
Data Visualization in R
2. Standard graphics in R

Michael Friendly
SCS Short Course

Sep/Oct, 2018
http://datavis.ca/courses/RGraphics/

Course outline

1. Overview of R graphics
2. Standard graphics in R
3. Grid & lattice graphics
4. ggplot2

2

Outline: Session 2

• Session 2: Standard graphics in R
R object-oriented design

Tweaking graphs: control graphic parameters
• Colors, point symbols, line styles
• Labels and titles

Annotating graphs
• Add fitted lines, confidence envelopes
• Add text, legends, point labels

R graphics systems

• Two graphics worlds
“graphics”– traditional or
base graphics
“grid”– new style graphics

• Things work very differently in
these

• Infrastructure for both is
“grDevices” – the R graphics
engine

Graphics devices,
colors, fonts

4

e.g.,
• the Cairo graphics device can create high-quality

vector (PDF, PostScript and SVG) and bitmap
output (PNG,JPEG,TIFF)

• the tikz device uses the LaTeX tikz package and
LaTeX fonts, colors, etc.

Base graphics functions: high & low

• Graphics functions are mostly one of two types:
High-level functions complete plots
• plot(), boxplot(), dotplot(), mosaicplot(), …

Low-level functions add to an existing plot
• lines(), points(), legend(), arrows(), polygon(), text()

Some functions can work either way, via an
argument add=TRUE/FALSE
• symbols(x, y, …, add=TRUE)
• car::dataEllipse(x, y, add=TRUE, …)

5

The many faces of plot()

• plot() is the most important function in traditional
graphics

• It is designed as a generic function, that does
different things with numeric data (x, y), factors
(FAC), matrices (MAT),…

plot(x) - index plot of x[i] vs I
plot(x, y) – scatterplot
plot(FAC, y) – boxplots
plot(x, FAC) – stripchart
plot(FAC, FAC) – spineplot, barchart
plot(MAT) – scatterplot matrix -> pairs()

6

Object-oriented approach in R

• Everything in R is an object, and has a class
data sets: class “data.frame”
statistical models: class “lm”, “glm”, …

• Fit a model: obj <- lm(…) a “lm” model object
print(obj) & summary(obj)
anova(obj) & Anova(obj)
update(obj), add1(obj), drop1(obj) model selection

Objects & methods

8

Method dispatch: The S3 object system

• Functions return objects of a given class
• Anova/regression: lm() an “lm” object
• Generalized linear models: glm() glm”, “lm”) – also inherits from lm()
• Loglinear models: loglm() a “loglm” object

• Class-specific methods have names of the form method.class
• plot.lm(), plot.glm() – model diagnostic plots

• Generic functions– print(), plot(), summary() call the
appropriate method for the class

• plot(Effect(obj)) – calls plot.eff() effect plots
• plot(influence(obj)) – calls plot.influence() for influence plots
• plot(prcomp(obj)) – plots a PCA solution for a “prcomp” object

R objects & methods

9

> data(Duncan, package="car")
> class(Duncan)
[1] "data.frame"

> duncan.mod <- lm(prestige ~ income + education, data=Duncan)
> class(duncan.mod)
[1] "lm"

> print(duncan.mod)

Call:
lm(formula = prestige ~ income + education, data = Duncan)

Coefficients:
(Intercept) income education
 -6.065 0.599 0.546

> Anova(duncan.mod)
Anova Table (Type II tests)

Response: prestige
 Sum Sq Df F value Pr(>F)
income 4474 1 25.0 1.1e-05 ***
education 5516 1 30.9 1.7e-06 ***
Residuals 7507 42

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 print.lm()

 Anova.lm()

Objects & methods

10

> library(car)
> methods(class="lm")
[1] add1 alias anova Anova
[5] avPlot Boot bootCase boxCox
[9] case.names ceresPlot coerce confidenceEllipse
[13] confint cooks.distance crPlot deltaMethod
[17] deviance dfbeta dfbetaPlots dfbetas
[21] dfbetasPlots drop1 dummy.coef durbinWatsonTest
[25] effects extractAIC family formula
[29] hatvalues hccm infIndexPlot influence
[33] influencePlot initialize inverseResponsePlot kappa
[37] labels leveneTest leveragePlot linearHypothesis
[41] logLik mcPlot mmp model.frame
[45] model.matrix ncvTest nextBoot nobs
[49] outlierTest plot powerTransform predict
[53] print proj qqnorm qqPlot
[57] qr residualPlot residualPlots residuals
[61] rstandard rstudent show sigmaHat
[65] simulate slotsFromS3 spreadLevelPlot summary
[69] variable.names vcov
see '?methods' for accessing help and source code

