Visualizing Categorical Data with SAS and R

Michael Friendly

York University

Short Course, 2012
Web notes: datavis.ca/courses/VCD/

-wey tables Mosaic displyys: Basic ideas

Mosaic displays: Basic ideas

Hartigan and Kleiner (1981), Friendly (1994, 1999)
UCB Admissions: Observed frequencies

- Area-proportional display of frequencies in an n-way table
- Tiles (cells): recursive splits of a unit square-
- V1: width \sim marginal frequencies, n_{i++}
- V2: height \sim relative frequencies | V1, $n_{i j+} / n_{i++}$
- V3: width \sim relative frequencies | (V1, V2), $n_{i j k} / n_{i j+}$
- ...
- \Rightarrow area \sim cell frequency, $n_{i j k}$

Part 3: Mosaic displays and loglinear models

Topics:

- Mosaic displays
- loglinear models for n-way tables
- Visualizing loglinear models: SAS \& R
- Models for square and structured tables
- Larger tables

Mosaic displays: Basic ideas

- Independence: Two-way table
- Expected frequencies:

$$
\widehat{m}_{i j}=\frac{n_{i+} n_{+j}}{n_{++}}=n_{++} \text {row \%col \% }
$$

- \Rightarrow rows \& columns align when variables are independent

Independence: Expected frequencies

Mosaic displays: Residuals \& shading

- Pearson residuals:

$$
d_{i j}=\frac{n_{i j}-\widehat{m}_{i j}}{\sqrt{\widehat{m}_{i j}}}
$$

UCB Admissions: ~ Admit + Gender

- Pearson $\chi^{2}=\Sigma \Sigma d_{i j}^{2}=\Sigma \Sigma \frac{\left(n_{i j}-\hat{m}_{i j}\right)^{2}}{\hat{m}_{i j}}$
- Other residuals: deviance (LR),

Freeman-Tukey (FT), adjusted
(ADJ), ...

- Shading:
- Sign: - negative in red; + positive in blue
- Magnitude: intensity of shading: $\left|d_{i j}\right|>0,2,4, \ldots$

- \Rightarrow Independence: rows align, or cells are empty!

Loglinear models: Overview

Modeling perspectives

- Loglinear models can be developed as an analog of classical ANOVA and regression models, where multiplicative relations (under independence) are re-expressed in additive form as models for \log (frequency).

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B} \equiv[A][B] \equiv \sim A+B
$$

- More generally, loglinear models are also generalized linear models (GLMs) for \log (frequency), with a Poisson distribution for the cell counts.

$$
\log \mathbf{m}=\mathbf{X} \boldsymbol{\beta}
$$

- When one table variable is a response, a logit model for that response is equivalent to a loglinear model (discussed in Part 4).

$$
\log \left(m_{1 j k} / m_{2 j k}\right)=\alpha+\beta_{j}^{B}+\beta_{k}^{C} \equiv[A B][A C][B C]
$$

Loglinear models: Overview II

- By anology with ANOVA models, the independence model (1) can be expressed as

$$
\begin{equation*}
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B} \tag{2}
\end{equation*}
$$

where μ is the grand mean of $\log m_{i j}$ and the parameters λ_{i}^{A} and λ_{j}^{B} express the marginal frequencies of variables A and B, and are typically defined so that $\sum_{i} \lambda_{i}^{A}=\sum_{j} \lambda_{j}^{B}=0$.
Dependence between the table variables is expressed by adding association parameters, $\lambda_{i j}^{A B}$, giving the saturated model,

$$
\begin{equation*}
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{i j}^{A B} \equiv[A B] \equiv \sim A * B \tag{3}
\end{equation*}
$$

- The saturated model fits the table perfectly $\left(\widehat{m}_{i j}=n_{i j}\right)$: there are as many parameters as cell frequencies. Residual $\mathrm{df}=0$.
- A global test for association tests $H_{0}: \boldsymbol{\lambda}_{i j}^{A B}=\mathbf{0}$.
- For ordinal variables, the $\lambda_{i j}^{A B}$ may be structured more simply, giving tests for ordinal association.

- Two-way tables: GLM approach

- In the GLM approach, the vector of cell frequencies, $\mathbf{n}=\left\{n_{i j}\right\}$ is specified to have a Poisson distribution with means $\mathbf{m}=\left\{m_{i j}\right\}$ given by

$$
\log \mathbf{m}=\mathbf{X} \boldsymbol{\beta}
$$

where \mathbf{X} is a known design (model) matrix and $\boldsymbol{\beta}$ is a column vector containing the unknown λ parameters.

