Tutorial: Working with categorical data with \textit{R} and the \textit{vcd} package

Michael Friendly
York University, Toronto

Abstract

This tutorial describes the creation of frequency and contingency tables from categorical variables, along with tests of independence, measures of association, and methods for graphically displaying results. The framework is provided by the \textit{R} package \textit{vcd}, but other packages are used to help with various tasks.

Keywords: contingency tables, mosaic plots, sieve plots, categorical data, independence, conditional independence, \textit{R}.

1. Introduction

This tutorial, part of the \textit{vcdExtra} package, describes the creation of frequency and contingency tables from categorical variables, along with tests of independence, measures of association, and methods for graphically displaying results. It borrows structure and some ideas from Robert Kabakoff’s \textit{Quick-R} web page, \texttt{http://www.statmethods.net/stats/frequencies.html}.

There is much more to the analysis of categorical data than is described here, where the emphasis is on cross-tabulated tables of frequencies (“contingency tables”), statistical tests, associated loglinear models, and visualization of how variables are related.

A more general treatment of graphical methods for categorical data is contained in my book, \textit{Visualizing Categorical Data} (Friendly 2000), for which \textit{vcd} is a partial \textit{R} companion, covering topics not otherwise available in \textit{R}. On the other hand, the implementation of graphical methods in \textit{vcd} is more general in many respects than what I provided in \textit{SAS}.

A more complete theoretical description of these statistical methods is provided in Agresti’s (2002) \textit{Categorical Data Analysis}. For this, see the \textit{Splus}/\textit{R} companion by Laura Thompson, \texttt{https://home.comcast.net/~lthompson221/Splusdiscrete2.pdf}.

2. Creating and manipulating frequency tables

\textit{R} provides many methods for creating frequency and contingency tables. Several are described below. In the examples below, we use some real examples and some anonymous ones, where the variables \texttt{A}, \texttt{B}, and \texttt{C} represent categorical variables, and \texttt{X} represents an arbitrary \textit{R} data object.

The first thing you need to know is that categorical data can be represented in three different forms in \textit{R}, and it is sometimes necessary to convert from one form to another, for carrying out statistical tests, fitting models or visualizing the results. Once a data object exists in \textit{R}, you can examine its structure with the \texttt{str()} function.

\texttt{case form} a data frame containing individual observations, with one or more factors, used as the
classifying variables. In case form, there may also be numeric covariates. The total number of observations is `nrow(X)`.

Example: The *Arthritis* data is available in case form in the *vcd* package. There are two explanatory factors: *Treatment* and *Sex*. *Age* is a covariate, and *Improved* is the response—an ordered factor, with levels None < Some < Marked. Excluding *Age*, we have a $2 \times 2 \times 3$ contingency table for *Treatment*, *Sex* and *Improved*.

```r
> str(Arthritis)  # show the structure
'data.frame': 84 obs. of 5 variables:
$ ID        : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex       : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age       : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved  : Ord.factor w/ 3 levels "None"<"Some"<...: 2 1 1 3 3 3 1 3 1 1 ...
```

```r
> str(Arthritis[1:5,])  # first 5 observations
  ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked
```

frequency form a data frame containing one or more factors, and a frequency variable, often called *Freq* or *count*. The total number of observations is `sum(X[,"Freq"])` or some equivalent form.

Example: For small frequency tables, it is often convenient to enter them in frequency form using `expand.grid()` for the factors and `c()` to list the counts in a vector. The example below, from Agresti (2002) gives results for the 1991 General Social Survey, with respondents classified by sex and party identification.

```r
> # Agresti (2002), table 3.11, p. 106
> GSS <- data.frame(
+   expand.grid(sex=c("female", "male"),
+                party=c("dem", "indep", "rep")),
+   count=c(279,165,73,47,225,191))
> str(GSS)
  sex party count
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191
```
'data.frame': 6 obs. of 3 variables:
$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2
$ party: Factor w/ 3 levels "dem","indep",...: 1 1 2 2 3 3
$ count: num 279 165 73 47 225 191

> sum(GSS$count)
[1] 980

table form a matrix, array or table object, whose elements are the frequencies in an n-way table. The variable names (factors) and their levels are given by `dimnames(X)`. The total number of observations is `sum(X)`. The number of dimensions of the table is `length(dimnames(X))`, and the table sizes are given by `sapply(dimnames(X), length)`.

Example: The `HairEyeColor` is stored in table form in `vcd`.

> str(HairEyeColor) # show the structure

 table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
 - attr(*, "dimnames")=List of 3
 ..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
 ..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
 ..$ Sex : chr [1:2] "Male" "Female"

> sum(HairEyeColor) # number of cases
[1] 592

> sapply(dimnames(HairEyeColor), length) # table dimension sizes
Hair Eye Sex
4 4 2

Example: Enter frequencies in a matrix, and assign `dimnames`, giving the variable names and category labels. Note that, by default, `matrix()` uses the elements supplied by `columns` in the result, unless you specify `byrow=TRUE`.

> ## A 4 x 4 table Agresti (2002, Table 2.8, p. 57) Job Satisfaction
> JobSat <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4)
> dimnames(JobSat) = list(income=c("< 15k", "15-25k", "25-40k", "> 40k"),
+ satisfaction=c("VeryD", "LittleD", "ModerateS", "VeryS"))
> JobSat

 satisfaction
income VeryD LittleD ModerateS VeryS
< 15k 1 3 10 6
15-25k 2 3 10 7
25-40k 1 6 14 12
> 40k 0 1 9 11

JobSat is a matrix, not an object of class("table"), and some functions are happier with tables than matrices. You can coerce it to a table with `as.table()`.