Some methods for “lm” objects (in the base and car packages):

Plot methods

11

> methods("plot")
[1] plot.acf* plot.ACF* plot.augPred*
[4] plot.coef.mer* plot.compareFits* plot.correspondence*
[7] plot.data.frame* plot.decomposed.ts* plot.default
[10] plot.dendrogram* plot.density* plot.ecdf
[13] plot.factor* plot.formula* plot.function
[16] plot.gam* plot.gls* plot.hclust*
[19] plot.histogram* plot.HoltWinters* plot.intervals.lmList*
[22] plot.isoreg* plot.jam* plot.lda*
[25] plot.lm* plot.lme* plot.lmList*
[28] plot.lmList4* plot.lmList4.confint* plot.mca*
[31] plot.medpolish* plot.merMod* plot.mlm*
[34] plot.nffGroupedData* plot.nfnGroupedData* plot.nls*
[37] plot.nmGroupedData* plot.PBmodcomp* plot.pdMat*
[40] plot.powerTransform* plot.ppr* plot.prcomp*
[43] plot.princomp* plot.profile* plot.profile.nls*
[46] plot.qss1* plot.qss2* plot.ranef.lme*
[49] plot.ranef.lmList* plot.ranef.mer* plot.raster*
[52] plot.ridgelm* plot.rq.process* plot.rqs*
[55] plot.rqss* plot.shingle* plot.simulate.lme*
[58] plot.skewpowerTransform* plot.spec* plot.spline*
[61] plot.stepfun plot.stl* plot.summary.crqs*
[64] plot.summary.rqs* plot.summary.rqss* plot.table*
[67] plot.table.rq* plot.trellis* plot.ts
[70] plot.tskernel* plot.TukeyHSD* plot.Variogram*
[73] plot.xyVector*
see '?methods' for accessing help and source code

Some available plot() methods

12

op <- par(mfrow=c(1,4)) # change layout parameters
plot(duncan.mod) # regression diagnostic plots
par(op) # restore old parameters

Some plot methods produce multiple plots.
You can control the layout with par() settings

avPlots(duncan.mod, id.n=2, pch=16,
ellipse=TRUE,
ellipse.args=list(levels=0.68, fill=TRUE, fill.alpha=0.1))

Some plot methods have lots of
optional arguments for graphic
enhancements.
Use help() for documentation

Graphic parameters
• All graphic functions take arguments that control

details
colors (col=)
point symbols (pch=)
line type (lty=); line width (lwd=)

• Often these have default values in the function
definition

col=“black”; col=par(“col”); col=palette()[1]
lwd=2, lty=1

• Most high-level graphic functions have a “…”
argument that allow passing other arguments to the
plotting functions

13

Graphic parameters

• Some graphics parameters can be set globally for all
graphs in your session, using the par() function

par(mar=c(4,4,1,1)) – plot margins
par(cex.lab=1.5) – make axis labels 50% larger
par(cex=2) – make text & point symbols 2x larger
Graphics functions often use these as defaults

• Most can be set in calls to high-level plotting
functions

avPlots(duncan.mod, pch=16, cex=2, cex.lab=1.5, …)

14

From: http://gastonsanchez.com/r-graphical-parameters-cheatsheet.pdf

Graphic parameters

16

The most commonly used graphic parameters:

These colors are the default,
palette()
R packages specifically related
to color: colorspace,
colorRamps, RColorBrewer, ..

