
Visualizing Categorical Data with SAS and R

Michael Friendly

York University

Short Course, 2012 Web notes: datavis.ca/courses/VCD/

Course structure, Parts 1–3

1. Overview and introduction

- Categorical data? Graphics?
- Discrete distributions
- Testing association

2. Visualizing two-way and n-way tables

- 2 ×2 tables; $r \times c$ tables: Fourfold & sieve diagrams
- Observer agreement: Measures and graphs
- Correspondence analysis

3. Mosaic displays and loglinear models

- *n*-way tables: graphs and models
- Mosaics software
- Structured tables

Course goals

Emphasis: visualization methods

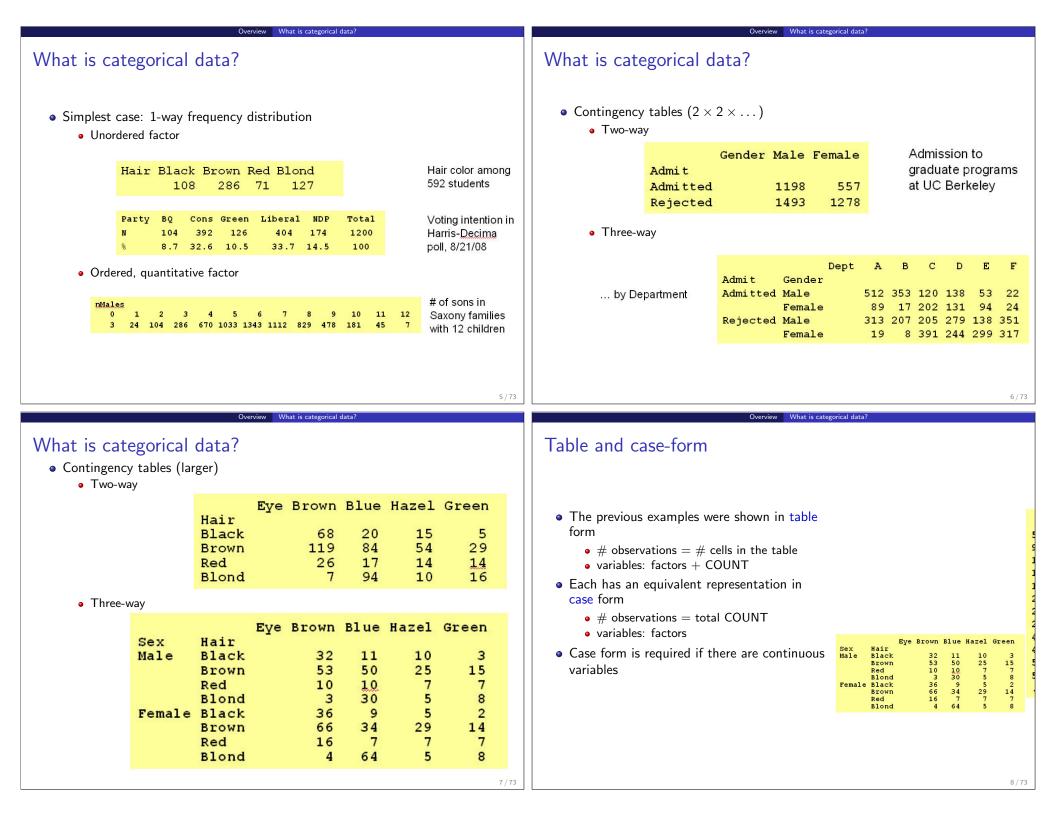
- Basic ideas: categorical vs. quantitative data
- $\bullet\,$ Some novel displays: sieve diagrams, fourfold displays, mosaic plots, $\ldots\,$
- Some that extend more familiar ideas to the categorical data setting.

Emphasis: theory \Rightarrow practice

- Show what can be done, in both SAS and R (most in SAS)
- Framework for *thinking* about categorical data analysis in visual terms
- Provide software tools you can *use*

What is included, and what is *not*

- Some description of statistical methods— only as necessary
- Many software examples— only explained as necessary
- Too much material— some skipping may be required


Course structure, Parts 4–5

4. Logit models and logistic regression

- Logit models; logistic regression models
- Effect plots
- Influence and diagnostic plots

5. Polytomous response models

- Proportional odds models
- Nested dichotomies
- Generalized logits

Categorical data: Analysis methods

Methods of analysis for categorical data fall into two main categories:

Non-parametric, randomization-based methods

- Make minimal assumptions
- Useful for hypothesis-testing: Are A and B associated?
- Mostly for two-way tables (possibly stratified)
- SAS: PROC FREQ
 - Pearson Chi-square
 - Fisher's exact test (for small expected frequencies)
 - Mantel-Haenszel tests (ordered categories: test for *linear* association)
- R: chisq.test(), mantelhaen.test(), ...
- SPSS: Crosstabs

Categorical data: Analysis methods

Model-based methods

- Must assume random sample (possibly stratified)
- Useful for estimation purposes: Size of effects (std. errors, confidence intervals)
- More suitable for multi-way tables
- Greater flexibility; fitting specialized models
 - Symmetry, quasi-symmetry, structured associations for square tables
 - Models for ordinal variables
- SAS: PROC LOGISTIC, CATMOD, GENMOD , INSIGHT (Fit YX)
 - estimate standard errors, covariances for model parameters
 - confidence intervals for parameters, predicted Pr{response}
- R: glm() family, car package, gnm package, ...
- SPSS: Hiloglinear, Loglinear, Generalized linear models

9/73

Categorical data: Response vs. Association models

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
 - $\bullet \ \, \mathsf{Admit} \sim \mathsf{Gender} + \mathsf{Dept}$
 - $\bullet \ {\sf Party} \sim {\sf Age} + {\sf Education} + {\sf Urban}$
- $\Rightarrow\,$ Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association
- Q: Which variables are associated, and how?
 - Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]
- \Rightarrow Loglinear models

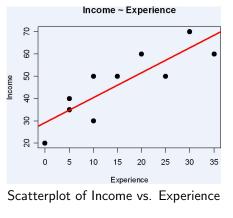
This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

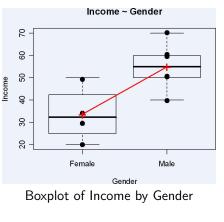
Graphical methods: Tables and Graphs

If I can't picture it, I can't understand it.