> JobSat <- as.table(JobSat)
> str(JobSat)
2.1. Ordered factors and reordered tables

In table form, the values of the table factors are ordered by their position in the table. Thus in the JobSat data, both income and satisfaction represent ordered factors, and the positions of the values in the rows and columns reflects their ordered nature.

Yet, for analysis, there are time when you need numeric values for the levels of ordered factors in a table, e.g., to treat a factor as a quantitative variable. In such cases, you can simply re-assign the dimnames attribute of the table variables. For example, here, we assign numeric values to income as the middle of their ranges, and treat satisfaction as equally spaced with integer scores.

```r
> dimnames(JobSat)$income<-c(7.5,20,32.5,60)
> dimnames(JobSat)$satisfaction<-1:4
```

For the HairEyeColor data, hair color and eye color are ordered arbitrarily. For visualizing the data using mosaic plots and other methods described below, it turns out to be more useful to assure that both hair color and eye color are ordered from dark to light. Hair colors are actually ordered this way already, and it is easiest to re-order eye colors by indexing. Again str() is your friend.

```r
> HairEyeColor <- HairEyeColor[, c(1,3,4,2), ]
> str(HairEyeColor)
```

```
num [1:4, 1:4, 1:2] 32 53 10 3 10 25 7 5 3 15 ...  
- attr(*, "dimnames")=List of 3  
  ..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"  
  ..$ Eye : chr [1:4] "Brown" "Hazel" "Green" "Blue"  
  ..$ Sex : chr [1:2] "Male" "Female"
```

This is also the order for both hair color and eye color shown in the result of a correspondence analysis (Figure 5) below.

With data in case form or frequency form, when you have ordered factors represented with character values, you must ensure that they are treated as ordered in R.¹

Imagine that the Arthritis data was read from a text file. By default the Improved will be ordered alphabetically: Marked, None, Some — not what we want. In this case, the function ordered() (and others) can be useful.

```r
> Arthritis <- read.csv("arthritis.txt",header=TRUE)
> Arthritis$Improved <- ordered(Arthritis$Improved, levels=\c("None", "Some", "Marked")
```

With this order of Improved, the response in this data, a mosaic display of Treatment and Improved (Figure 1) shows a clearly interpretable pattern.

¹In SAS, many procedures offer the option order = data | internal | formatted to allow character values to be ordered according to (a) their order in the data set, (b) sorted internal value, or (c) sorted formatted representation provided by a SAS format.
Arthritis: [Treatment] [Improved]

![Mosaic plot](image)

Figure 1: Mosaic plot for the Arthritis data, showing the marginal model of independence for Treatment and Improved. Age, a covariate, and Sex are ignored here.

Finally, there are situations where, particularly for display purposes, you want to re-order the dimensions of an n-way table, or change the labels for the variables or levels. This is easy when the data are in table form: `aperm()` permutes the dimensions, and assigning to `names` and `dimnames` changes variable names and level labels respectively. We will use the following version of `UCBAdmissions` in Section 3.4 below.

```r
> UCB <- aperm(UCBAdmissions, c(2, 1, 3))
> dimnames(UCB)[[2]] <- c("Yes", "No")
> names(dimnames(UCB)) <- c("Sex", "Admit?", "Department")
> ftable(UCB)
```

<table>
<thead>
<tr>
<th>Department</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Yes</td>
<td>512</td>
<td>353</td>
<td>120</td>
<td>138</td>
<td>53</td>
<td>22</td>
</tr>
<tr>
<td>Male No</td>
<td>313</td>
<td>207</td>
<td>205</td>
<td>279</td>
<td>138</td>
<td>351</td>
</tr>
<tr>
<td>Female Yes</td>
<td>89</td>
<td>17</td>
<td>202</td>
<td>131</td>
<td>94</td>
<td>24</td>
</tr>
<tr>
<td>Female No</td>
<td>19</td>
<td>8</td>
<td>391</td>
<td>244</td>
<td>299</td>
<td>317</td>
</tr>
</tbody>
</table>

2.2. `structable()`

For 3-way and larger tables the `structable()` function in `vcd` provides a convenient and flexible

2 Changing `Admit` to `Admit?` might be useful for display purposes, but it dangerous—because it is then difficult to use that variable name in a model formula.
tabular display. The variables assigned to the rows and columns of a two-way display to be specified by a model formula.

```r
> structable(HairEyeColor)  # show the table: default

   Eye Brown Hazel Green Blue
  Hair  Sex
     Black Male  32 10  3  11
          Female 36  5  2  9
     Brown Male 53 25 15 50
          Female 66 29 14 34
     Red    Male 10  7  7 10
          Female 16  7  7  7
   Blond  Male  3  5  8 30
          Female  4  5  8 64
```

```r
> structable(Hair+Sex ~ Eye, HairEyeColor)  # specify col ~ row variables

        Hair Black Brown Red Blond
      Sex  Male Female  Male Female  Male Female  Male Female
    Eye
  Brown 32 36 53 66 10 16  3  4
 Hazel 10 5 25 29 7  7  5  5
Green 3 2 15 14 7  7  8  8
Blue 11 9 50 34 10  7 30 64
```

It also returns an object of class "structable" which may be plotted with mosaic() (not shown here).

```r
> HSE <- structable(Hair+Sex ~ Eye, HairEyeColor)  # save structable object
> mosaic(HSE)  # plot it
```

