in the two covariance matrices, the
statistics (10.2.14) and (10.2.15) were computed. From (10.2.12)

D} = 0.379 or D, = 0.616,
and
Di = 0.286 or D, = 0.535.

Thus the ratio (10.2.13) is
K = (8s,/0s,)? = 1.325,

which says that the ratio of variances of the sample best linear discriminator is
considerably larger than that for the original variables. Likewise the ratios

(102.14) are K, = (os,/os )2 = 1.072,

and
K, = (o5/os'¥)? = 1.048,

which exceed their minimum values of unity by small but significant amounts.
(See Section 14.3.)

Example 10.2. The data given in this example, kindly provided by H. D.
Sylwestrowicz of CIBA, are of a very common type in pharmaceutical experi-
mentation. Many sets of such data are typically collected in routine animal
experiments with drugs. The particular set considered here in isolation provides
9 measurements on each of 19 animals. The 9 variables are all measurements of
renal blood pressure, but taken at intervals of half an hour over four hours.
These variables will be denoted by V3, Vs, . . ., ¥, in order of time. Before the
experiment, the animals had been divided randomly into two groups of sizes 12
and 7. The first group was a control group to which no drug was given, while
the second or treated group received a specific drug treatment after the first of
the 9 measurements had been taken. Thus differential effects between treated
and control groups should not appear in ¥; but may appear in V5, Vs, . .., V.
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is usually called a covariate.

In the language of randomized experiments V),
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The first 9 rows and columns provide Ty for the original V3, V,, ..., ¥y of
SWP[11, 10]Y'Y. The first 9 elements of row 10 provide X — X and the
(10, 10) element is —(1/n, + 1/ny) = —f — = —0.2262. The stage is now
set for distance and best linear discriminator analyses based on the inner product
T,,. The same best linear discriminators are valid for Sy while distances
according to Ty, should be multiplied by the degrees of freedom #, + 7,
— 2 = 17 to provide the more natural distances according to Sy.

After applying SWP[1, 2, .. ., 9] and changing signs, the first 9 elements of
row 10 provide the sample best linear discriminator while the (10, 10) element is

Table 10.3.1

Coefficient of
A Ve Vs v, Vs Ve Vs Vs Ve

Y

—10.3 12.6

—18.6 —54 27.6

—28.9 -7.0 4.7 35.6

-29.5 -—123 16.3 -1.5 33.3

-29.5 -—12.8 15.4 2.0 194 119

-30.5 —-83 8.0 11.9 1.9 3.4 20.4

—-389 —187 27.2 163 =205 176 90.3 —64.6

—55.2 -28 -85 560 —63.6 75.6 104.0 ~0.5 -93.7

N 0NN R W

0.2262 + D2 Thus, the D? defined by Ty is 2.9137 or the more usual D? defined
by Sy is 49.533.

Of course, it costs little along the way to look successively at SWP[1],
SWP[1,2],...,SWP[1,2,...,8] which provide the same analyses for the
subsets V3, [V, Vals o - s Vi, Voo oo, V] The weights for the best linear
discriminators based on V;, Vs, ..., V, are summarized in Table 10.3.1, after
scaling by the arbitrary factor of 100.

In a similar fashion the successive values of D? for the spaces spanned by
Vie Vi Val, - - -5 [V, Vo, . .., V] are easily found, as shown in Table 10.3.2.

Many other decompositions of D? are possible. For example, each of the
9! orders of applying SWP[1],SWP[2],..., SWP[9] leads to a different
decomposition. The given order following time is perhaps the most natural in
the present context, since each successive contribution to D? may be regarded
as a treatment effect associated with the corresponding increase of observation
time. Note that the distance associated with ¥ is small, which is consistent with
¥, being a covariate. The large contributions to D? associated with Vg and ¥V
are rather surprising, and will be discussed later.

For comparative purposes, and to continue an empirical investigation of
principal component analysis, a decomposition of D? based on principal
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Table 10.3.2
D(Vy, ..., V)P
s DV, Voo ooy VPP Dy ViR
1 0.009 0.009
2 5.488 5.479
3 10.097 4.609
4 18.434 8.337
5 22.198 3.764
6 22.380 0.182
7 23.893 1.513
8 31.992 8.099
9 49.534 17.542

variables was also computed. The principal component analysis used the total
sample mean-corrected inner product matrix relative to the identity matrix as
a reference inner product matrix. The computations proceeded as above,
except that the operations SWP[11], SWP[10] were replaced by SWP[11],
SDGIL, 2, ..., 9], SWP[10}]. The decomposition of D2 related to the principal
variables V1, Vs, . . . , V, is displayed in Table 10.3.3.