Albert Einstein

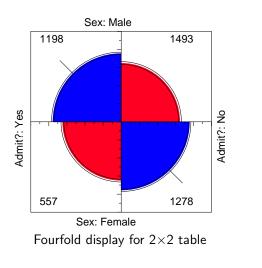
Getting information from a table is like extracting sunlight from a cucumber. Farquhar & Farquhar, 1891


view Gran


Tables vs. Graphs

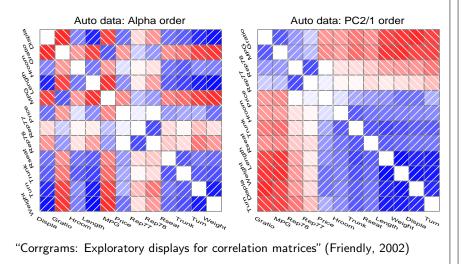
- Tables are best suited for *look-up* and calculation—
 - read off exact numbers
 - additional calculations (e.g., % change)
- Graphs are better for:
 - showing patterns, trends, anomalies,
 - making *comparisons*
 - seeing the unexpected!
- Visual presentation as *communication*:
 - what do you want to say or show?
 - design graphs and tables to 'speak to the eyes'

Graphical methods: Quantitative data


Quantitative data (amounts) are naturally displayed in terms of <code>magnitude</code> \sim <code>position</code> along a scale

Graphical methods: Categorical data

Frequency data (counts) are more naturally displayed in terms of count \sim area (Friendly, 1995)



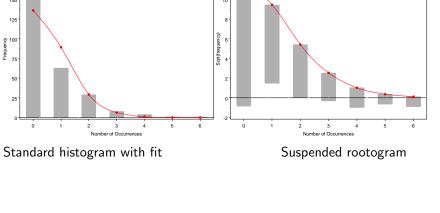
14/73

• Principles of Graphical Displays

• Effect ordering (Friendly and Kwan, 2003)— In tables and graphs, sort unordered factors according to the effects you want to see/show.

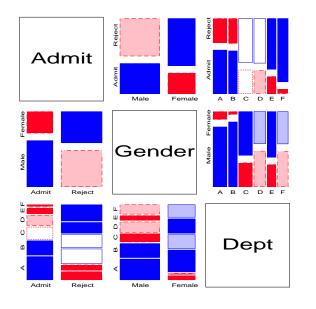
Overview Graphical methods

• Effect ordering and high-lighting for tables (Friendly, 2000)


Table: Hair color - Eye color data: Effect ordered

Overview Graphical methods

	Hair color					
Eye color	Black	Brown	Red	Blond		
Brown	68	119	26	7		
Hazel	15	54	14	10		
Green	5	29	14	16		
Blue	20	84	17	94		


Model:	Inde	pendend	e: [Hai	[Hair][Eye] χ^2 (9)= 138.29			
Color coding:	<-4	<-2	<-1	0	>1	>2	>4
<i>n</i> in each cell:	<u>n <</u>	expec		n >	expe	cted	

Comparisons— Make visual comparisons easy
 Visual grouping— connect with lines, make key comparisons contiguous
 Baselines— compare data to model against a line, preferably horizontal

Overview Graphical me

• e.g., mosaic matrix for quantitative data: all pairwise mosaic plots

Graphical methods: Categorical data

Exploratory methods

1983)

- Minimal assumptions (like non-parametric methods)
- Show the *data*, not just *summaries*
- Help detect *patterns, trends, anomalies*, suggest hypotheses

Plots for model-based methods

- Residual plots departures from model, omitted terms, ...
- Effect plots estimated probabilities of response or log odds
- Diagnostic plots influence, violation of assumptions

Goals

 VCD and R vcd package - Make these methods available and accessible in SAS & R

• Small multiples— combine stratified graphs into coherent displays (Tufte,

Educ

Income

Graphical r

Women

- Practical power = Statistical power \times Probability of Use
- Today's goal: take-home knowledge
- Tomorrow's goal: dynamic, interactive graphics for categorical data

17 / 73

VCD Macros & SAS/IML programs

• Macros, datasets available at datavis.ca/vcd/

Discrete distributions

DISTPLOT	Plots for discrete distributions
GOODFIT	Goodness-of-fit for discrete distributions
ORDPLOT	Ord plot for discrete distributions
POISPLOT	Poissonness plot
ROOTGRAM	Hanging rootograms

Two-way and -way tables

AGREEPLOT	Observer agreement chart
CORRESP	Plot PROC CORRESP results
FFOLD	Fourfold displays for $2 \times 2 \times k$ tables
SIEVEPLOT	Sieve diagrams
MOSAIC	Mosaic displays
MOSMAT	Mosaic matrices
TABLE	Construct a grouped frequency table, with recoding
TRIPLOT	Trilinear plots for $n \times 3$ tables

Overview Software: R

R software and the vcd package

• R software and the vcd package, available at www.r-project.org

Discrete distributions

distplot	Plots for discrete distributions
goodfit	Goodness-of-fit for discrete distributions
ordplot	Ord plot for discrete distributions
poisplot	Poissonness plot
rootgram	Hanging rootograms

Two-way and -way tables

agreementplot Observer agreement chart				
fourfold	Fourfold displays for $2 \times 2 \times k$ tables			
sieve	Sieve diagrams			
mosaic	Mosaic displays			
pairs.table Matrix of pairwise association displays				
structable	Manipulate high-dimensional contingency tables			
triplot	Trilinear plots for $n \times 3$ tables			

