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Abstract

Categorical data—frequency data, and discrete data—are most of-
ten presented in tables, and analyses using loglinear models and
logistic regression are most often presented in terms of parame-
ter estimates. Over the past decade, I and others have developed
novel visualization methods for categorical data, designed to pro-
vide exploratory and confirmatory graphic displays analogous to
those used readily and easily for quantitative data. These graphical
methods are described inVisualizing Categorical Data. The book
also provides a large collection of macros designed to make these
methods readily and easily used. This paper provides an overview
of these graphical methods and macros, as told through data, their
stories, and associated graphical displays.

KEYWORDS: categorical data, graphics, mosaic displays, mo-
saic matrices, correspondence analysis, loglinear models, logistic
regression.

1 Introduction

Over the last decade a modest revolution has been brewing in the
analysis of categorical data, as graphical methods and techniques
of data visualization, so commonly used for quantitative data, have
begun to be developed for frequency data and discrete data.

At SUGI 17 (Friendly, 1992a) I described some initial steps in
the development of new graphical methods for categorical data,
with the goals of (a) providing visualization techniques for data ex-
ploration and model fitting comparable in scope to those used for
quantitative data, and (b) implementing these methods in readily
available software. These goals have now been largely achieved.
The methods are described and illustrated in a new book,Visualiz-
ing Categorical Data(VCD), now in production. The book includes
nearly 40 general macros and programs (see Appendix A), covering
most aspects of categorical data analysis.

This paper provides an overview of some of these graphical
methods and macros, using examples from the book, as told through
data, their stories, and associated graphical displays. (Most of the
graphs are in color; see the CD version of the Proceedings.)

2 Disputed authorship: The Federalist
Papers

In 1787–88, Alexander Hamilton, John Jay, and James Madison
wrote a series of newspaper essays to persuade the voters of New
York State to ratify the U.S. constitution. The essays were titled
The Federalist Papersand all were signed with a pseudonym. Of
the 77 papers published, the author(s) of 65 are known, butboth

Hamilton and Madison later claimed sole authorship of the remain-
ing 12. Mosteller and Wallace (1984) investigated the use of statis-
tical methods to identify authors of disputed works based on the fre-
quency distributions of certain key function words, and concluded
that Madison had indeed authored the 12 disputed papers.

Table 1 shows the distribution of the occurrence of one of these
“marker” words, the wordmayin 262 blocks of text (each about 200
words long) from issues of theFederalist Papersand other essays
known to be written by James Madison.

An important part of the analysis by Mosteller and Wallace was
to establish the theoretical form of these frequency distributions,
so that the known works could be compared in terms of estimated
paramters, rather than through the entire distributions. A simple ar-
gument for the occurrence of rare events leads to a suggestion that
the distribution of such words might be Poisson; however, numer-
ical fitting led to the conclusion that the Negative Binomial gave
better fits.

We concentrate here on visualization methods to determine the
theoretical form of a discrete distribution.

Table 1: Number of occurrences (k) and number of blocks of text
(nk) of the wordmay in Federalist Papers and essays written by
James Madison

k 0 1 2 3 4 5 6
nk 156 63 29 8 4 1 1

2.1 Hanging rootograms
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Figure 1: Histogram for Madison data, with Poisson fit



Discrete frequency distributions are often graphed as histograms,
with a theoretical fitted distribution superimposed. Figure 1, for ex-
ample, shows the data in Table 1 together with the fitted frequencies
under a Poisson model. It is hard to compare the observed and fitted
frequencies visually, because (a) we must assess deviations against
a curvilinear relation, and (b) the largest frequencies dominate the
display.