- For example, for a 2×2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

$$
\left(\begin{array}{l}
\log m_{11} \\
\log m_{12} \\
\log m_{21} \\
\log m_{22}
\end{array}\right)=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left(\begin{array}{c}
\mu \\
\lambda_{1}^{A} \\
\lambda_{1}^{B} \\
\lambda_{11}^{A B}
\end{array}\right)
$$

Note that only the linearly independent parameters are represented. $\lambda_{2}^{A}=-\lambda_{1}^{A}$, because $\lambda_{1}^{A}+\lambda_{2}^{A}=0$, and so forth.

- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for over-dispersion.

Three-way Tables I

- Saturated model: For a 3 -way table, of size $I \times J \times K$ for variables A, B, C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3 -way association term, $\lambda_{i j k}^{A B C}$

$$
\begin{align*}
\log m_{i j k}=\mu & +\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C} \\
& +\lambda_{i j}^{A B}+\lambda_{i k}^{A C}+\lambda_{j k}^{B C}+\lambda_{i j k}^{A B C} \tag{4}
\end{align*}
$$

- One-way terms $\left(\lambda_{i}^{A}, \lambda_{j}^{B}, \lambda_{k}^{C}\right)$: differences in the marginal frequencies of the table variables
- Two-way terms $\left(\lambda_{i j}^{A B}, \lambda_{i k}^{A C}, \lambda_{j k}^{B C}\right)$ pertain to the partial association for each pair of variables, controlling for the remaining variable.
- The three-way term, $\lambda_{i j k}^{A B C}$ allows the partial association between any pair of variables to vary over the categories of the third variable.
- Such models are usually hierarchical: the presence of a high-order term, such as $\lambda_{i j k}^{A B C} \rightarrow$ all low-order relatives are automatically included.
- Thus, a short-hand notation for a loglinear model lists only the high-order terms, i.e., model $(4) \equiv[A B C]$

Three-way Tables III

- Assessing goodness of fit

- Goodness of fit of a specified model may be tested by the likelihood ratio G^{2},

$$
\begin{equation*}
G^{2}=2 \sum_{i} n_{i} \log \left(n_{i} / \widehat{m}_{i}\right), \tag{5}
\end{equation*}
$$

or the Pearson χ^{2},

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(n_{i}-\widehat{m}_{i}\right)^{2}}{\widehat{m}_{i}} \tag{6}
\end{equation*}
$$

with degrees of freedom $=\#$ cells $-\#$ estimated parameters.

- E.g., for the model of mutual independence, $[A][B][C], \mathrm{df}=$
$I J K-(I-1)-(J-1)-(K-1)=(I-1)(J-1)(K-1)$
- The terms summed in (5) and (6) are the squared cell residuals
- Other measures of balance goodness of fit against parsimony, e.g., Akaike's Information Criterion (smaller is better)

$$
A I C=G^{2}-2 d f \text { or } A I C=G^{2}+2 \# \text { parameters }
$$

Fitting loglinear models: SAS

SAS

- PROC CATMOD

\%include catdata(berkeley);

proc catmod order=data data=berkeley;
format dept dept. admit admit.;
weight freq; \quad /* da
model dept*gender*admit=_response_; freq. form */
loglin admit|dept|gender ©2 / titíe='Model (AD, AG,DG)'; run; loglin admit|dept deptlgender / title='Model (AD,DG)'; run;

- PROC GENMOD
proc genmod data=berkeley;
class dept gender admit
model freq = dept|gender dept|admit / dist=poisson;
run;
- mosaic macro usually fits loglin models internally and displays results
- You can also use PROC GENMOD for a more general model, and display the result with the mosaic macro.

Mosaic displays: Hair color and eye color

We know that hair color and eye color are associated $\left(\chi^{2}(9)=138.29\right)$. The question is how?

- Dark hair goes with dark eyes, light hair with light eyes
- Red hair, hazel eyes an exception?
- Effect ordering: Rows/cols permuted by CA Dimension 1
\Rightarrow Opposite corner pattern

Fitting loglinear models: R
R

- $\log \operatorname{lm}()$ - data in contingency table form (MASS package)

```
1 data(UCBAdmissions)
    ## conditional independence (AD, DG) in Berkeley data
    mod.1 <- loglm( (Admit + Gender) * Dept, data=UCBAdmissions)
    ## all two-way model (AD, DG, AG)
mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)
```

- $g \operatorname{lm}()$ - data in frequency form
berkeley <- as.data.frame(UCBAdmissions)
mod. 3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
- $\log \operatorname{lm}()$ simpler for nominal variables
- $g \operatorname{lm}()$ allows a wider class of models
- gnm() fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.

