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Hypothesis Tests for Multivariate
Linear Models Using the car Package
by John Fox, Michael Friendly, and Sanford Weisberg

Abstract The multivariate linear model is

Y
(n×m)

= X
(n×p)

B
(p×m)

+ E
(n×m)

The multivariate linear model can be fit with the lm function in R, where the left-hand side of the
model comprises a matrix of response variables, and the right-hand side is specified exactly as for a
univariate linear model (i.e., with a single response variable). This paper explains how to use the
Anova and linearHypothesis functions in the car package to perform convenient hypothesis tests for
parameters in multivariate linear models, including models for repeated-measures data.

Basic ideas

The multivariate linear model accommodates two or more response variables. The theory of multivariate linear
models is developed very briefly in this section, which is based on Fox (2008, Sec. 9.5). There are many texts
that treat multivariate linear models and multivariate analysis of variance (MANOVA) more extensively: The
theory is presented in Rao (1973); more generally accessible treatments include Hand and Taylor (1987) and
Morrison (2005). A good brief introduction to the MANOVA approach to repeated-measures may be found
in O’Brien and Kaiser (1985), from which we draw an example below. Winer (1971, Chap. 7) presents the
traditional univariate approach to repeated-measures ANOVA.

The multivariate general linear model is

Y
(n×m)

= X
(n×p)

B
(p×m)

+ E
(n×m)

where Y is a matrix of n observations on m response variables; X is a model matrix with columns for p regressors,
typically including an initial column of 1s for the regression constant; B is a matrix of regression coefficients, one
column for each response variable; and E is a matrix of errors. The contents of the model matrix are exactly as
in the univariate linear model, and may contain, therefore, dummy regressors representing factors, polynomial
or regression-spline terms, interaction regressors, and so on. For brevity, we assume that X is of full column-rank
p; allowing for less than full rank cases would only introduce additional notation but not fundamentally change
any of the results presented here.

The assumptions of the multivariate linear model concern the behavior of the errors: Let ε′i represent the ith
row of E. Then ε′i ∼ Nm(0,Σ), where Σ is a nonsingular error-covariance matrix, constant across observations;
ε′i and ε′j are independent for i 6= j; and X is fixed or independent of E. We can write more compactly that

vec(E)∼Nnm(0, In ⊗ Σ). Here, vec(E) ravels the error matrix row-wise into a vector, In is the order-n identity
matrix, and ⊗ is the Kronecker-product operator.

The maximum-likelihood estimator of B in the multivariate linear model is equivalent to equation-by-equation
least squares for the individual responses:

B̂ = (X′X)−1X′Y

Procedures for statistical inference in the multivariate linear model, however, take account of correlations among
the responses.

Paralleling the decomposition of the total sum of squares into regression and residual sums of squares in the
univariate linear model, there is in the multivariate linear model a decomposition of the total sum-of-squares-
and-cross-products (SSP) matrix into regression and residual SSP matrices. We have

SSPT
(m×m)

= Y′Y− ny y′

= Ê′Ê +
(

Ŷ′Ŷ− ny y′
)

= SSPR + SSPReg

where y is the (m× 1) vector of means for the response variables; Ŷ = XB̂ is the matrix of fitted values; and

Ê = Y− Ŷ is the matrix of residuals.
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Many hypothesis tests of interest can be formulated by taking differences in SSPReg (or, equivalently, SSPR)
for nested models, although the Anova function in the car package (Fox and Weisberg, 2011), described below,
calculates SSP matrices for common hypotheses more cleverly, without refitting the model. Let SSPH represent
the incremental SSP matrix for a hypothesis—that is, the difference between SSPReg for the model unrestricted
by the hypothesis and SSPReg for the model on which the hypothesis is imposed. Multivariate tests for the

hypothesis are based on the m eigenvalues λj of SSPHSSP−1
R (the hypothesis SSP matrix “divided by” the

residual SSP matrix), that is, the values of λ for which

det(SSPHSSP−1
R − λIm) = 0

The several commonly used multivariate test statistics are functions of these eigenvalues:

Pillai-Bartlett Trace, TPB =
m

∑
j=1

λj

1− λj

Hotelling-Lawley Trace, THL =
m

∑
j=1

λj

Wilks’s Lambda, Λ =
m

∏
j=1

1
1 + λj

Roy’s Maximum Root, λ1

(1)

By convention, the eigenvalues of SSPHSSP−1
R are arranged in descending order, and so λ1 is the largest

eigenvalue. The car package uses F approximations to the null distributions of these test statistics (see, e.g.,
Rao, 1973, p. 556, for Wilks’s Lambda).

