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Getting started

The goal of these workshops is to give you some hands-on experience using the methods
described in the lectures. For each lecture, the plan is to have you try to reproduce, and
possibly extend, the analysis and visualization of one or two examples used in that lecture,
with SAS or R (or both), as you are most comfortable with. In addition, there may also be
one or two new examples to try. Some materials for these workshops are available online at
http://datavis.ca/courses/VCD/.
For reference, Table 1 lists the principal data sets that are used in the lectures. The SAS

column gives the name of the .sas file containing the data and the name of the SAS data set
created from this. The R column gives the name of the data set in R. An asterisk (*) marks
the first use of each data set.

Table 1: Data sets used in the lectures
Part Data set SAS R

1 Federalist * madison Federalist
Cholesterol-HD * fat
Arthritis * arthrit Arthritis

2 Berkeley * berkeley UCBAdmissions
Hair-Eye-Color * haireye HairEyeColor
Distant-Vision * vision VisualAcuity
Sex-Fun * sexfun SexualFun
MS diagnosis * msdiag MSPatients
Suicide-Rates * suicide Suicide

3 Berkeley berkeley UCBAdmissions
Hair-Eye-Color * haireye HairEyeColor
Mental-Health-SES * mental Mental [vcdExtra]
Distant-Vision * vision VisualAcuity

4 Berkeley berkeley UCBAdmissions
Arthritis arthrit Arthritis
Volunteering * cowles Cowles [car]
Arrests * arrests Arrests [effects]

5 Arthritis arthrit Arthritis
Womens-Labor-Force * wlfpart Womenlf [car]

SAS and R setups

Here are a few things you should know to get started using SAS and R.
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SAS All of the SAS programs, data sets and macros are stored in N:/Vcd. Documentation for SAS
all of my macro programs is available at http://datavis.ca/sasmac/, mostly under
the Categorical data menu item.

To use a data set in one of the exercises, start with %include catdata(dataset) for
example,

%include catdata(madison); *-- Federalist papers, ’may’ by Madison;
%include catdata(arthrit); *-- Arthritis treatment data;

The SAS macro programs are installed in a macros directory that is automatically
searched when you invoke it with %macroname(...). For example:

%include catdata(madison); *-- Federalist papers, ’may’ by Madison;
%goodfit(data=madison, var=count, freq=blocks, dist=poisson);

Within SAS, you can access the web help page for any macro with %webhelp(macroname);.
For example,

%webhelp(goodfit);

For help on SAS procedures, you can use the Help menu in SAS, or access the complete
SAS Online documentation (v. 9.1.3) via

%webhelp(online);

R All of the R programs and data sets should be pre-installed in R on the server, but some R
of them may be outdated. The first time you start R, you should update the avail-
able packages and load the vcdExtra package to make available some extra workshop
materials. I recommend using R Studio, https://www.rstudio.com/, rather than the
standard R GUI.

update.packages(ask=FALSE)
library(vcdExtra)

Thereafter, when you start R, you should begin with

library(vcdExtra)

to load the vcdExtra package. This includes vcd plus some extra data sets.

To load a data set from an R package, use the data() function. To get a description of
any R data set or function, use help(), or the short-hand ?.

data(Federalist) # load the data
?Federalist # read the help()
?mosaic # help for mosaic()

Home-work

In the limited time available in the lab sessions, it is unlikely that you will be able to complete
all the exercises or to master all of these techniques. To profit more fully, and apply them to
your own data, you should try to practice more at home or at work.
To this end, most of the materials for this course and the workshops are available at
http://datavis.ca/courses/VCD/. From there you can download the SAS data sets and
macros (in the archive vcdprog.zip) and the necessary R packages. vcdprog.zip
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1 Introduction & overview

1.1 Discrete distributions

In this exercise, we will examine the use of diagnostic and graphic methods for fitting discrete
distributions to the one-way frequency tables shown in Table 2 and Table 3.

Table 2: Number of occurrences (k) and number of blocks of text (nk) of the word may in
essays written by Madison. SAS: madison; R: Federalist

Occurrences (k) 0 1 2 3 4 5 6
Blocks (nk) 156 63 29 8 4 1 1

Table 3: Number of males in N=6115 Saxony families with 12 children. SAS: saxony; R:
Saxony

k 0 1 2 3 4 5 6 7 8 9 10 11 12

nk 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

For the Madison data, it might be supposed that number of occurrences of the word may
follow a Poisson distribution. Tasks &

questions
1. Fit a Poisson distribution to the data. Do you conclude that this distribution fits well

or badly?
2. Examine the departure between the observed and fitted frequencies with a hanging

rootogram. Is there a pattern to the departure?
3. Use an Ord plot to diagnose the form of the distribution.1

4. If necessary, fit a different distribution and examine visually with a hanging rootogram.

With SAS, you can begin these steps with statements like the following: SAS

%include catdata(madison);
%goodfit(data=madison, var=count, freq=blocks, dist=poisson, out=fit);
%rootgram(data=fit, var=count, obs=blocks);

%ordplot(data=madison, count=count, freq=blocks);

With R the following statements will get you started: R

data(Federalist)
gf <- goodfit(Federalist, type=’poisson’)
summary(gf)
plot(gf)

Ord_plot(Federalist, main=’may in Federalist papers’)

For the Saxony data, it might be supposed that number of male children follow a Binomial
distribution, perhaps also with p(Male) = 0.5. Repeat the steps above using the Saxony data,
with a Binomial distribution.

1 To judge whether a coefficient is positive or negative a tolerance is used. Be careful with the conclusions
from the Ord plot, as it implements just some simple heuristics!
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1.2 Testing association

The Berkeley data set (Bickel et al., 1975) involves graduate school applicants to the six largest
departments at University of California, Berkeley in 1973. The applicants are classified by
Admit (admitted vs. rejected), Gender (male vs. female), and Dept (A to F).
This data set forms a 3-way table (i.e., a 2×2×6 table), but in this exercise, we will first look
at the 2 × 2 table of Admit by Gender, collapsed over Dept. In other words, we will ignore
( temporarily) the department to which each applicant applied. In later lectures and other
exercises we will examine the full 3-way table.
This analysis is of interest because an association between Admit and Gender— different rates
of admissions for male and female applicants could be considered as evidence of gender bias. Tasks &

questions

1. Construct the two-way frequency table by collapsing over Dept, and test whether Admit
and Gender are independent.

2. Find the proportion admitted for males and females and relate these to the marginal
frequencies and expected frequencies under independence. An independent relationship
between Admit and Gender in the sample implies that cell frequencies would be pro-
portionate to the product of marginal frequencies. For example, 59.5% (2691/4526) of
applicants are male, 61.2% (2771/4526) of applicants are rejected.

3. Do these frequencies suggest approximately equal admission rates in males and females?
If not, try to describe the possible gender difference in admission. What is a good
statistic to summarize the relation between gender and admission?

In SAS, with a data set in frequency form, you can collapse over any variables simply by SAS
omitting them from the tables statement in PROC FREQ. See berkeley-freq.sas berkeley-

freq.sas
%include catdata(berkeley);
proc freq data=berkeley;

weight freq;
tables gender*admit / chisq plots=all;

format admit admit.;
run;

For R, the data set UCBAdmissions is represented as a 3-way table in table form. Use R
margin.table() to collapse any such table over omitted dimensions. CrossTable() in the
gmodels package has many options for displaying quantities of interest in contingency tables.

data(UCBAdmissions)
UCB.GA <-margin.table(UCBAdmissions, c(1,2))
chisq.test(UCB.GA)

library(gmodels)
CrossTable(UCB.GA, prop.t=FALSE, prop.r=FALSE, expected=TRUE)

1.3 Stratified analysis

The marginal analysis of the Berkeley data in Section 1.2 is misleading, because (as it turns
out) it falsely assumes that relation between Admit and Gender is the same for each de-
partment. Only if this were true, would the collapsed table represent the relation in all
departments.
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Here, you will use a stratified analysis to examine the relation between Admit and Gender

controlling for department (equivalently: a test of conditional independence Admit and Gender

given Gender), as opposed to ignoring department in the marginal analysis. In Lectures II
and III we will see some visualizations of these data that help to explain the contradictory
results. Tasks &

questions

1. Carry out stratified tests of the association between Admit and Gender controlling for
Dept.

2. What do you conclude about whether there is a difference in rate of admission in each
of the departments?

3. Test for conditional independence of Admit and Gender given Dept.
4. For one 2× 2 table, the odds ratio is a reasonable summary measure of association. For

a collection of k such tables, the Breslow-Day χ2 tests whether these are equal across
strata. What do you conclude?