Model-based methods

ADDVAR	Added variable plots for logistic regression
CATPLOT	Plot results from PROC CATMOD
HALFNORM	Half-normal plots for generalized linear models
INFLGLIM	Influence plots for generalized linear models
INFLOGIS	Influence plots for logistic regression
LOGODDS	Plot empirical logits and probabilities for binary data
POWERLOG	Power calculations for logistic regression

Utility macros DUMMY Create dummy variables LAGS Calculate lagged frequencies for sequential analysis PANELS Arrange multiple plots in a panelled display SORT Sort a dataset by the value of a statistic or formatted value Utility Graphics utility macros: BARS, EQUATE, GDISPLA, GENSYM, GSKIP, LABEL, POINTS, PSCALE

VCD Archive (vcdprog.zip) available at: http://datavis.ca/courses/VCD/vcdprog.zip

Overview Software: R

R software: Other packages

Model-based methods				
glm	Fitting generalized linear models			
gnm	Fitting generalized <i>non-linear</i> models, e.g., RC(1) model			
loglm	MASS package: Fitting loglinear models			
Rcmdr	Menu-driven package for statistical analysis and graphics			
car	Graphics and extensions of generalized linear models			
effects	Effects plots for generalized linear models			

vcdExtra package

vcd-tutorial Vignette on working with categorical data and the vcd package mosaic.glm mosaic displays for GLMs and GNMs mosaic3d 3D mosaic displays glmlist Methods for working with lists of models

23 / 73

21 / 73

Discrete distributions

- **Counts of occurrences:** accidents, words in text, blood cells with some characteristic.
- **Data:** Basic outcome value, k, k = 0, 1, ..., and number of observations, n_k , with that value.
- **Example:** distributions of key "marker" words: *from, may, whilst, ...* in *Federalist Papers* by James Madison, e.g., blocks of 200 words with *may*:

Occurrences (k)	0	1	2	3	4	5	6	
Blocks (n_k)	156	63	29	8	4	1	1	

• **Example:** Saxony families with 12 children having k = 0, 1, ..., 12 sons.

k	0	1	2	3	4	5	6	7	8	9	10	11	12
n_k	3	24	104	286	670	1033	1343	1112	829	478	181	45	7

Discrete distributions

Questions:

- What process gave rise to the distribution?
- Form of distribution: uniform, binomial, Poisson, negative binomial, geometric, etc.?
- Estimate parameters
- Visualize goodness of fit

For example:

- *Federalist Papers:* might expect a Poisson(λ) distribution.
- *Families in Saxony:* might expect a Bin(n, p) distribution with n = 12. Perhaps p = 0.5 as well.

26 / 73

Discrete distributions

Lack of fit:

- Lack of fit tells us something about the process giving rise to the data
- Poisson: assumes constant small probability of the basic event
- Binomial: assumes constant probability and independent trials

Motivation:

- Models for more complex categorical data often use these basic discrete distributions
- Binomial (with predictors) \rightarrow logistic regression
- \bullet Poisson (with predictors) \rightarrow poisson regression, loglinear models
- \bullet \Rightarrow many of these are special cases of generalized linear models

Fitting and graphing discrete distributions

VCD

25/73

methods to fit, visualize, and diagnose discrete distributions:

- **Fitting:** GOODFIT macro fits uniform, binomial, Poisson, negative binomial, geometric, logarithmic series distributions (or any specified multinomial)
- **Hanging rootograms:** Sensitively assess departure between Observed, Fitted counts (ROOTGRAM macro)
- **Ord plots:** Diagnose form of a discrete distribution (ORDPLOT macro)
- **Poissonness plots:** Robust fitting and diagnostic plots for Poisson (POISPLOT macro)
- Robust distribution plots (DISTPLOT macro)

Sidebar: Using SAS macros Sidebar: Using SAS macros E.g., the GOODFIT macro is defined with the following arguments: • SAS macros are high-level, general programs consisting of a series of DATA ··· goodfit.sas ··· steps and PROC steps. 1 %macro goodfit(data=_last_, 2 /* name of the input data set • Keyword arguments substitute your data names, variable names, and options 3 var=. /* analysis variable (basic count) */ for the named macro parameters. /* frequency variable 4 freq=, dist=, /* name of distribution to be fit 5 • Use as: /* required distribution parameters? parm=, 6 /* sum probs. and fitted values here sumat=100000, %macname(data=dataset, var=variables, ...); /* format for ungrouped analysis variable format=, out=fit, /* output fit data set Most arguments have default values (e.g., data=_last_) outstat=stats); /* output statistics data set 10 */ • All VCD macros have internal and online documentation, Typical use: http://datavis.ca/sasmac/ 1 %goodfit(data=madison, /* data set */ Macros can be installed in directories automatically searched by SAS. Put the /* count variable */ var=count, 2 following options statement in your AUTOEXEC.SAS file: 3 freq=blocks, options sasautos=('c:\sasuser\macros' sasautos); dist=poisson); 4 29 / 73 30 / 73 Discrete distributions Fitting discrete dist Fitting discrete distributions GOODFIT macro: Fitting discrete distributions • GOODFIT macro fits uniform, binomial, Poisson, negative binomial, geometric, • Distributions: • Poisson, $p(k) = e^{-\lambda} \lambda^k / k!$ logarithmic series distributions (or any specified multinomial) • Binomial, $p(k) = \binom{n}{k} p^k (1-p)^{n-k}$ • E.g., Try fitting Poisson model • Negative binomial, $p(k) = \binom{n+k-1}{k} p^n (1-p)^k$ • Geometric, $p(k) = p(1-p)^k$ madfit.sas 1 title "Instances of 'may' in Federalist papers"; • Logarithmic series, $p(k) = \theta^k / [-k \log(1-\theta)]$ ² data madison; • Estimate parameter(s): input count blocks; 3 label count='Number of Occurrences' 4 • Poisson, $\hat{\lambda} = \sum kn_k / \sum n_k = \text{mean}$ blocks='Blocks of Text'; 5 6 datalines; • Binomial, $\hat{p} = \sum kn_k/(n \sum n_k) = \text{mean } / n$ 0 156 $\overline{7}$ Goodness of fit: 1 63 8 2 29 9 $\chi^2 = \sum_{k=1}^{K} \frac{\left(n_k - N\hat{p}_k\right)^2}{N\hat{p}_k} \sim \chi^2_{(K-1)}$ 10 3 8 11 4 4 5 1 126 13 14where \hat{p}_k is the estimated probability of each basic count, under the %goodfit(data=madison, var=count, freq=blocks, 15hypothesis that the data follows the chosen distribution. dist=poisson); 16 31 / 73 32 / 73