Mosaic displays: Marginal models

Berkeley data: Departments \times Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments? Model: (Dept)(Gender)

- Model [Dept] [Gender]: $G_{(5)}^{2}=$ 1220.6.
- Note: Departments ordered A-F by overall rate of admission.

Mosaic displays for multiway tables

- Generalizes to n-way tables: divide cells recursively
- Can fit any log-linear model (e.g., 2-way, 3-way, ...),
- For a 3-way table: $[A][B][C],[A B][C],[A B][A C], \ldots,[A B C]$
- Each mosaics shows:
- DATA (size of tiles)
- (some) marginal frequencies (spacing \rightarrow visual grouping)
- RESIDUALS (shading) - what associations have been omitted?
- Visual fitting:
- Pattern of lack-of-fit (residuals) \rightarrow "better" model- smaller residuals
- "cleaning the mosaic" \rightarrow "better" model- empty cells
- best done interactively!
- E.g., Joint independence, $[\mathrm{DG}][\mathrm{A}]$ (null model, Admit as response) $\left[G_{(11)}^{2}=\right.$ 877.1]:

Mosaic displays for multiway tables

- Visual fitting:

Model: (DeptGender)(DeptAdmit)

- E.g., Add [Dept Admit association \rightarrow Conditional independence:
- Fits poorly: $\left(G_{(6)}^{2}=21.74\right)$
- But, only in Department A!
- The GLM approach allows fitting a special term for Dept. A
- Technical note: These displays use standardized residuals: better statistical properties.

Admitted Rejected Female
n-way tables Mosaic displays

Other variations: Double decker plots

- Visualize dependence of one categorical (typically binary) variable on predictors
- Formally: mosaic plots with vertical splits for all predictor dimensions, highlighting the response by shading

Sequential plots and models

- Mosaic for an n-way table \rightarrow hierarchical decomposition of association in a way analogous to sequential fitting in regression
- Joint cell probabilities are decomposed as

$$
p_{i j k \ell \cdots}=\underbrace{\overbrace{p_{i} \times p_{j \mid i}}^{\left\{v_{1} v_{2}\right\}} \times p_{k \mid i j}}_{\left\{v_{1} v_{2} v_{3}\right\}} \times p_{\ell \mid i j k} \times \cdots \times p_{n \mid i j k}
$$

- First 2 terms \rightarrow mosaic for v_{1} and v_{2}
- First 3 terms \rightarrow mosaic for v_{1}, v_{2} and v_{3}
- ...
- Sequential models of joint independence \rightarrow additive decomposition of the total association, $G_{\left[v_{1}\right]\left[v_{2}\right] \ldots\left[v_{p}\right]}^{2}$ (mutual independence),

$$
G_{\left[v_{1}\right]\left[v_{2}\right] \ldots\left[v_{p}\right]}^{2}=G_{\left[v_{1}\right]\left[v_{2}\right]}^{2}+G_{\left[v_{1} v_{2}\right]\left[v_{3}\right]}^{2}+G_{\left[v_{1} v_{2} v_{3}\right]\left[v_{4}\right]}^{2}+\cdots+G_{\left[v_{1} \ldots v_{p-1}\right]\left[v_{p}\right]}^{2}
$$

- As in regression, most useful when there is some substantive ordering of the variables

Sequential plots and models: Example

- 3-way table, Joint Independence Model [Hair Eye] [Sex]

Sequential plots and models: Example

- Hair color x Eye color marginal table (ignoring Sex)

Sequential plots and models: Example

- 3-way table, Mutual Independence Model [Hair] [Eye] [Sex]

Sequential plots and models: Example

Mosaic matrices

- Analog of scatterplot matrix for categorical data (Friendly, 1999)
- Shows all $p(p-1)$ pairwise views in a coherent display
- Each pairwise mosaic shows bivariate (marginal) relation
- Fit: marginal independence
- Residuals: show marginal associations
- Direct visualization of the "Burt" matrix analyzed in MCA for p categorical variables

Berkeley data:

Partial association, Partial mosaics

- Stratified analysis:

- How does the association between two (or more) variables vary over levels of other variables?
- Mosaic plots for the main variables show partial association at each level of the other variables
- E.g., Hair color, Eye color $B Y$ Sex \leftrightarrow TABLES sex $*$ hair * eye;

Software for Mosaic Displays: Web applet

Demonstration web applet

Go to: http://datavis.ca/online/mosaics/

- Runs the current version of mosaics.sas via a cgi script (perl)
- Can:
- run sample data,
- upload a data file,
- enter data in a form.
- Choose model fitting and display options (not all supported).
- Provides (limited) interaction with the mosaics via javascript

Partial association, Partial mosaics

Stratified analysis: conditional decomposition of G^{2}

- Fit models of partial (conditional) independence, $A \perp B \mid C_{k}$ at each level of (controlling for) C.
- \Rightarrow partial G^{2} s add to the overall G^{2} for conditional independence, $A \perp B \mid C$

$$
G_{A \perp B \mid C}^{2}=\sum_{k} G_{A \perp B \mid C(k)}^{2}
$$

Table: Partial and Overall conditional tests, Hair \perp Eye \mid Sex

Model	df	G^{2}	p-value
$[$ Hair $][$ Eye $] \mid$ Male	9	44.445	0.000
$[$ Hair $][$ Eye $]$	Female	9	112.233
$[$ Hair $][$ Eye $]$	Sex	18	156.668

Mosaics software SAS

Software for Mosaic Displays: SAS

- Macro interface: mosaic macro, table macro, mosmat macro
- mosaic macro- Easiest to use
- Direct input from a SAS dataset
- No knowledge of SAS/IML required
- Reorder table variables; collapse, reorder table levels with table macro
- Convenient interface to partial mosaics ($\mathrm{BY}=$)
- table macro
- Create frequency table from raw data
- Collapse, reorder table categories
- Re-code table categories using SAS formats, e.g., 1='Male' $2=$ 'Female'
- mosmat macro
- Mosaic matrices- analog of scatterplot matrix (Friendly, 1999)

Software for Mosaic Displays: SAS

SAS software \& documentation

http://datavis.ca/mosaics/mosaics.pdf - User Guide http://datavis.ca/books/vcd/macros.html - Software

Examples: Many in VCD and on web site
SAS /IML modules: mosaics.sas— Most flexible

- Enter frequency table directly in SAS/IML, or read from a SAS dataset.
- Select, collapse, reorder, re-label table levels using SAS/IML statements
- Specify structural 0s, fit specialized models (e.g., quasi-independence)
- Interface to models fit using PROC GENMOD

mosaic macro example: Berkeley data

berkeley.sa
title 'Berkeley Admissions data';

$$
\begin{aligned}
& \text { title formerke } \\
& \text { proc format }
\end{aligned}
$$

value admit $1=$ "Admitted" $0=$ "Rejected"
value dept $1=" A " 2=" B " 3=" C " 4=" D " 5=" E " \quad 6=" F " ;$
value \$sex 'M'='Male' 'F'='Female'
data berkeley;
do dept $=1$ to 6;
do gender = 'M', 'F';
do admit $=1,0$;
input freq @@;
output;
end; end; end.
/* -- Male -_ -Female- */
/* Admit Rej Admit Rej */
datalines

512	313	89	19	$/ * \operatorname{Dept}$	A	$* /$
353	207	17	8	$/ *$	B	$* /$
120	205	202	391	$/ *$	C	$* /$
138	279	131	244	$/ *$	D	$* /$
53	138	94	299	$/ *$	E	$* /$
22	351	24	317	$/ *$	F	$* /$

;

Data set berkeley:

dept	gender	admit	freq
1	M	1	512
1	M	0	313
1	F	1	89
1	F	0	19
2	M	1	353
2	M	0	207
2	F	1	17
3	F	0	8
3	M	1	120
3	F	0	205
3	F	1	202
4	M	1	391
4	M	0	138
4	F	1	279
4	F	0	241
5	M	1	53
5	M	0	138
5	F	1	94
6	F	0	299
6	M	1	22
6	F	0	351
6	F	1	24
		0	317

mosaic macro example: Berkeley data

Two-way, Dept. by Gender

Model: (DeptGender)(Admit)

Three-way, Dept. by Gender by Admit
mosaic macro example: Berkeley data

NB: The fittype= argument allows various types of sequential models: joint, conditional, etc.
mosmat macro: Mosaic matrices
\%include catdata(berkeley); mosmat9m.sas \%mosmat (data=berkeley,
vorder=Admit Gender Dept, sort=no);