Using SAS, PROC FREQ will carry out a stratified analysis when there are more than two factors SAS
given in the tables statement You get a separate page of output for each stratum, followed
by overall summary tests of the relation between the two primary table variables, controlling
for the strata. These are the tests and statistics of most interest here.

%include catdata(berkeley);
proc freq data=berkeley;
weight freq;
tables dept * gender * admit /chisq cmh;
format dept dept. admit admit.;
run;

In R, for 2×2×K tables, the mantelhaen.test() function provides a test of overall association R
pooled over strata, woolf_test() tests for equal odds ratios across strata (similar to the
Breslow-Day test), and CMHtest() in vcdExtra package gives generalized CMH tests like
those provided by the cmh option in SAS.
Tests of similar hypotheses can be carried out using loglinear models (loglm()) and generalized
linear models (glm()), described in later lectures. Here is one simple way to test for association
of Admit and Gender separately for each department. oddsratio() calculates and tests the
(log) odds ratio for each stratum.

for (dept in 1:6) {print(chisq.test(UCBAdmissions[,,dept]))}
summary(oddsratio(UCBAdmissions))

Some tests related to this exercise can be done as follows. You should try to understand what
hypothesis is tested by each one.

mantelhaen.test(UCBAdmissions)
woolf_test(UCBAdmissions)
CMHtest(UCBAdmissions)

1.4 Ordinal factors

The Sex-Fun data set (Hout et al., 1987) involves the responses of 91 couples to the question-
naire item: Sex is fun for me and my partner : (a) never or occasionally, (b) fairly often, (c)
very often, (d) almost always.
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The data can be regarded as a 4× 4 frequency table, where both factors can be considered to
be ordered. For today, we will just consider testing whether there is an association between the
husband’s and wife’s rating, and how to take ordinality into account, as well as the relatively
small sample size.
In this problem, we could arguably be more interested in assessing to what extent the ratings
actually agree– there could actually be a strong negative association between the Husband’s
and Wife’s rating of sexual fun! Methods for assessing agreement will be discussed in the
lecture for Part II.

1. Carry out a simple Pearson χ2 test for association of Husband and Wife. Are there any Tasks &
questionsreasons to question the validity of this test?

2. Carry out the analogous Cochran-Mantel-Haenszel tests. SAS reports three different
tests. Which one is most appropriate here, where both variables are ordinal?

3. For relatively small total sample size, where the asymptotic distribution of the Pearson
χ2 statistic is in doubt, Fisher’s exact test provides an alternative. Do it.

4. Examine the association statistics between the ratings. What would be a reasonable
value to take as a non-parametric measure of “correlation” between Husband and Wife
ratings?2

For SAS, you can carry out all these steps as follows shown below. See the file sexfun-cmh.sas. SAS

sexfun-
cmh.sas%include catdata(sexfun);

proc freq data=sexfun order=data;
weight count;
tables husband * wife / cmh chisq exact nocol norow;
run;

For comparison with the association statistics, note that you can also calculate the Pearson
correlation between the ratings using PROC CORR:

proc corr data=sexfun ;
weight count;
var husband wife;
run;

In R, the equivalent of the cmh option in PROC FREQ is vcdExtra::CMHtest(). You can do
the various steps as follows. See sexfun-chisq.R. sexfun-chisq.R

Rlibrary(vcdExtra)
data(SexualFun)
SexualFun # show the table
CMHtest(SexualFun) # CMH tests
chisq.test(SexualFun) # general association
fisher.test(SexualFun) # exact test
assocstats(SexualFun) # association statistics

2 Hint: the Cochran-Mantel-Haenszel χ2
CMH = (n − 1)r2 when both variables are assigned integer scores.

The Phi coefficient, φ =
√
χ2
P /n, but for larger than 2× 2 tables it has a range 0 ≤ φ ≤ min(

√
r − 1,

√
c− 1).

Cramer’s V is a corrected scaling of φ so that 0 ≤ V ≤ 1, similar to r2.
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2 Two-way and n-way tables

In these exercises you will examine several of the methods for visualizing association in two-
way and n-way tables. The goal is not simply to see if an association exists, but to understand
the nature or pattern of association— why or how the variables are associated.

2.1 2× 2 tables

In 2×2 tables, there are several measures of association between the row and column variables,
but one of the simplest is the odds ratio, θ, 0 ≤ θ ≤ ∞, estimated in the sample as

θ̂ =
n11/n12
n21/n22

=
n11n22
n12n21

When there is no association, θ = 1 (or, equivalently, log(θ) = 0). For a stratified 2 × 2 × k
table, another question of interest is whether the odds ratios are the same for all strata,
θ1 = θ2, . . . , θk. In this exercise, you will use fourfold displays to examine these questions.

2.1.1 Cholesterol and heart disease
Tasks &

questions1. Test whether there is an association between cholesterol and heart disease using a fourfold
display.

2. What evidence is shown in the fourfold display regarding whether the odds ratio differs
significantly from 1?

3. Describe how cholesterol and heart disease are related.

In SAS, the data are in fat.sas in the catdata directory. This file also runs a proc freq to SAS
give answers to the first question.

%include catdata(fat);
%ffold(data=fat, var=diet disease);

In R, you can just create the fat data using matrix(). chisq.test(fat) will give an ap- R
proximate answer to the first question.

fat <- matrix( c(6, 4, 2, 11), 2, 2)
dimnames(fat) <- list(diet=c("LoChol", "HiChol"), disease=c("No", "Yes"))
fourfold(t(fat))

2.1.2 Berkeley data

Here, you will re-examine the Berkeley admissions data considered in Section 1.2 and Sec-
tion 1.3 using fourfold plots. Tasks &

questions
1. Assess visually whether there is an association between gender and admission, in the

marginal table that collapses over department.
2. Assess visually the association between gender and admission separately in each depart-

ment. What do you conclude?
3. Examine the question of whether the odds ratio of admission for males and females is

the same for all departments. [Hint: See the printed output from the ffold macro, or
use the woolf_test() in R.]
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In SAS, the table macro can be used to collapse a frequency table, or to change numeric SAS
variables into character labels, suitable for the ffold macro. The required SAS statements
for this exercise are contained in berk-4fold.sas. The first step looks like this: berk-4fold.sas

%include catdata(berkeley);
%table(data=berkeley, out=berk2,

var=Admit Gender,
weight=freq,
order=data);

%ffold(data=berk2, var=Admit Gender);

In R, margin.table() collapses a table over dimensions not listed in the second argument.
The R statements below are contained in berk-4fold.R. See the vignette("vcd-tutorial") berk-4fold.R

tutorial, Section 3.4, for other tests and plots of these data. R

UCB <- aperm(UCBAdmissions, c(2,1,3))
fourfold(margin.table(UCB, c(1, 2))) # two-way plot

fourfold(UCB, mfrow=c(2,3)) # three-way plot
woolf_test(UCB)

2.2 Sieve diagrams

The Distant-vision data records the classification of visual acuity in the left and right eyes
for a large sample of employees of the Royal Ordnance factor in the UK during world War II.
There are two samples— one of men and one of women. Here we will just look at the female
sample.
We expect to find a strong degree of association (and agreement) between the grade recorded
for the two eyes. The more interesting question is the nature of the association. A sieve
diagram is useful for this purpose. Tasks &

questions
1. Construct a sieve diagram for these data.
2. Make sure you understand the principal by which this diagram is constructed, e.g., why

are the boxes for the cells of the table aligned in rows and columns.
3. Describe the patterns you see in the density of shading.