The tests apply generally to all linear hypotheses. Suppose that we want to test the linear hypothesis

H0: L
(q×p)

B
(p×m)

= C
(q×m)

(2)

where L is a hypothesis matrix of full row-rank q ≤ p, and the right-hand-side matrix C consists of constants,
usually 0s. Then the SSP matrix for the hypothesis is

SSPH =
(

B̂′L′ − C′
)[

L(X′X)−1L′
]−1(

LB̂− C
)

The various test statistics are based on the k = min(q,m) nonzero eigenvalues of SSPHSSP−1
R .

When a multivariate response arises because a variable is measured on different occasions, or under different
circumstances (but for the same individuals), it is also of interest to formulate hypotheses concerning comparisons
among the responses. This situation, called a repeated-measures design, can be handled by linearly transforming
the responses using a suitable “within-subjects” model matrix, for example extending the linear hypothesis in
Equation 2 to

H0: L
(q×p)

B
(p×m)

P
(m×v)

= C
(q×v)

(3)

Here, the response-transformation matrix P, assumed to be of full column-rank, provides contrasts in the
responses (see, e.g., Hand and Taylor, 1987, or O’Brien and Kaiser, 1985). The SSP matrix for the hypothesis
is

SSPH
(q×q)

=
(

P′B̂′L′ − C′
)[

L(X′X)−1L′
]−1(

LB̂P− C
)

and test statistics are based on the k = min(q,v) nonzero eigenvalues of SSPH(P′SSPRP)−1.

Fitting and testing multivariate linear models

Multivariate linear models are fit in R with the lm function. The procedure is the essence of simplicity: The left-
hand side of the model formula is a matrix of responses, with each column representing a response variable and
each row an observation; the right-hand side of the model formula and all other arguments to lm are precisely
the same as for a univariate linear model (as described, e.g., in Fox and Weisberg, 2011, Chap. 4). Typically,
the response matrix is composed from individual response variables via the cbind function. The anova function
in the standard R distribution is capable of handling multivariate linear models (see Dalgaard, 2007), but the
Anova and linearHypothesis functions in the car package may also be employed. We briefly demonstrate the
use of these functions in this section.
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Figure 1: Three species of irises in the Anderson/Fisher data set: setosa (left), versicolor (center), and virginica
(right). Source: The photographs are respectively by Radomil Binek, Danielle Langlois, and Frank Mayfield, and are distributed

under the Creative Commons Attribution-Share Alike 3.0 Unported license (first and second images) or 2.0 Creative Commons

Attribution-Share Alike Generic license (third image); they were obtained from the Wikimedia Commons.

Anova and linearHypothesis are generic functions with methods for many common classes of statistical
models with linear predictors. In addition to multivariate linear models, these classes include linear models
fit by lm or aov; generalized linear models fit by glm; mixed-effects models fit by lmer or glmer in the lme4
package (Bates et al., 2012) or lme in the nlme package (Pinheiro et al., 2012); survival regression models fit
by coxph or survreg in the survival package (Therneau, 2012); multinomial-response models fit by multinom

in the nnet package (Venables and Ripley, 2002); ordinal regression models fit by polr in the MASS package
(Venables and Ripley, 2002); and generalized linear models fit to complex-survey data via svyglm in the survey
package (Lumley, 2004). There is also a generic method that will work with many models for which there are
coef and vcov methods. The Anova and linearHypothesis methods for "mlm" objects are special, however,
in that they handle multiple response variables and make provision for designs on repeated measures, discussed
in the next section.