Fitting discrete distributions

The GOODFIT macro gives a table of observed and fitted frequencies, Pearson χ^2 residuals (CHI) and likelihood-ratio deviance residuals (DEV).

	Instan	ces of 'may'	in Federa	list papers	
COUNT	BLOCKS	PHAT	EXP	CHI	DEV
0	156	0.51867	135.891	1.72499	6.56171
1	63	0.34050	89.211	-2.77509	-6.62056
2	29	0.11177	29.283	-0.05231	-0.75056
3	8	0.02446	6.408	0.62890	1.88423
4	4	0.00401	1.052	2.87493	3.26912
5	1	0.00053	0.138	2.31948	1.98992
6	1	0.00006	0.015	8.01267	2.89568
	======	======	======		
	262	0.99999	261.998		

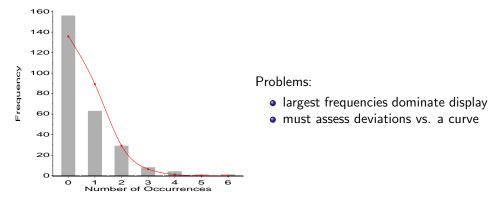
Fitting discrete distributions

In addition, it provides the overall goodness-of-fit tests:

Goodness-of-fit test for data set MADISON

Analysis variable:	COUNT Number of Occurrences
Distribution:	POISSON
Estimated Parameters:	lambda = 0.6565
Pearson chi-square	= 88.92304707
Prob > chi-square	= 0
Likelihood ratio G2	= 25.243121314
Prob > chi-square	= 0.0001250511
Degrees of freedom	= 5

The poisson model does not fit! Why?


33 / 73

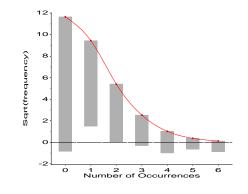
35 / 73

What's wrong with histograms?

• Discrete distributions often graphed as histograms, with a theoretical fitted distribution superimposed.

Discrete distributions Fitting discrete distribution

Hang & root them \rightarrow Hanging rootograms

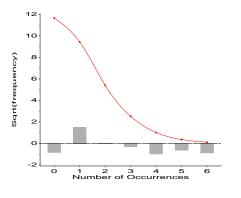

Tukey (1972, 1977):

ullet shift histogram bars to the fitted curve \rightarrow judge deviations vs. horizontal line.

Discrete distributions Fitting discrete distributions

• plot $\sqrt{\text{freq}} \rightarrow \text{smaller frequencies are emphasized.}$

%goodfit(data=madison, var=count, freq=blocks, dist=poisson, out=fit); %rootgram(data=fit, var=count, obs=blocks);

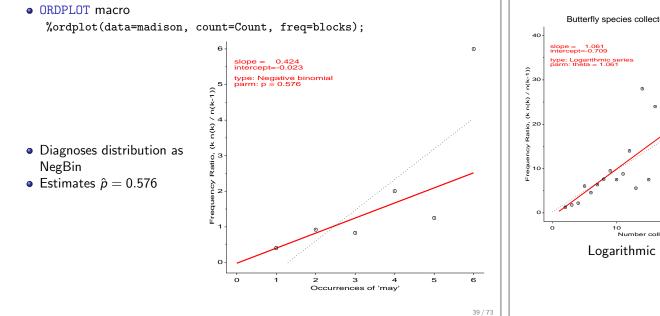

36 / 73

- Emphasize differences between observed and fitted frequencies
- Draw bars to show the gaps (btype=dev)
- %goodfit(data=madison, var=count, freq=blocks, dist=poisson, out=fit); %rootgram(data=fit, var=count, obs=blocks, btype=dev);

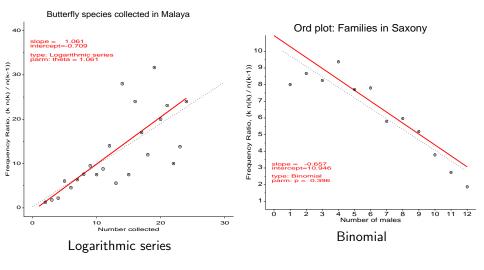
Discrete distributions Ord plots: diagnose form

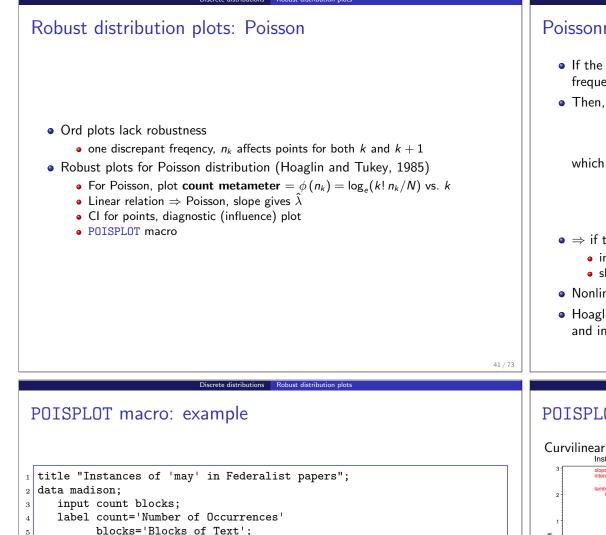
Ord plots: Diagnose form of discrete distribution

