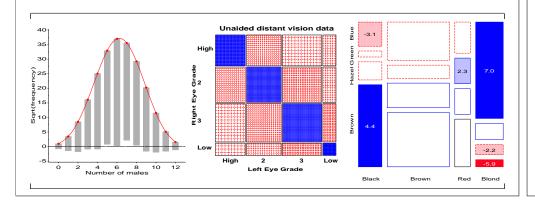
# Visualizing Categorical Data with SAS and R

## Michael Friendly

York University

Short Course, 2012 Web notes: datavis.ca/courses/VCD/



## Part 2: Visualizing two-way and *n*-way tables



## Topics:

- $\bullet$  2  $\times$  2 tables and fourfold displays
- Sieve diagrams
- Observer agreement
- Correspondence analysis

## Visualizing contingency tables: software tools

- Two-way tables
  - $2 \times 2$  ( $\times k$ ) tables Visualize odds ratio (FFOLD macro)
  - r × 3 tables Trilinear plots (TRIPLOT macro)
  - $r \times c$  tables Visualize association (SIEVEPLOT macro)
  - r × c tables Visualize association (MOSAIC macro)
  - Square  $r \times r$  tables Visualize agreement (AGREEPLOT macro)
- n-way tables
  - Fit loglinear models, visualize lack-of-fit (MOSAIC macro)
  - Test & visualize partial association (MOSAIC macro)
  - Visualize pairwise association (MOSMAT macro)
  - Visualize conditional association (MOSMAT macro)
  - Visualize loglinear structure (MOSMAT macro)
- Correspondence analysis and MCA (CORRESP macro)
- R: most of these in the vcd package
  - fourfold(), sieve(), mosaic(), agreementplot(), ... more general
  - Correspondence analysis: ca package

# Graphical Methods for 2×2 tables: Example

- Bickel et al. (1975): data on admissions to graduate departments at Berkeley in 1973.
- Aggregate data for the six largest departments:

Table: Admissions to Berkeley graduate programs

|         | Admitted | Rejected | Total | % Admit | Odds(Admit) |
|---------|----------|----------|-------|---------|-------------|
| Males   | 1198     | 1493     | 2691  | 44.52   | 0.802       |
| Females | 557      | 1278     | 1835  | 30.35   | 0.437       |
| Total   | 1755     | 2771     | 4526  | 38.78   | 0.633       |

- Evidence for gender bias?
  - Odds ratio,  $\theta = \frac{\mathsf{Odds}(\mathsf{Admit} \,|\, \mathsf{Male})}{\mathsf{Odds}(\mathsf{Admit} \,|\, \mathsf{Female})} = \frac{1198/1493}{557/1276} = \frac{0.802}{0.437} = 1.84$
  - → Males 84% more likely to be admitted.
  - Chi-square tests:  $G_{(1)}^2 = 93.7$ ,  $\chi_{(1)}^2 = 92.2$ , p < 0.0001



- How to analyse these data?
- How to visualize & interpret the results?
- Does it matter that we collapsed over Department?

. .

2 x 2 tables Standard analy

# Standard analysis: PROC FREQ

proc freq data=berkeley;
weight freq;
tables gender\*admit / chisq;

## Output:

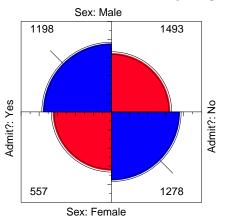
| Statistics for Table        | of ge | nder by admi | t      |
|-----------------------------|-------|--------------|--------|
| Statistic                   | DF    | Value        | Prob   |
| Chi-Square                  | 1     | 92.2053      | <.0001 |
| Likelihood Ratio Chi-Square | 1     | 93.4494      | <.0001 |
| Continuity Adj. Chi-Square  | 1     | 91.6096      | <.0001 |
| Mantel-Haenszel Chi-Square  | 1     | 92.1849      | <.0001 |
| Phi Coefficient             |       | 0.1427       |        |

How to visualize and interpret?

6 / 58

## Fourfold displays for $2 \times 2$ tables

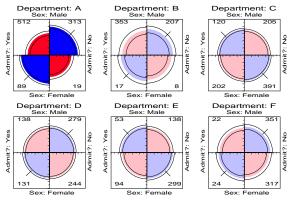
- Quarter circles: radius  $\sim \sqrt{n_{ij}} \Rightarrow$  area  $\sim$  frequency
- **Independence**: Adjoining quadrants ≈ align
- Odds ratio: ratio of areas of diagonally opposite cells
- Confidence rings: Visual test of  $H_0: \theta = 1 \leftrightarrow \text{adjoining rings overlap}$



• Confidence rings do not overlap:  $\theta \neq 1$  (reject  $H_0$ )

## Fourfold displays for $2 \times 2 \times k$ tables

- Data in Table 2 had been pooled over departments
- Stratified analysis: one fourfold display for each department
- ullet Each 2 imes 2 table standardized to equate marginal frequencies
- ullet Shading: highlight departments for which  $H_{\mathsf{a}}: heta_i 
  eq 1$



• Only one department (A) shows association;  $\theta_A = 0.349 \rightarrow$  women  $(0.349)^{-1} = 2.86$  times as likely as men to be admitted.