To illustrate multivariate linear models, we will use data collected by Anderson (1935) on three species of
irises in the Gaspé Peninsula of Québec, Canada. The data are of historical interest in statistics, because they
were employed by R. A. Fisher (1936) to introduce the method of discriminant analysis. The data frame iris

is part of the standard R distribution, and we load the car package now for the some function, which randomly
samples the rows of a data set. We rename the variables in the iris data to make listings more compact:

> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

> names(iris) <- c("SL", "SW", "PL", "PW", "SPP")

> library(car)

> some(iris, 3) # 3 random rows

SL SW PL PW SPP

44 5.0 3.5 1.6 0.6 setosa

61 5.0 2.0 3.5 1.0 versicolor

118 7.7 3.8 6.7 2.2 virginica

The first four variables in the data set represent measurements (in cm) of parts of the flowers, while the final
variable specifies the species of iris. (Sepals are the green leaves that comprise the calyx of the plant, which
encloses the flower.) Photographs of examples of the three species of irises—setosa, versicolor, and virginica—
appear in Figure 1. Figure 2 is a scatterplot matrix of the four measurements classified by species, showing
within-species 50 and 95% concentration ellipses (see Fox and Weisberg, 2011, Sec. 4.3.8); Figure 3 shows
boxplots for each of the responses by species. These graphs are produced by the scatterplotMatrix and
Boxplot functions in the car package (see Fox and Weisberg, 2011, Sec. 3.2.2 and 3.3.2). As the photographs
suggest, the scatterplot matrix and boxplots for the measurements reveal that versicolor and virginica are more
similar to each other than either is to setosa. Further, the ellipses in the scatterplot matrix suggest that the
assumption of constant within-group covariance matrices is problematic: While the shapes and sizes of the
concentration ellipses for versicolor and virginica are reasonably similar, the shapes and sizes of the ellipses for
setosa are different from the other two.

We proceed nevertheless to fit a multivariate one-way ANOVA model to the iris data:

> mod.iris <- lm(cbind(SL, SW, PL, PW) ~ SPP, data=iris)

> class(mod.iris)
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Figure 2: Scatterplot matrix for the Anderson/Fisher iris data, showing within-species 50 and 95% concentration
ellipses.

[1] "mlm" "lm"

The lm function returns an S3 object of class "mlm" inheriting from class "lm". The printed representation of
the object (not shown) simply displays the estimated regression coefficients for each response, and the model
summary (also not shown) is the same as we would obtain by performing separate least-squares regressions for
the four responses.

We use the Anova function in the car package to test the null hypothesis that the four response means are
identical across the three species of irises:

> manova.iris <- Anova(mod.iris)

> manova.iris

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

SPP 2 1.19 53.5 8 290 <2e-16

> class(manova.iris)

[1] "Anova.mlm"

> summary(manova.iris)

Type II MANOVA Tests:

Sum of squares and products for error:

SL SW PL PW
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Figure 3: Boxplots for the response variables in the iris data set classified by species.

SL 38.956 13.630 24.625 5.645

SW 13.630 16.962 8.121 4.808

PL 24.625 8.121 27.223 6.272

PW 5.645 4.808 6.272 6.157

------------------------------------------

Term: SPP

Sum of squares and products for the hypothesis:

SL SW PL PW

SL 63.21 -19.95 165.25 71.28

SW -19.95 11.34 -57.24 -22.93

PL 165.25 -57.24 437.10 186.77

PW 71.28 -22.93 186.77 80.41

Multivariate Tests: SPP

Df test stat approx F num Df den Df Pr(>F)

Pillai 2 1.19 53.5 8 290 <2e-16

Wilks 2 0.02 199.1 8 288 <2e-16

Hotelling-Lawley 2 32.48 580.5 8 286 <2e-16

Roy 2 32.19 1167.0 4 145 <2e-16

The Anova function returns an object of class "Anova.mlm" which, when printed, produces a MANOVA table,
by default reporting Pillai’s test statistic;1 summarizing the object produces a more complete report. Because
there is only one term (beyond the regression constant) on the right-hand side of the model, in this example
the “type-II” test produced by default by Anova is the same as the sequential (“type-I”) test produced by the
standard R anova function (output not show):

> anova(mod.iris)

The null hypothesis is soundly rejected.
The object returned by Anova may also be used in further computations, for example, for displays such as

HE plots (Friendly, 2007; Fox et al., 2009; Friendly, 2010), as we illustrate below.
The linearHypothesis function in the car package may be used to test more specific hypotheses about the

parameters in the multivariate linear model. For example, to test for differences between setosa and the average
of versicolor and virginica, and for differences between versicolor and virginica:

> linearHypothesis(mod.iris, "0.5*SPPversicolor + 0.5*SPPvirginica")

. . .