In SAS, the data are found in the file vision.sas, and contain the data set women, for the SAS
female sample. See the file vision-sieve.sas for this and more. vision-

sieve.sas
%include catdata(vision);
proc print data=women;

run;
title ’Vision data: Women’;
%sieveplot(data=women, var=right left, filltype=obsp);

For R, you will find the VisualAcuity data in the vcd package. In R, subset() allows easy R
selection from a data.frame, which you can use to select the female sample. See the file
vision-sieve.R for this and more. vision-sieve.R

library(vcd)
women <- subset(VisualAcuity, gender=="female", select=-gender)
structable(~right + left, data=women)
sieve(Freq ~ right + left, data = women,

gp=shading_Friendly, labeling=labeling_values)
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2.3 Observer agreement

Westlund & Kurland (1953) reported data on the diagnosis of multiple sclerosis (MS): two
samples of patients, one from Winnipeg and one from New Orleans, were each rated by two
neurologists (one from each city) in four diagnostic categories: Certain, Probable, Possible,
and Doubtful. The questions of interest here concern how well the neurologists agree on
diagnosis for these two samples of patients. Tasks &

questions

1. Obtain and test Cohen’s κ for each of the samples, using both equal spacing (Cicchetti-
Allison) weights and inverse-square (Fleiss-Cohen) weights. What do you conclude about
the strength of agreement in the two samples?

2. Obtain agreement charts for each of the samples. Visually, how does the strength of
agreement shown in these charts compare to the κ measures?

3. Is there any evidence of difference between the two neurologists in their frequency of use
of the diagnostic categories (marginal heterogeneity)?

4. Test whether the strength of agreement differs between the two samples (only in SAS).

For SAS, the data are contained in the file msdiag.sas, as a single data set (msdiag) with vari- SAS
ables Patients, N_rating and W_rating. With PROC FREQ, a stratified analysis by patients

gives you most of the information to answer the questions concerning agreement. For agree-
ment plots, with the agreeplot macro you need to subset the data to select each sample. The
statements below are contained in the file msdiag-agree.sas. msdiag-

agree.sas
%include catdata(msdiag);
*-- Agreement, separately, and controlling for Patients;
proc freq data=msdiag;
tables patients * N_rating * W_rating / norow nocol nopct agree plots=all;
test kappa;
weight count;

run;

data Winnipeg;
set msdiag;
where (patients="Winnipeg");

%agreeplot(data=Winnipeg, var=N_rating W_rating, title=Winnipeg patients);

data NewOrleans;
set msdiag;
where (patients="New Orleans");

%agreeplot(data=NewOrleans, var=N_rating W_rating, title=New Orleans patients);

In R, the data are contained in MSPatients, a 4× 4× 2 table. Patient is the third dimension,
so you can use subscripting on the table to select the two samples separately. The statements
below are contained in the file msdiag-agree.R. msdiag-

agree.R

R
library(vcd)
Kappa(MSPatients[,,1]) # use ,weights="Fleiss" for F-C weights
Kappa(MSPatients[,,2])

agreementplot(t(MSPatients[,,1]), main = "Winnipeg Patients")
agreementplot(t(MSPatients[,,2]), main = "New Orleans Patients")

9

http://datavis.ca/courses/VCD/msdiag-agree.sas
http://datavis.ca/courses/VCD/msdiag-agree.R


2.4 Correspondence analysis

Correspondence analysis provides one way to visualize association between variables, both
for nominal and ordinal categories. Here, we examine the relation between mental health and
partents’ SES. For a 4×6 table, the total Pearson χ2 can be accounted for in min(r−1, c−1) = 3
dimensions, but we hope for a simpler explanation. Tasks &

questions

1. Carry out a correspondence analysis of these data. From the printed output, how many
dimensions seem necessary here?

2. Interpret the results of the graph in terms of the question of whether both mental and
ses can be considered to be linearly spaced.

For SAS, the statements that carry out these steps are contained in the file mental-ca.sas. mental-ca.sas

SAS
%include catdata(mental);
data mental;

set mental;
format mental mental. ses ses.;

run;

Use the corresp macro to carry out the analysis and produce the graph.

*-- Using the corresp macro;
%corresp(data=mental,

tables = mental / ses,
weight = count, htext=1.3);

In SAS 9.3, an equivalent plot can be obtained directly with PROC CORRESP (via SAS ODS
Graphics).

*-- Using SAS 9.3 ODS Graphics;
proc corresp short data=mental;
tables mental, ses;

weight count;
run;

For R, the statements that carry out these steps are contained in the file mental-ca.R. Begin mental-ca.R

Rby creating a two-way table, then use ca() for numerical results and plot() to graph the
result.

library(vcdExtra)
library(ca)
Mental.tab <- xtabs(Freq ~ mental+ses, data=Mental)
ca(Mental.tab)
plot(ca(Mental.tab))
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3 Mosaic displays and loglinear models

3.1 Mosaic displays web applet

A web application to fit loglinear models and produce mosaic displays is available at
http://datavis.ca/online/mosaics/. It is not as flexible as PROC GENMOD in SAS or the
combination of loglm() and mosaic() in R, but is easy to use and contains several sample
data sets, including the Berkelely data. Moreover, you can use it from home with your own
data, uploaded from a file, or entered into a form. Tasks &

questions

1. Navigate to the Mosaic Displays web page, select the Berkeley Admission Data from the
Sample datasets list, and press SelectData .

2. To illustrate, we will fit the model [AD][GD] of conditional independence (Exercise 3 in
Section 3.2), as follows:

(a) In the Variable order box enter: gender admit dept.
(b) Select CONDIT for FitType
(c) (You may wish to explore the Analysis Options and Display Options help page.)

(d) Press GetData
(e) Interpret each display in relation to the χ2 tests printed above.
(f) What happens if you click on a tile in a mosaic?

3.2 Three-way+ tables

In this exercise you will exmine fitting several different loglinear models for the data on
admissions to graduate programes in Berkeley. We will use the GLM approach here.3 The
table variables are dept, gender and admit, abbreviated as D, G and A. Note that admission
is considered the response variable here, while gender and department are explanatory, so any
reasonable model must include the [GD] association between gender and department. Tasks &

questions

1. Fit the homogeneous association model [AD][GD][AG] as generalized linear model for
log frequency, and obtain tests for each term as well as the test for residual association.
Does it appear that there is an association between admission and gender?

2. Interpret the model– what does each term mean? What does the test for residual
association mean?

3. Now fit the reduced model [AD][GD] of conditional independence of admission and
gender given department, A ⊥ G |D. Obtain the residuals from this model and display
these in a mosaic plot. What do you conclude?

4. It appears that conditional independence fits well, except in Department A. Fit a model
that allows an association of admission and gender only in Department A.

The following steps will be helpful with SAS. If you need more help, see the statements in the
file berkeley-glm.sas. berkeley-

glm.sas

SAS
• For display purposes it is useful to apply format statements to use as value labels for

the table variables.

3 As explained in the lecture, such models can be fit directly as loglinear models for the data in contingency
table form, or as generalized linear models (GLM) with a log link and a Poisson distribution for the frequencies.
In SAS, this amounts to the difference between PROC CATMOD vs. PROC GENMOD. In R, the corresponding functions
are loglm() and glm().
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%include catdata(berkeley);
*-- Apply formats to use value labels for numeric variables;
data berkeley;

set berkeley;
format dept dept. admit admit. gender $sex.;

• The model of homogeneous association model [AD][GD][AG] (no 3-way association) can
be specified using "|" notation as shown below.

*-- Fit model of homogeneous associations: [AD][GD][AG];
proc genmod data=berkeley;

class dept gender admit;
model freq = dept|gender|admit@2 / dist=poisson type3 wald;

run;

• The step below shows the pattern to (a) fit a model, (b) obtain residuals in an obstats

data set and (c) produce a mosaic plot for the model.

