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This paper reviews three major classes of structural models of episodic and 
semantic memory which have been proposed to describe the organization of 
permanent memory. Although semantic memory workers have developed methods 
for obtaining representations of these models from empirical data, students of 
episodic memory generally have not. A method is presented for extracting 
representations of memory structure using output order information from a free 
recall learning task. It is shown that this method can be embedded within each of the 
three general models of memory structure to produce graphic representations of 
those structures. These representations may be obtained for individuals or for 
group data, and in some cases the nature and extent of individual differences in 
organizational structure can be characterized. A final section of the paper 
demonstrates the validity of the method using both real and simulated data, shows 
that the method is sensitive even to small differences in organizational structure, 
and illustrates the utility of this approach with an analysis of part-whole transfer. 

Within theories of memory, two broad classes of components can be 
distinguished. Structural components relate to the format, arrangement, 
and interrelationships among item traces in the memory system. 
Functional components relate to the processes by which items become 
encoded, are stored, and subsequently are retrieved. In the language of 
information retrieval, structural components of memory models describe 
or represent the data base of the memory system, while functional 
components describe the routines which operate upon this data base. 

Over the last two decades, the notion that the memory data base 
constitutes a highly organized system has played an increasingly dominant 
role in theory and research in human memory, particularly in the context of 
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multitrial free recall (MFR). At an operational level, organization is said to 
occur in multitrial free recall when the learner recalls list words in an order 
which becomes increasingly consistent or stereotyped as learning 
proceeds. Theoretically, organization in MFR is considered to reflect the 
grouping of nominally distinct list items into functional memory units in 
such a way that items linked or grouped together can be recalled more 
easily than unorganized items. The increasing consistency in output order 
over trials is assumed to reflect the development of these memory units, 
recalled as contiguous chunks. 

The implicit view in the present paper is that the phenomenon of 
organization is a manifestation of both a structural component and a set of 
processses which determines how that structure is utilized to retrieve 
verbal information. A fully articulated theory of organization, I believe, 
must elaborate both components in detail. The aims of the present paper, 
however, are more limited, and are restricted to the structure of 
information in the memory store. This strategy reflects this writer’s strong 
agreement with Anderson and Bower (1973) that 

the most fundamental problem confronting cognitive psychology today is how to 
represent theoretically the knowledge that a person has: what are the primitive 
symbols or concepts, how are they related, how are they to be concatenated and 
constructed into larger knowledge-structures, and how is this “information file” to 
be accessed, searched, and utilized in solving the mundane problems of daily living. 
The choice of a representation is central, since how one handles this issue causes 
widespread effects throughout the remainder of his theoretical efforts. As computer 
scientists working on problem solving have known for years, a good structural 
representation of the problem already constitutes half of its solution (Anderson & 
Bower, 1973, p. 151). 

The remainder of this paper is divided into four major sections. The first 
reviews three theoretical conceptions of the structure of organized 
memory and some of the empirical methods used to investigate these 
structures. The second section presents a method for quantifying the 
structure of organization and determining the contents of memory units, 
using order of recall information alone. The method provides a way of 
representing graphically the structure of organization for individual 
subjects, as well as for groups. Because of the reliance placed on graphical 
conceptualizations, I have come to call such a representation of the 
structural base of the memory system a memory diagram, or M-gram for 
short. The form of the M-gram is not atheoretical, however, but depends 
upon the conception of memory structure adopted. Nevertheless, the third 
section shows that the method can be embedded within, and used to 
investigate, each of the three conceptions reviewed in the first section. The 
final section presents some evidence relevant to the validity and usefulness 
of the method. 
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APPROACHESTOSTRUCTURE 

This section examines several general characterizations of the manner in 
which information is structured in the memory system. While the 
motivation here is directed toward developing an M-gram to represent 
organization in free recall, this review will draw on theories of semantic 
memory as well as theories of episodic memory. The distinction, suggested 
by Tulving (1972), is that traditional memory tasks, such as free recall, 
require the subject to remember the occurrence of temporally dated events 
or episodes, while semantic memory tasks call upon the subject to retrieve 
information from his base of knowledge of the world and of language. 

Tulving (1972) argued that semantic and episodic memory should be 
regarded, at least conceptually, as two separate memory systems. 
Alternatively, it may prove more useful to conceive of episodic and 
semantic memory as reflecting the operations of different encoding, 
storage, and retrieval processes operating on a common structural data 
base. To the extent that the latter view is correct, the task of mapping the 
structure of memory organization assumes even greater importance. 