2.3. `table()` and friends

You can generate frequency tables from factor variables using the `table()` function, tables of proportions using the `prop.table()` function, and marginal frequencies using `margin.table()`.

```r
> n=500
> A <- factor(sample(c("a1","a2"), n, rep=TRUE))
> B <- factor(sample(c("b1","b2"), n, rep=TRUE))
> C <- factor(sample(c("c1","c2"), n, rep=TRUE))
> mydata <- data.frame(A,B,C)
>
> # 2-Way Frequency Table
> attach(mydata)
> mytable <- table(A,B)  # A will be rows, B will be columns
> mytable               # print table
> margin.table(mytable, 1)  # A frequencies (summed over B)
> margin.table(mytable, 2)  # B frequencies (summed over A)
> prop.table(mytable)      # cell percentages
> prop.table(mytable, 1)   # row percentages
> prop.table(mytable, 2)   # column percentages
```
table() can also generate multidimensional tables based on 3 or more categorical variables. In this case, use the ftable() function to print the results more attractively.

```r
> # 3-Way Frequency Table
> mytable <- table(A, B, C)
> ftable(mytable)
```

Table ignores missing values. To include NA as a category in counts, include the table option `exclude=NULL` if the variable is a vector. If the variable is a factor you have to create a new factor using `newfactor <- factor(oldfactor, exclude=NULL).

2.4. xtabs

The `xtabs()` function allows you to create crosstabulations using formula style input.

```r
> # 3-Way Frequency Table
> mytable <- xtabs(~A+B+C, data=mydata)
> ftable(mytable) # print table
> summary(mytable) # chi-square test of independence
```

If a variable is included on the left side of the formula, it is assumed to be a vector of frequencies (useful if the data have already been tabulated).

```r
> (GSStab <- xtabs(count ~ sex + party, data=GSS))
```

```
party
sex dem indep rep
female 279 73 225
male 165 47 191
```

```r
> summary(GSStab)
```

`Call: xtabs(formula = count ~ sex + party, data = GSS)`

`Number of cases in table: 980`

`Number of factors: 2`

`Test for independence of all factors:
 Chisq = 7.01, df = 2, p-value = 0.03005`

2.5. Converting among frequency tables and data frames

As we’ve seen, a given contingency table can be represented equivalently in different forms, but some R functions were designed for one particular representation. Table 1 shows some handy tools for converting from one form to another.

A contingency table in table form (an object of `class(table)`) can be converted to a data.frame with `as.data.frame()`. The resulting `data.frame` contains columns representing the classifying factors and the table entries (as a column named by the `responseName` argument, defaulting to `Freq`. This is the inverse of `xtabs()`.

Example: Convert the `GSStab` in table form to a data.frame in frequency form.

3. Because R is object-oriented, this is actually a short-hand for the function `as.data.frame.table()`.
Table 1: Tools for converting among different forms for categorical data

<table>
<thead>
<tr>
<th>From this</th>
<th>Case form</th>
<th>To this</th>
<th>Frequency form</th>
<th>Table form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case form</td>
<td>noop</td>
<td>xtabs(~A+B)</td>
<td>table(A,B)</td>
<td></td>
</tr>
<tr>
<td>Frequency form</td>
<td>expand.dft(X)</td>
<td>noop</td>
<td>xtabs(count~A+B)</td>
<td></td>
</tr>
<tr>
<td>Table form</td>
<td>expand.dft(X)</td>
<td>as.data.frame(X)</td>
<td>noop</td>
<td></td>
</tr>
</tbody>
</table>

> as.data.frame(GSStab)

sex party Freq
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191

Example: Convert the Arthritis data in case form to a 3-way table of Treatment \times Sex \times Improved.

> Art.tab <- with(Arthritis, table(Treatment, Sex, Improved))

> str(Art.tab)

'table' int [1:2, 1:2, 1:3] 19 6 10 7 7 5 0 2 6 16 ...
- attr(*, "dimnames")=List of 3
 ..$ Treatment: chr [1:2] "Placebo" "Treated"
 ..$ Sex : chr [1:2] "Female" "Male"
 ..$ Improved : chr [1:3] "None" "Some" "Marked"

> ftable(Art.tab)

<table>
<thead>
<tr>
<th>Improved</th>
<th>None</th>
<th>Some</th>
<th>Marked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>Female</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Treated</td>
<td>Female</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

There may also be times that you will need an equivalent case form data.frame with factors representing the table variables rather than the frequency table. For example, the mca() function in package MASS only operates on data in this format. Marc Schwartz provided code for expand.dft() on the Rhelp mailing list for converting a table back into a case form data.frame. This function is included in vcdExtra.

Example: Convert the Arthritis data in table form (Art.tab) back to a data.frame in case form, with factors Treatment, \times Sex and Improved.

4 Unfortunately, table() does not allow a data argument to provide an environment in which the table variables are to be found. In the examples in Section 2.3 I used attach(mydata) for this purpose, but attach() leaves the variables in the global environment, while with() just evaluates the table() expression in a temporary environment of the data.
> Art.df <- expand.dft(Art.tab)
> str(Art.df)

'data.frame': 84 obs. of 3 variables:
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 1 1 1 1 1 1 1 1 1 1 ...
$ Sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
$ Improved : Factor w/ 3 levels "Marked","None",...: 2 2 2 2 2 2 2 2 2 2 ...

2.6. A complex example

If you’ve followed so far, you’re ready for a more complicated example. The data file, tv.dat represents a 4-way table of size $5 \times 11 \times 5 \times 3$ where the table variables (unnamed in the file) are read as V1 – V4, and the cell frequency is read as V5. The file, stored in the data/ directory of vcdExtra, can be read as follows:

> tv.data<-read.table(system.file("data","tv.dat",package="vcdExtra"))
> head(tv.data,5)

V1 V2 V3 V4 V5
1 1 1 1 1 6
2 2 1 1 1 18
3 3 1 1 1 6
4 4 1 1 1 2
5 5 1 1 1 11

For a local file, just use read.table() in this form:

> tv.data<-read.table("C:/R/data/tv.dat")

The data tv.dat came from the initial implementation of mosaic displays in R by Jay Emerson. In turn, they came from the initial development of mosaic displays (Hartigan and Kleiner 1984) that illustrated the method with data on a large sample of TV viewers whose behavior had been recorded for the Neilson ratings. This data set contains sample television audience data from Neilsen Media Research for the week starting November 6, 1995.