Partial mosaics

\%include catdata(hairdat3s) ;
\%gdispla(DFF);
\%mosaic (data=haireye
vorder=Hair Eye Sex, by=Sex
htext=2, cellfill=dev);
\%gdispla(ON)
\%panels(rows=1, cols=2); /* make 2 figs -> 1 */

Using the vcd package in R

- The $\log \operatorname{lm}()$ function fits a loglinear model, returns a loglm object
- Fit the 3-way mutual independence model: Hair + Eye + Sex \equiv [Hair] [Eye] [Sex]
- Printing the object gives a brief model summary (badness of fit)
>\#\# Independence model of hair and eye color and sex. >mod. 1 <- loglm(~Hair+Eye+Sex, data=HairEyeColor) $>\bmod .1$

Call:

loglm(formula $=$ ~Hair + Eye + Sex, data = HairEyeColor)

Statistics:

$X^{\wedge} 2$ df $P\left(>X^{\wedge} 2\right)$
Likelihood Ratio $166.300124 \quad 0$
Pearson
164.9247240

- The mosaic() function plots the object.
- the vcdExtra package extends mosaic() to glm() models.

Using the vcd package in R

```
>library(vcd)
>
>data(HairEyeColor)
>structable(Eye ~ Hair + Sex, data=HairEyeColor)
```

Eye Brown Blue Hazel Green
$\left.\begin{array}{lrrrr} & \text { Eye Brown Blue } & \text { Hazel } & \text { Green } \\ \text { Hair Sex } & & & & \\ \text { Black Male } & 32 & 11 & 10 & 3 \\ & \text { Female } & 36 & 9 & 5\end{array}\right) 2$

- The structable() function \rightarrow 'flat' representation of an n-way table, similar to mosaic displays
- Formula interface: Col factors ~ row factors

vcd package: Other models

```
>## Joint independence model.
>mod.2 <- loglm(~Hair*Eye+Sex, data=HairEyeColor)
```

$>\bmod .2$

Call:
loglm(formula $=\sim$ Hair $*$ Eye + Sex, data $=$ HairEyeColor)
Statistics:
$X^{\wedge} 2$ df $P\left(>X^{\wedge} 2\right)$
Likelihood Ratio 19.85656150 .1775045
Pearson 19.56712150 .1891745
>\#\# Conditional independence model: Hair*Eye + Sex*Eye $>m o d .3$ <- loglm(~ (Hair+Sex)*Eye, data=HairEyeColor) $>\bmod .3$

Call:
loglm (formula $=\sim($ Hair + Sex $) *$ Eye, data $=$ HairEyeColor $)$

Statistics:

$$
X^{\wedge} 2 \text { df } P\left(>X^{\wedge} 2\right)
$$

Likelihood Ratio 18.32715120 .1061122
Pearson
18.04110120 .1144483
>mosaic(mod.2, main="model: [HairEye][Sex]", gp=shading_Friendly)
model: [HairEye][Sex]

>mosaic(mod.2, main="model: [HairEye] [Sex]")

Testing differences between models

- For nested models, $M_{1} \subset M_{2}$ (M_{1} nested within, a special case of M_{2}), the difference in LR $G^{2}, \Delta=G^{2}\left(M_{1}\right)-G^{2}\left(M_{2}\right)$ is a specific test of the difference between them. Here, $\Delta \sim \chi^{2}$ with $d f=d f_{1}-d f_{2}$.
- R functions are object-oriented: they do different things for different types of objects.

>anova(mod.1, mod.2)

LR tests for hierarchical log-linear models
Model 1:
${ }^{\sim}$ Hair + Eye + Sex
Model 2:
~Hair * Eye + Sex

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1166.3001424

Model 2	19.85656	15	146.44358	9	0.0000
Saturated	0.00000	0	19.85656	15	0.1775

More structured tables

Ordered categories

Tables with ordered categories may allow more parsimonious tests of association

- Can represent $\lambda_{i j}^{A B}$ by a small number of parameters
- \rightarrow more focused and more powerful tests of lack of independence (recall: CMH tests)
- Allow one to "explain" the pattern of association in a compact way.