Theories of memory organization differ in many respects, including their 
pretheoretical assumptions, the principal phenomena which they explain, 
and their detailed specifications of memory structures. However, they can 
be grouped into three major categories, dimensional models, tree-structure 
models, and network models, depending on the general format assumed for 
the structural component of memory. 

Dimensional Models 

One class of representations for the structure of organized memory is 
modeled on a multidimensional attribute space. The common feature of 
these approaches is the notion that verbal items are encoded or represented 
in memory in terms of their values on a set of features, attributes, 
dimensions, properties, or the like. These dimensions are sometimes 
conceived of as continuous, as in Euclidean space, and sometimes 
considered to take discrete values, e.g., semantic markers. 

Bower (1967) presented a highly elaborated model for the encoding of 
item information in terms of a bundle or vector of attributes and provided 
evidence in support of this conception, mostly from recognition studies. The 
attributes of items encoded in this way were left unspecified, in general, but 
would presumably be determined by the cognitive context and demands of 
a particular task. Underwood (1969) also conceptualized the memory trace 
as a collection of attributes. He identified temporal, spatial, frequency, 
modality, orthographic, and associative attributes as playing operative 
roles in particular memory tasks. 

In these papers Bower and Underwood are principally concerned with 
the manner in which individual items are represented in memory. Other 



STRUCTURE OF ORGANIZATION 191 

dimensional models of memory structure place more emphasis on the 
establishment and utilizations of interrelationships among items. Voss 
(1972) has suggested that organization occurs along four general structural 
dimensions, formal, associative, syntactic, and semantic, and he has 
formulated an analysis of associative learning in terms of the arousal or 
activation of the encodings of verbal items along these dimensions. 

Smith, Shoben, and Rips (1974) proposed an attribute model of memory 
structure to account for the findings in tasks involving verification of 
semantic relations (such as A robin is a bird). In their model, lexical terms 
and concepts are represented by sets of features. The features for each item 
are assumed to be ordered in terms of the degree to which they serve to 
define the item. In addition, Smith et al. (1974) argued that characteristic 
features, attributes that are typical, but not necessary to define an item, 
must also be represented in memory. Presumably, items in a given 
conceptual category (e.g., bird) would share the same defining features, but 
would differ in their characteristic features. Rips, Shoben, and Smith 
(1973) used multidimensional scaling (MDS) to depict the structure of 
relationships within the conceptual categories birds and mammals. Some 
evidence for the validity of their dimensional model was provided by the 
fact that the distances between items in the MDS solutions proved to be a 
good predictor of reaction time in the sentence verification task. 

Tree-Structure Models 

A second general class of models is based on hierarchical structures. The 
principal assumption underlying this conception of the memory store is 
that the internal representation of items consists of sets of categories or 
groups of items arranged in a nested fashion. Within the context of free 
recall research, this idea was developed by Mandler (1967, 1968, 1970) as 
an extension of Miller’s (1956) chunking hypothesis. Mandler (1967) 
described the operation of a hierarchically organized memory system as 
follows: 

We assume first the basic limit of the organizing system at 5 -C 2 per set of items. 
. . . Given that limitation, categories will be formed and 3-7 items assigned to 
them. . Once these initial categories are filled up, new categories will be created 
to accommodate additional items. But in turn, there will be a limit of about 5 2 2 
categories at this first level of categorization. When all slots are taken up with 
first level categories, a second level of categories will be formed, each of which 
may contain up to about seven first-level categories, and so forth. In this manner, 
a hierarchical system of categories can be built up with an increasing level of 
complexity and an exponential growth in the size of the system (p. 366). 

Wood (1972) and Bower, Clark, Lesgold, and Winzenz (1969) have 
discussed the nature of retrieval mechanisms which might operate on such 
a hierarchical structure. They suggest that hierarchical organization would 
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provide subjects with an efficient retrieval plan, so that access to a memory 
unit at any level of a hierarchy would provide a high probability of 
accessing the units at the next lower level. 