*-- Fit model of conditional independence: [AD][GD];
proc genmod data=berkeley;

class dept gender admit;
model freq = dept|gender dept|admit / dist=poisson obstats;
ods output obstats=obstats;

run;

%mosaic(data=obstats, vorder=admit gender dept, count=freq,
resid=streschi, cellfill=dev, split=H V,
title=Model: [AdmitDept] [GenderDept]);

• You can fit a model allowing an association only in department A by defining a dummy
variable that causes these cells to fit perfectly. Add this term to the model statementn
PROC GENMOD and see what happens.

data berkeley;
set berkeley;
dept1AG = (gender=’F’) * admit * (dept=1);

In R, all of these models can be fit using glm(); the loglm() function cannot handle models
with special terms (like dept1AG), but makes it quite easy to produce mosaic displays. The R
statements below are in the file berkeley-glm.R. In R model formulas, ()^2 means “all main berkeley-

glm.Reffects and interactions up to order 2”.

library(vcd)
data("UCBAdmissions")
structable(Dept ~ Admit+Gender,UCBAdmissions)

## conditional independence in UCB admissions data
berk.mod1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
berk.mod1
mosaic(berk.mod1, gp=shading_Friendly)

## all two-way model
berk.mod2 <-loglm(~(Admit+Dept+Gender)^2, data=UCBAdmissions)
berk.mod2
mosaic(berk.mod2, gp=shading_Friendly)
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# compare models
anova(berk.mod1, berk.mod2)

3.3 Survival on the Titanic

These exercises examine the fitting of various loglinear models to data about survival on the
Titanic, a 4-way table giving the cross-classification of 2201 passengers and crew, according
to

• Gender (G): M vs. F
• Age (A): Adult vs. Child
• Class (C): 1st, 2nd, 3rd, Crew
• Survival (S): Died vs. Survived

1. One slight complication here is that there are 8 cells with zero frequencies. Four of these
(male and female children in 1st and 2nd class who died) should be considered sampling
zeros, but 4 (children among the crew) should probably be considered structural zeros–
cells where data could not occur. In these analyses, you can treat these all as sampling
zeros by adding a small number to each cell.

2. It is natural to consider Survival as the natural response variable, and the remaining
variables as explanatory. Therefored, all models should include the high-order term
among Age Gender and Class. Therefore, the minimal “null model” is [AGC][S], which
asserts that survival is jointly independent of Age, Gender and Class. Fit this model,
and obtain a mosaic plot. Interpret the pattern of the residuals in this mosaic plot.

3. Fit a “main effects” model for survival, [AGC][AS][GS][CS], that includes an association
of survival with each of age gender and class. Is this an adequate fit? What does the
pattern of residuals tell you about remaining associations?

4. What model would you use to allow an interaction of Age and Gender in their effect on
Survival? Fit this model as above, and obtain the mosaic plot.

For SAS, the statements for this exercise are in the file titanic-loglin.sas, but you should titanic-
loglin.sastry to figure them out for yourself first. The table variables are named sex, age, class,

SASsurvive.

• Adjusting for 0 cells.

%include catdata(titanic);
data titanic;

set titanic;
count = count + .5;

• Fitting and graphing the null model. Note how the high-order term [AGC] is specified
using | notation.

title ’[AGC][S]: Baseline model’;
proc genmod data=titanic;

class age sex class survive;
model count=age|sex|class survive

/ dist=poisson type3 obstats;
ods output obstats=obstats;

%mosaic(data=obstats, vorder=class sex age survive,
resid=reschi, title=[AGC][S]: Baseline model);
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In R, it is easiest here to use the loglm() function to fit a model, and the plot() method for R
loglinear objects to obtain the mosaic plot. The statements below are contained in the file
titanic-loglin.R. titanic-

loglin.R
library(vcd)
data(Titanic)

Titanic <- Titanic + 0.5 # adjust for 0 cells
titanic.mod1 <- loglm(~ (Class * Age * Sex) + Survived, data=Titanic)
titanic.mod1
plot(titanic.mod1, main="Model [AGC][S]")

titanic.mod2 <- loglm(~ (Class * Age * Sex) + Survived*(Class + Age + Sex),
data=Titanic)

titanic.mod2
plot(titanic.mod2, main="Model [AGC][AS][GS][CS]")

titanic.mod3 <- loglm(~ (Class * Age * Sex) + Survived*(Class + Age * Sex),
data=Titanic)

titanic.mod3
plot(titanic.mod3, main="Model [AGC][AS][GS][CS][AGS]")

# compare models
anova(titanic.mod1, titanic.mod2, titanic.mod3, test="chisq")

3.4 Ordinal factors and structured associations

When some of the variables in a contingency table represent ordered categories, we can usually
gain both power and parsimony by fitting models that take ordinality into account. We gain
power by testing a more specific hypothesis than just a general association; we gain parsimony
by fitting fewer parameters.

3.4.1 Mental health and SES

In this exercise, you will examine several models for Mental-Health-SES data described in
the lecture. In this two-way table, parents SES and child mental health status are both
ordered factors. Simple ways of handling ordinal variable involve assigning scores to the table
categories, and the simplest cases are to use integer scores, either for the row variable (“column
effects” model), the column variable (“row effects” model), or both (“uniform association”
model). Tasks &

questions

1. Fit the independence model to these data. How well does it fit? Make a mosaic plot
showing departures (residuals) from independence. What do you see here that suggests
a simpler description of the association based on ordinality?

2. Assign integer scores to both parents SES and child mental health status. Fit the model
of uniform association. How well does it fit, compared to the independence model?
Make a mosaic plot showing residuals from this model, and compare with that for the
independence model.

3. If you have time, try also fitting the column effects model, using scores for just mental
health status, and the row effects model, using scores for just parents SES.
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For SAS, most of the program statements for this exercise are contained in the file mentgen2.sas. SAS

mentgen2.sasHere are a few explanatory notes:

• In PROC GENMOD, a given variable can be either categorical (a factor) — when declared
in a CLASS statement or numeric (a quantitative covariate), but not both. To allow
a factor to be treated as numeric in an association term, simply make a copy of that
variable under a different name:

%include catdata(mental);
*-- Create numeric variables for row & column effects;
data mental;

set mental;
m_lin = mental;
s_lin = ses;
format mental mental. ses ses.;

• Fit the independence model as follows, obtaining an output obstats data set of fitted
values, residuals, etc. that can be passed to the mosaic macro.

proc genmod data=mental;
class mental ses;
model count = mental ses / dist=poisson obstats residuals;
title ’Independence’;
ods output obstats=obstats;

• Visualize the remaining associations (residuals) with the mosaic macro.

%mosaic(data=obstats, vorder=Mental SES, resid=stresdev,
title=Mental Impairment and SES: Independence, split=H V,
cellfill=dev 0.5, htext=2.0);

• Include one or both of the numeric versions of the table variables in an interaction term.
For example, the model of uniform association, with a linear × linear association is fit
and visualized as follows:

proc genmod data=mental;
class mental ses;
model count = mental ses m_lin*s_lin / dist=poisson obstats residuals;
title ’Lin x Lin’;
ods output obstats=obstats;

run;
%mosaic(data=obstats, vorder=Mental SES, resid=stresdev,

title=Linear x Linear, split=H V, cellfill=dev 0.5, htext=2.0);

For R the steps are similar. We use the data set Mental in the vcdExtra package. These R
models are fit using glm(), and visualized using mosaic.glm() applied to the glm object. See
the file mental-glm.R for these and other steps. mental-glm.R

• Independence model:

library(vcdExtra)
data(Mental)
indep <- glm(Freq ~ mental+ses,

family = poisson, data = Mental)
mosaic(indep,residuals_type="rstandard", labeling=labeling_residuals)
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• Other models: Row effects, col effects and uniform association– Create numeric equiva-
lents of the table variables, then fit models with interactions using the numeric scores.

Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)

# row effects model (mental)
roweff <- coleff <- glm(Freq ~ mental + ses + mental:Cscore,

family = poisson, data = Mental)

linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
family = poisson, data = Mental)

• Visualize a given model with mosaic() as shown above for the independence model.

3.4.2 Distant vision: quasi-independence, quasi-symmetry

In Section 2.2 we examined the Distant-Vision data for women with a sieve diagram. Here,
we will consider several specialized models that range between the independence model and
the saturated model. The goal is to find a relatively simple model, but one that accounts for
the association.
The model of quasi-independence ignores the diagonal cells. The symmetry model tests
whether the pattern of association is symmetric around the diagonal cells. Quasi-symmetry
tests for symmetry, while allowing for differences in the marginal frequencies. Tasks &

questions

1. Fit the models of independence, and quasi-independence ignoring the diagonal cells.
Compare the goodness of fit of the models numerically and with mosaic displays.

2. Fit the models of symmetry and quasi-symmetry (symmetric association, but allowing
for differences in marginal frequencies). Compare the goodness of fit of the models
numerically and with mosaic displays.

3. What do you conclude? Which model provides the simplest, adequate explanation of
the relation of the relation between visual acuity in the two eyes?