Square tables

For square $I \times I$ tables, where row and column variables have the same categories:

- Can ignore diagonal cells, where association is expected and test remaining association (quasi-independence)
- Can test whether association is symmetric around the diagonal cells.
- Can test substantively important hypotheses (e.g., mobility tables)

All of these require the GLM approach for model fitting

Ordered categories II

For a two way table, there are 4 possibilities, depending on which variables are ordinal, and assigned scores:

$A \downarrow$	Nominal	Col scores $b_{j}, j=1, \ldots J$
Nominal	General association df: $(\mathrm{l}-1)(\mathrm{J}-1)$ parm: $\lambda_{i j}^{A B}$	Row effects df: l-1 parm: $a_{i} b_{j}$
Row scores $a_{i}, i=1, \ldots$ l	Col effects df: J-1 parm: $\mathrm{a}_{\mathrm{i}} \beta_{\mathrm{j}}$	Uniform association df: 1 parm: $\gamma \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{j}}$

Ordered categories I

- Ordinal scores

- In many cases it may be reasonable to assign numeric scores, $\left\{a_{i}\right\}$ to an ordinal row variable and/or numeric scores, $\left\{b_{i}\right\}$ to an ordinal column variable.
- Typically, scores are equally spaced and sum to zero, $\left\{a_{i}\right\}=i-(I+1) / 2$, e.g., $\left\{a_{i}\right\}=\{-1,0,1\}$ for $I=3$.
- Linear-by-Linear (Uniform) Association: When both variables are ordinal, the simplest model posits that any association is linear in both variables.

$$
\lambda_{i j}^{A B}=\gamma a_{i} b_{j}
$$

- Only adds one additional parameter to the independence model $(\gamma=0)$.
- It is similar to CMH test for linear association
- For integer scores, the local log odds ratios for any contiguous 2×2 table are all equal, $\log \theta_{i j}=\gamma$
- This is a model of uniform association - simple interpretation!

Ordered categories III

- Row Effects and Column Effects: When only one variable is assigned scores, we have the row effects model or the column effects model.
- E.g., in the row effects model, the row variable (A) is treated as nominal, while the column variable (B) is assigned ordered scores $\left\{b_{j}\right\}$.

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\alpha_{i} b_{j}
$$

where the row parameters, α_{i}, are defined so they sum to zero.

- This model has $(I-1)$ more parameters than the independence model.
- A Row Effects + Column Effects model allows both variables to be ordered, but not necessarily with linear scores.
- Fitting models for ordinal variables
- Create numeric variables for category scores
- PROC GENMOD: Use as quantitative variables in MODEL statement, but not listed as CLASS variables
- R: Create numeric variables with as.numeric (factor)

Ordered categories: RC models

- $\mathrm{RC}(\mathbf{1)}$ model: Generalizes the uniform association, R, C and $\mathrm{R}+\mathrm{C}$ models by relaxing the assumption of specified order and spacing.

$$
R C(1): \log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\phi \mu_{i} \nu_{j}
$$

- The row parameters $\left(\mu_{i}\right)$ and column parameters $\left(\nu_{j}\right)$ are estimated from the data.
- ϕ is the measure of association, similar to γ in the uniform association model
- RC(2) ... RC(M) models: Allow two (or more) log-multiplicative association terms; e.g.:

$$
R C(2): \log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\phi_{1} \mu_{i 1} \nu_{j 1}+\phi_{2} \mu_{i 2} \nu_{j 2}
$$

Related to CA, but provide hypothesis tests, std. errors, etc.

- Fitting RC models

- SAS: no implementation
- R: Fit with $\operatorname{gnm}($ Freq $\sim R+C+\operatorname{Mult}(R, C))$

Example: Mental impairment and parents' SES

- Srole et al. (1978) Data on mental health status of ~ 1600 young NYC residents in relation to parents' SES.
- Mental health: Well, mild symptoms, moderate symptoms, Impaired
- SES: 1 (High) - 6 (Low)

Mental health	High	2	3	4	5	Low
1: Well	64	57	57	72	36	21
2: Mild	94	94	105	141	97	71
3: Moderate	58	54	65	77	54	54
4: Impaired	46	40	60	94	78	71

Relations among models

Before fitting models, it is often useful to explore the relation amongs the row/column categories. Correspondence analysis is a good idea!

- Essentially 1D
- Both variables are ordered
- High SES goes with better mental health status
- Can we treat either or both as equally-spaced?
- GLM approach allows testing/comparing hypotheses vs. eye-balling
- Parameter estimates quantify effects.