The efficacy of hierarchical organization of recall has received 
considerable empirical support. Recall of a categorized list is better when 
the list categories form a hierarchical structure than when they are 
independent (Cohen & Bousfield, 1956). One also finds facilitation of a 
hierarchically categorized list when that list is presented in a way that 
makes its structure most apparent. For example, recall is improved by 
simultaneously presenting the items in a tree structure (Bower et al., 1969) 
or by presenting items sequentially, blocked according to the hierarchical 
structure (Friendly, Note 4). Similar results are found when subjects form 
their own subjective hierarchies by sorting list words into nested groupings 
(Friendly, Note 5): Recall and delayed recognition are better following 
hierarchical sorting than when item s are sorted in a single level of 
categories. 

Tree structures have also grown in semantic memory research. Miller 
(1967, 1969) used the method of sorting to study how semantic information 
is organized and stored in permanent memory. In this task the subject 
examines a series of words and places them into clusters on the basis of 
“similarity of meaning.” Miller (1969) argued for a model in which words 
are encoded in terms of a list of features, but the features themselves are 
hierarchically ordered. Thus, canary might be represented by the features 
(object, animal, vertebrate, bird, . . .), where each feature presupposes 
those prior in the list. Miller suggested that subjects in the word sorting task 
must ignore certain distinguishing features, while paying attention to 
others. For example, to sort canary with robin, the subject must ignore 
color and domesticity features; to sort canary with trout, he must ignore 
class differences as well. The fewer the features on which two items differ, 
the greater the number of subjects who should sort the items together. 
Using the number of subjects sorting a pair of words together as an index of 
the proximity of those two words, Miller showed that a hierarchical 
organization of concepts produced definite constraints on the proximities. 
The hierarchy itself could be determined by applying hierarchical cluster 
analysis to the matrix of proximity values obtained from a group. 

In tree-structure models a given node may only be connected to nodes 
one generation above or below. It is worthwhile to point out that the 
tree-structure models discussed above arestrictly hierarchical, in that each 
node is connected to exactly one node at the next higher level. Lexical 
domains based on a class inclusion relationship (such as Animal names) do 
have a strictly hierarchical structure, as long as the classes do not overlap. 
However, as Kintsch (1970) points out, many interesting lexical domains 
(such as Body parts) have properties of a tree structure but are not strictly 
hierarchical. Methods for representing memory structure in terms of tree 
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structures with overlapping classes will therefore be considered in what 
follows. 

Network Models 

In a network the restrictions of tree structures are removed. Network 
models represent word concepts as nodes and relations among words as 
links connecting pairs of nodes. Any node may be linked to any other, and 
the links may be binary (representing a relation present or absent), 
real-valued (strength of relation), and/or labeled (type of relation). 

The earliest network models arose as attempts to apply structural 
analysis to word association behavior (Guiliano, 1963; Kiss, 1967, 1969; 
Pollio, 1966). In the model proposed by Kiss (1967, 1969), items in the 
network are characterized at any instant by their level of activity or 
excitation. The links allow the flow of excitation throughout the network 
according to their transmittance values (strength of association between 
nodes). 

Network models have been widely adopted in computer simulations of 
human memory. A computer model of free recall based on a simple 
associative network was developed by Anderson (1972). The model, called 
FRAN, consists of a semantic memory network of 262 nouns with links 
defined from dictionary definitions, together with routines to simulate 
study and retrieval processes. During a study trial, FRAN marks the node 
corresponding to the current word on the list with a tag, and searches its 
associative network for pathways leading from that node to previously 
studied (and hence marked) nodes. Successful pathways so found are 
themselves marked with a tag, which serves to provide efficient retrieval 
routes for searching the memory network during a recall trial. In recall, 
FRAN uses some starter items as entry points to its network, following 
marked pathways and retrieving nodes marked with a tag. 

This is a relatively simple type of network structure, and the match 
between simulation results and comparable human data is therefore 
impressive: Averaged data from FRAN closely approximate those of real 
subjects in their learning curve, subjective organization, serial position 
curve, and study-time vs recall relationships. 

FRAN fails, however, to duplicate some key MFR results. These misfits 
are instructive as to the boundaries of simple associative networks as 
models for memory structure. Human subjects recall quite well when 
semantic categories are present in a list, and do even better when the items 
are presented in a blocked fashion (Cofer, 1965; Dallett, 1964; Weist & 
Powell, 1972). On the whole, FRAN recalls less and shows less category 
clustering than humans when learning structured lists, and these 
discrepancies are even greater under blocked presentation. The reason for 
this, of course, is that FRAN’s network does not distinguish among items 
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linked by different types of relationships and cannot recognize the 
commonalities among word sets such as table, chair, sofa orfat, cat, hat. 