The contributions to D? do appear somewhat earlier in this table than in the
preceding table, but the large contribution from U, appears suspicious.
Incidentally, the principal components of variance or, more properly, the
principal components of the total sum inner product corrected for the grand
mean are 65164.9, 3186.9, 1398.6, 446.0, 344.7, 190.5, 76.5, 39.5, and 21.7
which show a very rapid drop-off.

One further decomposition of D* was computed, based essentially on the
idea of fitting polynomials of increasing order in time, i.e., linear, quadratic,

Table 10.3.3
D(U;, Uy, - . o5 UPP
s DUy, Uy, ..., U Z DUy, ..., Uy
1 5.532 5.532
2 15.511 9.979
3 17.964 2.453
4 25.305 7.341
5 29.059 3.754
6 43.388 14.329
7 43.692 0.304
8 44216 0.524
9 49.534 5.318
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cubic, etc. The variables V3, Vs, ..., ¥V were first replaced by V;, Ve — Vi,
Vy— Vi, ..., Vy— Vyand the 8 differences were replaced by

W, Vo= W
Ws Va— Ve
. _K ,
Wa Vs - Va

where K is an orthogonal matrix whose rows are successively constant, linear,
quadratic, etc. The matrix K was computed by starting from

1 1...1
2 3
12 22 32...8
17 27 37...8

successively orthogonalizing its rows, and finally reducing them to unit length.
These rows of K are sometimes called orthogonal polynomials. The raw sum
inner product matrix for ¥y, ¥, ..., V,: was successively transformed into
that for Vy, Vo — Vi, - - . » V3 — Vi, Vie, V11 and then that for Vi, Wo, Wi, ...,
Wy, Vie» Vii. From there, the computations proceeded as in the original
analysis of Vi, Ve, ..., Vi, ie., SWP[i1], SWP[10], SWP[1], SWP[2],...,
SWP[9] were successively applied. The resulting decomposition of D? is
given in Table 10.3.4.

The sampling distributions of the various sample statistics computed above
are discussed in Section 14.3, on the assumption of random samples from

Table 10.3.4
DWVy, Wy« .., WyE

s DWWy, Wy ..o, W D W W
1 0.009 0.009

2 9.549 9.540

3 23.105 13.556

4 40.973 17.869

5 41.648 0.675

6 42928 1.280

7 45.308 2.380

8 46.551 1.243

9 49.533 2.912
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multivariate normal populations. These distributions make possible certain
postdictive inference procedures which provide uncertain information about
the parameters of the normal population. In particular, significance tests are
applied in Section 14.3 to the three sequences of increments of D? values given
in Tables 10.3.2, 10.3.3, and 10.3.4.

In connection with sampling theory considerations, it is sometimes argued
that the stepwise procedures illustrated above should be applied in an order
which takes first those variables which may be assumed to have zero population
differences in their means. Thus, in the principal variable analysis one might
think of reversing the order of the sweeping operations, while in the polynomial
fitting analysis one might retain the initial time variable in first position while
reversing the order of the rest to deal first with higher order effects. The
argument for these reversals is that the variables with zero population differences
act as covariates and so increase the sensitivity of tests and estimation proce-
dures reflecting on the variables which really matter. A counter-argument is
that it can never really be known that higher order population differences are
not present, and their presence tends to bias the tests relating to the important
variables in an unknown way. A second counter-argument is that the use of
covariates consumes degrees of freedom available for covariance estimation and
thereby decreases the sensitivity of the tests. The second counter-argument is
quite important with these data, since the samples are very small. The reader
with adequate computing facilities may wish to carry out the analyses using the
alternative orders, including the significance tests based on the decomposition of
D?, for indications of a loss of sensitivity to important effects.

Polynomial fitting has a considerable literature of its own, and many
variations of the above techniques have been suggested. For example, Rao
(1965) has proposed applications of the orthogonal polynomials of one higher
degree to the original 9 variables, instead of the application as above to the 8
time-difference variables. The latter was preferred here on the belief that the
time-difference variables are more likely to be roughly uncorrelated with
constant variance than are the original variables; for sampling theory considera-
tions suggest that optimal fitting without the use of covariates is provided by
orthogonal polynomials when the basic variables are uncorrelated with constant
variance (in the population). Potthoff and Roy (1964) describe formally the
correct set of polynomials to use in the presence of arbitrary population
covariance structure. Rao (1965) also presents methods appropriate to the
(artificial ?) assumption that each animal corresponds to a random polynomial
of given degree, while all observations are subject to independent errors of
measurement with zero means and constant variance.

