Graphical methodsLinear modelsCategorical dataSEMsUtility macros
Univariate displays
Bivariate displays
Multivariate displays
Cluster analysis
Maps
boxplot
density
dotplot
nqplot
splot
symbox
symplot
contour
ellipses
lowess
miplot
resline
sparkline
sunplot
surface
andrews
biplot
canplot
coplot
corrgram
cqplot
faces
genscat
hecan
hemat
hemreg
heplot
heplots
mpower
outlier
robcov
scatmat
scatter
stars
gtree
ccmap
map2gen
ANOVA
Regression
Multivariate
Transformations
Power
alleff
effplot
hovplot
meanplot
orpoly
poly
twoway
cpplot
effplot
partial
inflplot
robust
rsqdelta
hecan
hemat
hemreg
heplot
heplots
mvinfluence
boxcox
boxglm
boxtid
sprdplot
fpower
mpower
power
rpower
Discrete distributions
Two-way tables
Mosaic displays
Generalized linear models
distplot
goodfit
ordplot
poisplot
rootgram
agree
agreeplot
corresp
ffold
fourfold
power2x2
powerrxc
sieve
sieveplot
missrc
genscat
mosaic
mosaics
mosmat
addvar
catplot
effplot
halfnorm
inflglim
inflogis
logodds
powerlog
robust
caliscmp
calisgfi
csmpower
eqs2ram
ram2dot
str2ram
Data utility
Graphics utility
Macro utility
Color
combine
combos
dummy
expgrid
interact
jitter
lags
map2gen
multisummary
mvnormal
sas2vsta
scale
slice
sort
stat2dat
table
axis
bars
boxanno
boxaxis
equate
gask
gbank
gdispla
genpat
gensym
gkill
gsize
gskip
inset
label
labels
lines
panels
points
polygons
pscale
regline
rug
expglm
defined
lastword
vexpand
words
bpycolors
brewerpal
colochrt
colorramp
multisummary Calculate Summary statistics for multiple variables multisummary

SAS Macro Programs: multisummary

$Version: 1.0 (15 Dec 2005)
Michael Friendly
York University

Updated 05/23/2010 13:57:08

The multisummary macro ( [download] get multisummary.sas)

Calculate Summary statistics for multiple variables

The MULTISUMMARY macro produces an output data set containg any of the statistics calculated by PROC SUMMARY for any number of numeric variables.

Usage

The MULTISUMMARY macro is defined with keyword parameters. The arguments may be listed within parentheses in any order, separated by commas. For example:

  %multisummary(var=x1-x3, stats=n mean std);

Parameters

DATA=
The name of the input data set [Default: DATA=_LAST_]
VAR=
The name of the variable to be analyzed [Default: VAR=_NUMERIC_]
CLASS=
Name(s) of 0 or more class variables
STATS=
List of names of the output statistics to calculate, e.g., MEAN, MEDIAN, Q1, Q3, etc. Any of the statistic keywords accepted by PROC SUMMARY.
OPTIONS=
Options for PROC SUMMARY, e.g., nway, missing...
OUT=
The name of the output data set. The observations in this data set correspond to the combinations of the levels of all class variables with the set of statistics specified in the STATS= option.

Example

%include macros(multisummary);        *-- or include in an autocall library;
%include data(guerry);

%multisummary(data=guerry,
   class=region,
   var=Suicides Infants Crime_prop  Crime_pers,
   stats=Q1 median Q3,
   options=missing nway,
   out=gstats);

proc print data=gstats;
  Obs  _statistic_  Region  _TYPE_  _FREQ_  Suicides  Infants   prop    pers

    1    Q1                    1       1      37016    24743     4589    2199
    2    median                1       1      37016    24743     4589    2199
    3    Q3                    1       1      37016    24743     4589    2199
    4    Q1           C        1      17      15272    14475     6516   17722
    5    median       C        1      17      29381    17044     8236   21292
    6    Q3           C        1      17      77823    20046    12141   26747
    7    Q1           E        1      17      16171    12512     5914   13396
    8    median       E        1      17      21233    15599     7770   18835
    9    Q3           E        1      17      34476    20384     9044   26231
   10    Q1           N        1      17       8334    10575     4500   15602
   11    median       N        1      17      13463    14281     5521   23101
   12    Q3           N        1      17      25572    16303     7144   28180
   13    Q1           S        1      17      19024    15250     6731    8236
   14    median       S        1      17      48783    20383     8680   13019
   15    Q3           S        1      17      66498    23771     9797   13576
   16    Q1           W        1      17      25143    17681     6842   18712
   17    median       W        1      17      33358    21375     7566   22138
   18    Q3           W        1      17      38501    31754     8943   24964

See also

dummy Construct dummy variables for regression models
meanplot Plot means for factorial designs
stat2dat Convert summary dataset to raw data equivalent
sort Generalized dataset sorting by format or statistic
table Construct a grouped frequency table, with recoding