Anderson (1972) in fact, argued for the necessity of relation-labeled links 
in a network representation of memory structure, although the simulation 
program did not incorporate this feature. A number of memory models 
employing such relational networks have recently been proposed. These 
models are generally rather more ambitious in scope and therefore utilize 
more elaborate structures. 

Quillian (1968) proposed a general model of semantic memory which is 
directly configured in terms of a labeled associative network, but has a 
number of the features of a hierarchical structure. The model was later 
extended (Quillian, 1969) into a theory and computer realization designed 
to deal with the understanding of continuous text. 

Quillian’s model consists of a network of nodes connected by different 
types of links.’ Two types of nodes appear in the memory structure: type 
nodes which roughly correspond to dictionary word entries, and token 
nodes which represent the occurrence of word concepts in a particular 
context. The meaning of a type node resides in the configuration and types 
of links to its defining tokens. This configuration is called a plane. For 
example, the noun retort, meaning “a vessel in which substances are 
distilled or decomposed by heat,” would be represented by a plane 
consisting of the type node RETORT with labeled links among token nodes 
for vessel, substance, decompose, etc. The token nodes have links which 
point out of this plane to their own respective planes. This arrangement 
makes it possible to build up progressively more elaborate concepts using 
other word meanings. 

Class inclusion relations play a particularly dominant role in Quillian’s 
(1969) model, in that every node contains a mandatory pointer to its 
immediate superset node. Further, property values related to a concept are 
assumed to be stored at the highest node for which the property value 
applies to all descendent nodes. Thus, it is assumed that people store only 
the general fact; e.g., they store the information that birds can fly and infer 
that a canary can fly by tracing their superset links from canary to bird. 
Reaction times in a sentence verification task have been shown to be 
consistent with this assumption (Collins & Quillian, 1969, 1970, 1972). 

Smilar models of memory structure have been devised by a number of psychologists and 
computer scientists concerned with language understanding (for example, Anderson & 
Bower, 1973; Kintsch, 1972, 1974; Norman & Rumelhart, 1975; Rumelhart, Lindsay & 
Norman, 1972; &hank, 1973; Simmons, 1973; Fridja, 1972 provides a thorough review of 
earlier work). Formally, these workers represent memory networks in various ways (for 
example, using list structures) and give greater or lesser prominence to various psychological 
and linguistic principles and relations according to their aims. For the present purposes, 
however, they do not introduce additional structural components into the memory 
representation and will not be considered further here. 
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Relations among the Models 

It is not the purpose of this paper to evaluate these alternative models or 
contrast them in detail. However, there are several relations among these 
models which are worth noting here. 

First, it should be clear that a hierarchical structure is a special form of 
network, which has restrictions on allowable links. In this light Quillian’s 
network model is particularly interesting since the memory structure 
locally displays many features of a hierarchical system: Tracing all paths 
reachable from a given node generates a structure of progressively finer 
detail in a top-down manner; new concepts are linked to their superset 
nodes; and properties are stored hierarchically. The papers of Collins and 
Quillian in fact explicitly portray these local hierarchies, which are 
embedded in the overall memory network. Thus the memory system may 
be structured both hierarchically and as a network depending on the scope 
of view. Restricted lexical neighborhoods in permanent memory (a 
single-word concept, a taxonomic category) display strongly hierarchical 
features while larger, more general domains may appear to be networks. 

In addition, there is a close connection between dimensional models 
which represent word concepts using lists of features and network models 
with relational links. For, given a feature-list representation for a set of 
word concepts, it is possible to construct a network representation in 
which the words appear as nodes and the features are used to label the links 
between nodes (Fridja, 1972). 

The foregoing observations suggest that these models are actually more 
similar than has previously been realized and that the network model may 
be the most general. However, the conceptual differences among these 
three models are important since they affect how memory theorists think 
about the organization of memory and the experiments which they perform 
to unravel its mysteries. 