The table variables are:

V1 – values 1:5 correspond to the days Monday–Friday;
V2 – values 1:11 correspond to the quarter hour times 8:00PM through 10:30PM;
V3 – values 1:5 correspond to ABC, CBS, NBC, Fox, and non-network choices;
V4 – values 1:3 correspond to transition states: turn the television Off, Switch channels, or Persist in viewing the current channel.

We are interested just the cell frequencies, and rely on the facts that the (a) the table is complete—there are no missing cells, so nrow(tv.data)=825; (b) the observations are ordered so that V1 varies most rapidly and V4 most slowly. From this, we can just extract the frequency column and reshape it into an array.

> TV <- array(tv.data[,5], dim=c(5,11,5,3))
> dimnames(TV) <- list(c("Monday","Tuesday","Wednesday","Thursday","Friday"),
 + c("8:00","8:15","8:30","8:45","9:00","9:15","9:30",
 + "9:45","10:00","10:15","10:30"),
 + c("ABC","CBS","NBC","Fox","Other"), c("Off","Switch","Persist"))
> names(dimnames(TV))<-c("Day", "Time", "Network", "State")
But this table is too large and awkward to work with. Among the networks, Fox and Other occur infrequently. We can also cut it down to a 3-way table by considering only viewers who persist with the current station.

```r
> TV <- TV[,1:3]  # keep only ABC, CBS, NBC
> TV <- TV[,3]    # keep only Persist -- now a 3 way table
> structable(TV)
```

Finally, for some purposes, we might want to collapse the 11 times into a smaller number. Here, we use `as.data.frame.table()` to convert the table back to a data frame, `levels()` to re-assign the values of `Time`, and finally, `xtabs()` to give a new, collapsed frequency table.

```r
> TV.df <- as.data.frame.table(TV)
> levels(TV.df$Time) <- c(rep("8:00-8:59",4),rep("9:00-9:59",4), rep("10:00-10:44",3))
> TV2 <- xtabs(Freq ~ Day + Time + Network, TV.df)
> structable(Day ~ Time+Network,TV2)
```

Whew!
3. Tests of Independence

3.1. CrossTable

OK, now we're ready to do some analyses. For tabular displays, the CrossTable() function in the gmodels package produces cross-tabulations modeled after PROC FREQ in SAS or CROSSTABS in SPSS. It has a wealth of options for the quantities that can be shown in each cell.

```r
> # 2-Way Cross Tabulation
> library(gmodels)
> CrossTable(GSStab,prop.t=FALSE,prop.r=FALSE,prop.c=FALSE)
```

<table>
<thead>
<tr>
<th>Cell Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Total Observations in Table: 980

<table>
<thead>
<tr>
<th>sex</th>
<th>party</th>
<th>dem</th>
<th>indep</th>
<th>rep</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>female</td>
<td>279</td>
<td>73</td>
<td>225</td>
<td>577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.183</td>
<td>0.078</td>
<td>1.622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>165</td>
<td>47</td>
<td>191</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.693</td>
<td>0.112</td>
<td>2.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td>444</td>
<td>120</td>
<td>416</td>
<td>980</td>
<td></td>
</tr>
</tbody>
</table>

There are options to report percentages (row, column, cell), specify decimal places, produce Chi-square, Fisher, and McNemar tests of independence, report expected and residual values (pearson, standardized, adjusted standardized), include missing values as valid, annotate with row and column titles, and format as SAS or SPSS style output! See help(CrossTable) for details.

3.2. Chi-square test

For 2-way tables you can use chisq.test() to test independence of the row and column variable. By default, the p-value is calculated from the asymptotic chi-squared distribution of the test statistic. Optionally, the p-value can be derived via Monte Carlo simulation.

```r
> (HairEye <- margin.table(HairEyeColor, c(1, 2)))
```

<table>
<thead>
<tr>
<th>Eye</th>
<th>Hair</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black 68</td>
</tr>
<tr>
<td></td>
<td>Brown 15</td>
</tr>
<tr>
<td></td>
<td>Hazel 5</td>
</tr>
<tr>
<td></td>
<td>Green 20</td>
</tr>
</tbody>
</table>
Brown 119 54 29 84
Red 26 14 14 17
Blond 7 10 16 94

> chisq.test(HairEye)

Pearson's Chi-squared test

data: HairEye
X-squared = 138.2898, df = 9, p-value < 2.2e-16

3.3. Fisher Exact Test

fisher.test(X) provides an exact test of independence. X must be a two-way contingency table in table form. Another form, fisher.test(X, Y) takes two categorical vectors of the same length. For tables larger than 2 × 2 the method can be computationally intensive (or can fail) if the frequencies are not small.

> fisher.test(GSStab)

Fisher's Exact Test for Count Data

data: GSStab
p-value = 0.03115
alternative hypothesis: two.sided

But this does not work because HairEye data has n=592 total frequency. An exact test is unnecessary in this case.

> fisher.test(HairEye)

Error in fisher.test(HairEye) : FEXACT error 6.
LDKEY is too small for this problem.
Try increasing the size of the workspace.