Visual assessment of various loglin/GLM models: mosaic displays

- Residuals from the independence model show an opposite-corner pattern This is consistent with both:
- Linear \times linear model: equi-spaced scores for both Mental and SES
- Row effects model: equi-spaced scores for SES, ordered scores for Mental

[^0]
Statistical assesment:

Table: Mental health data: Goodness-of-fit statistics for ordinal loglinear models

Model	G^{2}	df	$\operatorname{Pr}\left(>G^{2}\right)$	AIC	AIC-best
Independence	47.418	15	0.00003	65.418	35.523
Col effects (SES)	6.829	10	0.74145	34.829	4.934
Row effects (mental)	6.281	12	0.90127	30.281	0.386
Lin \times Lin	9.895	14	0.76981	29.895	0.000

- Both the Row Effects and Linear \times linear models are significantly better than the Independence model
- AIC indicates a slight preference for the Linear \times linear model
- In the Linear \times linear model, the estimate of the coefficient of $a_{i} b_{j}$ is $\hat{\gamma}=0.0907=\widehat{\log \theta}$, so $\hat{\theta}=\exp (0.0907)=1.095$.
- \mapsto each step down the SES scale increases the odds of being classified one step poorer in mental health by 9.5%.
- Compare with purely exploratory (CA) interpretation: mental health increases with SES

Fitting these models with glm() in R (see: mental-glm.R for plots)

\# compare models
AIC(indep, coleff, roweff, linlin)

Square tables

- Tables where two (or more) variables have the same category levels:
- Employment categories of related persons (mobility tables)
- Multiple measurements over time (panel studies; longitudinal data)
- Repeated measures on the same individuals under different conditions
- Related/repeated measures are rarely independent, but may have simpler forms than general association
- E.g., vision data: Left and right eye acuity grade for 7477 women

Square tables: Quasi-Independence

- Related/repeated measures are rarely independent- most observations often fall on diagonal cells.
- Quasi-independence ignores diagonals: tests independence in remaining cells $\left(\lambda_{i j}=0\right.$ for $\left.i \neq j\right)$.
- The model dedicates one parameter $\left(\delta_{i}\right)$ to each diagonal cell, fitting them exactly,

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\delta_{i} l(i=j)
$$

where $I(\bullet)$ is the indicator function.

- This model may be fit as a GLM by including indicator variables for each diagonal cell: fitted exactly

diag	4 rows	4 cols		
	1	0	0	0
	0	2	0	0
	0	0	3	0
	0	0	0	4

Structured tables Square tables

Square tables: Symmetry

- Tests whether the table is symmetric around the diagonal, i.e., $m_{i j}=m_{j i}$
- As a loglinear model, symmetry is

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{i j}^{A B}
$$

subject to the conditions $\lambda_{i}^{A}=\lambda_{j}^{B} \quad$ and $\quad \lambda_{i j}^{A B}=\lambda_{j i}^{A B}$.

- This model may be fit as a GLM by including indicator variables with equal values for symmetric cells, and indicators for the diagonal cells (fit exactly)

symmetry	4 rows			4 cols)
12	12	13	14	
12	2	23	24	
13	23	3	34	
14	24	34	4	

- Using PROC GENMOD

```
proc genmod data=women;
class symmetry;
model Count = symmetry /
dist=poisson link=log obstats residuals;
    ods output obstats=obstats;
%mosaic(data=obstats, vorder=RightEye LeftEye, ...);
```


Mosaic:

Comparing models

Table: Summary of models fit to vision data

Model	G^{2}	df	$\operatorname{Pr}\left(>G^{2}\right)$	AIC	AIC $-\min (\mathrm{AIC})$
Independence	6671.51	9	0.00000	6685.51	6656.23
Linear*Linear	1818.87	8	0.00000	1834.87	1805.59
Row+Column Effects	1710.30	4	0.00000	1734.30	1705.02
Quasi-Independence	199.11	5	0.00000	221.11	191.83
Symmetry	19.25	6	0.00376	39.25	9.97
Quasi-Symmetry	7.27	3	0.06375	33.27	3.99
Ordinal Quasi-Symmetry	7.28	5	0.20061	29.28	0.00

- Only the quasi-symmetry models provide an acceptable fit: When vision is unequal, association is symmetric!
- The ordinal quasi-symmetry model is most parsimonious
- AIC is your friend for model comparisons

Quasi-Symmetry

- Symmetry is often too restrictive: \mapsto equal marginal frequencies $\left(\lambda_{i}^{A}=\lambda_{i}^{B}\right)$
- PROC GENMOD: Use the usual marginal effect parameters + symmetry:

model Count = LeftEye RightEye symmetry
dist=poisson link=log obstats residuals;
ods output obstats=obstats;