10.4 ANALYSIS OF MORE THAN TWO SAMPLES

The two sample theory of Section 10.2 suggests generalizations of many kinds,
some of which are explained here. The emphasis will be put on the comparison




220 TWO OR MORE SAMPLES OF INDIVIDUALS 10.4

of means. Techniques for comparing more than two sample means at once will
be described, but the development of techniques for simultaneous comparison
of more than two sample covariances will not be attempted.

A set of k sample means m™, m®, ..., m™ in F may be considered in
two ways, first without regard for any inner product and second in relation to
an inner product m, over #. The first of these approaches will not be pursued
in detail except for one comment. If k — 1 < p, then any set of & points not
lying in a hyperplane of dimension k — 2 is affinely like any other such set, for
two such sets are related by a wide sense linea~ t-ansformation. On the other
hand, if K — 1 > p, then the k points necessarily lie in a hyperplane of dimen-
sion less than k& — 1 and so begin to have a distinctive pattern independent of
any inner product. To take an extreme example, if p = 1 and k > 3, then the
k mean points on a line do form a meaningful pattern. Such patterns are less
easy to view in an affine way when p > 1 and are difficult to view at all when
p > 3. No general analysis of these patterns is attempted here.

Henceforth it will be assumed that a set of k& means is to be viewed in
relation to an inner product 7, over #. Later, the choice of =, from k sample
data will be discussed briefly. Having 7, one has distances defined between
each of k(k — 1)/2 pairs of means and also a best linear discriminator for each
pair of samples. The subspace of variable-space & spanned by this set of
k(k — 1)/2 best linear discriminators will be called the space of best linear
discriminators among the k means. This space is a natural generalization of the
one-dimensional space of best linear discriminators defined when k = 2, and its
properties are set out in the following generalization of Theorem 10.2.

Theorem 10.4. The space ¥~ of best linear discriminators among mh,
m®_ .., m* determined by the rank p inner product w; over F is the dual
space of the orthogonal complement of the subspace of % spanned by the
differences among m®, m®, . .., m® . If W is any variable in & and V
is the orthogonal projection of W into ¥", then

D (W) < Dy(V) (10.4.1)

foriandj=1,2,...,k, where D;; denotes distance between m® and m'
as defined in Section 10.2.

Theorem 10.4 gives first a characterization of ¥ and second the basic
property (10.4.1) which shows that only variables inside ¥~ need be considered
for discrimination, at least in the sense that for any variable outside ¥~ there is
another inside ¥ yielding greater distances uniformly over all pairs of samples.

The proof of Theorem 10.4 requires only minor extensions of the theory of
Section 10.2. The best linear discriminator V,; between the pair of samples ¢
and j defines a one-dimensional subspace ¥”;; whose dual is a (p — I)-
dimensional subspace ¥, in % orthogonal to the one-dimensional subspace
U, spanned by m') — mY. ¥ is the direct sum of the ¥, so that ¥, is the
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intersection of the ¥7;;, and the orthogonal complement %, of ¥, is the direct
sum of the %,;,, as required for the first part of Theorem 10.4. The second part
of the theorem is a consequence of the fact that the sam»le means are identical
on the subspace % orthogonal to ¥, so that W and its orthogonal projection
V into ¥ have identical mean differences. In terms of the expression (10.2.2)
for distance, both D (W) and D (V) have the same numerators while
(V, V) < (W, W), and (10.4.1) follows.