In SAS, recall that the data set women has numeric factors, left and right for the eye grades
of the two eyes. The key to fitting these models is to assign new variables corresponding to SAS
the diagonal cells diag, and to the diagonally symmetric ones diag. The statements below
are included in the file vision-quasi.sas, along with others not shown here. vision-

quasi.sas
%include catdata(vision);

data women;
set women;
if left=right then do;
diag=left;
symmetry=-left;
end;

else do;
diag=0;
symmetry = abs(left-right);
end;
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• Independence and quasi-independence: The pattern is (a) fit the model with PROC

GENMOD, (b) obtain the obstats data set with residuals, (c) plot the data and resid-
uals from the model with the mosaic macro.

title ’Independence model (women)’;
proc genmod data=women;

class Right Left;
model Count = Left Right /
dist=poisson link=log obstats residuals type3;

ods exclude obstats;
ods output obstats=obstats;

run;
%mosaic(data=obstats, vorder=Right Left, split=H V, htext=1.9,

resid=reschi, title=%str(Independence, G2(9)=6671.5));

title ’Quasi-independence model (women)’;
proc genmod data=women;

class Right Left diag;
model Count = Left Right diag /
dist=poisson link=log obstats residuals type3;

ods exclude obstats;
ods output obstats=obstats;

run;
%mosaic(data=obstats, vorder=Right Left, split=H V, htext=1.9,

resid=reschi, title=%str(Quasi-Independence, G2(5)=199.1));

• Symmetry and quasi-symmetry: Use model Count = symmetry for strict symmetry and
model Left Right symmetry quasi symmetry in the above.

In R, you can fit these models with glm() or gnm() in the gnm package. The gnm package
provides special functions, Diag(), Symm() and others that considerably extend the range of R
loglinear models for structured tables. See the vignette, “Generalized nonlinear models in R,”
accessible in R as vignette("gnmOverview" package="gnm") for more details. At present
mosaic() doesn’t quite work with all of these more general models. The statements below
are included in the file vision-quasi.R. vision-quasi.R

library(vcdExtra)
library(gnm)
women <- subset(VisualAcuity, gender=="female", select=-gender)

indep <- glm(Freq ~ right + left, data = women, family=poisson)
mosaic(indep, main="Vision data: Independence (women)" )

quasi.indep <- glm(Freq ~ right + left + Diag(right, left),
data = women, family = poisson)

mosaic(quasi.indep, residuals_type="rstandard", gp=shading_Friendly,
main="Quasi-Independence (women)" )

symmetry <- glm(Freq ~ Symm(right, left),
data = women, family = poisson)

mosaic(symmetry, residuals_type="rstandard", gp=shading_Friendly,
main="Symmetry model (women)" )
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quasi.symm <- glm(Freq ~ right + left + Symm(right, left),
data = women, family = poisson)

mosaic(quasi.symm, residuals_type="rstandard", gp=shading_Friendly,
main="Quasi-Symmetry model (women)")

Which model is “best”? You can use anova() to compare a collection of nested models:

# model comparisons: for *nested* models
anova(indep, quasi.indep, quasi.symm, test="Chisq")
anova(symmetry, quasi.symm, test="Chisq")

The LRstats() in the vcdExtra package also gives a compact summary of goodness-of-fit
statistics for a set of related models (a glmlist). AIC and BIC statistics penalize larger
models (more df), and smaller is better for both.

# model summaries, with AIC and BIC
models <- glmlist(indep, quasi.indep, symmetry, quasi.symm)
LRstats(models)
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4 Logit models and logistic regression

Logit models are just a special case of logistic regression models in which all predictors are
discrete. The only reasons for treating them specially are pedagogical: (a) every logit model
for a binary response is equivalent to a loglinear model; (b) it is then a simple step to logistic
regression models that include continuous predictors.

4.1 Logit models

It’s time to have another look at the Berkeley data, from the perspective of logit models. In
these models, with Admit as a response, we just specify the factors that Admit depends upon
(Dept?, Gender?). Tasks &

questions

1. Fit a model in which Admit depends only on Dept. (The equivalent loglinear model is
[AD][DG], which includes the association of Department and Gender.)

2. Fit the main effects model, Admit ∼ Dept + Gender. Plot the observed and fitted logits
under this model.

In SAS, logit models are most easily fit with PROC CATMOD, and graphical displays of the SAS
fitted model most easily obtained with the CATPLOT macro. For this purpose, the option
out=predict on the response statementroduces an output data set continaining fitted values
and standard errors. The statements below are contained in the file berkeley-logit.sas, berkeley-

logit.saswhich includes some additional plotting statements to make plots prettier.

• Effect of Dept only:

%include catdata(berkeley);
*-- logit (Admit) ~ Dept;
proc catmod order=data data=berkeley;

format dept dept. ;
population dept gender;
weight freq;
response / out=predict;
model admit = dept / ml noiter noprofile title="Model (AD, DG)";

run;

• Main effects of both Dept and Gender:

proc catmod order=data data=berkeley;
weight freq;
response / out=predict;
model admit = dept gender / ml noiter noprofile title="Model (AD, AG, DG)" ;
run;

• Plotting the observed and fitted values (on the logit scale) with the CATPLOT macro:

%catplot(data=predict, class=gender, x=dept, type=FUNCTION, z=1.96);

In R, the parallel analysis as a logit model is easiest if the data UCBAdmissions is first be
converted from a 2 × 2 × 6 table to a data.frame in frequency form. Models can then be R
expressed for the variable Admit, using the Freq variable as a weight. The statements below
are contained in the file berkeley-logit.R. berkeley-

logit.R

• Effect of Dept only:
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library(car) # for Anova()
data(UCBAdmissions)
UCB.df <- as.data.frame(UCBAdmissions)
berk.mod1 <- glm(Admit=="Admitted" ~ Dept, data=UCB.df,

weights=UCB.df$Freq, family="binomial")
Anova(berk.mod1, test="Wald")
summary(berk.mod1)

• Adding a main effect of gender:

berk.mod2 <- glm(Admit=="Admitted" ~ Dept+Gender, data=UCB.df,
weights=UCB.df$Freq, family="binomial")

Anova(berk.mod2, test="Wald")
summary(berk.mod2)

• Plotting fitted values. The effects package is explored in more detail later in this
section.

library(effects) ## load the effects package
berk.eff2 <- allEffects(berk.mod2)
plot(berk.eff2)
plot(effect(’Dept:Gender’, berk.mod2), multiline=TRUE)

Note: The effects package issues Warnings when you ask to plot a higher-order term not
contained in the model. This is OK; the correct plots should be produced.

4.2 Logistic regression

4.2.1 Arthritis treatment data

In previous lectures, I used the Arthritis data, but always ignoring the covariate Age, so I
could treat it as a contingency table, Sex × Treatment × Improve. Here, we will fit logistic
regression models, but only for a binary response,

better =

{
0, improve = ’None’
1, improve = ’Some’,’Marked’

Tasks &
questions

1. Fit a logistic model predicting Pr(better = 1) from Age alone. Make a graph to visualize
how better changes with Age.

2. Add the effects of Sex and and Treatment to this model. Make sure you understand
how these effects are parameterized in your model. Interpret the coefficients for Age,
Sex and Treatment on the probability of improvement.

3. Make a reasonable graph to visualize the effects of Age, Sex and Treatment on the
probability of improvement.

4. Consider the possibilities there may be two-way interactions among Age, Sex and Treat-
ment and the effect of Age may be non-linear (e.g., Age, Age2). Fit a model that tests
for these additional terms over and above the main effects.