## What happened here?

Why do the results collapsed over department disagree with the results by department?

## Simpson's paradox

- Aggregate data are misleading because they falsely assume men and women apply equally in each field.
- But:
  - Large differences in admission rates across departments.
  - Men and women apply to these departments differentially.
  - Women applied in large numbers to departments with low admission rates.
- Other graphical methods can show these effects.
- (This ignores possibility of structural bias against women: differential funding of fields to which women are more likely to apply.)

2 x 2 tables Odds ratio plots

# The FOURFOLD program and the FFOLD macro

- The FOURFOLD program is written in SAS/IML.
- The FFOLD macro provides a simpler interface.
- Printed output: (a) significance tests for individual odds ratios, (b) tests of homogeneity of association (here, over departments) and (c) conditional association (controlling for department).

```
Plot by department:
```

```
berk4f.sas
1 %include catdata(berkelev):
 %ffold(data=berkeley,
    var=Admit Gender,
                             /* panel variables
                             /* stratify by dept */
    by=Dept,
    down=2, across=3,
                             /* panel arrangement */
    htext=2);
                             /* font size
```

Aggregate data: first sum over departments, using the TABLE macro:

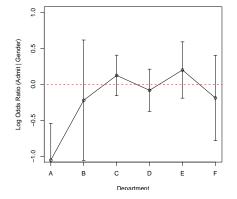
```
8 %table(data=berkeley, out=berk2,
                              /* omit dept
     var=Admit Gender.
10
     weight=count,
                              /* frequency variable */
11
     order=data);
12 %ffold(data=berk2, var=Admit Gender);
```

## Odds ratio plots

- > librarv(vcd)
- > oddsratio(UCBAdmissions, log=FALSE)

Α 0.349 0.803 1.133 0.921 1.222 0.828

> lor <- oddsratio(UCBAdmissions) # capture log odds ratios > plot(lor)



Two-way frequency tables

Table: Hair-color eye-color data

| Eye   |       | Hair Color          |    |       |       |  |  |  |  |
|-------|-------|---------------------|----|-------|-------|--|--|--|--|
| Color | Black | ack Brown Red Blond |    | Blond | Total |  |  |  |  |
| Green | 5     | 29                  | 14 | 16    | 64    |  |  |  |  |
| Hazel | 15    | 54                  | 14 | 10    | 93    |  |  |  |  |
| Blue  | 20    | 84                  | 17 | 94    | 215   |  |  |  |  |
| Brown | 68    | 119                 | 26 | 7     | 220   |  |  |  |  |
| Total | 108   | 286                 | 71 | 127   | 592   |  |  |  |  |

- $\bullet$  With a  $\chi^2$  test (PROC FREQ) we can tell that hair-color and eye-color are associated.
- The more important problem is to understand how they are associated.
- Some graphical methods:
  - Sieve diagrams
  - Agreement charts (for square tables)
  - Mosaic displays

# Two-way frequency tables: Sieve diagrams

### ullet count $\sim$ area

- ullet When row/col variables are independent,  $n_{ij} pprox \hat{m}_{ij} \sim n_{i+} n_{+j}$
- $\Rightarrow$  each cell can be represented as a rectangle, with area = height  $\times$  width  $\sim$  frequency,  $n_{ij}$  (under independence)

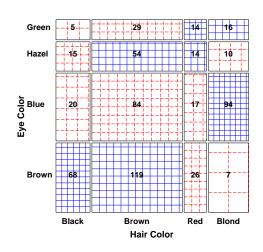
| Expected frequencies: Hair Eye Color Data |              |                            |           |              |     |  |  |  |  |
|-------------------------------------------|--------------|----------------------------|-----------|--------------|-----|--|--|--|--|
| Green                                     | 11.7         | 30.9                       | 7.7       | 13.7         | 64  |  |  |  |  |
| Hazel                                     | 17.0         | 44.9                       | 11.2      | 20.0         | 93  |  |  |  |  |
| Eye Color<br>Banga<br>Banga               | 39.2         | 103.9                      | 25.8      | 46.1         | 215 |  |  |  |  |
| Brown                                     | 40.1         | 106.3                      | 26.4      | 47.2         | 220 |  |  |  |  |
| '                                         | 108<br>Black | 286<br>Brown<br>Hair Color | 71<br>Red | 127<br>Blond | 592 |  |  |  |  |

- This display shows expected frequencies, assuming independence, as # boxes within each cell
- The boxes are all of the same size (equal density)
- Real sieve diagrams use # boxes = observed frequencies, n<sub>ij</sub>

13 / 58

## Sieve diagrams

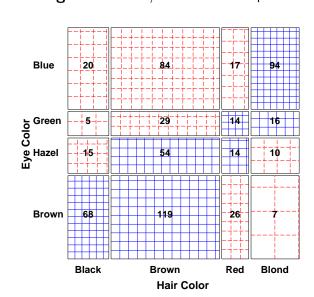
- Height/width  $\sim$  marginal frequencies,  $n_{i+}$ ,  $n_{+j}$
- Area  $\sim$  expected frequency,  $\hat{m}_{ij} \sim n_{i+} n_{+i}$
- Shading  $\sim$  observed frequency,  $n_{ij}$ , color:  $sign(n_{ij} \hat{m}_{ij})$ .
- Independence: Shown when density of shading is uniform.