The dimension f of the space ¥~ of best linear discriminators is the same as
the dimension of %, or m™Y 4 %,, the latter being the smallest hyperplane
containing mV, m®, ..., m*. Clearly f < min (k — 1, p). In general f=p
if k — 1 > p, and in this case ¥ = & so that no reduction occurs, i.e., the
concept of a space of best linear discriminators contributes nothing. Ifk — 1 <
p, however, a simplification does result from the concept of ¥,

The notion of distance does not generalize so unambiguously as the notion
of best linear discriminator. Consider first generalized distance for a single
variable ¥, the aim being to define a measure reflecting separation among all &
means which reduces to D(V) when k = 2. If the k mean values of V are
denoted by X, X@ . . X% then any nonnegative quadratic form in the
differences X — X might be chosen as a measure of these differences,
examples being Y n(X® — X)2 where X = 3*n,X9[n, or ¥ (XD — X,)?
where X; = 2% X@ k. But other choices are possible. If a particular contrast
S*a, X with Y*a; = 0 were the main source of interest, then (3*a,X'V)?
would be a suitable distance measure. Or, more generally, a weighted linear
combination of several such squared contrasts could be of interest. Any such
quadratic form may be taken as a generalization of D(V)* for a given V. It
would be preferable, however, to divide by (¥, V) so that the generalized
measure would share with D(V)? the property of having a common value over
the one-dimensional subspace ¥~ spanned by V.

Given such a generalized D(V)= D(¥"), the next step is to extend the
definition to a corresponding generalization of D(¥") where ¥~ has dimension
greater than unity. The straightforward extension of the above quadratic form
concept is an inner product concept. For example, D% n, (X — X)? generalizes
to the inner product defined by T, = 3% n(X® — X)'(X* — X). “Division”
of this inner product by = is generalized to the eigenvector and eigenvalue
structure of the quadratic form inner product relative to r. Thus the generalized
D(V)? extends to a set of eigenvalues which are themselves generalized D(V)?
for a set of eigenvectors.

Sometimes a single best linear discriminator might be sought, or a single
generalized distance measure. The first of these could be taken to be the
eigenvector corresponding to the largest generalized distance eigenvalue. Any
such eigenvector must be in the space #” of best linear discriminators defined
above, as, indeed, must any set of such eigenvectors, from (10.4.1). Similarly,
a single function of the generalized distance eigenvalues could be chosen as a
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single generalized distance, for example, the sum of the eigenvalues. Note,
however, that no single discriminator or single distance measure can tell the
whole story. Indeed, there is a very strong flavor of arbitrariness about all of
the analyses described in this section, since so many choices are open. Only a
few guidelines can be given.

The example of Section 10.5 uses Ty or Sy to define the inner product 7.
The generalized distance inner product is the familiar analysis of variance choice
T, but several decompositions of T, are considered as well.

Eigenvector and eigenvalue analyses of the kind described above are ofte.n
called multiple discriminant analyses. The eigenvectors determine variables in
the space of best linear discriminators which are often called discriminants.

10.5 AN EXAMPLE WITH SIX SAMPLES
CROSS-CLASSIFIED INTO TWO SEXES AND THREE RACES

Example 10.3. The data of this example are based on 276 human skulls as-
sembled and measured by Prof. W. W. Howells. The individuals were classified
at the start into 6 groups as in Table 10.5.1.

Table 10.5.1

THE DISTRIBUTION OF SKULLS BY RACE AND SEX FOR
EXAMPLE 10.3

Male Female Total
Japanese 56 35 91
Ainu 57 55 112
Australian 38 35 73
Total 151 125 276

The Japanese and Ainus represent racial groups now living in Japan, the
Ainus being descendents of one or more of the tribes which occupied the
Japanese islands before the arrival of the long-dominant Japanese. The
Australian racial group represents the darkskinned aboriginals who predg.ted
Furopean immigration. It was conjectured that the present analysis might
demonstrate affinities between the Australian and Ainu groups and thus support
a hypothesis of a common source in prehistoric times, as has sometimes been
suggested. In fact, however, the analysis indicates closer relations be‘tween the
Japanese and the Ainus than between either of these and the Australians. .

The analysis is based on 21 variables representing physical dimensions
considered to encompass much of the important variation in human skulls,
i.e., based on expert opinion of what it is that makes skulls look different. The
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technical definitions of these 21 variables are omitted from the present dis-
cussion, as are any interpretations of the data based on the names and meanings
of the variables. A few of the values making up the 276 x 21 data matrix could
not be measured directly because of incomplete skulls. These were filled in
according to a professional guess as to what the complete skull would have been
like. Other analyses of these data have been reported by Howelis (1966).
Several analyses were carried out, only one of which is reported here.
Originally, six racial groups were used, including three African groups. The
latter set were later dropped since they had been measured by a different

Table 10.5.2
ARTIFICIAL VARIABLES FOR EXAMPLE 10.3

Ve S Ry R, 1 1,
Japanese male 1 -1 —1 -1 1 1
Ainu male i -1 1 -1 0
Australian male 1 -1 0 1 0 -1
Japanese female 1 1 -1 -1 -1 -1
Ainu female 1 1 1 0
Australian female 1 1 0 1 0 1

investigator and there was some evidence that investigator biases were con-
founded with actual physical differences between the two sets of races. Also,
the analyses were done both on the original measurements and on their log-
arithms, but only the former is reported here because the latter is virtually
indistinguishable in its outcome.