For SAS, the variable better has been defined in the data step that creates the arthrit

data set. Use the option descending to model the probability better=1. In SAS 9.3, the SAS
effectplot statementproduces reasonable plots either on the probability scale or logit scale.
The statements below are contained in the file arthritis-logistic.sas. arthritis-

logistic.sas
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• Logistic regression on age alone:

%include catdata(arthrit);
title ’Simple logistic regression on age’;
proc logistic data=arthrit descending;

model better = age ;
effectplot fit / obs(jitter(y=0.02));
effectplot fit / obs(jitter(y=0.02)) link; * display on logit scale;

run;

• Fit the main effects model. Note the use of the ref= option to assign reference categories
for Sex and Treat, and the output statemento obtain a data set for plotting with the
meanplot macro.

title ’main effects model’;
proc logistic data=arthrit descending;

class sex (ref=last) treat (ref=first) / param=ref;
model better = sex treat age ;
output out=results p=prob l=lower u=upper

xbeta=logit stdxbeta=selogit / alpha=.33;
effectplot slicefit (sliceby=treat) / at(sex=all) clm alpha=0.33;
effectplot interaction (x=treat sliceby=sex) / at(age=30 60) clm alpha=0.33 noobs;

run;
*-- or use meanplot macro;
%meanplot(data=results, response=prob, class=age treat sex, pmean=no);

• To test potential high-order terms, you can use forward selection, starting with the main
effects model.

title ’screening for higher-order effects’;
proc logistic data=arthrit descending;

class sex(ref=last) treat(ref=first) / param=ref;
model better = age sex treat

age | sex | treat @2 age*age
/ selection=forward

slentry=0.1 /* be a bit liberal */
start=3 ; /* Start after all main effects */

effectplot slicefit (sliceby=treat) / at(sex=all)clm alpha=0.33;
title2 ’Testing all interactions via forward selection’;

run;

In R, use the Arthritis data in the vcd package. The variable Better must be calculated as
shown below from Improved. Logistic regression models are fit with glm(), and fitted values R
can be obtained with predict() for the glm object. The statements below are contained in
the file arthritis-logistic.R. arthritis-

logistic.R

• Logistic regression on age alone:

library(vcd)
library(car)
data(Arthritis)

# define Better
Arthritis$Better <- Arthritis$Improved > ’None’

# simple linear regression
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arth.mod0 <- glm(Better ~ Age, data=Arthritis, family=’binomial’)
anova(arth.mod0)

# plot, with +-1 SE
plot(Better ~ Age, data=Arthritis, ylab="Prob (Better)")
pred <- predict(arth.mod0, type="response", se.fit=TRUE)
ord <-order(Arthritis$Age)

lines(Arthritis$Age[ord], pred$fit[ord], lwd=3)
upper <- pred$fit + pred$se.fit
lower <- pred$fit - pred$se.fit
lines(Arthritis$Age[ord], upper[ord], lty=2, col="blue")
lines(Arthritis$Age[ord], lower[ord], lty=2, col="blue")

• Fitting the main effects model:

# main effects model
arth.mod1 <- glm(Better ~ Age + Sex + Treatment , data=Arthritis,

family=’binomial’)
Anova(arth.mod1)

# same, using update()
arth.mod1 <- update(arth.mod0, . ~ . + Sex + Treatment)
Anova(arth.mod1)

• Forward selection:

# forward selection from the main effects model
step(arth.mod1, direction="forward", scope=.~ (Age+Sex+Treatment)^2 + Age^2)

4.2.2 Volunteering for psychology experiments

Cowles and Davis (1987) examined personality factors that might relate to whether an indi-
vidual volunteered to participate in a psychology experiment. The predictors used here are
scales of Neuroticism and Extraversion from the Eysenck personality inventory, plus Sex of
the participant. There are 1421 observations. Tasks &

questions

1. Fit a main effects model predicting Pr (Volunteer = ”Yes”) from Sex, Neuroticism and
Extraversion. How well does this model fit?

2. Fit a model that includes all two-way interactions among Sex, Neuroticism and Extraver-
sion. How well does this model fit? Which interaction terms appear not to contribute
to prediction?

3. Fit a reduced model including only the important interaction(s) from the all two-way
model. What do you conclude?

In SAS, the data are available in cowles.sas and some statements for this exercise in the SAS
file cowles-logistic.sas. The statements below will get you started with the main effects cowles-

logistic.sasmodel. Note the use of the descending option to model the event Volunteer=1 (“yes”). For
logistic models, the lackfit option on the model statementgives the Hosmer-Lemeshow lack
of fit test

%include catdata(cowles);
*-- apply formats to Sex and Volunteer;
data cowles;
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set cowles;
format Sex sex. Volunteer volun.;

proc print data=cowles(obs=20);
run;

*-- main effects model;
proc logistic data=cowles descending ;
class Sex;
model Volunteer = Sex Extraver Neurot / lackfit ;
run;

For other models, you can use | notation in the model statement here, @ forms all high-order
terms up to a given degree. Thus, the all two-way model can be specified as

*-- all two-way model;
proc logistic data=cowles descending ;
class Sex;
model Volunteer = Sex | Extraver | Neurot @2 / lackfit ;
run;

For R, the data frame Cowles is contained in the car package, which also has an Anova() func- R
tion providing Type II and Type III tests, more useful than the sequential Type I tests provided
by anova(). The R statements for this exercise are provided in the file cowles-logistic.R. cowles-

logistic.RFor the main effects model, the commands are shown below.

library(car) ## for Anova: type II tests
data(Cowles)
mod.cowles0 <- glm(volunteer ~ sex + neuroticism + extraversion,

data=Cowles, family=binomial)
summary(mod.cowles0)
Anova(mod.cowles0)

4.2.3 Marijuana arrests data

In this exercise you will fit and examine graphically a more realistic (and complex) model.
The data concern police treatment of individuals arrested in Toronto for simple possession of
small quantities of marijuana.4 Under these circumstances police have the option of releasing
an arrestee with a summons to appear in court similar to a traffic ticket; alternatively, the
individual may be brought to the police station for questioning and possible indictment.
The principal question of interest is whether and how the probability of release is influenced by
the subjects race, age, and other characteristics. Beyond this, there is also interest in whether
race interacts with other variables.
There are 5226 observations. The variables are:

released Whether the arrestee was released with a summons: “No” or “Yes”
colour The arrestee’s race: “Black”, “White”.
year 1997 through 2002. Although numeric, we will treat year as a factor here.
age in years
sex “Female”, “Male”.

4 This was part of a larger data set on racial profiling, featured in a series of articles in the Toronto Star
newspaper, December, 2002.
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employed “No”, “Yes”
citizen “No”, “Yes”
checks Number of police data bases (of previous arrests, previous convictions, parole status,

etc. – 6 in all) on which the arrestee’s name appeared
Tasks &

questions
1. Fit a main effects logistic regression model predicting released from all the other vari-

ables.
2. Fit a model that includes all possible two-way interactions as well as all main effects.

Which two-way interactions appear to be important?
3. Fit a reduced model that includes only the important two-way interactions as well as all

main effects. Methods for model selection is a complex topic— here, we will only use
backward selection from the all two-way model to illustrate one simple approach.

For SAS, the data are read from the file arrests.sas, and some code for this exercise is in SAS
the file Arrests-logistic.sas. Arrests-

logistic.sas
%include catdata(arrests);
*-- main effects model;
proc logistic data=arrests;

class colour year sex citizen employed;
model released = colour year age sex employed citizen checks;
run;

*-- all two-way model, with backward elimination;
proc logistic data=arrests;

class colour year sex citizen employed;
run;
model released = colour | year | age | sex | employed | citizen | checks@2 /

selection=backward;
run;

For R, the Arrests data are contained in the effects package, and some statements for R
this exercise are contained in the file Arrests-logistic.R. Note that, in model formulas, Arrests-

logistic.R~. stands for “is modeled by all predictors”; ~.^2 is a short-hand for “all main effects plus
two-way terms.”

library(effects) # for Arrests data
library(car) # for Anova()
data(Arrests)
Arrests$year <- as.factor(Arrests$year)

# all main effects
arrests.mod1 <- glm(released ~ ., family=binomial, data=Arrests)
Anova(arrests.mod1)

# all two-way effects
arrests.mod2 <- glm(released ~ .^2, family=binomial, data=Arrests)
Anova(arrests.mod2)

To eliminate unnecessary two-way terms, try stepAIC(), that tries to minimize the AIC
statistic.
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# backward selection, using AIC
arrests.step <- stepAIC(arrests.mod2, direction="backward")

anova(arrests.mod1, arrests.step, arrests.mod2, test="Chisq")

4.3 Effect plots

Effect plots are among the most useful graphical displays for understanding the pattern of
effects in complex models. As explained in the lecture, the idea is relatively simple: to
visualize a high-order term in a model, plot the predicted values (“adjusted means”) for that
term, averaging over all other factors not included in that term.

4.3.1 Volunteering for psychology experiments
Tasks &

questions1. Construct an effects plot to visualize the Neuroticism * Extraversion interaction for the
Cowles data.