14 / 58

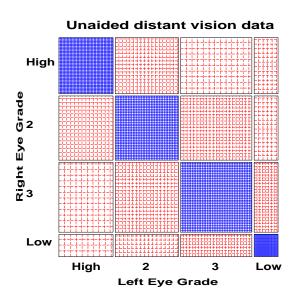
# Sieve diagrams

• **Effect ordering**: Reorder rows/cols to make the pattern coherent



## Sieve diagrams

Vision classification data for 7477 women



15 / 58

# Sieve diagrams: SAS Example

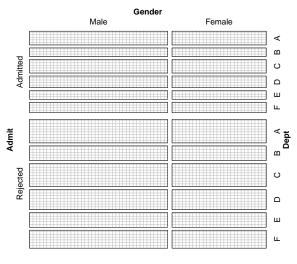
```
sievem.sas
data vision;
  do Left='High', '2', '3', 'Low';
   do Right='High', '2', '3', 'Low';
        input count @0; output;
    end;
                               right='Right Eye Grade';
  label left='Left Eye Grade'
datalines:
       1520
                           78
        234
                    432
                   1772
                          205
%sieveplot(data=vision, var=Left Right,
    title=Unaided distant vision data);
```

Online weblet: http://datavis.ca/online/sieve/

Sieve diagrams: n-way tables in R

> sieve(UCBAdmissions, sievetype='expected')

Berkeley Data: Mutual Independence (exp)

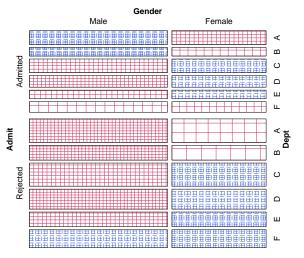


18 / F

# Sieve diagrams: n-way tables in R

> sieve(UCBAdmissions, shade=TRUE)

## Berkeley data: Mutual independence (obs)



Observer Agreement

17 / 58

19 / 58

- Inter-observer agreement often used as to assess reliability of a subjective classification or assessment procedure
  - $\bullet$   $\rightarrow$  square table. Rater 1 x Rater 2
  - Levels: diagnostic categories (normal, mildly impaired, severely impaired)
- **Agreement vs. Association:** Ratings can be strongly associated without strong agreement
- Marginal homogeneity: Different frequencies of category use by raters affects measures of agreement
- Measures of Agreement:
  - Intraclass correlation: ANOVA framework— multiple raters!
  - Cohen's  $\kappa$ : compares the observed agreement,  $P_o = \sum p_{ii}$ , to agreement expected by chance if the two observer's ratings were independent,

$$P_c = \sum p_{i+} p_{+i}$$
.

$$\kappa = \frac{P_o - P_c}{1 - P_c}$$

18 / 5

## Cohen's $\kappa$

- Properties of Cohen's  $\kappa$ :
  - perfect agreement:  $\kappa = 1$
  - minimum  $\kappa$  may be < 0; lower bound depends on marginal totals
  - Unweighted  $\kappa$ : counts only diagonal cells (same category assigned by both
  - Weighted  $\kappa$ : allows partial credit for near agreement. (Makes sense only when the categories are ordered.)
- Weights:
  - Cicchetti-Alison (inverse integer spacing) vs.
  - Fleiss-Cohen (inverse square spacing)

|   |     | Integer | Weights |     | Fle | eiss-Coh | en Weigh | ts  |
|---|-----|---------|---------|-----|-----|----------|----------|-----|
| İ | 1   | 2/3     | 1/3     | 0   | 1   | 8/9      | 5/9      | 0   |
| ١ | 2/3 | 1       | 2/3     | 1/3 | 8/9 | 1        | 8/9      | 5/9 |
| ı | 1/3 | 2/3     | 1       | 2/3 | 5/9 | 8/9      | 1        | 8/9 |
| İ | 0   | 1/3     | 2/3     | 1   | 0   | 5/9      | 8/9      | 1   |

## Cohen's $\kappa$ : Example

The table below summarizes responses of 91 married couples to a questionnaire item.

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always.

|                     | Wife's Rating |                 |               |                  |   |     |  |  |  |
|---------------------|---------------|-----------------|---------------|------------------|---|-----|--|--|--|
| Husband's<br>Rating | Never<br>fun  | Fairly<br>often | Very<br>Often | Almost<br>always |   | SUM |  |  |  |
| Never fun           | 7             | 7               | 2             | 3                | i | 19  |  |  |  |
| Fairly often        | 2             | 8               | 3             | 7                |   | 20  |  |  |  |
| Very often          | 1             | 5               | 4             | 9                |   | 19  |  |  |  |
| Almost always       | 2             | 8               | 9             | 14               |   | 33  |  |  |  |
| SUM                 | 12            | 28              | 18            | 33               |   | 91  |  |  |  |