Multivariate Tests:

1The Manova function in the car package may be used as a synonym for Anova applied to a multivariate linear model. The
computation of the standard multivariate test statistics is performed via unexported functions from the standard R stats package,
such as stats:::Pillai.
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Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.967 1064 4 144 <2e-16

Wilks 1 0.033 1064 4 144 <2e-16

Hotelling-Lawley 1 29.552 1064 4 144 <2e-16

Roy 1 29.552 1064 4 144 <2e-16

> linearHypothesis(mod.iris, "SPPversicolor = SPPvirginica")

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.7452 105.3 4 144 <2e-16

Wilks 1 0.2548 105.3 4 144 <2e-16

Hotelling-Lawley 1 2.9254 105.3 4 144 <2e-16

Roy 1 2.9254 105.3 4 144 <2e-16

Here and elsewhere in this paper, we use widely separated ellipses (. . .) to indicate abbreviated R output.
Setting the argument verbose=TRUE to linearHypothesis (not given here to conserve space) shows in

addition the hypothesis matrix L and right-hand-side matrix C for the linear hypothesis in Equation 2 (page 2).
In this case, all of the multivariate test statistics are equivalent and therefore translate into identical F-statistics.
Both focussed null hypotheses are easily rejected, but the evidence for differences between setosa and the
other two iris species is much stronger than for differences between versicolor and virginica. Testing that
"0.5*SPPversicolor + 0.5*SPPvirginica" is 0 tests that the average of the mean vectors for these two
species is equal to the mean vector for setosa, because the latter is the baseline category for the Species

dummy regressors.
An alternative, equivalent, and in a sense more direct, approach is to fit the model with custom contrasts

for the three species of irises, followed up by a test for each contrast:

> C <- matrix(c(1, -0.5, -0.5, 0, 1, -1), 3, 2)

> colnames(C) <- c("S:VV", "V:V")

> rownames(C) <- unique(iris$SPP)

> contrasts(iris$SPP) <- C

> contrasts(iris$SPP)

S:VV V:V

setosa 1.0 0

versicolor -0.5 1

virginica -0.5 -1

> mod.iris.2 <- update(mod.iris)

> coef(mod.iris.2)

SL SW PL PW

(Intercept) 5.8433 3.0573 3.758 1.1993

SPPS:VV -0.8373 0.3707 -2.296 -0.9533

SPPV:V -0.3260 -0.1020 -0.646 -0.3500

> linearHypothesis(mod.iris.2, c(0, 1, 0)) # setosa vs. versicolor & virginica

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.967 1064 4 144 <2e-16

Wilks 1 0.033 1064 4 144 <2e-16

Hotelling-Lawley 1 29.552 1064 4 144 <2e-16

Roy 1 29.552 1064 4 144 <2e-16

> linearHypothesis(mod.iris.2, c(0, 0, 1)) # versicolor vs. virginica

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)
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Figure 4: HE plot for the multivariate test of Species in the iris data, α = 0.05, shown for the sepal length
and sepal width response variables. Also shown are the multivariate linearHypothesis tests for two contrasts
among species. The shaded red ellipse is the error ellipse, and the hypothesis ellipses (including the two lines)
are blue.

Pillai 1 0.7452 105.3 4 144 <2e-16

Wilks 1 0.2548 105.3 4 144 <2e-16

Hotelling-Lawley 1 2.9254 105.3 4 144 <2e-16

Roy 1 2.9254 105.3 4 144 <2e-16

We note here briefly that the heplots package (Friendly, 2007; Fox et al., 2009) provides informative visu-
alizations in 2D and 3D hypothesis-error (HE) plots of multivariate hypothesis tests and "Anova.mlm" objects
based on Eqn. 2. These plots show direct visual representations of the SSPH and SSPE matrices as (possibly
degenerate) ellipses and ellipsoids.

Using the default significance scaling, HE plots have the property that the SSPH ellipsoid extends outside
the SSPE ellipsoid if and only if the corresponding multivariate hypothesis test is rejected by Roy’s maximum
root test at a given α level. See Friendly (2007) and Fox et al. (2009) for details of these methods, and Friendly
(2010) for analogous plots for repeated measure designs.