The hanging rootogram (Tukey, 1977) solves these problems by
(a) shifting the histogram bars to coincide with the fitted curve, so
that deviations may be judged by deviations from a horizontal line,
and (b) plotting on a square-root scale, so that smaller frequencies
are emphasized. Figure 2 shows more clearly that the observed fre-
quencies differ systematically from those predicted under a Poisson
model. InVCD, several macros are presented for fitting a variety

S
q

r
t(

fr
e

q
u

e
n

c
y
)

-2

0

2

4

6

8

10

12

Number of Occurrences
0 1 2 3 4 5 6

Figure 2: Suspended rootogram for Madison data

of discrete distributions. TheGOODFIT macro carries out goodness-
of-fit tests; theROOTGRAM macro provides a variety of displays in-
cluding those of Figure 1 and 2. For example, Figure 2 is produced
as

%goodfit(data=madison, var=count, freq=blocks,

dist=poisson, out=fit);

%rootgram(data=fit, var=count, obs=blocks);

2.2 Ord plots
A simple plot suggested by Ord (1967) may be used to diagnose
the form of a discrete distribution. Ord showed that, for each of
the Poisson, Binomial, Negative Binomial, and Logarithmic Series
distributions, a plot ofkpk=pk�1 againstk is linear, and these dis-
tributions were distinguished by the signs of the slope and intercept.

Figure 3 shows the Ord plot for the Madison data, which diag-
noses the distribution as a Negative Binomial, based on the positive
slope of the thicker line (found by weighted least squares). This
plot is produced using theORDPLOT macro, used as

%ordplot(data=madison, count=Count, freq=blocks);

2.3 Robust distribution plots
One disadvantage of the Ord plot is lack of resistance, since a single
discrepant frequency,nk, affects the points for bothk andk + 1.
Robust distribution plots, following methods described by Hoaglin
and Tukey (1985), are provided by theDISTPLOT macro.

Figure 4 shows the Negative Binomial distribution plot, pro-
duced using theDISTPLOT macro, as follows:

slope =    0.424
intercept=-0.023

type: Negative binomial
parm: p = 0.576
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Figure 3: Ord plot for Madison data

slope(b) = -0.992
intercept= -0.654

n:  a/log(p) = 1.413
p:    1-e(b) = 0.629
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Figure 4: Robust distribution plot for Madison data for the negative
binomial

%distplot(data=madison,count=count,freq=blocks,dist=negbin);

This plot has the property that the circled points are linear ink when
the data follow the assumed distribution, as in the Ord plot. How-
ever, the ordinate “count metameter” depends only onnk, and the
confidence bars are calculated to take into account the variability of
individual counts,nk, in the observed distribution.

3 Gender bias in admission to Berkelely?

Bickel et al. (1975) analyzed data on admissions to graduate depat-
ments at U. C. Berkeley in 1973. Aggregate data for the six largest
departments are shown in Table 2, classified by admission and gen-
der. The issue was whether these data showed evidence of gender
bias in admissions.

Table 2: Admissions to Berkeley graduate programs

Admitted Rejected Total
Males 1198 1493 2691
Females 557 1278 1855
Total 1755 2771 4526



3.1 Fourfold displays

Table 2 is an example of a2 � 2 table. For such data, theodds
ratio, � = n11n22=n12n21, is a natural measure of the strength of
association between the two variables.

Thefourfold displaydepicts these frequencies by quarter circles,
whose radius is proportional to

p
nij , so the area is proportional to

the cell count (Fienberg, 1975, Friendly, 1994a,c). The cell fre-
quencies are usually scaled to equate the marginal totals, and so
that the ratio of diagonally opposite segments depicts the odds ra-
tio. Confidence rings for the observed� allow a visual test of the
hypothesisH0 : � = 1 corresponding to no association. They have
the property that the rings for adjacent quadrants overlapiff the ob-
served counts are consistent with the null hypothesis.

Figure 5 shows the aggregate data from Table 2. The sample
odds ratio, Odds (AdmitjMale) / (AdmitjFemale) is 1.84 indicating
that males were almost twice as likely to be admitted. The confi-
dence rings in the figure do not overlap, showing that this associa-
tion is highly significant. Does this constitute evidence for gender
bias in admission?
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Figure 5: Fourfold display for Berkeley admissions data, margins
equated

The admissions data shown in Figure 5 came from the six largest
at Berkeley. To determine the source of the apparent sex bias in
favor of males, we make a new plot, Figure 6, stratified by depart-
ment.