Plot types

17

The functions plot(), points() and lines() understand a type= parameter and render the
(x, y) values in different ways.

x <- -5:5
y <- -x^2 + 25
plot(x, y, type=“p”)
plot(x, y, type=“l”)
plot(x, y, type=“b”)
plot(x, y, type=“o”)
plot(x, y, type=“h”)
plot(x, y, type=“s”)

More on color

• Presentation graphs require careful choice of colors
Legible if copied in B/W?
Visible to those with color deficiency?
Mapping categorical or continuous variables to color scale

• R has a variety of ways to specify color
color names: see colors()
Hex RGB: red = “#FF0000” , blue=“#0000FF”
with transparency: #rrggbbaa
hsv(): hue, saturation, value

 (better as perceptual model)
colorRamps: rainbow(n)

18

#0000FFA0 #0000FF80

19

library("colorspace")
pal < - choose_palette()

See: https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf

library(“RColorBrewer")
display.brewer.all()

Traditional R graphics: mental model

• R graphics functions add ink to a canvas – the
“painter’s model”

new graphics elements overlay / obscure what is there before
only way to move or remove stuff is to re-draw in white (background
color)
animated graphs re-do the whole plot in each frame
Transparent colors are often useful for filled areas

• Typically, create a graph with a high-level function,
then add to it with low-level if desired

• I’ll illustrate by re-constructing two historical graphs
1. Identify the graphical elements: points, lines, text, …
2. Start with a basic plot, then add to it

20

Building a custom graph

21

Custom graphs can be constructed by adding graphical elements (points, lines, text,
arrows, etc.) to a basic plot()

> data(Arbuthnot, package=“HistData”)
> head(Arbuthnot[,c(1:3,6,7)])
Year Males Females Ratio Total

1 1629 5218 4683 1.114 9.901
2 1630 4858 4457 1.090 9.315
3 1631 4422 4102 1.078 8.524
4 1632 4994 4590 1.088 9.584
5 1633 5158 4839 1.066 9.997
6 1634 5035 4820 1.045 9.855
… … … … … …

Arbuthnot didn’t make a graph. He
simply calculated the probability that
in 81 years from 1629—1710, the sex
ratio would always be > 1
The first significance test!

John Arbuthnot: data on male/female sex ratios:

reference line

figure caption

regression line &
loess smooth

points & lines

Follow along

• From the course web page, click on the script
arbutnot.R,
http://www.datavis.ca/courses/RGraphics/R/arbuthnot.R

• Select all (ctrl+A) and copy (ctrl+C) to the clipboard
• In R Studio, open a new R script file (ctrl+shift+N)
• Paste the contents (ctrl+V)
• Run the lines (ctrl+Enter) to along with me

(You could instead save that file to your lab HOME directory and
open it from there.)

Building a custom graph

23

plot(Ratio ~ Year, data=Arbuthnot,
 pch=16,
 ylim=c(1, 1.20),
 cex.lab = 1.3,
 ylab="Sex Ratio (M/F)")

1. Start with a basic plot of points

Code details:
pch: I like filled circles (16=) for points
ylim: allow more vertical space for caption
cex.lab: make axis labels larger

Building a custom graph

24

plot(Ratio ~ Year, data=Arbuthnot,
 pch=16,
 ylim=c(1, 1.20),
 cex.lab = 1.3,
 ylab="Sex Ratio (M/F)")
connect points by lines
lines(Ratio ~ Year, data=Arbuthnot, col="gray")

2. Add gray lines

Code details:
I could have used type=“b” or type=“o”
But I wanted the lines in gray, not black

Building a custom graph

25

plot(Ratio ~ Year, data=Arbuthnot,
 pch=16,
 ylim=c(1, 1.20),
 cex.lab = 1.3,
 ylab="Sex Ratio (M/F)")
connect points by lines
lines(Ratio ~ Year, data=Arbuthnot, col="gray")
add reference line
abline(h=1, col="red", lwd=3)
text(1640, 1, "Males = Females", col="red")

3. Add horizontal reference line & label

reference line

Building a custom graph

26

plot(Ratio ~ Year, data=Arbuthnot,
 pch=16,
 ylim=c(1, 1.20),
 cex.lab = 1.3,
 ylab="Sex Ratio (M/F)")
connect points by lines
lines(Ratio ~ Year, data=Arbuthnot, col="gray")
add reference line
abline(h=1, col="red", lwd=3)
text(1640, 1, "Males = Females", col="red")
add linear regression line
abline(lm(Ratio ~ Year, data=Arbuthnot),
 col="darkgreen")
add loess smooth
Arb.smooth <- with(Arbuthnot,
 loess.smooth(Year, Ratio))
lines(Arb.smooth$x, Arb.smooth$y,
 col="blue", lwd=2)