Most of the following discussion is concerned with the technical details of
the version of multiple discriminant analysis which was carried out. As usual,
artificial variables were used to build group identifications into the data matrix.
These were chosen in a special way in order that the five degrees of freedom for
among group variation could be easily decomposed into a single degree of
freedom for sex differences, two degrees of freedom for race differences, and two
degrees of freedom for race by sex interaction. This type of decomposition is
familiar to the user of a two-way “row by column” analysis of variance, except
that it is carried out here for 21 variables and all of their linear combinations.
Also, there is a confounding difficulty due to unequal sample sizes.

Six artificial variables were added to the original 21. These variables take
the same values on all the individuals of a given group, and their values on the
six groups are shown in Table 10.5.2. The symbols S, Ry, R,, I, and 7, may be
regarded as abbreviations for sex dummy, first race dummy, second race dummy,
first interaction dummy, and second interaction dummy, respectively. These
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variables take the place of the indicator variables of the six groups used in the
original discussion of multivariate analysis of variance in Section 9.4. For the
purpose of ordinary six sample multiple discriminant analysis the above set
of six dummy variables is equivalent to the choice of ¥, together with any five
of the six group indicator variables; the basic requirement is that both sets
include ¥, and span the same six-dimensional subspace. But the present set is
much more convenient for computing a decomposition into sex, race, and race
by sex interaction components.

The selected dummy variables have the property that, had the sample sizes
been equal, the four subspaces spanned in 4" by the representatives of V4, S,
[R:, R}, [11, I,] would have been orthogonal. The difficulty caused by the lack
of balanced sample sizes is not computational only but also conceptual, for it
is no longer clear how to break the six-dimensional subspace of A" spanned by
the dummy variables into a direct sum of four orthogonal subspaces labelled
for grand mean, sex differences, race differences, and race by sex interactions.
Various decompositions are possible depending on different orders of applying
successive orthogonalization to the dummy variables. For example, suppose
that Vo, S, [R,, Ry, I;,1,] represent the set Vo, S, [Ry, Ral, [1,, I,] after
successive orthogonalization in the stated order, according to the sample raw
sum inner product. Then the subspaces of .4~ spanned by the representatives of
Ve, S', [R;, Ry} and [/}, I,] are orthogonal and could be labelled for grand mean,
sex differences, race differences, and race by sex interactions, respectively. On
the other hand, if the orthogonalization is carried out in the order V,, [Ry, R:],
S, [I,,I,], then the resulting V,, [R;, Ryl, 8", [I},1;] define alternative
candidates for the orthogonal subspaces to be associated with race differences
and sex differences.

Several other orders of orthogonalization each beginning with ¥, are
possible, but the orders selected above are perhaps most natural on the grounds
that simpler main effects should be hypothesized before more complicated
interaction effects. In any case, only the selected pair of orders is carried along
in this example to illustrate the fact of confounding of sex main effects and race
main effects. The dilemma posed by such confounding may be clarified as
follows.

The sex differences measured by components along S” in .4" are free of any
constant addition to all of the data on a given variable, but they are not free of
additions which are constant only for a given race. On the other hand, com-
ponents along §” are unaffected by systematic race differences. The difficulty
with S§” is that, when sample sizes are unequal, valid sex differences necessarily
contribute apparent race differences so that the use of S” in place of S’ eliminates
valid as well as spurious sex differences.

The possible extent of this type of confounding may be judged by looking
at the angles among the dummy variables in A7, Tt is assumed by convention
that ¥, components should be removed first. The cosines of the angles among
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the components of S, R,, Ry, I, I, are given by the total sample correlation
matrix

1.0000 0.0894 0.0773 0.0970 0.0773
0.0894 1.0000 0.5101 ~ —0.1213 —0.1213
0.0773 0.5101 1.0000 —0.1090 —0.1402
0.0970 —0.1213 —0.1090 1.0000 0.4953
0.0773 —0.1213 —0.1402 0:4953 1.0000

which was obtained as part of the output of the computations to be described
shortly. The square of the multiple correlation coefficient between S and
[R,, R;] is 0.0083, the fraction of the squared components associated with sex
difference which could conceivably be falsely eliminated when S is replaced by
S”. By such reasoning it is clear that confounding effects are necessarily rather
slight between the major sources of variation associated with sex and race.
Nevertheless, the computations were performed assigning the doubtful race
and sex components in both ways.