Empirical Approaches to Organization in Free Recall 

The free recall task has been the primary experimental vehicle used to 
study organization in episodic memory. However, the methods available 
for this purpose have been less strongly tied to the structural features of 
mnemonic organization than have tasks and methods developed by 
semantic memory researchers. There have, of course, been numerous 
proposals for measuring organization in free recall (Bousfield & Bousfield, 
1966; Dalrymple-Alford, 1970; Ehrlich, 1965; Frankel & Cole, 1971;Hud- 
son & Dunn, 1969; Pellegrino, 1971; Roenker, Thompson, & Brown, 1971; 
Tulving, 1962a). However, these procedures are all concerned with 
measuring theamount of organization in free recall output, rather than with 
the explicit structure of this organization. 

It is only with the use of categorized lists that measures of the amount of 
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organization (category clustering) can be related to organizational 
structure. It has been argued, however, that category clustering provides 
an indication of organizational format only to the extent that the subject 
actually discovers and makes use of the list structure defined by the 
experimenter (Mandler, 1967). A pervasive interpretive problem in these 
studies, therefore, is that the appearance of weak or moderate amounts of 
clustering is theoretically ambiguous. One often cannot tell whether the 
conditions of learning made it difficult for the subjects to organize, or 
whether they were merely organizing their recall in some unanticipated 
fashion. 

The use of experimenter-defined organizational schemes relies upon the 
assumption that language users share a sizable core of semantic 
information which can provide a dominant basis for organized recall. In 
contrast, Mandler (1967), Postman (1972), and Tulving (1968) have stressed 
the importance of focusing attention on the structure of subjective 
organization of unrelated lists: “In order to fully evaluate the relation 
between the type of subjective organization and recall, it is desirable to 
make the entire structure generated by the learner accessible to 
inspection” (Postman, 1972, pp. 24-25). Several investigators have 
attempted to provide this type of assessment. 

Seibel (Notes 11, 12) introduced a type of word-sorting task involving a 
modification of the typical presentation phase. With this procedure, the 
subject was given a study sheet with a large grid at the beginning of each 
trial. The subject was instructed to write each word as it was presented in 
any cell of the grid. This procedure allowed the subject to establish a 
subjective categorization during input and to rehearse these categories as 
presentation proceeded. At the end of each presentation, the subject wrote 
the words he could remember on a new blank sheet of paper. Seibel found 
that items written together on the study sheet also appeared as output 
sequences during the subjects’ recall. A control group, instructed to write 
the items on the study sheet in the order of presentation, recalled less well 
than the group allowed to form subjective categories. 

In a comprehensive series of experiments, Mandler (1967, 1970); 
Mandler & Pearlstone, 1966) used a word-sorting task both to induce a 
stable, subject-determined organization and to make this organization 
directly observable. In these studies, the subject was typically required to 
sort 50 to 100 words into anywhere from two to seven subjective groups. 
After several sorting trials, memory for the items was tested, usually in a 
single free recall trial. In these studies, Mandler was primarily concerned 
with the number of categories used in sorting as a predictor of subsequent 
recall performance and found a linear increase in recall as a function of this 
variable (up to approximately seven categories). He did not, however, 
focus on other structural features of the subjective categorizations. 

Allen (Notes 1, 2) developed similar memory unit identification tasks. 



STRUCTURE OF ORGANIZATION 197 

These tasks were employed after a series of FR trials had been completed 
and required the subject to indicate which groups of words went together in 
his memory for the list. Allen showed how the concepts and techniques of 
graph theory could be applied to the data from these tasks to generate an 
empirical directed graph representing the subjective structure of memory 
items. He also demonstrated that various aspects of recall, such as amount 
of subjective organization and number correct, could be postdicted from 
the graph representation of the individual subject’s organization. Since a 
directed graph is just a special case of a network (one having directed links 
either present or absent between nodes), Allen’s work provides a basis for 
developing an M-gram for free recall which can be coordinated with the 
network models of memory described earlier. This point will be elaborated 
later in this paper. 

PROXIMITY ANALYSIS 

The procedures used by Seibel, Mandler, and Allen for identifying 
memory units are based on the use of supplementary information or 
modifications of the FR task. In contrast, the technique discussed below 
attempts to identify subjective groupings from order-of-recall information 
directly. The method subsumes the measurement of categorical clustering 
and subjective organization within a single unified framework in that it 
assumes no prior knowledge by the experimenter of the bases of 
organization. To the contrary, it offers an objective way to determine these 
bases. It should be emphasized that the concern here is with quantifying the 
structure of organization, rather than the amount of organization, for 
which there are already many measures available (Shuell, 1969). As noted 
above, organizational phenomena can be discussed in various languages, 
based on different structural analogs. In the discussion that follows, I will 
use the terminology of a hierarchical memory model, subjective memory 
units, higher-order units, etc., primarily for the sake of convenience, but 
also because organization in free recall has largely been discussed in these 
terms. 