3.4. Mantel-Haenszel test and conditional association

Use the mantelhaen.test(X) function to perform a Cochran-Mantel-Haenszel χ^2 chi test of the null hypothesis that two nominal variables are conditionally independent, $A \perp B \mid C$, in each stratum, assuming that there is no three-way interaction. X is a 3 dimensional contingency table, where the last dimension refers to the strata.
The UCBAdmissions serves as an example of a 2 × 2 × 6 table, with Dept as the stratifying variable.

> ## UC Berkeley Student Admissions
> mantelhaen.test(UCBAdmissions)

Mantel-Haenszel chi-squared test with continuity correction

data: UCBAdmissions
Mantel-Haenszel X-squared = 1.4269, df = 1, p-value = 0.2323
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.7719074 1.0603298
sample estimates:
common odds ratio
0.9046968

The results show no evidence for association between admission and gender when adjusted for department. However, we can easily see that the assumption of equal association across the strata (no 3-way association) is probably violated. For $2 \times 2 \times k$ tables, this can be examined from the odds ratios for each 2×2 table (`oddsratio()`), and tested by using `woolf_test()` in `vcd`.

```r
> oddsratio(UCBAdmissions, log=FALSE)

        A      B      C      D      E      F
0.3492120 0.8025007 1.1330596 0.9212838 1.2216312 0.8278727

> lor <- oddsratio(UCBAdmissions) # capture log odds ratios
> summary(lor)

Log Odds Ratio Std. Error z value Pr(>|z|)
A  -1.052076  0.259993 -4.0466 2.599e-05 ***
B  -0.220023  0.427128 -0.5151 0.3032
C   0.124922  0.143727  0.8692 0.3890
D  -0.081987  0.149975 -0.5467 0.5841
E   0.200187  0.199581  1.0030 0.3158
F  -0.188896  0.302085 -0.6253 0.5292
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> woolf_test(UCBAdmissions)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)

data: UCBAdmissions
X-squared = 17.9017, df = 5, p-value = 0.003072

We can visualize the odds ratios of Admission for each department with fourfold displays using `fourfold()`. The cell frequencies $n_{ij}$ of each $2 \times 2$ table are shown as a quarter circle whose radius is proportional to $\sqrt{n_{ij}}$, so that its area is proportional to the cell frequency. Confidence rings for the odds ratio allow a visual test of the null of no association; the rings for adjacent quadrants overlap if and only if the observed counts are consistent with the null hypothesis. In the extended version (the default), brighter colors are used where the odds ratio is significantly different from 1. The following lines produce Figure 2.5

```r
> col <- c("#99CCFF", "#6699CC", "#F9AFAF", "#6666A0", "#FF0000", "#000080")
> fourfold(UCB,mfrow=c(2,3), color=col)
```

5The color values `col[3:4]` were modified from their default values to show a greater contrast between significant and insignificant associations here.
Another \texttt{vcd} function, \texttt{cotabplot()}, provides a more general approach to visualizing conditional associations in contingency tables, similar to trellis-like plots produced by \texttt{coplot()} and lattice graphics. The \texttt{panel} argument supplies a function used to render each conditional subtable. The following gives a display (not shown) similar to Figure 2.

\begin{verbatim}
> cotabplot(UCB, panel = cotab_fourfold)
\end{verbatim}

Finally, there is a \texttt{plot()} method for \texttt{oddsratio} objects. By default, it shows the 95\% confidence interval for the log odds ratio. Figure 3 is produced by:

\begin{verbatim}
> plot(lor, xlab="Department", ylab="Log Odds Ratio (Admit | Gender)")
\end{verbatim}

### 3.5. Measures of Association

There are a variety of statistical measures of strength of association for contingency tables—similar in spirit to $r$ or $r^2$ for continuous variables. With a large sample size, even a small degree of association can show a significant $\chi^2$, as in the example below for the GSS data.

The \texttt{assocstats()} function in \texttt{vcd} calculates the $\phi$ contingency coefficient, and Cramer’s V for an $r \times c$ table. The input must be in table form, a two-way $r \times c$ table. It won’t work with \texttt{GSS} in frequency form, but by now you should know how to convert.

\begin{verbatim}
> assocstats(GSStatb)
\end{verbatim}

\begin{verbatim}
   X^2  df  P(> X^2)  Likelihood Ratio 7.0026  2 0.030158
\end{verbatim}
Figure 3: Log odds ratio plot for the UCBAdmissions data.

Pearson 7.0095 2 0.030054

Phi-Coefficient : 0.085
Contingency Coeff.: 0.084
Cramer’s V : 0.085

For tables with ordinal variables, like JobSat, some people prefer the Goodman-Kruskal $\gamma$ statistic, based on a comparison of concordant and discordant pairs of observations in the case-form equivalent of a two-way table.

> GKgamma(JobSat)

gamma : 0.221
std. error : 0.117
CI : -0.009 0.451

A web article by Richard Darlington, http://www.psych.cornell.edu/Darlington/crosstab/TABLE0.HTM gives further description of these and other measures of association.

3.6. Measures of Agreement

The Kappa() function in the vcd package calculates Cohen’s $\kappa$ and weighted $\kappa$ for a square two-way table with the same row and column categories (Cohen 1960).\(^6\) Normal-theory $z$-tests can be obtained by dividing $\kappa$ by its asymptotic standard error (ASE).

> (K <- Kappa(SexualFun))

<table>
<thead>
<tr>
<th>value</th>
<th>ASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted</td>
<td>0.1293303, 0.06884553</td>
</tr>
<tr>
<td>Weighted</td>
<td>0.2373806, 0.12646539</td>
</tr>
</tbody>
</table>

\(^6\) Don’t confuse this with kappa() in base R that computes something entirely different (the condition number of a matrix).
A visualization of agreement, both unweighted and weighted for degree of departure from exact agreement is provided by the `agreementplot()` function. Figure 4 shows the agreementplot for the SexualFun data, produced as shown below. The Bangdiwala measures represent the proportion of the shaded areas of the diagonal rectangles, using weights \( w_1 \) for exact agreement, and \( w_2 \) for partial agreement one step from the main diagonal.