4. Add regression & smoothed lines

Building a custom graph

27

plot(Ratio ~ Year, data=Arbuthnot,
 pch=16,
 ylim=c(1, 1.20),
 cex.lab = 1.3,
 ylab="Sex Ratio (M/F)")
connect points by lines
lines(Ratio ~ Year, data=Arbuthnot, col="gray")
add reference line
abline(h=1, col="red", lwd=3)
text(1640, 1, "Males = Females", col="red")
add linear regression line
abline(lm(Ratio ~ Year, data=Arbuthnot),
 col="darkgreen")
add loess smooth
Arb.smooth <- with(Arbuthnot,
 loess.smooth(Year, Ratio))
lines(Arb.smooth$x, Arb.smooth$y,
 col="blue", lwd=2)
add internal figure caption
text(1690, 1.19, "Arbuthnot's data on the\nMale /
Female Sex Ratio", cex=1.2)

5. Add figure caption
figure caption

28

library(ggplot2)
ggplot(Arbuthnot, aes(x=Year, y=Ratio)) +

ylim(1, 1.20) +
ylab("Sex Ratio (M/F)") +
geom_point(pch=16, size=2) +
geom_line(color="gray") +
geom_smooth(method="loess", color="blue", fill="blue", alpha=0.2) +
geom_smooth(method="lm", color="darkgreen", se=FALSE) +
geom_hline(yintercept=1, color="red", size=2) +
annotate("text", x=1640, y=1.005, label="Males = Females", color="red", size=4) +
annotate("text", x=1690, y=1.19,

 label="Arbuthnot's data on the\nMale / Female Sex Ratio", size=6) +
theme_bw()

The same graph, using ggplot2

ggplot2 has a totally different idea
about constructing graphs

The syntax adds elements and layers
to a graph with functions connected
with “+” signs.

Details in a following lecture

ggplot code:

Playfair’s wheat

29

William Playfair (1759—1836) invented most of the forms of modern data graphics:
the bar chart, line graph and pie chart.
• This multivariate chart shows the price of wheat (bars), wages of a good mechanic

(line graph), and the reigns of British monarchs over 250 years, 1565—1830
• Playfair’s goal: Show that workers were better off now than at any time in the past.

Did Playfair
succeed?

What can you read
from this chart re:
wages vs. price of
wheat?

Reproducing Playfair’s chart

30

To try to reproduce this chart:
• Identify the graphical elements: 3 time series, cartouche caption, grid lines, …
• Make a basic plot setting up (x,y) range, axis labels, …
• Use low-level functions to add graphical elements

Time series of wheat: plot as
step function: type=“s”

Wages: draw using lines()

Caption: plot using multiline
text()

Monarchs: draw using segments(), label with
text()

Reproducing Playfair’s chart

31

Playfair’s data was digitized from his chart. The HistData package records this as two
data frames.

> str(Wheat)
'data.frame': 53 obs. of 3 variables:
 $ Year : int 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 ...
 $ Wheat: num 41 45 42 49 41.5 47 64 27 33 32 ...
 $ Wages: num 5 5.05 5.08 5.12 5.15 5.25 5.54 5.61 5.69 5.78 ...

> str(Wheat.monarchs)
'data.frame': 12 obs. of 4 variables:
 $ name : Factor w/ 12 levels "Anne","Charles I",..: 5 10 2 4 3 11 12 1 6 7 ...
 $ start : int 1565 1603 1625 1649 1660 1685 1689 1702 1714 1727 ...
 $ end : int 1603 1625 1649 1660 1685 1689 1702 1714 1727 1760 ...
 $ commonwealth: int 0 0 0 1 0 0 0 0 0 0 ...