To illustrate, Figure 4 shows the 2D HE plot of the two sepal variables for the overall test of Species,
together with the tests of the contrasts among species described above. The SSPH matrices for the contrasts
have rank 1, so their ellipses plot as lines. All three SSPH ellipses extend far outside the SSPE ellipse, indicating
that all tests are highly significant.

> library(heplots)

> hyp <- list("V:V"="SPPV:V", "S:VV"="SPPS:VV")

> heplot(mod.iris.2, hypotheses=hyp, fill=c(TRUE, FALSE), col=c("red", "blue"))

Finally, we can code the response-transformation matrix P in Equation 3 (page 2) to compute linear com-
binations of the responses, either via the imatrix argument to Anova (which takes a list of matrices) or the P

argument to linearHypothesis (which takes a matrix). We illustrate trivially with a univariate ANOVA for
the first response variable, sepal length, extracted from the multivariate linear model for all four responses:

> Anova(mod.iris, imatrix=list(Sepal.Length=matrix(c(1, 0, 0, 0))))

Type II Repeated Measures MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)
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Sepal.Length 1 0.992 19327 1 147 <2e-16

SPP:Sepal.Length 2 0.619 119 2 147 <2e-16

The univariate ANOVA for sepal length by species appears in the second line of the MANOVA table produced
by Anova. Similarly, using linearHypothesis,

> linearHypothesis(mod.iris, c("SPPversicolor = 0", "SPPvirginica = 0"),

+ P=matrix(c(1, 0, 0, 0))) # equivalent

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 2 0.6187 119.3 2 147 <2e-16

Wilks 2 0.3813 119.3 2 147 <2e-16

Hotelling-Lawley 2 1.6226 119.3 2 147 <2e-16

Roy 2 1.6226 119.3 2 147 <2e-16

In this case, the P matrix is a single column picking out the first response. We verify that we get the same
F-test from a univariate ANOVA for Sepal.Length:

> Anova(lm(SL ~ SPP, data=iris))

Anova Table (Type II tests)

Response: SL

Sum Sq Df F value Pr(>F)

SPP 63.2 2 119 <2e-16

Residuals 39.0 147

Contrasts of the responses occur more naturally in the context of repeated-measures data, which we discuss
in the following section.

Handling repeated measures

Repeated-measures data arise when multivariate responses represent the same individuals measured on a re-
sponse variable (or variables) on different occasions or under different circumstances. There may be a more
or less complex design on the repeated measures. The simplest case is that of a single repeated-measures or
within-subjects factor, where the former term often is applied to data collected over time and the latter when
the responses represent different experimental conditions or treatments. There may, however, be two or more
within-subjects factors, as is the case, for example, when each subject is observed under different conditions on
each of several occasions. The terms “repeated measures” and “within-subjects factors” are common in disci-
plines, such as psychology, where the units of observation are individuals, but these designs are essentially the
same as so-called “split-plot” designs in agriculture, where plots of land are each divided into sub-plots, which
are subjected to different experimental treatments, such as differing varieties of a crop or differing levels of
fertilizer.

Repeated-measures designs can be handled in R with the standard anova function, as described by Dalgaard
(2007), but it is considerably simpler to get common tests from the Anova and linearHypothesis functions
in the car package, as we explain in this section. The general procedure is first to fit a multivariate linear
model with all of the repeated measures as responses; then an artificial data frame is created in which each
of the repeated measures is a row and in which the columns represent the repeated-measures factor or factors;
finally, as we explain below, the Anova or linearHypothesis function is called, using the idata and idesign

arguments (and optionally the icontrasts argument)—or alternatively the imatrix argument to Anova or P

argument to linearHypothesis—to specify the intra-subject design.
To illustrate, we use data reported by O’Brien and Kaiser (1985), in what they (justifiably) bill as “an

extensive primer” for the MANOVA approach to repeated-measures designs. Although the data are apparently
not real, they are contrived cleverly to illustrate the computations for repeated-measures MANOVA, and we
use the data for this reason, as well as to permit comparison of our results to those in an influential published
source. The data set OBrienKaiser is provided by the car package:

> some(OBrienKaiser, 4)

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859



Contributed Article 9

treatment gender pre.1 pre.2 pre.3 pre.4 pre.5 post.1 post.2 post.3 post.4

11 B M 3 3 4 2 3 5 4 7 5

12 B M 6 7 8 6 3 9 10 11 9

14 B F 2 2 3 1 2 5 6 7 5

16 B F 4 5 7 5 4 7 7 8 6

post.5 fup.1 fup.2 fup.3 fup.4 fup.5

11 4 5 6 8 6 5

12 6 8 7 10 8 7

14 2 6 7 8 6 3

16 7 7 8 10 8 7

> contrasts(OBrienKaiser$treatment)

[,1] [,2]

control -2 0

A 1 -1

B 1 1

> contrasts(OBrienKaiser$gender)

[,1]

F 1

M -1

> xtabs(~ treatment + gender, data=OBrienKaiser)

gender

treatment F M

control 2 3

A 2 2

B 4 3

There are two between-subjects factors in the O’Brien-Kaiser data: gender, with levels F and M; and treatment,
with levels A, B, and control. Both of these variables have predefined contrasts, with −1,1 coding for gender

and custom contrasts for treatment. In the latter case, the first contrast is for the control group vs. the
average of the experimental groups, and the second contrast is for treatment A vs. treatment B. We have defined
these contrasts, which are orthogonal in the row-basis of the between-subjects design, to reproduce the type-III
tests that are reported in the original source.

The frequency table for treatment by gender reveals that the data are mildly unbalanced. We will imagine
that the treatments A and B represent different innovative methods of teaching reading to learning-disabled
students, and that the control treatment represents a standard method.

The 15 response variables in the data set represent two crossed within-subjects factors: phase, with three
levels for the pretest, post-test, and follow-up phases of the study; and hour, representing five successive hours,
at which measurements of reading comprehension are taken within each phase. We define the “data” for the
within-subjects design as follows:

> phase <- factor(rep(c("pretest", "posttest", "followup"), each=5),

+ levels=c("pretest", "posttest", "followup"))

> hour <- ordered(rep(1:5, 3))

> idata <- data.frame(phase, hour)

> idata

phase hour

1 pretest 1

2 pretest 2

3 pretest 3

. . .

14 followup 4

15 followup 5

Mean reading comprehension is graphed by hour, phase, treatment, and gender in Figure 5. It appears as
if reading improves across phases in the two experimental treatments but not in the control group (suggesting
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Figure 5: Mean reading score by gender, treatment, phase, and hour, for the O’Brien-Kaiser data.

a possible treatment-by-phase interaction); that there is a possibly quadratic relationship of reading to hour
within each phase, with an initial rise and then decline, perhaps representing fatigue (suggesting an hour main
effect); and that males and females respond similarly in the control and B treatment groups, but that males do
better than females in the A treatment group (suggesting a possible gender-by-treatment interaction).

We next fit a multivariate linear model to the data, treating the repeated measures as responses, and with
the between-subject factors treatment and gender (and their interaction) appearing on the right-hand side of
the model formula:

> mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5,

+ post.1, post.2, post.3, post.4, post.5,

+ fup.1, fup.2, fup.3, fup.4, fup.5)

+ ~ treatment*gender, data=OBrienKaiser)

We then compute the repeated-measures MANOVA using the Anova function in the following manner:

> av.ok <- Anova(mod.ok, idata=idata, idesign=~phase*hour, type=3)

> av.ok

Type III Repeated Measures MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.967 296.4 1 10 9.2e-09

treatment 2 0.441 3.9 2 10 0.05471

gender 1 0.268 3.7 1 10 0.08480

treatment:gender 2 0.364 2.9 2 10 0.10447

phase 1 0.814 19.6 2 9 0.00052

treatment:phase 2 0.696 2.7 4 20 0.06211

gender:phase 1 0.066 0.3 2 9 0.73497

treatment:gender:phase 2 0.311 0.9 4 20 0.47215

hour 1 0.933 24.3 4 7 0.00033

treatment:hour 2 0.316 0.4 8 16 0.91833

gender:hour 1 0.339 0.9 4 7 0.51298
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treatment:gender:hour 2 0.570 0.8 8 16 0.61319