Multiple discriminant analysis was carried out with the pooled within
sample covariance inner product playing the role of = in Section 10.4 and with
seven different choices of a numerator inner product reflecting differences among
the sample means. The numerator inner products were in each case the inner
products of the sample representation in a subspace of 4" of the data vectors of
21 observed variables, the seven subspaces of .#" being those spanned by
S, [R,, R}, [R}, R;), 8", [S', Ry, Ry, [1}, 1,], and [S', Ry, R, I3, 1;]. These
analyses produced one eigenvector or discriminant variable for each dimension,
je,1+24+2+4+1+43+2+5=16 variables altogether. Of course, all
of these variables lie in a single five-dimensional space of best linear discrimi-
nants, and therefore must exhibit substantial correlations which will be displayed
shortly.

The computing steps were as follows. Basic linear and quadratic statistics
were computed for the total sample of 276 using a program which gave a vector
of means, a vector of standard deviations, and a correlation matrix for the 26
variables consisting of S, Ry, Ry, I, I; and the 21 original variables. A more
convenient starting point would appear to be simply the total sum of products
matrix corrected for the grand mean, but the analysis can be carried out in
terms of a rescaled basis and the correlation matrix described above is in fact
a total sum of products matrix corrected for the grand mean for a basis in which

each of the original elements is divided by /275 times its standard deviation.
To compensate for the nuisance of an additional transformation, the scaling
provides an array of numbers more alike in order of magnitude and hence
easier to scan by eye.

Subsequent steps were based on the correlation matrix (cum total sum of
products matrix corrected for the grand mean) as follows. First the operation
SWPI1, 2, 3, 4, 5] removed components along S, R,, Ry, I;, I, so that the lower
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right 21 x 21 part represented a pooled within sample sum inner product .for
the rescaled variables, i.e., the inner product which plays the role of 7 in Section
10.4 and which will be called here the denominator inner product. Recall that
produces the same discriminant variables as does the pooled within sample
covariance which differs only by a scale factor.

Secondly, the operator MSTI[6,7, ..., 26] was applied to thé output of t}?e
first step. The second input matrix of the MST operator was a diagonal matrix
whose elements were the scale factors (\/ 275 standard deviation)™ which
express the scaled basis in terms of the original basis of variables. The MST
operator effects a transformation of the first input matrix so that it refer§ toa
basis whose last 21 elements are orthonormal with respect to the denominator
inner product; achieving the orthonormal basis is always a prelimiqary to an
eigenvector calculation. The first output matrix of the MST operator is denoted
here by Q. The 21 x 21 part of the second MST output matrix expresses the
orthonormal basis in terms of the original 21 measured variables.

The next step is to find the T, matrix and its various decompositions whic‘h
are called here numerator inner product matrices. These are all expressed in
terms of the basis produced by the MST operator. They are found by RSW
operations, which add back to Q various removed components, followed by
subtractions to isolate these added back components. Specifically

RSWI[4, 51Q,
RSWI4, 5,2, 3]Q,
RSW[4, 5, 1]1Q, and
RSW{4,5,1,2,3]Q
were found, and thence
RSW[4, 5, 1,2,3]Q — RSW[4,5,2,3]Q,
RSW[4, 5,2,3]Q — RSW[4,5]Q,
RSW[4, 5, 1,2,31Q — RSW[4, 5, 11Q,
RSW[4, 5, 1]Q — RSW4, 5]Q,
RSW[4, 5, 1, 2, 3]1Q — RSW[4, 5]Q,
RSW[4,5]1Q — Q, and
RSW[4,5,1,2,31Q — Q,
which provided, respectively, the numerator inner product matrices relative to
the orthonormal basis, associated with

Sex, unadjusted for race,

Race, adjusted for sex,

Race, unadjusted for sex,

Sex, adjusted for race,

Sex and race together,

Race by sex interaction, adjusted for sex and race, and
Race, sex, and race by sex interaction all together.
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The SDG operator was applied to the 21 x 21 parts of each of these
numerator inner product matrices yielding the following nonzero eigenvalues:

24184,

2.6015, 0.7714,

2.6258, 0.7396,

2.4260,

2.8627, 2.1958, 0.7328,

0.1570, 0.0671, and

2.9037, 2.2021, 0.7476, 0.1017, 0.0605.