22 / 58

Observer Agreement Cohen's kappa

## Computing $\kappa$ with SAS

- PROC FREQ: Use AGREE option on TABLES statement
  - Gives both unweighted and weighted  $\kappa$  (default: CA weights)
  - AGREE (wt=FC) uses Fleiss-Cohen weights
  - Bowker's (Bowker, 1948) test of symmetry:  $H_0: p_{ij} = p_{ji}$

```
kappa3.sas
 title 'Kappa for Agreement';
 2 data fun;
      do Husband = 1 to 4;
                  = 1 to 4;
      do Wife
          input count @@;
          output;
          end; end;
   datalines:
                          3
    2
                          7
    1
12
13
14 proc freq;
     weight count;
     tables Husband * Wife / noprint agree;
tables Husband * Wife / noprint agree(wt=FC);
                                                         /* default: CA weights*/
```

## Computing $\kappa$ with SAS

Output (CA weights):

Statistics for Table of Husband by Wife

Test of Symmetry

Statistic (S) 3.8778 0.6932 Pr > S

Kappa Statistics

| Statistic      | Value  | ASE    | 95% Confiden | ce Limits |
|----------------|--------|--------|--------------|-----------|
| Simple Kappa   | 0.1293 | 0.0686 | -0.0051      | 0.2638    |
| Weighted Kappa | 0.2374 | 0.0783 | 0.0839       | 0.3909    |

Sample Size = 91

Using Fleiss-Cohen weights:

| Weighted Kappa | 0.3320 | 0.0973 | 0.1413 | 0.5227 |
|----------------|--------|--------|--------|--------|

## Observer agreement: Multiple strata

- When the individuals rated fall into multiple groups, one can test for:
  - Agreement within each group
  - Overall agreement (controlling for group)
  - Homogeneity: Equal agreement across groups

Example: Diagnostic classification of mulitiple sclerosis by two neurologists, for two populations (Landis and Koch, 1977)

| NO rater:                                                            | Winnipeg patients   |                    |                  |                   | New C            | )rlean             | s pat            | tients            |
|----------------------------------------------------------------------|---------------------|--------------------|------------------|-------------------|------------------|--------------------|------------------|-------------------|
| NO latel.                                                            | Cert                | Prob               | Pos              | Doubt             | Cert             | Prob               | Pos              | Doubt             |
| Winnipeg rater:<br>Certain MS<br>Probable<br>Possible<br>Doubtful MS | 38<br>33<br>10<br>3 | 5<br>11<br>14<br>7 | 0<br>3<br>5<br>3 | 1<br>0<br>6<br>10 | 5<br>3<br>2<br>1 | 3<br>11<br>13<br>2 | 0<br>4<br>3<br>4 | 0<br>0<br>4<br>14 |

Analysis:

```
proc freq;
  tables strata * rater1 * rater2 / agree;
```

25 / 58

## Observer agreement: Multiple strata

```
msdiag.sas
 1 data msdiag;
    do patients='Winnipeg ', 'New Orleans';
        do N_rating = 1 to 4;
          do W_rating = 1 to 4;
              input count 0;
              output;
              end:
           end;
        end:
   label N_rating = 'New Orleans neurologist'
         W_rating = 'Winnipeg neurologist';
11
12 datalines;
13 38 5 0 1
14 33 11 3 0
15 10 14 5 6
16 3 7 3 10
17 5 3 0 0
18 3 11 4 0
19 2 13 3 4
20 1 2 4 14
21 ;
22
| 23 | *-- Agreement, separately, and controlling for Patients;
24 proc freq data=msdiag;
25
     weight count;
     tables patients * N_rating * W_rating / norow nocol nopct agree;
26
```

Observer Agreement Cohen's kappa

## Observer agreement: Multiple strata

Output, strata 1: (New Orleans patients):

Statistics for Table 1 of N\_rating by W\_rating Controlling for patients=New Orleans

> Test of Symmetry Statistic (S) 9.7647 DF Pr > S0.1349

> > Kappa Statistics

| Statistic      | Value  | ASE    | 95% Confidence | e Limits |
|----------------|--------|--------|----------------|----------|
| Simple Kappa   | 0.2965 | 0.0785 | 0.1427         | 0.4504   |
| Weighted Kappa | 0.4773 | 0.0730 | 0.3341         | 0.6204   |

Sample Size = 69

## Observer agreement: Multiple strata

Output, strata 2: (Winnipeg patients):

Statistics for Table 2 of N\_rating by W\_rating Controlling for patients=Winnipeg

> Test of Symmetry Statistic (S) 46.7492 <.0001 Pr > S

> > Kappa Statistics

| Statistic                      | Value            | ASE              | 95% Confiden     | ce Limits        |
|--------------------------------|------------------|------------------|------------------|------------------|
| Simple Kappa<br>Weighted Kappa | 0.2079<br>0.3797 | 0.0505<br>0.0517 | 0.1091<br>0.2785 | 0.3068<br>0.4810 |
|                                | Sample           | e Size = 149     |                  |                  |

27 / 58

S

ohen's kappa

## Observer agreement: Multiple strata

## Overall test:

Summary Statistics for N\_rating by W\_rating Controlling for patients

Overall Kappa Coefficients

| Statistic      | Value  | ASE    | 95% Confidence | Limits |
|----------------|--------|--------|----------------|--------|
| Simple Kappa   | 0.2338 | 0.0424 | 0.1506         | 0.3170 |
| Weighted Kappa | 0.4123 | 0.0422 | 0.3296         | 0.4949 |