phase:hour 1 0.560 0.5 8 3 0.82027

treatment:phase:hour 2 0.662 0.2 16 8 0.99155

gender:phase:hour 1 0.712 0.9 8 3 0.58949

treatment:gender:phase:hour 2 0.793 0.3 16 8 0.97237

• Following O’Brien and Kaiser (1985), we report type-III tests (partial tests violating marginality), by
specifying the argument type=3. Although, as in univariate models, we generally prefer type-II tests (see
Fox and Weisberg, 2011, Sec. 4.4.4, and Fox, 2008, Sec. 8.2), we wanted to preserve comparability with
the original source. Type-III tests are computed correctly because the contrasts employed for treatment
and gender, and hence their interaction, are orthogonal in the row-basis of the between-subjects design.
We invite the reader to compare these results with the default type-II tests.

• When, as here, the idata and idesign arguments are specified, Anova automatically constructs orthogonal
contrasts for different terms in the within-subjects design, using contr.sum for a factor such as phase

and contr.poly (orthogonal polynomial contrasts) for an ordered factor such as hour. Alternatively, the
user can assign contrasts to the columns of the intra-subject data, either directly or via the icontrasts

argument to Anova. In any event, Anova checks that the within-subjects contrast coding for different
terms is orthogonal and reports an error when it is not.

• By default, Pillai’s test statistic is displayed; we invite the reader to examine the other three multivariate
test statistics. Much more detail of the tests is provided by summary(av.ok) (not shown).

• The results show that the anticipated hour effect is statistically significant, but the treatment × phase

and treatment × gender interactions are not quite significant. There is, however, a statistically significant
phase main effect. Of course, we should not over-interpret these results, partly because the data set is
small and partly because it is contrived.

Univariate ANOVA for repeated measures

A traditional univariate approach to repeated-measures (or split-plot) designs (see, e.g., Winer, 1971, Chap. 7)
computes an analysis of variance employing a “mixed-effects” models in which subjects generate random effects.
This approach makes stronger assumptions about the structure of the data than the MANOVA approach
described above, in particular stipulating that the covariance matrices for the repeated measures transformed
by the within-subjects design (within combinations of between-subjects factors) are spherical—that is, the
transformed repeated measures for each within-subjects test are uncorrelated and have the same variance, and
this variance is constant across cells of the between-subjects design. A sufficient (but not necessary) condition
for sphericity of the errors is that the covariance matrix Σ of the repeated measures is compound-symmetric,
with equal diagonal entries (representing constant variance for the repeated measures) and equal off-diagonal
elements (implying, together with constant variance, that the repeated measures have a constant correlation).

By default, when an intra-subject design is specified, summarizing the object produced by Anova reports
both MANOVA and univariate tests. Along with the traditional univariate tests, the summary reports tests
for sphericity (Mauchly, 1940) and two corrections for non-sphericity of the univariate test statistics for within-
subjects terms: the Greenhouse-Geisser correction (Greenhouse and Geisser, 1959) and the Huynh-Feldt cor-
rection (Huynh and Feldt, 1976). We illustrate for the O’Brien-Kaiser data, suppressing the output for brevity;
we invite the reader to reproduce this analysis:

> summary(av.ok, multivariate=FALSE)

There are statistically significant departures from sphericity for F-tests involving hour; the results for the
univariate ANOVA are not terribly different from those of the MANOVA reported above, except that now the
treatment × phase interaction is statistically significant.

Using linearHypothesis with repeated-measures designs

As for simpler multivariate linear models (discussed previously in this paper), the linearHypothesis function
can be used to test more focused hypotheses about the parameters of repeated-measures models, including for
within-subjects terms.

As a preliminary example, to reproduce the test for the main effect of hour, we can use the idata, idesign,
and iterms arguments in a call to linearHypothesis:
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> linearHypothesis(mod.ok, "(Intercept) = 0", idata=idata,

+ idesign=~phase*hour, iterms="hour")

Response transformation matrix:

hour.L hour.Q hour.C hour^4

pre.1 -0.6325 0.5345 -3.162e-01 0.1195

pre.2 -0.3162 -0.2673 6.325e-01 -0.4781

. . .

fup.5 0.6325 0.5345 3.162e-01 0.1195

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.933 24.32 4 7 0.000334

Wilks 1 0.067 24.32 4 7 0.000334

Hotelling-Lawley 1 13.894 24.32 4 7 0.000334

Roy 1 13.894 24.32 4 7 0.000334

Because hour is a within-subjects factor, we test its main effect as the regression intercept in the between-
subjects model, using a response-transformation matrix for the hour contrasts.