Surprisingly, Figure 6 shows that, for five of the six departments,
the odds of admission is approximately the same for both men and
women applicants. Department A appears to differs from the others,
with women approximately 2.86 (= (313=19)=(512=89)) times as
likely to gain admission.

The resolution of this contradiction can be found in the large dif-
ferences in admission rates among departments. Men and women
apply to different departments differentially, and in these data
women happen to apply in larger numbers to departments that have
a low acceptance rate. The aggregate results are misleading because
they falsely assume men and women are equally likely to apply in
each field.
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Figure 6: Fourfold display for Berkeley admissions data, by depart-
ment

3.2 Mosaic displays
The mosaic display(Friendly, 1992b, 1994b, 1999, Hartigan and
Kleiner, 1981) is a graphical method for visualizing ann-way con-
tingency table and for building models to account for the associ-
ations among its variables. The frequencies in a contingency ta-
ble are portrayed as a collection of rectangular “tiles” whose areas
are proportional to the cell frequencies; the areas are colored and
shaded to portray the residuals from a specified log-linear model.

Whereas goodness-of-fit statistics provide an overall summary
of how well a model fits the data, the mosaic display reveals the
pattern of lack of fit, and helps suggest an alternative model that
may fit better.

The hypothesis that gender and admission are independent,
givendepartment, corresponds to the loglinear model[Admit Dept]
[Gender Dept]. This model fits poorly (G2(6) = 21:74), but the
residuals in the mosaic (Figure 7) suggest that the lack of fit is due
primarily to department A, where agreater proportion of women
are admitted than men, as may also be seen in Figure 6.

3.3 Plots for logit models
Loglinear models treat all variables symmetrically, and do not dis-
tinguish between explanatory and response variables. When one
variable can be regarded as a response variable, then the effects of
the other variables may be expressed as an equivalent logit model.
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Figure 7: Three-way mosaic plot for Berkeley data: Conditional
independence

For example, Figure 7 suggests a loglinear model which allows
an association between admission and gender in Department A
only,

log mijk = �+�Ai +�Dj +�Gk +�ADij +�DGjk + �j=1�
AG
ik ; (1)

where�j=1 equals 1 for Department A (j = 1) and is zero oth-
erwise. This model asserts that Admission and Gender are condi-
tionally independent, given Department, except in Department A. It
has one more parameter than the conditional independence model,
[AD][GD].

The loglinear model (1) has an equivalent logit formulation,

Lij = �+ �Dept
i + �j=1�

Gender ; (2)

whereLij = log(mij1=mij2) is the log odds of admission for
males as vs. females,�Dept

i is the effect on admissions over depart-
ments, and�j=1�Gender is the effect of gender in Dept. A. This
model fits well, as shown in Figure 8.

Logit models such as (2) are easily fit withPROC CATMOD. Fig-
ure 8 is produced from the output dataset produced by this proce-
dure, using theCATPLOT macro:

data berkeley;

set berkeley;

dept1AG = (gender='F') * (dept=1);

proc catmod order=data data=berkeley;

weight freq;

population dept gender;

direct dept1AG;

response / out=predict;

model admit = dept dept1AG / ml noiter noprofile ;

%catplot(data=predict, xc=dept, class=gender,

type=FUNCTION, z=1.96, legend=legend1);

Such graphs often provide a clearer interpretation of a fitted model
than can be obtained from parameter estimates.

logit(Admit) = Dept DeptA*Gender
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Figure 8: Observed and fitted logits for model (2)

4 The Titanic Story

There have been few marine disasters resulting in the staggering
loss of life which occurred in the sinking of theTitanic on April
15, 1912 and (perhaps as a result) few that are so widely known
by the public. There are two parts to theTitanic story. The first is
concerns the analysis of survival of the passengers and crew; the
second concerns data on the loading of the lifeboats.

