1. Introduction & overview

1.1 Overview: Categorical data & graphics
1.2 Discrete distributions
1.3 Testing association
|
berkeley-freq.sas
sexfun-cmh.sas
|
sexfun-chisq.R [ ]
|
2. Two-way and n-way tables

2.1 2 x 2 tables
2.2 Two-way tables
2.3 Observer agreement
2.4 Correspondence analysis
|
berk-4fold.sas
vision-sieve.sas
msdiag-agree.sas
mental-ca.sas
|
berk-4fold.R [ ]
vision-sieve.R [ ]
msdiag-agree.R [ ]
mental-ca.R [ ]
|
3. Mosaic displays & loglinear models

3.1 n-way tables: Models & graphs
3.2 Mosaics software
3.3 Structured tables
|
berkeley-glm.sas
titanic-loglin.sas
mentgen2.sas
vision-quasi.sas
|
berkeley-glm.R [ ]
titanic-loglin.R [ ]
mental-glm.R [ ]
vision-quasi.R [ ]
|
4. Logit models & logistic regression

4.1 Logit models
4.2 Logistic regression models
4.3 Effect plots
4.4 Influence & diagnostic plots
|
berkeley-logit.sas
arthritis-logistic.sas
cowles-logistic.sas
Arrests-logistic.sas
cowles-effect.sas
Arrests-effect.sas
berkeley-diag.sas
berkeley-diag-ods.sas
|
berkeley-logit.R [ ]
arthritis-logistic.R [ ]
cowles-logistic.R [ ]
Arrests-logistic.R [ ]
cowles-effect.R [ ]
Arrests-effects.R [ ]
berkeley-diag.R [ ]
arthritis-diag.R [ ]
|
5. Polytomous response models

5.1 Proportional odds models
5.2 Nested dichotomies
5.3 Generalized logits
|
arthritis-propodds.sas
arthritis-propodds-ods.sas
wlf-nested.sas
wlf-glogit.sas
|
arthritis-propodds.R [ ]
wlf-nested.R [ ]
wlf-glogit.R [ ]
|