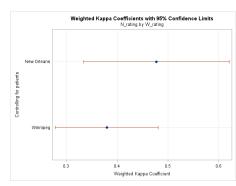
Homogeneity test:  $H_0: \kappa_1 = \kappa_2 = \cdots = \kappa_k$ 

## Tests for Equal Kappa Coefficients

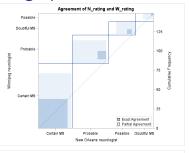
| Statistic      | Chi-Square | DF | Pr > ChiSq |
|----------------|------------|----|------------|
| Simple Kappa   | 0.9009     | 1  | 0.3425     |
| Weighted Kappa | 1.1889     | 1  | 0.2756     |

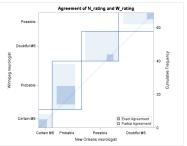
Total Sample Size = 218

# Observer agreement: SAS 9.3 ODS graphs



agree option o plots of CIs for  $\kappa$  ...





... and agreement plots (next)

20 / 5

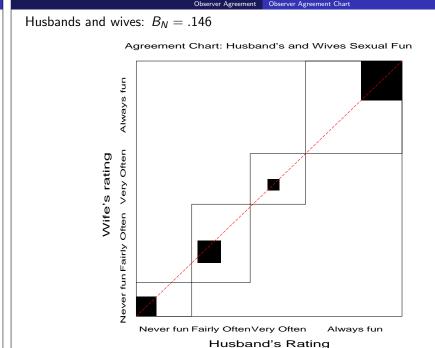
01

bserver Agreement Char

# Bangdiwala's Observer Agreement Chart

- The observer agreement chart Bangdiwala (1987) provides
  - a simple graphic representation of the strength of agreement, and
  - a measure of strength of agreement with an intuitive interpretation.
- Construction:
  - $n \times n$  square, n=total sample size
  - Black squares, each of size  $n_{ii} \times n_{ii} \rightarrow$  observed agreement
  - Positioned within larger rectangles, each of size  $n_{i+} \times n_{+i} \to \max$ imum possible agreement
  - ullet  $\Rightarrow$  visual impression of the strength of agreement is

$$B_N = \frac{\text{area of dark squares}}{\text{area of rectangles}} = \frac{\sum_{i}^{k} n_{ii}^2}{\sum_{i}^{k} n_{i+} n_{+i}}$$



31 / 58

29 / 58

### Observer Agreement Observer Agreement Chair

## Weighted Agreement Chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, b steps from the main diagonal, using weights  $1 > w_1 > w_2 > \cdots$ .

$$n_{i-b,i}$$
  $w_2$   $w_1$   $m_{i,i-b}$   $w_1$   $w_2$   $w_1$   $w_2$   $w_1$   $w_2$   $w_2$   $w_1$   $w_2$   $w_2$   $w_1$   $w_2$   - ullet Add shaded rectangles, size  $\sim$  sum of frequencies,  $A_{bi}$ , within b steps of main diagonal
- ⇒ weighted measure of agreement,

$$B_N^w = \frac{\text{weighted sum of agreement}}{\text{area of rectangles}} = 1 - \frac{\sum_{i=1}^k [n_{i+} n_{+i} - n_{ii}^2 - \sum_{b=1}^q w_b A_{bi}]}{\sum_{i=1}^k n_{i+} n_{+i}}$$

Observer Agreement Observer Agreement Chart

33 / 58

# Husbands and wives: $B_N^w = .628$ with $w_1 = 8/9$ Agreement Chart: Husband's and Wives Sexual Fun

Never fun Fairly Often Very Often Always fun Husband's Rating

## agreeplot macro

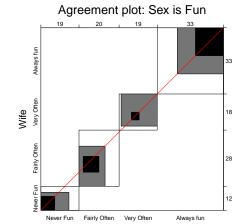
```
proc format;
value rating 1='Never_fun' 2='Fairly_often'
3='Very_often' 4='Almost_always';

data sexfun;
format Husband Wife rating.;
do Husband = 1 to 4;
do Wife = 1 to 4;
s input count @0;
output;
end; end;
datalines;
7 7 7 2 3
13 2 8 3 7
14 1 5 4 9
15 2 8 9 14
16 ;
17
18
*-- Convert numbers to formatted values;
'// Wagreeplot(data=table, var=Husband Wife, char=true, weight=count, out=table);
'// Wagreeplot(data=table, var=Husband Wife, title=Husband and Wife Sexual Fun);
```

- To preserve ordering, integer values are used for Husband and Wife
- A SAS format is used to provide value labels
- The table macro converts numeric → character

## agreementplot() in the vcd package

- > library(vcd) # load the vcd package
- > data(SexualFun)
- > agreementplot(t(SexualFun), main="Agreement plot: Sex is Fun")



Husband

35 / 58

36 / 58

## Testing marginal homogeneity

Test marginal homogeneity using PROC CATMOD

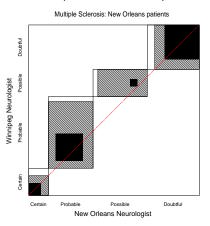
- - Two tests available:
    - Equal marginal frequencies: RESPONSE marginals; statement
    - Equal mean scores: RESPONSE means; statement