Briefly, this procedure locates subjective memory units on the basis of 
ordinal separation orproximity between pairs of words in recall protocols. 
A proximity measure is developed from the assumption that items which 
are coded together in subjective units will tend to be recalled contiguously 
at the time of test. This assumption is entailed by all measures of clustering 
and subjective organization. An item-by-item proximity matrix can then be 
constructed with numerical entries representing the degree to which each 
pair tends to occur in contiguous (though not necessarily adjacent) output 
positions over some set of trials. It is shown that for each class of models of 
organizational structure there is a corresponding natural method for 
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analyzing the proximities obtained from individual or group data to provide 
an M-gram representation. 

It is useful to proceed heuristically at first to develop the logic and 
assumptions of the technique. Following that, the proximity measure is 
presented formally and then illustrated with sample data. 

Consider a hypothetical subject presented with a categorized word list 
who recalls the following items on a given trial: pants, shirt, shoe, doctor, 
shrub, bush, tree, lawyer, dentist in that order. In the category clustering 
approach, organization would be assessed by counting the number of 
sequential repetitions of items from the same category (the five italicized 
words above). 

Note that this approach only considers adjacent output pairs as evidence 
for grouping in memory. But all pairs of items in a memory unit cannot be 
immediately adjacent in output which is structured sequentially. So, the 
degree of organization is probably underestimated (cf. Postman, 1971). 
“As a network of multiplex interitem relations develops, there is a 
corresponding increase in the number of equivalent pathways leading from 
one response to another” (Postman, 1972, p. 23). However, what these 
alternative pathways have in common is that members of a memory unit 
occur in close proximity. Therefore, the underestimation of organization 
can be partly avoided by allowing for varying degrees of proximity between 
items. Thus punts and shirt, for example, are maximally close while 
punts and shoe are less proximal, and so on for the other cate- 
gories. The assumption made here is that the proximity in recall 
between items which are not adjacent also carries information about 
memory structure. 

Going a step further, it is possible to look at the proximities between all 
pairs of words in the protocols, not just those within the given categories. 
For example, bush and tree are more proximal than are shoe and tree, 
though the reverse could have occurred if the subject has thought of the 
compound noun,shoetree, and clustered on that basis. The actual outcome 
can be expressed quantitatively by giving the pair bush and tree a higher 
proximity score for that trial than the pair shoe and tree, and so on for all 
pairs of items, basing the proximity score on their ordinal separation in the 
protocol. 

Considering the proximities between all pairs of items makes this way of 
looking at the subject’s organization of a list independent of any knowledge 
of a priori categories. The use of the number of sequential repetitions as an 
index of organization requires, by definition, a knowledge of which groups 
of items belong together. Through the use of proximities, however, it is 
possible to “discover” the grouping that the subject is using by defining the 
subjective units to be those groups of items that have mutually high 
interitem proximities. 

Stated alternatively, one can ask what grouping of the items into memory 
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units would be most likely to result in an individual’s observed response 
protocols. In the analysis suggested here, the aspects of order of recall 
information most relevant to the study of memory structure in MFR may be 
represented by the proximities between all pairs of items. Questions 
concerning the organization of list items in memory can therefore be 
translated to corresponding questions concerning the proximities among 
them in recall (cf. Martin, 1970). 

Measure of Interitem Proximity 

It remains to specify a way to quantify proximity, or its inverse, distance. 
Several workers have used measures based on the frequency of 
immediately adjacent recalls (Kintsch, 1970; Koh, Vernon, & Bailey, 197 1) 
to investigate organizational structure. However, in order to get stable 
estimates of interitem proximity it is important to utilize more of the 
information contained in recall order. One simple way to do this is to 
measure the distance between two items in terms of the number of other 
items which separate them in recall. Consider a list of L items presented to 
a group of S subjects on each of T trials under typical conditions. For a 
given subject the data consist of T sequences of items, each of length rt, 
where rt is the number of words recalled on trial t. 