- How to tell which discrete distributions are likely candidates?
- Ord (1967): for each of Poisson, Binomial, Negative Binomial, and Logarithmic Series distributions,
 - plot of kp_k/p_{k-1} against k is linear
 - signs of intercept and slope \rightarrow determine the form, give rough estimates of parameters


Slo	pe Intercep	ot Distribution	Parameter
(b) (a)	(parameter)	estimate
0	+	Poisson (λ)	$\lambda = a$
-	+	Binomial (n, p)	p = b/(b-1)
+	+	Neg. binomial (n	,p) $p = 1 - b$
+	_	Log. series (θ)	$\theta = b$
			heta = -a

Discrete distributions Ord plots: diagnose for


• Fit line by WLS, using $\sqrt{n_k}$ as weights


38 / 73

Ord plots

Ord plots: Other distributions

datalines:

156

63

29

8

4

1

1

15 %poisplot(data=madison,count=count, freq=blocks);

0

1

2

3

4

5

6

7

8

9

10

11

12

13 6

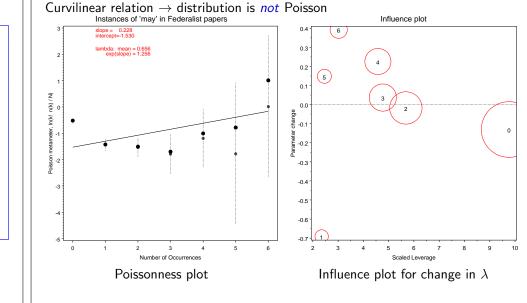
14

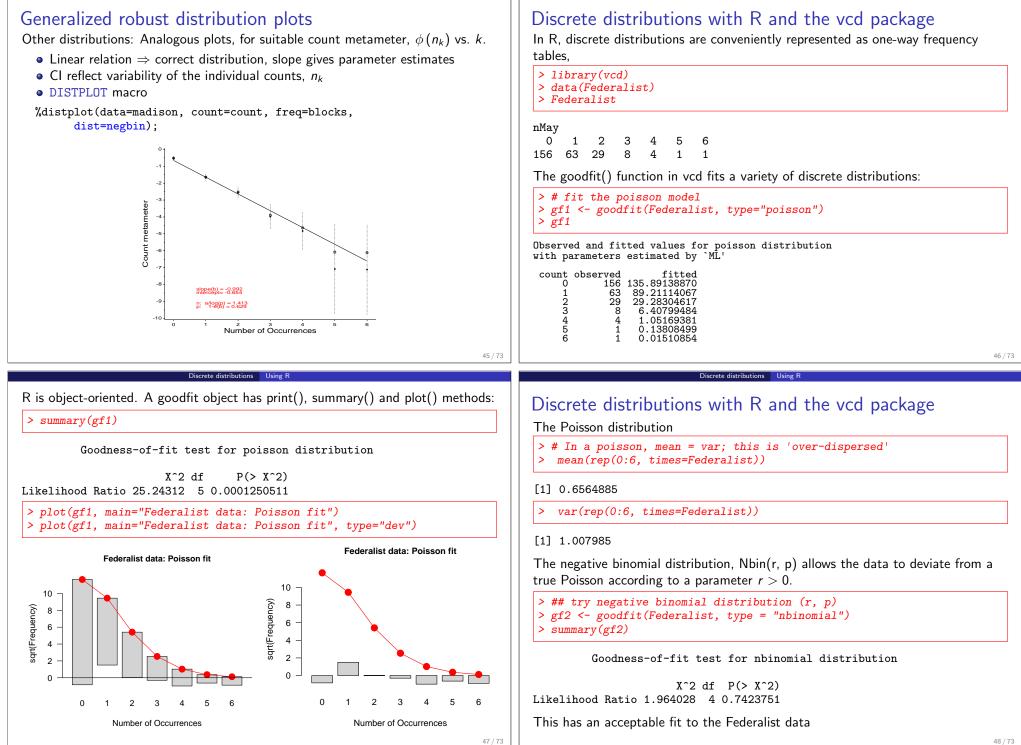
Poissonness plots: Details

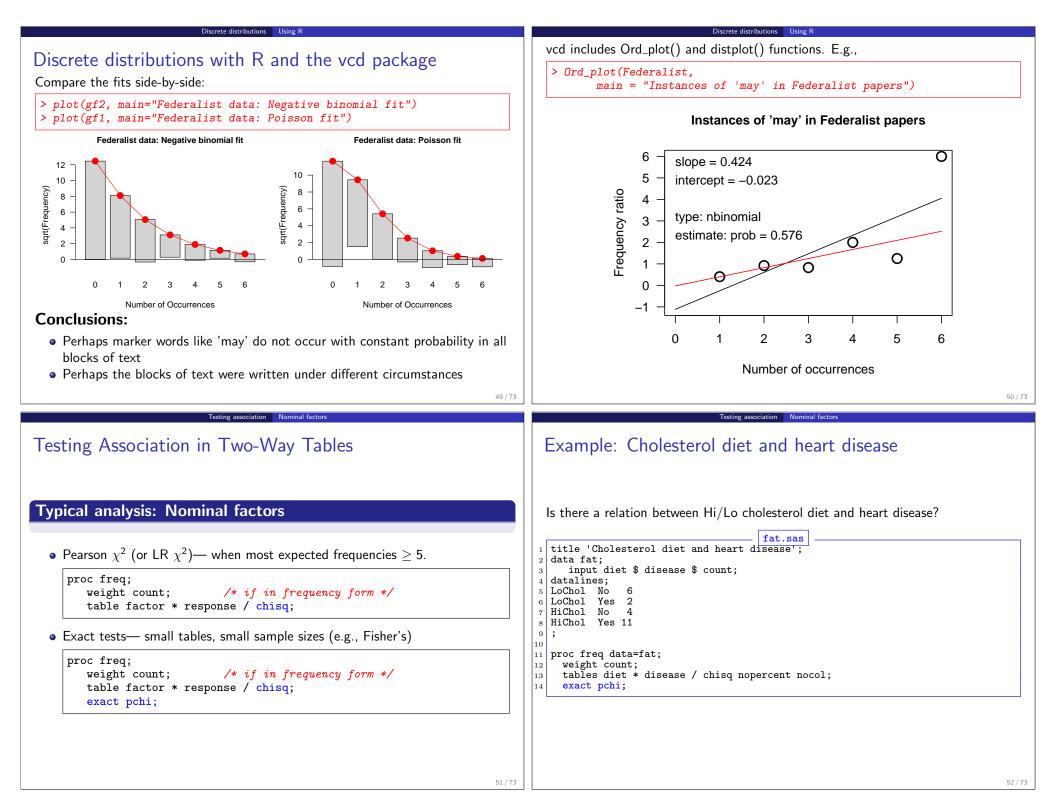
- If the distribution of n_k is Poisson(λ) for some fixed λ, then each observed frequency, n_k ≈ m_k = Np_k.
- Then, setting $n_k = Np_k = e^{-\lambda} \lambda^k / k!$, and taking logs of both sides gives

$$\log(n_k) = \log N - \lambda + k \log \lambda - \log k!$$

which can be rearranged to


$$\phi(n_k) \equiv \log\left(\frac{k! n_k}{N}\right) = -\lambda + (\log \lambda) k$$


- \Rightarrow if the distribution is Poisson, plotting $\phi(n_k)$ vs. k should give a line with
 - intercept = $-\lambda$
 - $\bullet \ \operatorname{slope} = \log \, \lambda$
- \bullet Nonlinear relation \rightarrow distribution is not Poisson
- Hoaglin and Tukey (1985) give details on calculation of confidence intervals and influence measures.


Discrete distributions Robust distribution plots

POISPLOT macro: output

43 / 73

Testing association Nominal factors		Testing association Nominal factors
andard output:		
Table of diet by disease		
diet disease		• Exact tests are valid and significant.
Frequency Row Pct No Yes Total		
HiChol 4 11 15		Exact test output:
26.67 73.33		Pearson Chi-Square Test
LoChol 6 2 8 75.00 25.00		Chi-Square 4.9597 DF 1 1
 Total 10 13 23		Asymptotic Pr > ChiSq 0.0259 Exact Pr >= ChiSq 0.0393
Statistics for Table of diet by disease		Fisher's Exact Test
Statistic DF Value	Prob	Cell (1,1) Frequency (F) 4
Chi-Square 1 4.9597 Likelihood Ratio Chi-Square 1 5.0975 Continuity Adj. Chi-Square 1 3.1879	0.0259 0.0240	Left-sided Pr <= F
	0.0742	Table Probability (P) 0.0334
WARNING: 50% of the cells have expected counts le (Asymptotic) Chi-Square may not be a val	ss than 5. id test.	Two-sided Pr <= P 0.0393
• The Pearson and LR χ^2 tests are not valid • The conservative continuity-adjusted test fails s Testing association Nominal factors	ignificance 53/73	Testing association Ordinal factors and Stratified analyses
• The conservative continuity-adjusted test fails s	53 / 73	
The conservative continuity-adjusted test fails s Testing association Nominal factors	53 / 73	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses
The conservative continuity-adjusted test fails s Testing association Nominal factors review: Visualizing association in 2	53 / 73	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests
The conservative continuity-adjusted test fails s Testing association Nominal factors review: Visualizing association in 2 disease: No	53 / 73	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses
 The conservative continuity-adjusted test fails s Testing association Mominal factors review: Visualizing association in 2 disease: No 6 6 6 Fourfo 	imes 2 tables Id display: area ~ frequency	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more
 The conservative continuity-adjusted test fails s Testing association Mominal factors review: Visualizing association in 2 disease: No G G Fourfo Color: 	\times 2 tables Id display: area ~ frequency blue (+), red(-)	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order into account have greater power to detect ordered relations. proc freq;