4.1 Survival on the Titanic
Given the interest in the sinking of theTitanic, it is somewhat sur-
prising that neither the exact death toll from this disaster nor the dis-
tributions of death among the passengers and crew are universally
agreed. Dawson (1995, Table 2) presents the cross-classification
of 2201 passengers and crew on theTitanic by Age, Gender, Class
(1st, 2nd, 3rd, Crew) shown in Table 3 and describes his efforts to
reconcile various historical sources. Let us see what we can learn
from this dataset.

Table 3: Survival on the Titanic

Class
Gender Age Survived 1st 2nd 3rd Crew
Male Adult Died 118 154 387 670
Female 4 13 89 3

Male Child 0 0 35 0
Female 0 0 17 0

Male Adult Survived 57 14 75 192
Female 140 80 76 20

Male Child 5 11 13 0
Female 1 13 14 0

Figure 9 shows the frequencies of the background variables,
Class, Gender and Age by the sizes of the boxes. It also shows
the association between Age and Class–Gender combinations by
shading. There were no children among the crew, and the overall
proportion of children was quite small (about 5 %). But among the
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Figure 9: Titanic data, background variables

passengers, the proportion of children increases from first class to
third class. The large positive residuals for children among the 3rd
class passengers likely represents families traveling or emmigrating
together.
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Figure 10: Titanic data, Joint independence: Survival?
fClass;Gender, Ageg

Figure 10 shows an initial four-way mosaic for the full table,
and fits the model[CGA][S] which asserts that survival is inde-
pendent of Class, Gender, and Age jointly. This is the minimal
null model when the first three variables are explanatory. It is
clear that greater proportions of women survived than men in all
classes, but with greater proportions of women surviving in the up-
per two classes. Among males, the proportion who survived also
increases with economic class. However, this model fits very poorly
(G2(15) = 671:96), and we may try to fit a more adequate model

by adding associations between survival and the explanatory vari-
ables.
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Figure 11: Titanic data, Model[CGA][CGS][CAS]

The rubric “women and children first” implies the model
[CGA][CS][GAS] in which Age and Gender interact in their in-
fluence on survival (independent of Class), but this model fits
poorly (G2(9) = 94:54). A more adequate model adds inter-
actions of Class withboth Age and Gender to give the model
[CGA][CGS][CAS], whose residuals are shown in Figure 11. The
likelihood-ratio chi-square is now 1.69 with 4 df—a very good fit,
indeed.

The import of these figures is clear. Regardless of Age and Gen-
der, lower economic status was associated with increased mortality.
But the differences due to Class were moderated by both Age and
Gender. Although women on theTitanic were more likely overall
to survive than men, women in 3rd class did not have a significant
advantage, while men in 1st class did compared to men in other
classes. Hence, although the phrase “women and children first” is
mellifluous and appeals to a sense of Edwardian chivalry a more
adequate description might be “women and children (according to
class), then 1st class men.”

4.2 Lifeboats on the Titanic

After the disaster, the British Board of Trade launched several in-
quiries, the most comprehensive of which resulted in theReport on
the Loss of the “Titanic” (S.S.)by Lord Mersey (Mersey, 1912).
Section 4 of this document contains a detailed account of the sav-
ing and rescue of the passengers and crew who survived. The re-
port lists the time of launch and composition of the 18 boats (out
of 20) actually launched, classified as “male passengers”, “women
and children”, and “men of crew”, as reported by witnesses.

