
An introduction to R Graphics 
3. Grid & lattice graphics 

Michael Friendly 
SCS Short Course 

March, 2017 

Overview 

• Overview of grid-based graphics 
grid: low-level graphics functions 
lattice, vcd, ggplot2: high-level functions 

2 

The grid graphics system for R provides an 
alternative and more powerful way to 
develop data graphics in R 
 
The lattice package, provides functions for 
drawing all standard plots, plus: 
• more pleasing defaults
• create and modify graphic “themes” 
• collections ("small multiples") of simpler 

graphs from subsets of the data. 

Lattice, son of Trellis graphics 
• Complex multivariate data can often be better visualized by 

conditioning & grouping 
show how some relationship changes over other variables 
Tufte: “small multiples”: separate panels, arranged for visual comparison 
Cleveland et al.: Trellis graphs for S+, ~ 1980 
Deepayan Sarkar: lattice package, ~ 2000 

3 

Lattice ideas in a nutshell 
• All plots can be described by plot formulas 

~ y          Some univariate plot (boxplot, histogram, boxplot, …) 
~ y | A   Univariate, separate panels for levels of factor A 
~ y | z    Univariate, cutting z into discrete ranges 
y ~ x       Bivariate 
y ~ x | A Bivariate, separate panels for levels of A
y ~ x | A + B   multiple conditioning variables 
y1 + y2 ~ x1 + x2   multiple Y and X variables 

• Conditioning variables define “panels” in a plot 
These can be laid out on a “page” in various ways 
panel functions get the data for a subset and “render” (plot) it 
High-level functions  handle panel layout, and call panel functions 

• Customize 
graphic “themes” generalize par() settings 
Combine multiple panel functions, write new ones. 

4 



Lattice plot functions 

5 

These are the high-level 
plot functions in lattice
 
These schematic 
examples have all been 
“rendered” using the 
default lattice theme 
settings 

From: Murrell, R 
Graphics, Fig. 4.3 

Lattice plot functions 

6 

lattice function description formula examples base analog 

barchart() bar chart x~A or A~x barplot()

bwplot() boxplot x~A or A~x boxplot()

densityplot() kernal density plot ~x|A*B plot.density()

dotplot() dotplot ~x|A dotchart()

histogram() histogram ~x hist()

stripplot() strip plots A~x or x~A stripchart()

xyplot() scatterplot y~x|A plot()

contourplot() 3D contour plot z~x*y contour()

cloud() 3D scatterplot z~x*y|A NA

levelplot() 3D level plot z~y*x image()

parallel() parallel coordinates plot data frame NA

splom() scatterplot matrix data frame pairs()

wireframe() 3D surface graph z~y*x persp()

Lattice plots have analogs in traditional graphics 
All use formula-style arguments for what to plot: y ~ x, or conditioning: y ~ x|A  

Lattice plots: formulas, conditioning & grouping 

7 

For 1D plots, the formula argument, ~y, specifies the variable to be plotted 
• Conditioning: ~y|group gives multipanel plots for the levels of the group factor 
• Grouping:  ~y, group= superposes plots for the levels of group 

densityplot(~mpg, 
data=mtcars, …)

densityplot(~mpg | cyl,
data=mtcars, …)

densityplot(~mpg, groups=cyl,
data=mtcars, …)

8 

Ethanol data: Ethanol fuel was burned in a single-cylinder engine. 
How do emissions of nitrous oxide (NOx) depend on  
• engine compression ratio(C) and  
• equivalence ratio (EE), a measure of richness of the air and ethanol fuel mixture 

xyplot() for lattice scatterplots: 

xyplot(NOx ~ C | EE, data = ethanol, …) 

Same plot, with aspect=“xy”: sets 
aspect ratio to “bank to 45o” 



9 

As in base graphics, some computation is often required to make a simpler or better 
version of some plot.
• 2D plots of the ethanol data suggest something that might better be seen in 3D 
• This requires calculating a fitted response surface, and drawing it
• It doesn’t show the data, and uses a non-parametric smoother, not a lm() model 

require(stats)
with(ethanol, {

eth.lo <- loess(NOx ~ C * E, span = 1/3, parametric = "C", 
                  drop.square = "C", family="symmetric")

eth.marginal <- list(C = seq(min(C), max(C), length.out = 25), 
                       E = seq(min(E), max(E), length.out = 25))

eth.grid <- expand.grid(eth.marginal)
eth.fit <- predict(eth.lo, eth.grid)
wireframe(eth.fit ~ eth.grid$C * eth.grid$E,

            shade=TRUE,
           screen = list(z = 40, x = -60, y=0),

            distance = .1,
            xlab = "C", ylab = "E", zlab = "NOx")
})