 The conservative continuity-adjusted test fails s Testing association in 2 disease: No disease: No Go Go G	× 2 tables Id display: area ~ frequency blue (+), red(-) ence bands: significance of	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order intra account have greater power to detect ordered relations.
 The conservative continuity-adjusted test fails s Testing association Moninal factors review: Visualizing association in 2 disease: No Gisease: No Gisease: No Gisease: No Color: Color: Confid odds results 	× 2 tables Id display: area ~ frequency blue (+), red(-) ence bands: significance of atio	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order into account have greater power to detect ordered relations. proc freq; weight count;
 The conservative continuity-adjusted test fails s Testing association Moninal factors review: Visualizing association in 2 disease: No Gisease: No Gisease: No Gisease: No Color: Color: Confid odds results 	× 2 tables Id display: area ~ frequency blue (+), red(-) ence bands: significance of atio Hi cholesterol \rightarrow Heart	Testing association Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order into account have greater power to detect ordered relations. proc freq; weight count;
 The conservative continuity-adjusted test fails s Testing association Mominal factors review: Visualizing association in 2 disease: No Gisease: No Gisease:	× 2 tables Id display: area ~ frequency blue (+), red(-) ence bands: significance of atio Hi cholesterol \rightarrow Heart	Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order intra account have greater power to detect ordered relations. proc freq; weight count; table factor * response / chisq cmh; Control for other background variables • Stratified analysis tests the association between a main factor and response
 The conservative continuity-adjusted test fails s Testing association Mominal factors review: Visualizing association in 2 disease: No Gisease: No Gisease:	× 2 tables Id display: area ~ frequency blue (+), red(-) ence bands: significance of atio Hi cholesterol \rightarrow Heart	Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order into account have greater power to detect ordered relations. proc freq; weight count; table factor * response / chisq cmh; Control for other background variables • Stratified analysis tests the association between a main factor and response within levels of the control variable(s)
 The conservative continuity-adjusted test fails s Testing association Moninal factors review: Visualizing association in 2 disease: No Gisease: No Golor: Color: Confid odds r. Interp: disease 	× 2 tables Id display: area ~ frequency blue (+), red(-) ence bands: significance of atio Hi cholesterol \rightarrow Heart	Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order interaction account have greater power to detect ordered relations. proc freq; weight count; table factor * response / chisq cmh; Control for other background variables • Stratified analysis tests the association between a main factor and response within levels of the control variable(s) • Can also test for homogeneous association across strata
 The conservative continuity-adjusted test fails s Testing association in 2 Color: Color: Confid odds r. Interp: disease: 	× 2 tables Id display: area ~ frequency blue (+), red(-) ence bands: significance of atio Hi cholesterol \rightarrow Heart	Ordinal factors and Stratified analyses Ordinal factors and Stratified analyses More powerful CMH tests • When either the row (factor) or column (response) levels are ordered, more specific (CMH = Cochran - Mantel - Haentzel) tests which take order into account have greater power to detect ordered relations. proc freq; weight count; table factor * response / chisq cmh; Control for other background variables • Stratified analysis tests the association between a main factor and response within levels of the control variable(s)