Trilinear plots

Trilinear plots are quite useful for showing the relative proportions
in each row ofn � 3 tables. Figure 12 shows the proportions of
these three categories, classed by the side of the ship from which
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Figure 12: Lifeboats on the Titanic, trilinear plot

the lifeboat was launched. Boats with more than 10% male passen-
gers are identified by number. The graph strongly suggests that the
procedures for loading the lifeboats may have differed for the port
and starboard side of the ship.
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Figure 13: Lifeboats on the Titanic, logistic regression

Logistic regression

Figure 12 suggested a logistic regression model for the proportion
of women and children on the lifeboats, using time of launch and
side of boat as predictors. Graphical analysis led to a good-fitting
model with separate slopes and intercepts for the port and starboard
sides, with observed and fitted probabilities shown in Figure 13.

This graph (and others not shown here) bear eloquent witness
to the suggestion that the regimes for loading the lifeboats differed

substantially between the port and starboard side. On the starboard
side, discipline and order were quickly established, women and
children got consistent preference, and lifeboats were loaded close
to their capacity. Loading on the port side, however, began with
chaos, and general lack of effective control. The first few boats
were only lightly loaded, and contained large numbers of men and
crew; presumably whoever was nearby got on. The situation was
brought under control over time. But alas, time ran out for the pas-
sengers and crew of theTitanic.

5 Sex and the Married Woman

A study of divorce patterns by Thornes and Collard (1979) ana-
lyzed two samples of about 500 people each, one still married, and
another who had petitioned for divorce, giving the24 table shown
in Table 4. Each person was asked (a) whether they had made love
with anyone elsebeforetheir marriage, and (b) whether they had
any sexual encounters with another personafter marriage.

Table 4: Marital Status in Relation to Gender and Reported Premar-
ital and Extramarital Sex

Extramarital Premarital Marital Status
Sex Sex Gender Divorced Married
Yes Yes Women 17 4
No 54 25

Yes No 36 4
No 214 322

Yes Yes Men 28 11
No 60 42

Yes No 17 4
No 68 130

Total 494 542

5.1 Mosaic matrices
Themosaic matrixis a discrete analog for multivariate categorical
data of the scatterplot matrix (Friendly, 1999). Like the scatterplot
matrix, it contains allp(p�1) pairwise plots for ap-variate dataset,
but displays the relation of each pair of variables by a mosaic. Ex-
tensions of this idea include: (a) a conditional mosaic matrix, which
fits a model of conditional independence between each row and col-
umn, controlling for one or more of the other variables—a gener-
alization of partial regression plots, (b) mosaic displays of partial
association, stratified by one or more variables—a discrete analog
of coplots or Trellis displays.

Figure 14 shows the bivariate marginal relations among all pairs
of variables in the marital status data, produced with theMOSMAT

macro, as follows:

%include catdata(marital);

%mosmat(data=marital, var=Gender Pre Extra Marital,

vorder=Marital Extra Pre Gender, devtype=LR ADJ);

Viewing Gender, Premarital sex and Extramarital sex as explana-
tory, and Marital status as the response, the mosaics in row 1 (and
in column 1) shows how marital status depends on each predictor
marginally. The remaining panels show the relations within the set
of explanatory variables.
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Figure 14: Mosaic matrix for marital status data. Each panel shows
the bivariate marginal association.

Thus we see (row 1, column 4) that marital status is independent
of gender, by design of the data collection. In the (1, 3) panel, we
see that reported premarital sex is more often followed by divorce,
while non-report is more prevalent among those still married. The
(1, 2) panel shows a similar, but stronger relation between extra-
marital sex and marriage stability. These effects pertain to the asso-
ciations of P and E with marital status—the terms [PM] and [EM]
in a loglinear model.

Among the background variables, the (2, 3) panel shows a strong
relation between premarital sex and subsequent extramarital sex,
while the (2, 4) and (3, 4) panels show that men are far more likely
to report premarital sex than women in this sample, and also more
likely to report extramarital sex.

5.2 Correspondence analysis
Correspondence analysis is an analog of principal components anal-
ysis for frequency data, designed to display the association among
categorical variables in a small number of dimensions, designed to
account for the largest proportion of the Pearson�2. Multiple cor-
respondence analysis extends this method ton-way tables, but dis-
plays only bivariate associations, analogous to the (marginal) mo-
saic matrix.