This example is complex. It uses: 
• loess() to calculate smoothed values of NOx  
• predict() to evaluate these over ranges of C & E 
• wireframe() to plot these with nice shading  

If this plot is believed, it gives a much simpler 
description of dependence, NOx ~ C * E 

Detour: Modeling what we see 
• Graphs of the ethanol data suggest a systematic, but complex 

relationship between NOx ~ C + E 
Traditional parametric linear models handle this very semi-well 
E.g., try a model with terms in C, E, E2 and interactions 

10 

> eth.mod2 <- lm(NOx ~ (C + poly(E,2))^2, data=ethanol)
> Anova(eth.mod2)
Anova Table (Type II tests)

Response: NOx
             Sum Sq Df F value    Pr(>F)    
C             5.032  1  25.2282 2.925e-06 ***
poly(E, 2)   91.838  2 230.2103 < 2.2e-16 ***
C:poly(E, 2)  3.322  2   8.3271 0.0005101 ***
Residuals    16.356 82                       
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Detour: Modeling what we see 
• The R model formula, NOx ~ (C + poly(E,2))^2 is a short-hand 

notation 
• The expanded version is nearly 
 NOx ~ C + E + E^2 + C:E + C:E^2 
• Interpretation: 

C + E : overall linear effects (slopes) of C & E on NOx 
 E^2 : quadratic effect (curvature) of equivalence ratio on NOx 
C:E – does the slope for E change linearly with C?
C:E^2 – does the curvature for E change linearly with C 

11 

Detour: Modeling what we see 

12 

summary() for a given model gives significance tests of model terms 

> summary(eth.mod2)

Call:
lm(formula = NOx ~ (C + poly(E, 2))^2, data = ethanol)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.84489 -0.37039 -0.00367  0.39327  0.76796 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)     1.16206    0.16009   7.259 2.01e-10 ***
C               0.06572    0.01265   5.193 1.48e-06 ***
poly(E, 2)1     4.81844    1.56979   3.069 0.002907 ** 
poly(E, 2)2   -12.15328    1.61916  -7.506 6.60e-11 ***
C:poly(E, 2)1  -0.46307    0.11615  -3.987 0.000145 ***
C:poly(E, 2)2   0.15492    0.11720   1.322 0.189909    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4466 on 82 degrees of freedom
Multiple R-squared:  0.8535,    Adjusted R-squared:  0.8445 
F-statistic: 95.52 on 5 and 82 DF,  p-value: < 2.2e-16



Effect plots: Seeing what we model 

13 

In many cases, effect plots help to visualize a fitted model. These all use lattice 
graphics to render the plot.

plot(Effect("C", eth.mod2)) plot(Effect("E", eth.mod2)) 

Effect plots: Seeing what we model 

14 

The strength of lattice graphics for conditioning is used in multipanel effect plots 
Details of the layout and conditioning levels can all be controlled by options.

plot(allEffects(eth.mod2), layout=c(6,1), xlab="Equivalence ratio") 

Detour: gam 
• Generalized additive models (gam) are like generalized linear 

models (glm), but allow non-parametric “smoothed” s() terms 
degree of smoothing ~ # degrees of freedom 
models can have linear & smoothed s() terms 
approx. significance tests are available for smooth terms 

15 

> library(mgcv)
> eth.gam1 <- gam(NOx ~ C + s(E), data=ethanol)
> summary(eth.gam1)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.291342   0.088898  14.526  < 2e-16 ***
C           0.055345   0.007062   7.837 1.88e-11 ***
---

Approximate significance of smooth terms:
edf Ref.df F p-value

s(E) 7.553  8.469 208.8  <2e-16 ***
---
R-sq.(adj) =  0.953   Deviance explained = 95.8%
GCV = 0.067206  Scale est. = 0.05991   n = 88

This is sometimes called “semi-
parametric regression” 
 
The edf for the smoothed term is 
found using cross-validation 
 
There are other kinds of 
smoothing models 

Plotting “gam” objects 

16 

plot(eth.gam1, shade=TRUE, shade.col="pink", all.terms=TRUE, residuals=TRUE, pages=1)

The mgcv package contains a number of plot methods for “gam” objects 



Plotting “gam” objects 

17 

vis.gam(eth.gam1, color="topo", theta=70, phi=30)
vis.gam(eth.gam1, color="topo", plot.type="contour")

vis.gam() is like a 3D version of an effect plot. It shows the fitted values for two 
predictors, holding constant all others.