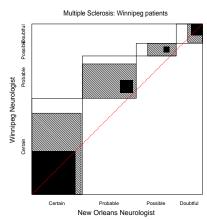
```
agreemar.sas ···
 1 title 'Classification of Multiple Sclerosis: Marginal Homogeneity';
proc format;
     value diagnos 1='Certain ' 2='Probable' 3='Possible' 4='Doubtful';
5 data ms:
   format win_diag no_diag diagnos.;
     do win_diag = 1 to 4;
     do no_diag = 1 to 4;
         input count @@;
        if count=0 then count=1e-10; /* avoid structural zeros */
10
11
12
        end; end;
13 datalines;
14
15
     3 11
                        0
     2 13
16
17
18 ;
```

20 / E0

## Marginal homogeneity and Observer bias

- Different raters may consistently use higher or lower response categories
- Test- marginal homogeneity:  $H_0: n_{i+} = n_{+i}$
- Shows as departures of the squares from the diagonal line





Winnipeg neurologist tends to use more severe categories

# Testing marginal homogeneity

```
title2 'Testing equal marginal proportions';
proc catmod data=ms;
weight count;
response marginals;
model win_diag * no_diag = _response_ / oneway;
repeated neuro 2 / _response_= neuro;
```

Observer Agreement Marginal homogeneity

## Output:

⇒ marginal proportions differ (test of neuro)

Testing marginal homogeneity

Test of mean scores is more powerful for ordered categories:

```
title2 'Testing equal means';
proc catmod data=ms;
weight count;
response means;
model win_diag * no_diag = _response_ / oneway;
repeated neuro 2 / _response_= neuro;
```

## Output:

⇒ test of neuro, on 1 df (linear) more highly significant

# Correspondence analysis

## Correspondence analysis (CA)

Analog of PCA for frequency data:

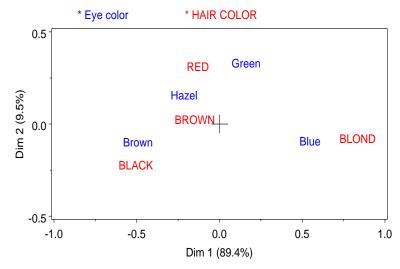
- account for maximum % of  $\chi^2$  in few (2-3) dimensions
- finds scores for row  $(x_{im})$  and column  $(y_{im})$  categories on these dimensions
- uses Singular Value Decomposition of residuals from independence,  $d_{ii} = (n_{ii} - \widehat{m}_{ii})/\sqrt{\widehat{m}_{ii}}$

$$\frac{d_{ij}}{\sqrt{n}} = \sum_{m=1}^{M} \lambda_m x_{im} y_{jm}$$

- optimal scaling: each pair of scores for rows  $(x_{im})$  and columns  $(y_{jm})$  have highest possible correlation (=  $\lambda_m$ ).
- plots of the row  $(x_{im})$  and column  $(y_{im})$  scores show associations

41 / 58

Hair color, Eye color data:



- Interpretation: row/column points "near" each other are positively associated
- Dim 1: 89.4% of  $\chi^2$  (dark  $\leftrightarrow$  light)
- Dim 2: 9.5% of  $\chi^2$  (RED/Green vs. others)

42 / 58

## PROC CORRESP and the CORRESP macro

- Two forms of input dataset:
  - dataset in *contingency table* form column variables are levels of one factor, observations (rows) are levels of the other.

| Obs Eye BLACK BROWN RED BLOND  1 Brown 68 119 26 7 |
|----------------------------------------------------|
| 1 Brown 68 119 26 7                                |
|                                                    |
| 2 Blue 20 84 17 94                                 |
| 3 Hazel 15 54 14 10                                |
| 4 Green 5 29 14 16                                 |

• Raw category responses (case form), or cell frequencies (frequency form), classified by 2 or more factors (e.g., output from PROC FREQ)

|     |       |       | · · · | ., |  |
|-----|-------|-------|-------|----|--|
| 0bs | Eye   | HAIR  | Count |    |  |
| 1   | Brown | BLACK | 68    |    |  |
| 2   | Brown | BROWN | 119   |    |  |
| 3   | Brown | RED   | 26    |    |  |
| 4   | Brown | BLOND | 7     |    |  |
|     |       |       |       |    |  |
| 15  | Green | RED   | 14    |    |  |
| 16  | Green | BLOND | 16    |    |  |
|     |       |       |       |    |  |

Software: PROC CORRESP, CORRESP macro & R

## PROC CORRESP

- Handles 2-way CA, extensions to n-way tables, and MCA
- Many options for scaling row/column coordinates and output statistics
- OUTC= option → output dataset for plotting
- SAS V9.1+: PROC CORRESP uses ODS Graphics

## CORRESP macro

- Uses PROC CORRESP for analysis
- Produces labeled plots of the category points in either 2 or 3 dimensions
- Many graphic options; can equate axes automatically
- See: http://datavis.ca/sasmac/corresp.html

## R

- The ca package provides 2-way CA, MCA and more
- plot(ca(data)) gives reasonable (but not yet beautiful) plots
- Other R packages: caGUI, vegan, ade4, FactoMiner, ...

