Output from cowles-effect.R

library(effects)  ## load the effects package
data(Cowles)
mod.cowles <- glm(volunteer ~ sex + neuroticism * extraversion, data = Cowles, family = binomial)
summary(mod.cowles)
## 
## Call:
## glm(formula = volunteer ~ sex + neuroticism * extraversion, family = binomial, 
##     data = Cowles)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.475  -1.060  -0.893   1.261   1.998  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              -2.35821    0.50132   -4.70  2.6e-06 ***
## sexmale                  -0.24715    0.11163   -2.21   0.0268 *  
## neuroticism               0.11078    0.03765    2.94   0.0033 ** 
## extraversion              0.16682    0.03772    4.42  9.7e-06 ***
## neuroticism:extraversion -0.00855    0.00293   -2.92   0.0036 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1933.5  on 1420  degrees of freedom
## Residual deviance: 1897.4  on 1416  degrees of freedom
## AIC: 1907
## 
## Number of Fisher Scoring iterations: 4
eff.cowles <- allEffects(mod.cowles, xlevels = list(neuroticism = seq(0, 24, 6), extraversion = seq(0, 
    24, 8)))

plot(eff.cowles, "neuroticism:extraversion", ylab = "Prob(Volunteer)", ticks = list(at = c(0.1, 
    0.25, 0.5, 0.75, 0.9)), layout = c(4, 1), aspect = 1)
plot(eff.cowles, "neuroticism:extraversion", multiline = TRUE, ylab = "Prob(Volunteer)", key.args = list(x = 0.8, 
    y = 0.9))

Generated with R version 2.15.1 (2012-06-22) using the R package knitr (version 0.8.4) on Wed Sep 26 09:00:27 2012.