```r
> agree <- agreementplot(SexualFun, main="Is sex fun?")
> unlist(agree)

<table>
<thead>
<tr>
<th>Bangdiwala</th>
<th>Bangdiwala_Weighted</th>
<th>weights1</th>
<th>weights2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1464624</td>
<td>0.4981723</td>
<td>1.000000</td>
<td>0.888889</td>
</tr>
</tbody>
</table>
```

Figure 4: Agreement plot for the SexualFun data.

In other examples, the agreement plot can help to show sources of disagreement. For example, when the shaded boxes are above or below the diagonal (red) line, a lack of exact agreement can be attributed in part to different frequency of use of categories by the two raters—lack of marginal homogeneity.

### 3.7. Correspondence analysis

Use the `ca` package for correspondence analysis for visually exploring relationships between rows and columns in contingency tables. For an \( r \times c \) table, the method provides a breakdown of the Pearson \( \chi^2 \) for association in up to \( M = \min(r - 1, c - 1) \) dimensions, and finds scores for the row \( (x_{im}) \) and column \( (y_{jm}) \) categories such that the observations have the maximum possible correlations.

Here, we carry out a simple correspondence analysis of the HairEye data. The printed results show that nearly 99% of the association between hair color and eye color can be accounted for in 2 dimensions.

```r
> library(ca)
> ca(HairEye)
```
Principal inertias (eigenvalues):

1  2  3
Value 0.208773 0.022227 0.002598
Percentage 89.37% 9.52% 1.11%

Rows:

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Brown</th>
<th>Red</th>
<th>Blond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>0.182432</td>
<td>0.483108</td>
<td>0.119932</td>
<td>0.214527</td>
</tr>
<tr>
<td>ChiDist</td>
<td>0.551192</td>
<td>0.159461</td>
<td>0.354770</td>
<td>0.833897</td>
</tr>
<tr>
<td>Inertia</td>
<td>0.055425</td>
<td>0.012284</td>
<td>0.015095</td>
<td>0.150793</td>
</tr>
<tr>
<td>Dim. 1</td>
<td>-1.104277</td>
<td>-0.324463</td>
<td>-0.283473</td>
<td>1.828229</td>
</tr>
<tr>
<td>Dim. 2</td>
<td>1.440917</td>
<td>-0.219111</td>
<td>-2.144015</td>
<td>0.466706</td>
</tr>
</tbody>
</table>

Columns:

<table>
<thead>
<tr>
<th></th>
<th>Brown</th>
<th>Hazel</th>
<th>Green</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>0.371622</td>
<td>0.157095</td>
<td>0.108108</td>
<td>0.363176</td>
</tr>
<tr>
<td>ChiDist</td>
<td>0.500487</td>
<td>0.288654</td>
<td>0.385727</td>
<td>0.553684</td>
</tr>
<tr>
<td>Inertia</td>
<td>0.093086</td>
<td>0.013089</td>
<td>0.016085</td>
<td>0.111337</td>
</tr>
<tr>
<td>Dim. 1</td>
<td>-1.077128</td>
<td>-0.465286</td>
<td>0.354011</td>
<td>1.198061</td>
</tr>
<tr>
<td>Dim. 2</td>
<td>0.592420</td>
<td>-1.122783</td>
<td>-2.274122</td>
<td>0.556419</td>
</tr>
</tbody>
</table>

The resulting ca object can be plotted just by running the `plot()` method on the ca object, giving the result in Figure 5. `plot.ca()` does not allow labels for dimensions; these can be added with `title()`. It can be seen that most of the association is accounted for by the ordering of both hair color and eye color along Dimension 1, a dark to light dimension.