Correspondence analysis Basic

# Example: Hair and Eye Color

• Input the data in contingency table form

```
corresp2a.sas ···
data haireye;
  input EYE $ BLACK BROWN RED BLOND;
  datalines;
                                    7
        Brown
                      119
                             26
        Blue
                       84
                             17
                                   94
        Hazel
                       54
                             14
                                   10
        Green
                       29
                             14
                                   16
```

## Example: Hair and Eye Color

• Using PROC CORRESP directly— ODS graphics (V9.1+)

• Using the CORRESP macro— labeled high-res plot

45 / 58

espondence analysis Basic id

Basic ideas

## Example: Hair and Eye Color

Printed output:

```
The Correspondence Analysis Procedure
             Inertia and Chi-Square Decomposition
Singular Principal Chi-
          Inertias Squares Percents 18 36 54 72 90
Values
0.45692
         0.20877
                   123.593 89.37% ***************
0.14909
         0.02223
                    13.158
                            9.51% ***
         0.00260
0.05097
                     1.538
                             1.11%
          0.23360
                    138.29 (Degrees of Freedom = 9)
                       Row Coordinates
                             Dim1
                                           Dim2
                                       -.088322
               Brown
                         -.492158
                         0.547414
                                       -.082954
              Blue
                         -.212597
                                       0.167391
              Hazel
                         0.161753
              Green
                                       0.339040
                      Column Coordinates
                                           Dim2
                             Dim1
              BLACK
                         -.504562
                                       -.214820
              BROWN
                         -.148253
                                       0.032666
                         -.129523
                                       0.319642
              BLOND
                         0.835348
                                       -.069579
```

, ,

Basic ide

## Example: Hair and Eye Color

Output dataset(selected variables):

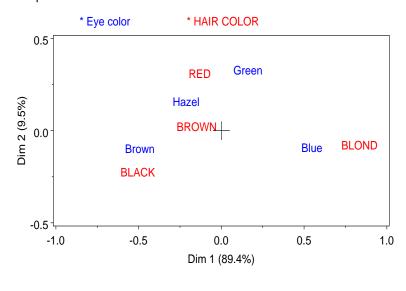
|     | •       |       | •        |          |  |
|-----|---------|-------|----------|----------|--|
| 0bs | _TYPE_  | EYE   | DIM1     | DIM2     |  |
| 1   | INERTIA |       |          |          |  |
| 2   | OBS     | Brown | -0.49216 | -0.08832 |  |
| 3   | OBS     | Blue  | 0.54741  | -0.08295 |  |
| 4   | OBS     | Hazel | -0.21260 | 0.16739  |  |
| 5   | OBS     | Green | 0.16175  | 0.33904  |  |
| 6   | VAR     | BLACK | -0.50456 | -0.21482 |  |
| 7   | VAR     | BROWN | -0.14825 | 0.03267  |  |
| 8   | VAR     | RED   | -0.12952 | 0.31964  |  |
| 9   | VAR     | BLOND | 0.83535  | -0.06958 |  |
|     |         |       |          |          |  |

Row and column points are distinguished by the \_TYPE\_ variable: OBS vs. VAR

47 / 58

# Example: Hair and Eye Color

Graphic output from CORRESP macro:



annondanos analysis Multi yay tablas

# Multi-way tables

Correspondence analysis can be extended to n-way tables in several ways:

- Multiple correspondence analysis (MCA)
  - Extends CA to *n*-way tables
  - only uses bivariate associations

## Stacking approach

- n-way table flattened to a 2-way table, combining several variables "interactively"
- Each way of stacking corresponds to a loglinear model
- ullet Ordinary CA of the flattened table o visualization of that model
- Associations among stacked variables are *not visualized*
- Here, I only describe the stacking approach, and only with SAS
  - In SAS 9.3, the MCA option with PROC CORRESP provides some reasonable plots.
  - For R, see the ca package—the mjca() function is much more general

# CA in R: the ca package

> HairEye <- margin.table(HairEyeColor, c(1, 2))
> library(ca)
> ca(HairEye)

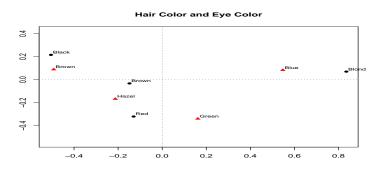
Principal inertias (eigenvalues):

1 2 3
Value 0.208773 0.022227 0.002598
Percentage 89.37% 9.52% 1.11%

. . .