Code for this example: http://datavis.ca/courses/RGraphics/R/playfair-wheat.R

Reproducing Playfair’s chart

32

with(Wheat, {
 plot(Year, Wheat, type="s", ylim=c(0,105),
 ylab="Price of the Quarter of Wheat (shillings)",
 panel.first=grid(col=gray(.9), lty=1))
 lines(Year, Wages, lwd=3, col="red")
 })

The basic plot is a step-curve
for wheat (type=“s”)

Add lines for Wages

The area beneath the curve
could be filled, using polygon()

with(Wheat, { expressions })
makes the variables in Wheat
available in evaluating the
{expressions}
I could have used:
plot(Wheat ~ Year, data=Wheat, …)

Reproducing Playfair’s chart

33

label the curve of Wages
text(1625,10, "Weekly wages of a good mechanic", cex=0.8, srt=3, col="red")

cartouche
text(1650, 85, "Chart", cex=2, font=2)
text(1650, 70,

paste("Shewing at One View",
 "The Price of the Quarter of Wheat",
 "& Wages of Labor by the Week",
 "from the Year 1565 to 1821",
 "by William Playfair", sep="\n"), font=3)

text label: srt=3 rotates the text 3o

paste(s1, s2, …, sep=“\n”)
makes separate lines

font=3: italic

The decorative cartouche is
drawn with text(), using a
vector of strings

Reproducing Playfair’s chart

34

with(Wheat.monarchs, {
y <- ifelse(!commonwealth & (!seq_along(start) %% 2), 102, 104)
segments(start, y, end, y, col="black", lwd=7, lend=1)
segments(start, y, end, y, col=ifelse(commonwealth, "white", NA), lwd=4, lend=1)
text((start+end)/2, y-2, name, cex=0.5)
})

The timeline for monarchs is
drawn using segments()

This part is tricky because I need to
calculate the y value for each
segment and position the labels
accordingly.

alternate y values as (102, 104)

re-draw the white one

Consulting for Playfair

35

WP: Can you help me make a better graph?
SCS: Yes, plot the ratio of Wheat / Wages : the labor cost to buy a quarter of wheat

This clearly shows that
wheat was becoming
cheaper in terms of
the amount of labor
required

Plotting data was so
new that Playfair did
not think of plotting a
derived value.

Consulting for Playfair

36

Wheat1 <- within(na.omit(Wheat), {Labor=Wheat/Wages})

with(Wheat1, {
 plot(Year, Labor, type='b', pch=16, cex=1.5, lwd=1.5,
 ylab="Labor cost of a Quarter of Wheat (weeks)",
 ylim=c(1,12.5), xlim=c(1560,1823),
 cex.axis=1.2, cex.lab=1.5,
 lab=c(12,5,7)
);
 lines(lowess(Year, Labor), col="red", lwd=3)
 })

The remainder of the code is similar to that for the original plot

Code for this plot: calculate ratio

Galton’s peas

37

In 1875 Francis Galton studied heredity of physical traits. In one experiment, he sent
packets of sweet peas of 7 different sizes to friends, and measured the sizes of their
offspring.

His first attempt was a semi-graphic table, tabulating the number of parent-child seeds
in each combination of values. He noted that both distributions followed the “law of
frequency of error” (Normal distribution)

Galton’s peas: The first regression line

38

Galton’s (1877) presentation graph:
• Plotted mean diameter of child seeds vs. mean of parents
• Noticed these were nearly in a line– An “Ah ha” moment!
• The slope of the line said something about heredity

But, the slope of the line < 1
 “reversion” toward mean
 children of large/small

parents less extreme than
their parents
Later used the term
“regression” for this
phenomenon, and statistical
explanation

Image: From K. Pearson, The Life, Letters and
Labours of Francis Galton, Volume 3A, Chapter 14,
Fig. 1

Galton’s peas: Plotting discrete data

39

How Galton got there – the untold story
His friend, JFW Herschel said, “Why don’t you make a scatterplot?”
He fired up R on his Babbage machine …
 … but was initially disappointed in the result: too much overplotting

data(peas, package="psych")

plot(child ~ parent, data=peas,
 pch=16, cex.lab=1.25,
 asp=1, xlim=c(14, 23),
 xlab="Parent seed diameter (0.01 in.)",
 ylab="Child seed diameter (0.01 in.)")