Denote by Iit the position of item i in the subject’s output on trial t. Then 
the intraserial distance between two items, i andj, both recalled on a given 
trial will be Ilit - ljt I. The proximity measure which has been found most 
useful is based on the average intraserial distance, Dij for a pair, over those 
trials on which both members of the pair are recalled. Dij is defined as 

D.. = t=l 
w 

f: hit ’ 

(1) 

t=1 

where +ijt is an indicator variable which equals 1 if words i andj are both 
recalled on trial t and equals 0 otherwise. The denominator of Eq. (1) is just 
the number of trials on which words i and j were recalled. The distance 
values defined in Eq. (1) have a minimum value of 1, obtained when a pair of 
words is recalled adjacently on all trials. The maximum value is P, the 
average number of words recalled; it is obtained when a pair is consistently 
recalled at opposite ends of the recall output. 

It is often convenient to think in terms of proximity between items, 
rather than distance, since the former is directly related to tightness of 
organization. For the present purposes, the distance measure can be 
transformed to an index of proximity by subtracting it from a positive 
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constant, so that large numbers represent more proximal, interconnected 
items. Average interitem proximity is thus defined as list-length minus 
average distance, 

Pij = L - Dij. 

In comparing proximities among items across lists which vary in length, 
it is often convenient to normalize the proximities to proportions of their 
maximum value, i.e., to use Pfij = P&L - 1). Several aspects of these 
definitions are noted below; further elaborations and some technical details 
are discussed in Friendly (Note 4). 

(al) When either or both members of a pair are not recalled on a given 
trial, it is difficult to decide how a distance may be rationally assigned. A 
value could be assigned ad hoc, but it is safer to assume that this event gives 
no information regarding the organizational relatedness of the pair. 
Equation (1) essentially averages over only those trials on which both 
members of a pair are recalled, ignoring trials on which one or both items 
are omitted. 

(a2) Although Eq. (1) indicates averaging over all free recall trials, it is 
certainly possible, and in some cases desirable, to restrict attention to some 
subset of all trials. With unrelated lists, for example, it is sometimes useful 
to drop the first trial or two to remove initial serial position effects. 

(a3) The definitions above were stated for a single subject. More 
generally, the proximities obtained from a set of S *T subject-trials may be 
averaged over both subjects and trials to give a single group matrix, or over 
subjects for each trial separately. The former procedure is convenient for 
comparing entire groups, while the latter approach, adopted by 
Caramazza, Hersh, and Torgerson (1976, Expt IV) in their application of 
proximity analysis, allows one to study trial-to-trial changes in organiza- 
tional structure. Averaging helps ensure that the estimated proximities are 
sufficiently stable. Pooling over subjects, however, entails the assumption 
that the subjects so pooled share a common organization of the list. This 
assumption is most likely to be satisfied when the list consists of 
normatively related words, rather than unrelated words. However, it is 
also possible to assess the degree to which individual differences in 
organizational structure exist and to isolate subgroups of subjects who 
share a common organizational scheme. This will be discussed and 
illustrated later. 

The proximity measure given above appears to be a reasonable index of 
interitem relatedness in recall output. It is not claimed, however, that it is 
the best such measure, since what is “best” can only be defined in the 
context of a detailed theory of organization (Colle, 1972). A number of 
possible refinements can be suggested: 

(bl) Examination of Eq. (1) indicates that Dij varies linearly with the 
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separation between items i andj in recall. To give greater weight to pairs 
recalled in close contiguity, Dij could be defined as a function of the 
squared separation between items, e.g., 

(b2) Proximities could be weighted differentially across trials, e.g., by 
giving increasing weight to later trials, where presumably, the subject’s 
organization would be more stable. 

(b3) When subjects recall orally, it is often noticed that subjects recall 
items in bursts, with short interresponse times (IRTs). The bursts typically 
correspond to strongly interconnected words in terms of word associations 
(Pollio, 1966; Pollio, Kasschau, & DeNise, (1968) or members of 
taxonomic categories (Patterson, Meltzer, & Mandler, 1971). Also, the 
IRTs increase as less strongly connected items are retrieved (Murdock & 
Okada, 1971). It would be reasonable, therefore, to use the total 
interresponse time between a pair of words in recall as an inverse measure 
of interitem proximity. 