Figure 15 shows the 2D MCA solution for the marital status data.
This graph was prepared by theCORRESP macro as follows:

%corresp(data=marital, tables=gender pre extra marital,

weight=freq, options=mca, interp=vec, inc=1, pos=-,

symbols=dot);

From the relations among the points we see that men and women
who have reported premarital sex are far more likely to report ex-
tramarital sex than those who have not. (In the marginal [GP] [E]
table, the conditional odds ratio of extramarital sex is 3.61 for men
and 3.56 for women. Thus, extramarital sex depends on premarital
sex, but not on gender.)

Figure 16 shows the 4-way mosaic with residuals for the model
[GPE] [M], which asserts that marital status is independent of Gen-
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Figure 15: 2D multiple correspondence analysis display for marital
status data

der, Premaritial sex, and Extramarital sex jointly. From the pattern
of residuals, we may see that among those reporting no premarital
sex (bottom part of Figure 16), there is a similar pattern of cell sizes
and deviations for marital status in relation to gender and extramar-
ital sex: People who did not report premarital sexual experience are
more likely to remain married if they report no extramarital sex and
more likely to be divorced if they did. Among those who do report
premarital sex (top part of Figure 16), there is also a similar pattern
of sign of deviations, positive for those who are divorced, negative
for those who are married.
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Figure 16: Four-way mosaic for the model[GPE] [M]

The bottom line on these analyses is, if you’re going to fool
around, do it early; if you didn’t fool around early, don’t do it later,
if you want to stay married.

6 The Challenger Disaster

The space shuttleChallengerexploded 31 seconds after take-off
on January 28, 1986. Subsequent investigation determined that the
cause was failure of the O-ring seals used to isolate the fuel sup-



ply from burning gases. The story behind theChallengerdisaster
is perhaps the most poignant missed opportunity in the history of
statistical graphics. It may be heartbreaking to find out that some
important information was there, but the graph maker missed it.

Engineers from Morton Thiokol, manufacturers of the rocket
motors, had been worried about the effects of unseasonably cold
weather on the O-ring seals and recommended aborting the flight.
NASA staff analysed the data on the relation between ambient tem-
perature and the number of O-ring failures (out of 6), but they had
excluded observations where no O-rings failed, believing that they
were uninformative. Figure 17 shows a graph which led to this con-
clusion, perhaps the most misleading graph in history!
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Figure 17: NASA Space shuttle, pre-launch graph

Unfortunately, the 0-failure observations had occurred when the
launch temperature was relatively warm (65� 80�F) and were in-
deed informative. The coldest temperature at any previous launch
was53�; whenChallengerwas launched on January 28, the tem-
perature was a frigid31�.
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Figure 18: NASA Space Shuttle O-ring Failure, Observed and Pre-
dicted probabilities

Figure 18 shows observed and predicted failure probabilities
from a logistic regression model, together with a confidence band
for the predictions. There’s hardly any data at low temperatures,
and the width of the gives a visual cue to this uncertainty. Never-
theless, the failure probabilities are uncomfortably high at low tem-
peratures. A graph like this might have led to a different decision
about the launch of theChallenger.

7 The Donner Party

In April–May of 1846, three years before the gold rush, the Donner
and Reed families set out for California from the American mid-
west in a wagon train. By mid July, a large group had reached a site
in present-day Wyoming; George Donner was elected to lead what
was to be called the “Donner Party,” which eventually numbered
87 people in 23 wagons, along with their oxen, cattle, horses, and
worldly posessions.

They were determined to reach California as quickly as possible.
Lansford Hastings, a self-proclaimed trailblazer (retrospectively, of
dubious distinction), proposed that the party follow him through
a shorter path through the Wasatch Mountains. Their choice of
“Hastings’s Cutoff” proved disasterous: Hastings had never actu-
ally crossed that route himself, and the winter of of 1846 was to be
one of the worst on record.