NB: Galton was careful to
• Set aspect ratio = 1
• Use explicit axis labels

Another great R
historical moment

Code: http://datavis.ca/courses/RGraphics/R/galton-peas.R

Galton’s peas: Data wrangling

40

Galton thoughtfully met with an SCS consultant, who said: “Show me your data!!!”

> str(peas)
'data.frame': 700 obs. of 2 variables:
$ parent: num 21 21 21 21 21 21 21 21 21 21 ...
$ child : num 14.7 14.7 14.7 14.7 14.7 ...

SCS: Summarize them with dplyr

library(dplyr)
peas.freq <- peas %>%
 group_by(parent, child) %>%
 summarise(count=n())

> peas.freq
Source: local data frame [52 x 3]
Groups: parent [?]

parent child count
<dbl> <dbl> <int>

1 15 13.77 46
2 15 14.77 14
3 15 15.77 9
4 15 16.77 11
5 15 17.77 14
6 15 18.77 4
7 15 19.77 2
8 16 14.28 34
9 16 15.28 15
10 16 16.28 18
... with 42 more rows

SCS: Ah! your data are discrete.

Galton’s peas: a text-table plot

41

plot(child ~ parent, data=peas, …)
with(peas.freq,
 text(parent, child,
 count, col="red", cex=log(count)))

Galton: Ah! Maybe I’ll just go back to my original table
SCS consultant: Good, but make it into a plot also: use text()
 Here’s a good graphic trick: make font size ~ f(n)

size ~ log(n)

text
label

Galton’s peas: Sunflower plots

42

sunflowerplot(child ~ parent, data=peas,
 pch=16, cex.lab=1.25,
 asp=1, xlim=c(14, 23),
 xlab="Parent seed diameter (0.01 in.)",
 ylab="Child seed diameter (0.01 in.)")

Perhaps better: use point symbols that show explicitly the number of observations at
each (x, y) location
A sunflower plot uses symbols with the number of rays = # of obs at each (x, y)
Now, he could see the upward trend – sort of

Galton’s peas: jittering

43

plot(jitter(child) ~ jitter(parent), data=peas,
 pch=16, cex.lab=1.25,
 asp=1, xlim=c(14, 23),
 xlab="Parent seed diameter (0.01 in.)",
 ylab="Child seed diameter (0.01 in.)")

Another possibility is to jitter() the plotted points by adding little random #s
But, he also needed to calculate and plot the line of means and the trend line

add line of means
means <- aggregate(child ~ parent, data=peas,
 FUN=mean)

lines (child ~ parent, data=means, type="b",
 pch="+", cex=2, lwd=7, col="darkgreen")

text(15, 15.3, "means", col="darkgreen", cex=1.4,
 pos=2)

calculate & draw the regression line
peas.mod <- lm(child ~ parent, data=peas)
abline(peas.mod, lwd=2, col=“blue”)

Plotting discrete data: Galton’s peas

44

Making Galton’s argument visually clearer:
• Label the regression line with its slope
• Show the comparison line (slope=1) if there was no regression toward the mean

text(23, y=18.3, "child ~0.34 * parent",
 cex=1.4, col="blue")
line of unit slope
mx <- mean(peas$parent)
my <- mean(peas$child)
xp <- 14:22
yp <- my + 1* (xp - mx)
lines(xp, yp, col="darkgray", lwd=3,
 lty="longdash")
text(23.2, yp[9], "child ~ 1 * parent",
 cex=1.4, col="darkgray")

Just for fun: CatterPlots

45

library(devtools)
install_github("Gibbsdavidl/CatterPlots")
plot random cats
multicat(xs=-10:10, ys=rnorm(21),
 cat=c(1,2,3,4,5,6,7,8,9,10),
 catcolor=list(c(0,0,0,1)),
 canvas=c(-0.1,1.1, -0.1, 1.1),
 xlab="some cats",
 ylab="other cats",
 main="Random Cats")

How this works:
• 11 cat shape images saved as PNG
• Calls plot(x, y, …) – set up plot frame
• rasterImage(catImg, …) – plot each cat