NB: The result is similar to what we got using loess().  
However, this is a full-fledged statistical model, so we 
can find confidence intervals, prediction intervals, 
etc. 

Lattice panel functions 
• Lattice plots use panel functions to add info to a plot 

panel.grid() – grid lines 
panel.xyplot(x, y, type=, …) – various types of (x, y) plots 
panel.lmline() – add regression line 
panel.loess() – smoothed loess curve
many others … 

18 

EE <- equal.count(ethanol$E, number=9, overlap=1/4)
xyplot(NOx ~ C | EE, data = ethanol,

prepanel = function(x, y) prepanel.loess(x, y, span = 1),
xlab = "Compression ratio", ylab = "NOx (micrograms/J)",
panel = function(x, y) {

           panel.grid(h=-1, v= 2)
           panel.xyplot(x, y)
           panel.loess(x,y, span=1)

},
aspect = "xy")

splom() 

19 

splom(ethanol,  
   type=c("p", "r", "smooth"),  
   col.line = "red",  
   pch=16, lwd=3,  
   main="Ethanol data") 

splom() draws a scatterplot matrix.  As with other lattice functions, a type= argument 
can be used to invoke several panel functions. 

Lattice themes and settings 

20 

The Trellis approach allows creating effective graphs with a consistent look and feel. 
It uses “themes” to define colour, size and other features of components of a graph. 

A theme consists of settings for 
the attributes of various 
graphical elements. 
 
The current settings are 
displayed with 
show.settings() 
 
This differs from base graphics, 
where par() settings are used 
inconsistently across different 
graph types 



Lattice themes and settings 
• Get theme settings with trellis.par.get() 
• Set new ones with trellis.par.set() 

21 

> my.theme <- trellis.par.get()
> names(my.theme)
[1] "grid.pars"         "fontsize"          "background"        "panel.background"
[5] "clip"              "add.line"          "add.text"          "plot.polygon"     
[9] "box.dot"           "box.rectangle"     "box.umbrella"      "dot.line"         

[13] "dot.symbol"        "plot.line"         "plot.symbol"       "reference.line"   
[17] "strip.background"  "strip.shingle"     "strip.border"      "superpose.line"   
[21] "superpose.symbol"  "superpose.polygon" "regions"           "shade.colors"     
[25] "axis.line"         "axis.text"         "axis.components"   "layout.heights"   
[29] "layout.widths"     "box.3d"            "par.xlab.text"     "par.ylab.text"    
[33] "par.zlab.text"     "par.main.text"     "par.sub.text"     

There are 35 different attributes, each of which is a list of more basic settings 

> names(my.theme$plot.symbol)
[1] "alpha" "cex"   "col"   "font"  "pch"   "fill" 
> names(my.theme$plot.line)
[1] "alpha" "col"   "lty"   "lwd"

22 

I like to use filled point symbols (pch=16) and make lines thicker 

my.theme$plot.line$lwd <- 2
my.theme$plot.symbol$pch <- 16
my.theme$superpose.symbol$pch <- rep(16, 7)

#establish my.theme
trellis.par.set(my.theme)
show.settings()

points are now filled 
circles & lines are 
thicker 

NB: This is tedious, but useful if you 
are writing a paper or a book. Do it 
ONCE, for all figures! 