In October, 1846, heavy snow stranded them in the eastern Sierra
Nevada, just to the east of a pass which bears their name today. The
party made numerous attempts to seek rescue, most turned back by
blizzard conditions. Relief parties in March–April 1847 rescued
40, but discovered grizzly evidence that those who survived had
cannabalized those who died.
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Figure 19: Donner Party, empirical logit probability plot

We examine here how survival in the Donner Party varied with
Age and Gender. (The data were obtained from Kristin Johnson’s
Donner Party web site,www.metrogourmet.com/crossroads/
KJhome.htm). At issue is whether a linear logistic model is satis-
factory for these data. For such purposes, smoothing techniques are
often crucial in visualizing the relation between a discrete response
and predictors.

Figure 19 shows a plot of the observations (circles), and esti-
mated probabilities of death (squares) vs. Age, based on grouping
the ages into deciles, one of several plots produced by theLOGODDS

macro. The thick solid line shows the estimated probability under
a linear logistic model (with 95% prediction intervals). The dashed
curve, produced using theLOWESS macro, suggests however that
the relation with Age is quadratic: The very youngest and the old-
est were most likely to perish.

Figure 20 shows the observations (women: filled circles; men:
open circles) estimated probabilities under a quadratic model,
Pr(Death) � Age + Age2 + Male. The statistical evidence for
the term in Age2 is equivocal (Wald�2 = 2:84; p = 0:09; LR
G2(1) = 4:40; p = 0:03). The visual evidence from Figure 19–20
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Figure 20: Donner Party, fitted logistic model,Pr(Death) � Age+
Age2 + Male

(and other graphcs not shown here) in favor of the quadratic model
is more compelling, and makes better sense—a linear model would
predict greatest survival among the youngest members of the Don-
ner Party.

As Yogi Berra said, “You can see a lot, just by looking.” It is
hoped that the tools and techniques described inVisualizing Cate-
gorical Datacontributes to the greater use of graphical methods in
the analysis of frequency and discrete data.

A Macros and Programs

The following macros and programs are described and illustrated
in VCD. All require SAS/STAT and SAS/GRAPH; many require
SAS/IML. They will be available on the web atwww.math.yorku.
ca/SCS/vcd/.

ADDVAR Added variable plots for logistic regression
AGREE Observer agreement chart (SAS/IML)
BIPLOT Generalized biplot displays
CATPLOT Plot results fromPROC CATMOD

CORRESP PlotPROC CORRESP results
DISTPLOT Plots for discrete distributions
DUMMY Create dummy variables
FOURFOLD Fourfold displays for2� 2� k tables (SAS/IML)
GOODFIT Goodness-of-fit for discrete distributions
HALFNORM Half-normal plots for generalized linear models
INFLGLIM Influence plots for generalized linear models
INFLOGIS Influence plots for logistic regression
LAGS Calculate lagged frequencies for sequential analysis
LOGODDS Plot empirical logits for binary data
MOSAIC Mosaic displays (macro)
MOSAICS SAS/IML modules for mosaic displays
MOSMAT Mosaic matrices (macro)
ORDPLOT Ord plot for discrete distributions
PANELS Arrange multiple plots in a panelled display
POISPLOT Poissonness plot
POWERLOG Power calculations for logistic regression
POWERRxC Power calculations for two-way frequency table
POWER2x2 Power calculations for a2� 2 table
ROBUST Robust fitting for linear models
ROOTGRAM Hanging rootograms

SIEVE Sieve diagrams (SAS/IML)
SORT Sort a dataset by a statistic or formatted value
TABLE Construct a grouped frequency table, with recoding
TRIPLOT Trilinear plots forn� 3 tables
Utility Graphics utility macros: BARS, EQUATE, GDISPLA,

GENSYM, GSKIP, LABEL, POINTS, PSCALE.
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