Time series plots

46

R has special methods for dealing with time
series data
The sunspots data set records monthly mean
relative sunspot numbers from 1749 to 1983

> data(sunspots)
> str(sunspots)
Time-Series [1:2820] from 1749 to 1984: 58 62.6 70 55.7 85
83.5 94.8 75.5 ...
plot(sunspots, cex.lab=1.5, ylab="Number of sunspots")

But the aspect ratio (V/H) of the
plot is often important.
A systematic pattern is revealed
when the average local trend is
~ 45o

Time series: lag plots

47

Lag plots show a time series against
lagged versions of themselves. This helps
visualizing ‘auto-dependence’.

plot(sunspots, lag(sunspots, 1),
cex=0.7, col="blue")

There is a strong dependence between this
year’s sunspots and last.

Time series: lag plots

48 48

Often, we want to see dependence across a range of lag values. lag.plot(series) does
this quite flexibly

lag.plot(sqrt(sunspots), set = c(1:4, 9:12), layout=c(2,4), col="blue", cex=0.7)

dependence is
persistent, but
weakens over
lags

Time series: Seasonal patterns

49

Data UKLungDeaths: monthly deaths from bronchitis, emphysema and asthma in the
UK, 1974–1979

data(UKLungDeaths)
plot(ldeaths, lwd=2, main="UK Lung Deaths")

Looks like cycles,
peaking in winter

Time series: Seasonal patterns

50

The acf() function calculates and plots autocorrelations of a time series across various
lags

acf(ldeaths, lwd=5, main="Autocorrelations of UK Lung Deaths")

This gives a compact
view of the seasonal
pattern

Other time-series graphs
can show other details

Saving image files: R Studio

51

From the R Studio Plots tab, you can
save any image in a variety of types

Some options are available in the menu
to control the details of size, shape &
image format

For publication purposes, you will often want
more control: plot margins, font sizes, figure
shape, etc.

Saving image files: R scripts
• The default graphics device in R is your computer screen.
• In an R script, there are 3 steps:

1. Open a graphics device, with desired parameters
• Call png(), jpg(), pdf(), …

2. Create the plot
3. Close the graphics device: dev.off()

52

png(file="bowling.png", width=400, height=400)
 x <- 1:10
 y <- (x - 5)^2
 plot(y ~ x, type="b",
 xlab="Frame",
 ylab="Bowling score“)
dev.off()

1

2

3

Much easier with ggplot2: ggsave()

Saving image files: Margins, fonts

53

png(file="bowling.png", width=400, height=400)
op <- par(mar=c(5, 5, 2, 1))
 x <- 1:10
 y <- (x - 5)^2
 plot(y ~ x, type="b",
 pch=15, cex=2, cex.lab=1.5,
 xlab="Frame",
 ylab="Bowling score",
 main="Why do I have a slump?")
par(op)
dev.off()

png(file="bowling0.png", width=400, height=400)
x <- 1:10
y <- (x - 5)^2
plot(y ~ x, type="b",

 xlab="Frame",
 ylab="Bowling score“)
dev.off()

Set plot margins, font size for points & labels

Saving image files: R markdown

• In R markdown files, use chunk options to control
figures & other output

global options -- control all chunks: knitr::opts_chunk$set()
individual chunk options

54

```{r setup, include=FALSE, message=FALSE}
opts_chunk$set(fig.path="figs/",
    dev=c("png","pdf"),            # devices for figs
    fig.width=6, fig.height=5,   # fig size
    fig.align="center",
    dpi=300,                            # make high res.
    digits=4, … )                      # printed output
```

```{r wheat1, fig.width=9, fig.height=4}
data(Wheat)
plot(Wheat ~ Year, data=Wheat, type=“s”)
…
```

Set global options: Change size for this figure:

Details: see https://yihui.name/knitr/options/

Summary

• Standard R graphics
High-level (plot()) vs. low level (lines()) functions
Understand object-oriented methods

• Graphics parameters
Understand the basic ones: col, pch, lty, lwd
Use help(par) or cheat sheet to find others
For a high-level function, use help(fun)

• Building graphs
Think about graphic elements: points, lines, areas, …
How these should be rendered: graphical attributes

55