```r
> plot(ca(HairEye), main="Hair Color and Eye Color")
> title(xlab="Dim 1", ylab="Dim 2")
```

4. Loglinear Models

You can use the `loglm()` function in the MASS package to fit log-linear models. Equivalent models can also be fit (from a different perspective) as generalized linear models with the `glm()` function using the `family='poisson'` argument, and the `gnm` package provides a wider range of generalized nonlinear models, particularly for testing structured associations. The visualization methods for these models are most advanced for models fit using `loglm()`, so this approach is emphasized here.

Assume we have a 3-way contingency table based on variables A, B, and C. The possible different forms of loglinear models for a 3-way table are shown in Table 2. The Model formula column shows how to express each model in R. In the Interpretation column, the symbol “⊥” is to be read as “is independent of,” and “|” means “conditional on,” or “adjusting for,” or just “given”.

For example, the formula “A + B + C” specifies the model of mutual independence with no associations among the three factors. In standard notation for the expected frequencies $m_{ijk}$, this corresponds to

$$
\log(m_{ijk}) = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C \equiv A + B + C
$$

The parameters $\lambda_i^A$, $\lambda_j^B$ and $\lambda_k^C$ pertain to the differences among the one-way marginal frequencies for the factors A, B and C.
Similarly, the model of joint independence allows an association between A and B, but specifies that C is independent of both of these and their combinations,

\[
\log(m_{ijk}) = \mu + \lambda^A_i + \lambda^B_j + \lambda^C_k + \lambda^{AB}_{ij} \equiv A \times B + C
\]

In the literature or text books, you will often find these models expressed in shorthand symbolic notation, using brackets, [ ] to enclose the high-order terms in the model. Thus, the joint independence model can be denoted \( [AB][C] \), as shown in the Symbol column in Table 2.

### 4.1. Fitting with `loglm()`

For example, we can fit the model of mutual independence among hair color, eye color and sex in `HairEyeColor` as

Table 2: Log-linear Models for Three-Way Tables

<table>
<thead>
<tr>
<th>Model</th>
<th>Model formula</th>
<th>Symbol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutual independence</td>
<td>( ^{-A} + B + C )</td>
<td>( [A][B][C] )</td>
<td>( A \perp B \perp C )</td>
</tr>
<tr>
<td>Joint independence</td>
<td>( ^{-A*B} + C )</td>
<td>( [AB][C] )</td>
<td>( (AB) \perp C )</td>
</tr>
<tr>
<td>Conditional independence</td>
<td>( ^{- (A+B)} * C )</td>
<td>( [AC][BC] )</td>
<td>( (A \perp B)</td>
</tr>
<tr>
<td>All two-way associations</td>
<td>( ^{-A<em>B} + A</em>C + B*C )</td>
<td>( [AB][AC][BC] )</td>
<td>homogeneous association</td>
</tr>
<tr>
<td>Saturated model</td>
<td>( ^{-A<em>B</em>C} )</td>
<td>( [ABC] )</td>
<td>3-way association</td>
</tr>
</tbody>
</table>
> library(MASS)
> ## Independence model of hair and eye color and sex.
> hec.1 <- loglm(~Hair+Eye+Sex, data=HairEyeColor)
> hec.1

Call:
loglm(formula = ~Hair + Eye + Sex, data = HairEyeColor)

Statistics:
             X^2  df P(> X^2)
Likelihood Ratio 166.3001 24 0
Pearson 164.9247 24 0

Similarly, the models of conditional independence and joint independence are specified as

> ## Conditional independence
> hec.2 <- loglm(~(Hair + Eye) * Sex, data=HairEyeColor)
> hec.2

Call:
loglm(formula = ~(Hair + Eye) * Sex, data = HairEyeColor)

Statistics:
             X^2  df P(> X^2)
Likelihood Ratio 156.6779 18 0
Pearson 147.9440 18 0

> ## Joint independence model.
> hec.3 <- loglm(~Hair*Eye + Sex, data=HairEyeColor)
> hec.3

Call:
loglm(formula = ~Hair * Eye + Sex, data = HairEyeColor)

Statistics:
             X^2  df P(> X^2)
Likelihood Ratio 19.85656 15 0.1775045
Pearson  19.56712 15 0.1891745

Note that printing the model gives a brief summary of the goodness of fit. A set of models can be compared using the anova() function.

> anova(hec.1, hec.2, hec.3)

LR tests for hierarchical log-linear models

Model 1:
"Hair + Eye + Sex
Model 2:
"(Hair + Eye) * Sex
Model 3:
"Hair * Eye + Sex

<table>
<thead>
<tr>
<th>Deviance</th>
<th>df</th>
<th>Delta(Dev)</th>
<th>Delta(df)</th>
<th>P(&gt; Delta(Dev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>166.30014</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>156.67789</td>
<td>18</td>
<td>9.62225</td>
<td>6</td>
</tr>
<tr>
<td>Model 3</td>
<td>19.85656</td>
<td>15</td>
<td>136.82133</td>
<td>3</td>
</tr>
<tr>
<td>Saturated</td>
<td>0.00000</td>
<td>0</td>
<td>19.85656</td>
<td>15</td>
</tr>
</tbody>
</table>

5. Mosaic plots

Mosaic plots provide an ideal method both for visualizing contingency tables and for visualizing the fit— or more importantly— lack of fit of a loglinear model. For a two-way table, mosaic() fits a model of independence, $[A][B]$ or $^\sim A*B$ as an R formula. For $n$-way tables, mosaic() can fit any loglinear model, and can also be used to plot a model fit with loglm(). See Friendly (1994, 1999) for the statistical ideas behind these uses of mosaic displays in connection with loglinear models.

The essential idea is to recursively sub-divide a unit square into rectangular “tiles” for the cells of the table, such that the area of each tile is proportional to the cell frequency. For a given loglinear model, the tiles can then be shaded in various ways to reflect the residuals (lack of fit) for a given model. The pattern of residuals can then be used to suggest a better model or understand where a given model fits or does not fit.

mosaic() provides a wide range of options for the directions of splitting, the specification of shading, labeling, spacing, legend and many other details. It is actually implemented as a special case of a more general class of displays for $n$-way tables called strucplot, including sieve diagrams, association plots, double-decker plots as well as mosaic plots. For details, see help(strucplot) and the “See also” links, and also Meyer, Zeileis, and Hornik (2006), which is available as an R vignette via vignette("strucplot", package="vcd").

Figure 1, showing the association between Treatment and Improved was produced with the following call to mosaic().

```r
> mosaic(art, gp = shading_max, split_vertical = TRUE,
+ main="Arthritis: [Treatment] [Improved]"
```

Note that the residuals for the independence model were not large (as shown in the legend), yet the association between Treatment and Improved is highly significant.