2. Give a verbal description of how probability of volunteering changes with both neuroti-
cism and extraversion.

In SAS 9.3, effect plots are easily provided by the effectplot statementThe program state-
ments for this exercise are contained in the file cowles-effect.sas. cowles-

effect.sas
%include catdata(cowles);
proc logistic data=cowles outest=parm descending ;

class Sex;
model Volunteer = Sex Extraver | Neurot / lackfit ;
effectplot slicefit(x=Extraver sliceby=Neurot) / at(sex=1.5) noobs;
effectplot slicefit(x=Neurot sliceby=Extraver) / at(sex=1.5) noobs;
effectplot contour(x=Neurot y=Extraver) / at(sex=1.5) noobs;
run;

In R, effect plots for a wide class of linear models are provided in the effects package.
The function allEffects() creates the predicted effect values for all high-order terms in
the model. These can then be plotted with the plot() method. The statements below are R
contained in the file cowles-effect.R. They show two different forms of effect plots for the cowles-

effect.Rneuroticism:extraversion effect.

library(effects) ## load the effects package
data(Cowles)
mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion,

data=Cowles, family=binomial)
summary(mod.cowles)

eff.cowles <- allEffects(mod.cowles,
xlevels=list(neuroticism=seq(0, 24, 6),

extraversion=seq(0, 24, 8)))
#-- separate panels
plot(eff.cowles, ’neuroticism:extraversion’, ylab="Prob(Volunteer)",

ticks=list(at=c(.1,.25,.5,.75,.9)), layout=c(4,1))
#-- multiline plot
plot(eff.cowles, ’neuroticism:extraversion’, multiline=TRUE,

ylab="Prob(Volunteer)",
key.args=list(x = .8, y = .9))
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4.3.2 Marijuana arrests data

Here we examine effect plots for high-order terms in one model for released in the Arrests

data. This model allows for interactions of color with both year and age. As mentioned
above, these plots are easy to do with the effects package in R, but more difficult in SAS. Tasks &

questions
1. Fit the model that includes terms for colour*year and colour*age, as well as other

variables as main effects.
2. Obtain an effect plot for the 3-way term colour:year:age (not included in the model).

Interpret this plot in relation to how the probability of release varies with both Year and
Age.

3. Obtain separate effect plots for the 2-way terms colour:age and colour:year

In SAS 9.3, we can again use the effectplot statement Note how the various options control
the details. The statements below are contained in the file Arrests-effect.sas. SAS

Arrests-
effect.sas

proc logistic data=arrests descending;
class colour year sex citizen employed;
model released =

colour|year colour|age sex employed citizen checks / clodds=wald;
effectplot interaction (x=year sliceby=colour) / clm alpha=0.33 noobs yrange=clip;
effectplot slicefit (x=age sliceby=colour) /

clm alpha=0.33 obs(fringe jitter) yrange=(.7, 1);
run;

The statements below are contained in the file Arrests-effects.R. Fit the model: R

Arrests-
effects.R

library(effects)
data(Arrests)
Arrests$year <- as.factor(Arrests$year)

arrests.mod <- glm(released ~ employed + citizen + checks
+ colour*year + colour*age, family=binomial, data=Arrests)

Three-way effect plot:

plot(effect("colour:year:age", arrests.mod, xlevels=list(age=15:45)),
multiline=TRUE, ylab="Probability(released)", rug=FALSE)

Two-way effect plots. Note the difference between the style of plot with multiline=TRUE and
multiline=FALSE.

plot(effect("colour:age", arrests.mod),
multiline=TRUE, ylab="Probability(released)")

plot(effect("colour:age", arrests.mod),
multiline=FALSE, ylab="Probability(released)")

For complex models, a convenient feature of the effects package is the ability to obtain the
necessary statistics for all effects simultaneously, and plot various terms by selection from a
menu.

arrests.effects <- allEffects(arrests.mod, xlevels=list(age=seq(15,45,5)))
plot(arrests.effects, ylab="Probability(released)")
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4.4 Diagnostic plots

In this exercise, the goal is to explore diagnostic plots for generalized linear models, which
are simple extensions of similar plots for ordinary linear models (regression and ANOVA). We
return to the Berkeley data one more time. Tasks &

questions
1. Fit the model [AD][GD] of conditional independence, as before.
2. Construct plots to show the distribution of residuals from this model and to identify

influential cells in terms of residual and leverage.
3. Interpret what you see in these plots in relation to other plots of these data in previous

exercises.

In SAS, you can use the inflglim and halfnorm macros, as well as the ODS Graphics facility SAS
in SAS 9.2+ to obtain a wide variety of diagnostic plots. See berkeley-diag.sas. berkeley-

diag.sas

• Using the inflglim and halfnorm macros. For these plots, begin by constructing a
character variable that joins the factor levels into a single cell variable for labels in the
plots.

%include catdata(berkeley);
*-- make a cell ID variable, joining factors;
data berkeley;

set berkeley;
cell = trim(put(dept,dept.)) ||

gender ||
trim(put(admit,yn.));

run;

*-- Conditional independence;
proc genmod data=berkeley;

class dept gender admit;
model freq = dept|gender dept|admit / dist=poisson obstats residuals;
ods output obstats=obstats;

• Use the inflglim macro to produce influence plots for this model.

%inflglim(data=berkeley, class=dept gender admit,
resp=freq, model=dept|gender dept|admit, dist=poisson, id=cell,
gx=hat, gy=stresdev);

%inflglim(data=berkeley, class=dept gender admit,
resp=freq, model=dept|gender dept|admit, dist=poisson, id=cell,
gx=hat, gy=difdev);

• Use the halfnorm macro to produce a half-normal residual plot for this model, with a
simulated 95% envelope for the mean response in the model.

%halfnorm(data=berkeley, class=dept gender admit,
resp=freq, model=dept|gender dept|admit, dist=poisson, id=cell);

• Using ODS graphics with plot=all. This only works in SAS 9.2+, and the plots are all
index plots– variable plotted against observation (cell) number.

proc genmod data=berkeley plots=all;
class dept gender admit;
model freq = dept|gender dept|admit / dist=poisson;

run;
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In R, some of these plots can be obtained from the plot() method for glm objects. An
influence plot is provided by influencePlot() in car package. See berkeley-diag.R. berkeley-

diag.R

R
library(car)
berkeley <- as.data.frame(UCBAdmissions)
cellID <- paste(berkeley$Dept, substr(berkeley$Gender,1,1), ’-’,

substr(berkeley$Admit,1,3), sep="")
rownames(berkeley) <- cellID

berk.mod <- glm(Freq ~ Dept * (Gender+Admit), data=berkeley, family="poisson")
influencePlot(berk.mod, labels=cellID, id.n=3)
plot(berk.mod)
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5 Polytomous response models

5.1 Proportional odds model

5.1.1 Arthritis data

In this exercise you will try to fit a proportional odds model to the Arthritis data, modeling
the 3-category response Improve (“None”, “Some”, or “Marked”) and using Sex, Treatment
and Age as predictors. Tasks &

questions
1. Fit a main effects model predicting improve from Sex, Treatment and Age. Note that

both Sex and Treatment are binary factors (CLASS variables in SAS), so the interpre-
tation of the coefficients depends on how they are coded.

2. How well does the proportional odds model fit for these data?5

3. Interpret the coefficients for Sex, Treatment and Age in this model. For example, how
would you interpret the coefficient for Sex in relation to the odds of a better outcome?

4. Obtain and plot predicted (fitted) values on either the probability scale or the logit scale.
Interpret this plot in relation to the numerical results (coefficients, odds ratios, etc.)