Plot the ca object:

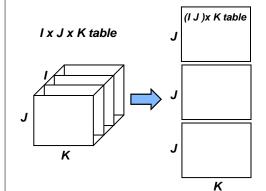
> plot(ca(HairEye), main="Hair Color and Eye Color")



50 / 58

Multi-way tables: Stacking

- Stacking approach: van der Heijden and de Leeuw (1985)—
  - three-way table, of size  $I \times J \times K$  can be sliced and stacked as a two-way table, of size  $(I \times J) \times K$



- The variables combined are treated "interactively"
- Each way of stacking corresponds to a loglinear model
  - $(I \times J) \times K \rightarrow [AB][C]$
  - $I \times (J \times K) \rightarrow [A][BC]$
  - $J \times (I \times K) \rightarrow [B][AC]$
- Only the associations in separate [] terms are analyzed and displayed

51 / 58

Correspondence analys

ulti-way tables

# Multi-way tables: Stacking

 PROC CORRESP: Use TABLES statement and option CROSS=ROW or CROSS=COL. E.g., for model [A B] [C],

```
proc corresp cross=row;
  tables A B, C;
  weight count;
```

• CORRESP macro: Can use / instead of ,

```
%corresp(
   options=cross=row,
   tables=A B/ C,
   weight count);
```

## Example: Suicide Rates

Suicide rates in West Germany, by Age, Sex and Method of suicide

| Sex | Age   | POISON | GAS | HANG | DROWN | GUN | JUMP |
|-----|-------|--------|-----|------|-------|-----|------|
| М   | 10-20 | 1160   | 335 | 1524 | 67    | 512 | 189  |
| М   | 25-35 | 2823   | 883 | 2751 | 213   | 852 | 366  |
| M   | 40-50 | 2465   | 625 | 3936 | 247   | 875 | 244  |
| М   | 55-65 | 1531   | 201 | 3581 | 207   | 477 | 273  |
| М   | 70-90 | 938    | 45  | 2948 | 212   | 229 | 268  |
|     |       |        |     |      |       |     |      |
| F   | 10-20 | 921    | 40  | 212  | 30    | 25  | 131  |
| F   | 25-35 | 1672   | 113 | 575  | 139   | 64  | 276  |
| F   | 40-50 | 2224   | 91  | 1481 | 354   | 52  | 327  |
| F   | 55-65 | 2283   | 45  | 2014 | 679   | 29  | 388  |
| F   | 70-90 | 1548   | 29  | 1355 | 501   | 3   | 383  |
|     |       |        |     |      |       |     |      |

- CA of the [Age Sex] by [Method] table:
  - Shows associations between the Age-Sex combinations and Method
  - Ignores association between Age and Sex

53 / 58

54 / 58

56 / 58

# Example: Suicide Rates

```
suicide5.sas ...

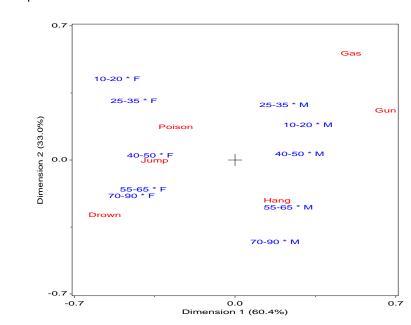
%include catdata(suicide);

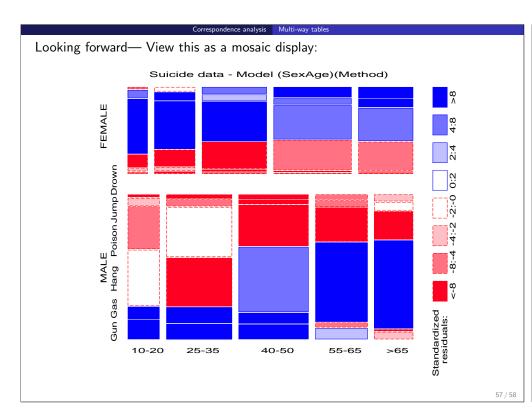
*-- equate axes!;
axis1 order=(-.7 to .7 by .7) length=6.5 in label=(a=90 r=0);
axis2 order=(-.7 to .7 by .7) length=6.5 in;
%corresp(data=suicide, weight=count,
tables=%str(age sex, method),
options=cross=row short,
vaxis=axis1, haxis=axis2);
```

## Output:

```
Inertia and Chi-Square Decomposition
Singular Principal Chi-
Values
         Inertias Squares Percents
0.32138
         0.10328
                   5056.91 60.41% ***************
0.23736
         0.05634
                   2758.41 32.95% *********
         0.00879
0.09378
                    430.55
                          5.14% **
0.04171
         0.00174
                    85.17
                            1.02%
0.02867
         0.00082
                    40.24
                            0.48%
         0.17098
                   8371.28 (Degrees of Freedom = 45)
```







Summary: Part

# Summary: Part 2

## Fourfold displays

- Odds ratio: ratio of areas of diagonally opposite quadrants
- Confidence rings: visual test of  $H_0$ :  $\theta = 1$
- ullet Shading: highlight strata for which  $H_{a}: heta 
  eq 1$

## Sieve diagrams

- $\bullet$  Rows and columns  $\sim$  marginal frequencies  $\rightarrow$  area  $\sim$  expected
- ullet Shading  $\sim$  observed frequencies
- Simple visualization of pattern of association
- SAS: sieveplot macro; R: sieve()

## Agreement

- ullet Cohen's  $\kappa$ : strength of agreement
- Agreement chart: visualize weighted & unweighted agreement, marginal homogeneity
- SAS: agreeplot macro; R: agreementplot()

## Correspondence analysis

- Decompose  $\chi^2$  for association into 1 or more dimensions
- → scores for row/col categories
- CA plots: Interpretation of how the variables are related
- SAS: corresp macro; R: ca()