Alternatively and equivalently, we can generate the response-transformation matrix P for the hypothesis
directly:

> Hour <- model.matrix(~ hour, data=idata)

> dim(Hour)

[1] 15 5

> head(Hour, 5)

(Intercept) hour.L hour.Q hour.C hour^4

1 1 -0.6325 0.5345 -3.162e-01 0.1195

2 1 -0.3162 -0.2673 6.325e-01 -0.4781

3 1 0.0000 -0.5345 -4.096e-16 0.7171

4 1 0.3162 -0.2673 -6.325e-01 -0.4781

5 1 0.6325 0.5345 3.162e-01 0.1195

> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , c(2:5)])

Response transformation matrix:

hour.L hour.Q hour.C hour^4

pre.1 -0.6325 0.5345 -3.162e-01 0.1195

pre.2 -0.3162 -0.2673 6.325e-01 -0.4781

. . .

fup.5 0.6325 0.5345 3.162e-01 0.1195

Sum of squares and products for the hypothesis:

hour.L hour.Q hour.C hour^4

hour.L 0.01034 1.556 0.3672 -0.8244

hour.Q 1.55625 234.118 55.2469 -124.0137

hour.C 0.36724 55.247 13.0371 -29.2646

hour^4 -0.82435 -124.014 -29.2646 65.6907

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.933 24.32 4 7 0.000334

Wilks 1 0.067 24.32 4 7 0.000334

Hotelling-Lawley 1 13.894 24.32 4 7 0.000334

Roy 1 13.894 24.32 4 7 0.000334
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As mentioned, this test simply duplicates part of the output from Anova, but suppose that we want to test
the individual polynomial components of the hour main effect:

> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , 2, drop=FALSE]) # linear

Response transformation matrix:

hour.L

pre.1 -0.6325

pre.2 -0.3162

. . .

fup.5 0.6325

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.0001 0.001153 1 10 0.974

Wilks 1 0.9999 0.001153 1 10 0.974

Hotelling-Lawley 1 0.0001 0.001153 1 10 0.974

Roy 1 0.0001 0.001153 1 10 0.974

> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , 3, drop=FALSE]) # quadratic

Response transformation matrix:

hour.Q

pre.1 0.5345

pre.2 -0.2673

. . .

fup.5 0.5345

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.834 50.19 1 10 0.0000336

Wilks 1 0.166 50.19 1 10 0.0000336

Hotelling-Lawley 1 5.019 50.19 1 10 0.0000336

Roy 1 5.019 50.19 1 10 0.0000336

> linearHypothesis(mod.ok, "(Intercept) = 0", P=Hour[ , c(2, 4:5)]) # all non-quadratic

Response transformation matrix:

hour.L hour.C hour^4

pre.1 -0.6325 -3.162e-01 0.1195

pre.2 -0.3162 6.325e-01 -0.4781

. . .

fup.5 0.6325 3.162e-01 0.1195

. . .

Multivariate Tests:

Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.896 23.05 3 8 0.000272

Wilks 1 0.104 23.05 3 8 0.000272

Hotelling-Lawley 1 8.644 23.05 3 8 0.000272

Roy 1 8.644 23.05 3 8 0.000272

The hour main effect is more complex, therefore, than a simple quadratic trend.
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Conclusions

In contrast to the standard R anova function, the Anova and linearHypothesis functions in the car package
make it relatively simple to compute hypothesis tests that are typically used in applications of multivariate linear
models, including to repeated-measures data. Although similar facilities for multivariate analysis of variance
and repeated measures are provided by traditional statistical packages such as SAS and SPSS, we believe that
the printed output from Anova and linearHypothesis is more readable, producing compact standard output
and providing details when one wants them. These functions also return objects containing information—
for example, SSP and response-transformation matrices—that may be used for further computations and in
graphical displays, such as HE plots.
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