For SAS, the steps are illustrated in the lecture notes, “Proportional odds model: Fitting
and plotting.” Below, I show just the steps to fit the model, and obtain an output data set SAS
with the fitted probabilities and logits. Note that Sex is coded so that Male is the reference
category, and Treat so that Placebo is the reference category. The additional steps to produce
nicely formatted plots are contained in the file arthritis-propodds.sas. arthritis-

propodds.sas

title ’Logistic Regression: Proportional Odds Model’;
%include catdata(arthrit);

proc logistic data=arthrit descending;
class sex (ref=last) treat (ref=first) / param=ref;
model improve = sex treat age ;
output out=results p=prob l=lower u=upper

xbeta=logit stdxbeta=selogit / alpha=.33;

proc print data=results(obs=6);
id id treat sex;
var improve _level_ prob lower upper logit;
format prob lower upper logit selogit 6.3;

run;

In SAS 9.2+ it is easier to plot results using ODS graphics and the effectplot statement
The code below is contained in arthritis-propodds-ods.sas arthritis-

propodds-
ods.sasproc logistic data=arthrit descending ;

class sex (ref=last) treat (ref=first) / param=ref;
model improve = sex treat age / clodds=wald expb;
effectplot slicefit(sliceby=improve plotby=Treat) / at(sex=all) clm alpha=0.33 ;
effectplot interaction(x=Treat sliceby=improve) / at(sex=all) noobs clm alpha=0.33;

run;

In R, we can fit the proportional odds model with polr() in the MASS package. There is R

5 Caution: The score test for the proportional odds model is known to be anti-conservative, i.e., it yields
p-values that are too small in many cases.
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no simple equivalent for the score test of the proportional odds assumption. The statements
below are contained in the file arthritis-propodds.R. arthritis-

propodds.R

library(vcd)
library(car) # for Anova()

arth.polr <- polr(Improved ~ Sex + Treatment + Age, data=Arthritis)
summary(arth.polr)
Anova(arth.polr) # Type II tests

In R it is easy to obtain effect plots showing the fitted probabilities in relation to any of the
terms in the model (or even terms not in the model).

library(effects)
arth.effects <- allEffects(arth.polr, xlevels=list(age=seq(15,45,5)) )
plot(arth.effects) # visualize all main effects

# plot terms not in model
plot(effect("Sex:Age", arth.polr))
plot(effect("Treatment:Age", arth.polr))

5.2 Nested dichotomies

This exercise concerns data on women’s labour-force participation collected at York University
in a 1977 survey of the Canadian population. The three-level response has categories Not
working outside the home (n = 155), working Part-time (n = 42) and working Full-time (n =
66). The predictors are Husband’s income ($1000s), Presence of children in the household,
and Region of Canada. Region turns out not to be an important predictor, so we will ignore
it here. Tasks &

questions

1. The first question is whether the proportional odds model provides a reasonable account
of these data— if so, it would give a simple description. Fit the proportional odds model,
and test whether the proportional odds assumption is tenable (only in SAS).

2. Fit separate logistic models for the two nested dichotomies:

• Working (full- or part-time) vs. Not Working; and
• Working Full-time vs. Part-time.

3. Interpret the coefficients in the two models. What do they say about the effect of
Husband’s income and Children on the probabilities for the two dichotomies?

4. Plot the fitted probabilities for the 3 categories of the response in relation to Husband’s
income and Children.

For SAS, the data are contained in the data set wlfpart. The 3-level response here is labor, SAS
with values 1 (Full-time), 2 (Part-time), 3 (Not working). When the data are read in,
two dichotomous responses are created: working = labor < 3, and fulltime = labor=1

(but just for working women. The statements below (and more) are contained in the file
wlf-nested.sas. wlf-nested.sas

Fitting the proportional odds model:
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%include catdata(wlfpart);
proc logistic data=wlfpart nosimple descending;

model labor = husinc children ;
title2 ’Proportional Odds Model for Fulltime/Parttime/NotWorking’;

run;

Fitting and plotting the models for the nested dichotomies. Note how an ODS OUTPUT state-
mentan be used to capture the global test statistics. See the wlf-nested.sas file for how to wlf-nested.sas

combine these to give overall tests for the 3-level nested dichotomy model.

proc logistic data=wlfpart nosimple descending;
model working = husinc children ;
output out=resultw p=predict;
ods output GlobalTests=gtests1;
title ’Nested Dichotomies’;

proc plot;
plot predict * husinc = children;

proc logistic data=wlfpart nosimple descending;
model fulltime = husinc children ;
output out=resultf p=predict;
ods output GlobalTests=gtests2;

proc plot;
plot predict * husinc = children;

run;
quit;

In R, the data are in the data frame Womenlf in the car package. The 3-level response is called R
partic here, an unordered factor with values fulltime, not.work and parttime. One easy
way to create the two dichotomous responses is with the recode() function in car package.
The file wlf-nested.R contains the statements below, and also shows how to produce a plot wlf-nested.R

of the fitted values.

library(car)
data(Womenlf)
attach(Womenlf)
working <- recode(partic, " ’not.work’ = ’no’; else = ’yes’ ")
fulltime <- recode (partic,

" ’fulltime’ = ’yes’; ’parttime’ = ’no’; ’not.work’ = NA")

Fitting nested dichotomies models: We use treatment contrasts for children, so the coefficient
represents the effect for having children.

contrasts(children)<- ’contr.treatment’
mod.working <- glm(working ~ hincome + children, family=binomial)
summary(mod.working)
mod.fulltime <- glm(fulltime ~ hincome + children, family=binomial)
summary(mod.fulltime)
Anova(mod.working)
Anova(mod.fulltime)

Obtaining predicted values for plotting: The general idea is to create a data frame with the
combinations of the predictor values you want to see, and use the predict() method to get
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the fitted values. For binomial glm() models, type=’response’ gives fitted values on the
probability scale.6

# get fitted values for both sub-models
predictors <- expand.grid(hincome=1:45, children=c(’absent’, ’present’))

p.work <- predict(mod.working, predictors, type=’response’)
p.fulltime <- predict(mod.fulltime, predictors, type=’response’)

One slight complication: Because the model for the fulltime dichotomy is conditional on
working, you need to do some calculations to obtain the unconditional probabilities for each
of the three response categories.

# calculate unconditional probs for the three response categories
p.full <- p.work * p.fulltime
p.part <- p.work * (1 - p.fulltime)
p.not <- 1 - p.work

5.3 Generalized logits

The generalized (or multinomial) logit model is an alternative to using nested dichotomies
for a polytomous reponse. One advantage is that you can fit this as a single model, without
resorting to the special tricks used for nested dichotomies.
In using the generalized logit model, you should take care to specify the baseline response
category, so you understand how to interpret the fitted coefficients. As always, plots of the
fitted model (probabilities or logits) facilitate interpretation.
In this exercise, we continue with the data on women’s labor participation from Section 5.2,
but now fit a generalized logit model. Tasks &

questions

1. Fit the generalized logit model, using Not working as the baseline response category.
2. Examine the coefficients for Husband’s income and Children in the comparisons of Part-

time and Full-time vs. Not working. On which comparison to the predictors show a
greater impact?

3. Plot the fitted probabilities of all three response categories over the range of Husbabd’s
income for both levels of Children. Compare this plot to the analogous plot for the
nested dichotomies model.

In SAS, you can fit the generalized logit model for the polytomous response labor simply by
specifying the option link=glogit on the model statement Use the output statemento obtain SAS
fitted values, both on the probability scale p=predict and on the logit scale xbeta=logit.

*-- Fit generalized logit model;
proc logistic data=wlfpart;

model labor = husinc children / link=glogit;
output out=results p=predict xbeta=logit;

In the output data set results, the three response categories are identified by a variable
_level_. The simplest plot of the fitted probabilities is produced with PROC PLOT as shown
below. See the file wlf-glogit.sas for details on plotting the fitted results with PROC GPLOT wlf-glogit.sas

and better labels for the curves.
6 The default, type=’link’, gives fitted values on the logit scale.
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proc sort data=results;
by children husinc _level_;

*-- simple plot;
proc plot data=results;

plot predict * husinc = _level_ ;
by children;

For R, it is helpful to first turn partic into an ordered factor, so that Not working is the
baseline category. The multinomial logit model cannot be fit directly with glm(); it can be R
fit using the multinom() function in the nnet package, which also requires the MASS library.
See the file wlf-glogit.R for more details on plotting the fitted results. wlf-glogit.R

Fitting the multinomial logit model:

library(car)
data(Womenlf)
attach(Womenlf)
participation <- ordered(partic,

levels=c(’not.work’, ’parttime’, ’fulltime’))
library(nnet)
library(MASS)
mod.multinom <- multinom(participation ~ hincome + children)
summary(mod.multinom, cor=F, Wald=T)
Anova(mod.multinom)

Obtaining predicted values for plotting: Here, we get fitted values on the probability scale
with type=’probs’.

predictors <- expand.grid(hincome=1:45, children=c(’absent’, ’present’))
p.fit <- predict(mod.multinom, predictors, type=’probs’)
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