association Ordinal factors and Stratified analyses

Testing association Ordinal factors and Stratified analyse

Example: Arthritis treatment

Data on treatment for rheumatoid arthritis (Koch and Edwards, 1988)

- Ordinal response: none, some, or marked improvement
- Factor: active treatment vs. placebo
- Strata: Sex

		 +	Outcome		_
Treatment		None	Some	Marked	Total
Active	Female Male	6 7	5 2		27 14
Placebo 	Female Male	19 10	7 0	6 1	32 11
Total		42	. 14	28	84

esting association Ordinal factors and Stratified anal

Overall analysis, ignoring sex: Results (chisq option)

STATISTICS FOR TABLE	OF TRE	AT BY IMPRO	VE
Statistic	DF	Value	Prob
 Chi-Square	2	13.055	0.001
Likelihood Ratio Chi-Square	2	13.530	0.001
Mantel-Haenszel Chi-Square	1	12.859	0.000
Phi Coefficient		0.394	
Contingency Coefficient		0.367	
Cramer's V		0.394	

Cochran-Mantel-Haenszel tests: (cmh option)

Cochran-1	SUMMARY STATISTICS FOR TR Mantel-Haenszel Statistics			cores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	12.859	0.000
2	Row Mean Scores Differ	1	12.859	0.000
3	General Association	2	12.900	0.002

Overall analysis, ignoring sex

	arthfreq.sas ····
1	title 'Arthritis Treatment: PROC FREQ Analysis';
2	data arth;
3	input sex\$ treat\$ @;
4	do improve = 'None ', 'Some', 'Marked';
5	input count 0;
6	output;
7	end;
8	datalines;
	Female Active 6 5 16
10	Female Placebo 19 7 6
11	Male Active 7 2 5
12	Male Placebo 10 0 1
13	
	* Ignoring sex;
	proc freq order=data;
16	0 ,
17	
18	run;

Notes:

- PROC FREQ orders character variables alphabetically (i.e., 'Marked', 'None', 'Some') by default.
- To treat the IMPROVE variable as ordinal, use order=data on the PROC FREQ statement.

Testing association CMH tests for ordinal variab

57 / 73

CMH tests for ordinal variables

Three types of test:

Non-zero correlation

- Use when *both* row and column variables are ordinal.
- CMH $\chi^2 = (N 1)r^2$, assigning scores (1, 2, 3, ...)
- most powerful for *linear* association

Row Mean Scores Differ

- Use when only *column* variable is ordinal
- Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank scores)
- Ordinal variable must be listed last in the TABLES statement

General Association

- Use when *both* row and column variables are nominal.
- Similar to overall Pearson χ^2 and Likelihood Ratio χ^2 .

CMH tests for ordin

Sample CMH Profiles

U	n	ly	gen	eral	asso	cia	tior	1:
---	---	----	-----	------	------	-----	------	----

	-		-				-					Total	Mean	
a1 a2 a3		0 5 20	 	15 20 5	 	25 5 5	 	15 20 5	 	0 5 20	 	55 55 55	3.0	
 Total	-						-					165		

Output:

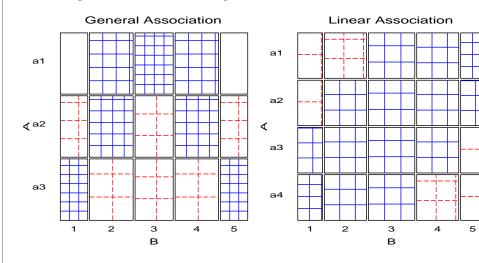
Cochran-1	Mantel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	0.000	1.000
2	Row Mean Scores Differ	2	0.000	1.000
3	General Association	8	91.797	0.000

Testing association CMH tests for ordinal variable

Sample CMH Profiles

Linear Association:

	ŀЪ		•				•		Ъ5	•	Total	Mean
a1	Ì	2	Ì	5	l	8	l	8	8 5	I		3.48 3.19
a3 a4		5		8		8		8	2		31 31	2.81
~-	-+	-	+	-	+	-	+		 17	•	124	2.02


Output:

Cochran-	Mantel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	10.639	0.001
2	Row Mean Scores Differ	3	10.676	0.014
3	General Association	12	13.400	0.341