```r
> summary(art)
Call: xtabs(formula = ~Treatment + Improved, data = Arthritis)
Number of cases in table: 84
Number of factors: 2
Test for independence of all factors:
 Chisq = 13.055, df = 2, p-value = 0.001463
```

In contrast, one of the other shading schemes, from Friendly (1994) (use: gp = shading_Friendly), uses fixed cutoffs of ±2, ±4, to shade cells which are individually significant at approximately $\alpha = 0.5$ and $\alpha = 0.001$ levels, respectively. The right panel below uses gp = shading_Friendly.
5.1. Mosaics for loglinear models

When you have fit a loglinear model using `loglm()`, and saved the result (as a `loglm` object) the simplest way to display the results is to use the `plot()` method for the `loglm` object. Calling `mosaic(loglm.object)` has the same result. In Section 4.1 above, we fit several different models to the `HairEyeColor` data. We can produce mosaic displays of each just by plotting them:

```r
> # mosaic plots, using plot.loglm() method
> plot(hec.1, main="model: [Hair][Eye][Sex]"
> plot(hec.2, main="model: [HairSex][EyeSex]"
> plot(hec.3, main="model: [HairEye][Sex]"
```

Alternatively, you can supply the model formula to `mosaic()` with the `expected` argument. This is passed to `loglm()`, which fits the model, and returns residuals used for shading in the plot.

For example, here we examine the `TV2` constructed in Section 2.6 above. The goal is to see how Network choice depends on (varies with) Day and Time. To do this:

- We fit a model of joint independence of Network on the combinations of Day and Time, with the model formula `~Day:Time + Network`.
- To make the display more easily read, we place Day and Time on the vertical axis and Network on the horizontal,
- The Time values overlap on the right vertical axis, so we use `level()` to abbreviate them.

`mosaic()` also supports a more sophisticated set of labeling functions. Instead of changing the
data table, we could have used `labeling_args = list(abbreviate = c(Time = 2))` for a similar effect.

The following call to `mosaic()` produces Figure 6:

```r
> dimnames(TV2)$Time <- c("8", "9", "10") # re-level for mosaic display
> mosaic(~ Day + Network + Time, data=TV2, expected=~Day:Time + Network,
+ legend=FALSE, gp=shading_Friendly)
```

![Mosaic plot for the TV data showing model of joint independence, Day:Time + Network](mosaic_plot.png)

Figure 6: Mosaic plot for the TV data showing model of joint independence, `Day:Time + Network`.

From this, it is easy to read from the display how network choice varies with day and time. For example, CBS dominates in all time slots on Monday; ABC and NBC dominate on Tuesday, particularly in the later time slots; Thursday is an NBC day, while on Friday, ABC gets the greatest share.

In interpreting this mosaic and other plots, it is important to understand that associations included in the model—here, that between day and time—are not shown in the shading of the cells, because they have been fitted (taken into account) in the loglinear model.

For comparison, you might want to try fitting the model of homogeneous association. This allows all pairs of factors to be associated, but asserts that each pairwise association is the same across the levels of the remaining factor. The resulting plot displays the contributions to a 3-way association, but is not shown here.
6. Continuous predictors: spine and conditional density plots

When continuous predictors are available—and potentially important—in explaining a categorical outcome, models for that outcome include: logistic regression (binary response), the proportional odds model (ordered polytomous response), multinomial (generalized) logistic regression. Many of these are special cases of the generalized linear model using the "poisson" or "binomial" family and their relatives.

I don’t go into fitting such models here, but I would be remiss not to illustrate some visualizations in vcd that are helpful here. The first of these is the spine plot or spinogram (Hummel 1996) (produced with spine()). These are special cases of mosaic plots with specific spacing and shading to show how a categorical response varies with a continuous or categorical predictor.

They are also a generalization of stacked bar plots where not the heights but the widths of the bars corresponds to the relative frequencies of \( x \). The heights of the bars then correspond to the conditional relative frequencies of \( y \) in every \( x \) group.

For the Arthritis data, we can see how Improved varies with Age as follows. spine() takes a formula of the form \( y \sim x \) with a single dependent factor and a single explanatory variable \( x \) (a numeric variable or a factor). The range of a numeric variable \( x \) is divided into intervals based on the breaks argument, and stacked bars are drawn to show the distribution of \( y \) as \( x \) varies. As shown below, the discrete table that is visualized is returned by the function.

\[
> \text{spine(Improved} \sim \text{Age, data = Arthritis, breaks = 3})
\]

<table>
<thead>
<tr>
<th>Improved</th>
<th>Age</th>
<th>None</th>
<th>Some</th>
<th>Marked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[20,40]</td>
<td>10</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(40,60]</td>
<td>21</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(60,80]</td>
<td>11</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

\[
> \text{spine(Improved} \sim \text{Age, data = Arthritis, breaks = "Scott"})
\]

<table>
<thead>
<tr>
<th>Improved</th>
<th>Age</th>
<th>None</th>
<th>Some</th>
<th>Marked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[20,30]</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(30,40]</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(40,50]</td>
<td>9</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(50,60]</td>
<td>12</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(60,70]</td>
<td>11</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(70,80]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
The conditional density plot (Hofmann and Theus 2005) is a further generalization. This visualization technique is similar to spinograms, but uses a smoothing approach rather than discretizing the explanatory variable. As well, it uses the original $x$ axis and not a distorted one.

```r
> cdplot(Improved ~ Age, data = Arthritis)
> with(Arthritis, rug(jitter(Age), col="white", quiet=TRUE))
```

Figure 7: Conditional density plot for the Arthritis data showing the variation of Improved with Age.
In such plots, it is useful to also see the distribution of the observations across the horizontal axis, e.g., with a `rug()` plot. Figure 7 uses `cdplot()` from the `graphics` package rather than `cd_plot()` from `vcd`, and is produced with

```r
> cdplot(Improved ~ Age, data = Arthritis)
> with(Arthritis, rug(jitter(Age), col="white", quiet=TRUE))
```

From Figure 7 it can be easily seen that the proportion of patients reporting Some or Marked improvement increases with Age, but there are some peculiar bumps in the distribution. These may be real or artifactual, but they would be hard to see with most other visualization methods. When we switch from non-parametric data exploration to parametric statistical models, such effects are easily missed.

## References