Using the gnm package in R

- Diag() and Symm(): structured associations for square tables
- Topo(): more general structured associations
- mosaic.glm() in vcdExtra

```
library(vcdExtra)
library(gnm)
women <- subset(VisualAcuity, gender=="female", select=-gender)
indep <- glm(Freq ~ right + left, data = women, family=poisson)
mosaic(indep, residuals_type="rstandard", gp=shading_Friendly,
    main="Vision data: Independence (women)" )
quasi.indep <- glm(Freq ~ right + left + Diag(right, left),
symmetry <- glm(Freq ~ Symm(right, left),
    data = women, family = poisson)
quasi.symm <- glm(Freq ~ right + left + Symm(right, left),
    data = women, family = poisson)
# model comparisons: for *nested* models
anova(indep, quasi.indep, quasi.symm, test="Chisq")
anova(symmetry, quasi.symm, test="Chisq")
```


Survival on the Titanic

Survival on the Titanic: 2201 passengers, classified by Class, Gender, Age, survived. Data from:

- Mersey (1912), Report on the loss of the "Titanic" S.S.
- Dawson (1995)

			Class			
Gender	Age	Survived	1st	2nd	3rd	Crew
Male	Adult	Died	118	154	387	670
Female			4	13	89	3
Male	Child		0	0	35	0
Female			0	0	17	0
Male	Adult	Survived	57	14	75	192
Female			140	80	76	20
Male	Child		5	11	13	0
Female			1	13	14	0

Order of variables in mosaics: Class, Gender, Age, Survival

Larger tables Survival on the Titanic

Survival on the Titanic: Background variables

3 way: $\{$ Class, Gender $\} \perp$ Age ?

- Overall proportion of children quite small (about 5%).
- \% children smallest in 1st class, largest in 3rd class.
- Residuals: greater number of children in 3rd class (families?)

Survival on the Titanic: Background variables

Survival on the Titanic: 4 way table

4 way: $\{$ Class, Gender, Age $\} \perp$ Survival?

- Joint independence: [CGA][S]
- Minimal null model when C, G, A are explanatory
- More women survived, but greater \% in 1st \& 2nd
- Among men, \% survived increases with class.
- Fits poorly $\left[G_{(15)}^{2}=671.96\right] \Rightarrow$ Add S-assoc terms

Survival on the Titanic: Better models

Class interacts with Age \& Gender on

- Model [CGA][CGS][CAS]
- $G_{(4)}^{2}$ now 1.69, a very good fit.
- Perhaps too good? (Overfitting?)
\rightarrow check AIC!

Survival on the Titanic: Better models

 survival:

Titanic Conclusions

Mosaic displays allow a detailed explanation:

- Regardless of Age and Gender, lower economic status \longrightarrow increased mortality.
- Differences due to Class were moderated by both Age and Gender.
- Women more likely overall to survive than men, but:
- Class \times Gender: women in 3rd class did not have a significant advantage
- men in 1st class did, compared to men in other classes.
- Class \times Age:
- no children in 1st or 2 nd class died, but
- nearly two-thirds of children in 3rd class died.
- For adults, mortality \uparrow as economic class \downarrow.
- Summary statement:
"women and children (according to class), then 1st class men".

Summary: Part 3

- Mosaic displays

- Recursive splits of unit square \rightarrow area \sim observed frequency
- Fit any loglinear model \rightarrow shade tiles by residuals
- \Rightarrow see departure of the data from the model
- SAS: mosaic macro, mosmat macro; R: mosaic()

- Loglinear models

- Loglinear approach: analog of ANOVA for $\log \left(m_{i j k} \ldots\right)$
- GLM approach: linear model for $\log (\mathbf{m})=\mathbf{X} \boldsymbol{\beta} \sim$ Poisson()
- SAS: PROC CATMOD, PROC GENMOD; R: loglm(), glm()
- Visualize: mosaic, mosmat macro; R: mosaic()
- Complex tables: sequential plots, partial plots are useful

Structured tables

- Ordered factors: models using ordinal scores \rightarrow simpler, more powerful
- Square tables: Test more specific hypotheses about pattern of association
- SAS: PROC GENMOD; R: $\operatorname{glm}(), \operatorname{gnm}()$

[^0]: Linear \times linear model:
 proc genmod data=mental;
 class mental ses;
 model count $=$ mental ses m_lin*s_lin / dist=poisson obstats;