62/73

Sample CMH Profiles

Visualizing Association: Sieve diagrams

Stratified analysis

Overall analysis

- ignores other variables (like sex), by collapsing over them
- risks losing important interactions (e.g., different associations for M & F)

Testing association Stratified analys

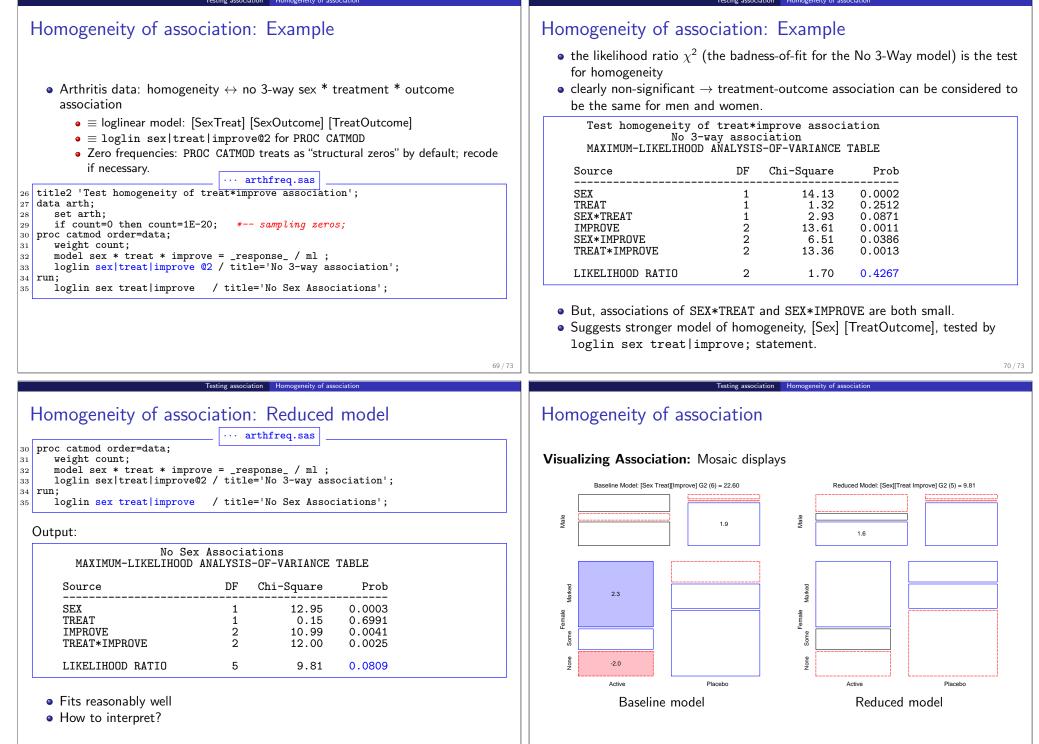
Stratified analysis

- controls for the effects of one or more background variables
- list stratification variable(s) *first* on the TABLES statement

proc freq;

tables age * sex * treat * improve;

Looking forward: Loglinear models


- allow more general hypotheses to be stated and tested
- closer connection between testing and visualization (how are variables associated)

63 / 73

Iesting association Stratified analysis	lesting association Stratified analysis
Stratified analysis	
The statements below request a stratified analysis with CMH tests, controlling for sex.	Males: STATISTICS FOR TABLE 2 OF TREAT BY IMPROVE CONTROLLING FOR SEX=Male Statistic DF Value Prob Chi-Square 2 4.907 0.086 Likelihood Ratio Chi-Square 2 5.855 0.054 Mantel-Haenszel Chi-Square 1 3.713 0.054 WARNING: 67% of the cells have expected counts less than 5. Chi-Square may not be a valid test. • Weak association between TREAT and IMPROVE for males • Sample size N = 29 for males is small
• Strong association between TREAT and IMPROVE for females 65/73 Testing association Stratified analysis Stratified tests	Testing association Homogeneity of association Homogeneity of association
 Individual (<i>partial</i>) tests are followed by a <i>conditional</i> test, controlling for strata (SEX) These tests do not require large sample size in the individual strata— just a large total sample size. They <i>assume</i>, but do not <i>test</i> that the association is the same for all strata. SUMMARY STATISTICS FOR TREAT BY IMPROVE CONTROLLING FOR SEX Cochran-Mantel-Haenszel Statistics (Based on Table Scores) Statistic Alternative Hypothesis DF Value Prob	 Is the association between the primary table variables the same over all strata? 2 × 2 tables: → Equal odds ratios across all strata? PROC FREQ: MEASURES option on TABLES statement → Breslow-Day test proc freq; tables strata * factor * response / measures cmh ; Larger tables: Use PROC CATMOD to test for <i>no three-way association</i> ≡ same association for the primary factor & response variables ∀ strata ≡ loglinear model: [Strata Factor] [Strata Response] [Factor Response]

Testing association Stratified analysis

Testing association Stratified analysis

Summary: Part 1

Summary: Part 1

• Categorical data

- Table form vs. case form
- Non-parametric methods vs. model-based methods
- Response models vs. association models

• Graphical methods for categorical data

- $\bullet\,$ Frequency data more naturally displayed as count \sim area
- Sieve diagram, fourfold & mosaic display: compare observed vs. expected frequency
- Graphical principles: Visual comparison, effect-ordering, small multiples

• Discrete distributions

- Fit: GOODFIT; Graph: hanging rootograms to show departures
- Ord plot: diagnose form of distribution
- POISPLOT, DISTPLOT for robust distribution plots

• Testing association

- Pearson χ^2 , L.R. χ^2 (largish samples) vs. Fisher exact test (small samples)
- CMH tests more powerful for ordinal factors
- Three-way+ tables: Stratified analysis, homogeneity of association
- Visualize with Sieve diagram, fourfold & mosaic display