Some interpretations of these eigenvalues will be reported in Section 14.3.

The second input matrix for each of these SDG operations was the second
output matrix of the MST operation. Thus the second output matrix of each
SDG operation produces eigenvectors expressed as linear combinations of the
original 21 variables. Since these eigenvectors have unit norms according to the
pooled within sample sum inner product, they were multiplied by V270 so they
finally had unit variances according to the pooled within sample covariance
inner product. Altogether, 7 sets of eigenvectors were found, including 16
discriminant variables.

The eigenvectors were then applied to the 276 x 21 data matrix to produce
the 276 x 16 data matrix of the 16 discriminants. The pooled within sample
covariance matrix for the 16 discriminants, as directly computed from the
276 x 16 data matrix, is shown in Table 10.5.3.

Since Table 10.5.3 was computed as a sample covariance matrix, the fact that
the diagonal elements are very close to unity serves as a check on the intended
normalization of the discriminant variables. Likewise the zero covariances
within the blocks of 1, 2, 2, 1, 3, 2, 5 variables in order are checks on these
theoretically intended zero covariances.

Very high correlations may be observed in positions (6, 1), (4,2), (5, 3),
indicating that the two approaches to sex and race discriminants produced
almost identical results. Other high correlations may be observed in places
where they make sense. For example, discriminants 1, 2, 3, 11, 12 provide
one basis of the five-dimensional space of best linear discriminators while
discriminants 12, 13, 14, 15, 16 provide another. The elements of the first basis
have direct relations to sex (1), race (2 and 3), and interaction (11 and 12), but
the first basis is not orthonormal. The second basis is the one provided by the
straightforward analysis described in Section 10.4 and this second basis is
orthonormal. The correlation matrix above shows a rough pairing of these
discriminators in the orders 1, 2, 3, 11, 12, and 13, 12, 14, 15, 16 but a better
matching of 1 and 2 could be provided by a pair of linear combinations of 12
and 13. Thus it appears that the general discriminators 12 through 16 could
reasonably be labelled for race, sex, and interaction effects, but that sharper
delineations of these effects are provided by the decomposition analyses.
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Three sets of two-dimensional plots were prepared to give pictures of the
Noez8S8585988888 variation within and among samples for three pairs of discriminant variables
Lo e oF B oo B S [ o @ < <
‘? cee <l> 8| c8 Cl’ o‘ aR===z 1 and 2, 2 and 3, and 7 and 8. The first pair of these sets together covers the
. - sex and race main effect discriminators while the third set refers to the inter-
g8gd z gd =39 g § § § = action discriminators. In each of the three sets, a set of 6 scatterplots show the
! P - individual skulls within each sample and also the sampie concentration ellipse
P oTNReTRARISSIS LR (Figs. 10.5.2-7, 10.5.9-14, and 10.5.16-21). A seventh plot shows all 6 ellipses
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Fig. 10.5.1. Mean-centered sample concentration ellipses for a sex discriminant and
first race discriminant. The pooled within sample concentration ellipse is a unit circle

in the scale shown.

AR,

Fig. 10.5.2. The scatterplot of the Japanese male sample corresponding to the ellipse
shown in Fig. 10.5.1.
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Fig. 10.5.3. The scatterplot of the Japanese female sample corresponding to the
ellipse shown in Fig. 10.5.1.
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Fig. 10.5.4. The scatterplot of the Ainu male sample corresponding to the ellipse
shown in Fig. 10.5.1.
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Fig. 10.5.7. The scatterplot of the Australian female sample corresponding to the
ellipse shown in Fig. 10.5.1.

Fig. 10.5.5. The scatterplot of the Ainu female sample corresponding to the ellipse
shown in Fig. 10.5.1.
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Fig. 10.5.6. The scatterplot of the Australian male sample corresponding to the

ellipse shown in Fig. 10.5.1. Fig. 10.5.8. Mean-centered sample concentration ellipses for a pair of race discrim-

inants. The pooled within sample concentration ellipse is a unit circle in the scale
shown.
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