Lattice themes: color to BW 

23 

plt <- barchart(Class ~ Freq | Sex + Age, 
data = as.data.frame(Titanic), 
groups = Survived, stack = TRUE, 
layout = c(4, 1), 
auto.key = list(title = "Survived", columns = 2),
scales = list(x = "free")) 

print(plt)

trellis.device(color = FALSE)
print(plt)

Lattice plots are “trellis” objects.  They can be printed with different themes w/o 
changing your code 

As this example demonstrates, lattice 
themes are generally well-designed to 
handle color vs. B/W 

Boxplots -> Violin plots 

24 

Boxplots show some aspects of the shape of 
distributions: median, IQR, outliers, … 

Violin plots use a mirrored kernel density plot 
instead 

NASA data on average solar radiation by latitude 

bwplot(Ann ~ cut(Lat, pretty(Lat, 20)),
data=nasa, subset=(abs(Lat)<60),
xlab='Latitude', ylab='Solar radiation G(0) (kWh/m²)')

bwplot(Ann ~ cut(Lat, pretty(Lat, 20)),
data=nasa, subset=(abs(Lat)<60),
xlab='Latitude', ylab='Solar radiation G(0) (kWh/m²)',
panel = panel.violin)

For lattice, this is just a boxplot using a 
different panel function: panel.violin()

Example from: https://www.r-bloggers.com/violin-and-boxplots-
with-lattice-and-r/ by  Oscar Perpiñán Lamigueiro 



Custom panel functions 

25 

You can combine these using a custom 
panel function that calls both

my.panel <- function(..., box.ratio) {
panel.violin(..., col = "lightblue",
    varwidth = FALSE, box.ratio = box.ratio)
panel.bwplot(..., col='black',
    cex=0.9, pch='|', fill='red', box.ratio = .25)
}

bwplot(Ann ~ cut(Lat, pretty(Lat, 40)),
data=nasa, subset=(abs(Lat)<60),
xlab='Latitude', ylab='Solar radiation G(0) (kWh/m²)',
horizontal=FALSE,
panel = my.panel,  
par.settings = list(box.rectangle=list(col='black'),

          plot.symbol = list(pch='.', cex = 0.1)),
scales=list(x=list(rot=45, cex=0.5))

)

Use it: 

Notes: 
cut(): breaks a quantitative variable to a factor 
subset: use only -60 < Lat < 60 
par.settings: set some plot attributes 
scales: tweak labeling of x axis, rotating labels 

26 

How does solar radiation vary with latitude, over months of the year? 
• The result of this plot suggests some sort of scientific explanation 
• Models to confirm/reject any of these would have to take the distributions into account 

How was this graph produced? 

• What was the plot formula? 
• What was the panel function? 
• What plot attributes where modified? 

Data munging for plots & models 
• Very often, the difficult problems in data analysis and graphics 

concern:  
How to get my data into a format required for analysis? 
How to get my data into a format for plotting? 
How to get my model results into a table or plot? 

• The first step is to understand the structure of your data  

 

27 

> str(nasa)
'data.frame':   64800 obs. of  15 variables:
$ Lat: int  -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 ...
$ Lon: int  -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ Jan: num  9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 ...
$ Feb: num  5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 ...
$ Mar: num  0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 ...
$ Apr: num  0 0 0 0 0 0 0 0 0 0 ...
$ May: num  0 0 0 0 0 0 0 0 0 0 ...
$ Jun: num  0 0 0 0 0 0 0 0 0 0 ...
$ Jul: num  0 0 0 0 0 0 0 0 0 0 ...
$ Aug: num  0 0 0 0 0 0 0 0 0 0 ...
$ Sep: num  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...
$ Oct: num  3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 ...
$ Nov: num  8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 ...
$ Dec: num  11 11 11 11 11 ...
$ Ann: num  3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.19 ...

Previous plots used the annual 
average (Ann) against Latitude (Lat), 
with a plot formula: 
 
Ann ~ cut(Lat, pretty(Lat, 40)) 
 
But now, we want to plot monthly 
values, Jan:Dec  

Data munging  

28 

The solution used here works, but it is opaque, in that it tries to coerce the data into 
what is required for plot formulas for lattice

> (x <- paste(names(nasa)[3:14], collapse='+'))
[1] "Jan+Feb+Mar+Apr+May+Jun+Jul+Aug+Sep+Oct+Nov+Dec"
> (formula <- as.formula(paste(x, '~cut(Lat, pretty(Lat, 20))', sep='')))
Jan + Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + Oct + Nov + 
    Dec ~ cut(Lat, pretty(Lat, 20))

With this, the monthly plot can be produced by: 

bwplot(formula, data=nasa, subset=(abs(Lat)<60),
   xlab='Latitude', ylab='G(0) (kWh/m²)',
   outer=TRUE, as.table=TRUE, horizontal=FALSE,
   col='lightblue',
   panel=panel.violin,
   scales=list(x=list(rot=70, cex=0.5))