Although these or other modifications may improve the proximity 
measure to some degree, it should be noted that the proximity values will 
be utilized in a manner which depends only on their ordinal properties. 
Consequently, different methods for calculating proximities will lead to the 
same results as long as the rank order of the item pairs is maintained. 

Illustrative Data 

To make things more concrete, consider the data in Fig. 1. This shows 
the actual recall protocols from one subject on the last six trials of an 
eight-trial free recall session2 On each trial L = 12 unrelated words were 
presented visually in a different random order, and the subject’s task was to 
recall as many words as possible. 

Consider Trial 5. Item pairs which are immediately adjacent, such as 
(highway, structure) and (inventor, professor), differ in ordinal position by 
one, so their proximity on that trial is L - 1 or 11. On the other hand, words 
widely separated in the protocol have a lower proximity on that trial; for 
example, mast andassault which are 5 positions apart, have a proximity of 
7. 

Table 1 shows the proximities of selected pairs of items for the six trials 
in Fig. 1. For each selected pair, the average proximity over all trials on 
which both items were recalled and the normalized value, P', are alsO 
shown. Thus, quarrel and assault were immediately adjacent on all six 

*These data come from a study by Omstein (1970, Expt. 1). They have been used here by 
permission of the author. 



202 MICHAEL L. FRIENDLY 
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FIG. 1. Recall protocols for one subject in a free recall task. 

trials and have an average proximity of 11, the maximum possible for a list 
of 12 words. Captive and highway, on the other hand, were consistently 
quite far apart with an average proximity of 6.6. Hence there would be little 
reason to believe that these two items belonged to the same functional 
memory unit for this subject. 

Pairs of items also differ in the frequency with which both members of 
the pair are recalled. Thus captive and highway were both recalled on all six 
trials. Mast andhighway, on the other hand, were both present in output on 
only three of the trials shown. When they were both recalled, however, 
they were quite proximal3 

The proximities are calculated for all pairs of words and arranged in a 
square matrix as shown in Table 2. The matrix is necessarily symmetric, so 
only the lower half is shown. The principal diagonal has also been omitted, 
since it conveys no information: Dii = 0 for all items. 

This matrix shows that there are several groups of words which have mu- 
tually high proximities within each group and relatively low proximities with 
items outside the group. Inventor andprofessor, for example, seem to consti- 
tute a fairly distinct grouping for this subject since their normalized proximity 
is 1 .O and each of these words has relatively low proximities with all the other 
items (columns 1 and 2 of the matrix). Similarly, the items assault, quarrel, 
captive, execution, and decree are all highly proximal to one another in this 
subject’s recall. A third highly organized group consists ofhighway, must, 
north, and structure. The word urge appears to be a singleton; it is recalled 
on all trials by this subject, but it does not appear consistently near any 
other items. These four sets of words constitute a reasonable approxima- 
tion to the subjective groups displayed in this subject’s recall. 

Usually, however, the items will not be arranged in the proximity matrix 
so that their structure is so apparent. Indeed, in preparing the table the 
rows and columns were reordered so that the groups of co-organized items 
would be together, giving rise to the triangular blocks of high proximities. 

-Tf the frequency of recall for a pair of items, T&5 iSI is small, the estimate of proximity for 
that pair will not be very stable. In an extreme case, two items which are recalled con- 
currently only once, but in adjacent positions, would receive the same proximity value 
as a pair recalled adjacently on all trials. One way to avoid this possibility is to set a 
threshold value, so that pairs recalled less often than this value have their proximity set 
equal to zero or reduced by some constant fraction. 
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TABLE 1 

PROXIMITIES FOR SELECTED ITEM PAIRS FROM RECALL PROTOCOLS OF FIG. 1 
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Trial 
Average” Normalized” 

Stimulus pair 3 4 5 6 7 8 proximity proximity 

quarrel-assault 
captive-assault 
captive-highway 
mast-highway 
mast-quarrel 
north-structure 
north-urge 
professor-structure 
professor-inventor 
decree-inventor 

11 11 11 I1 11 11 11.0 1.000 
11 11 11 9 11 11 10.7 .970 
0 10 5 8 6 4 6.6 .600 
0 0 9 0 11 11 10.3 ,939 
7 0 6 0 5 1 4.7 ,432 
0 0 9 11 I1 11 10.5 .955 
3 II 11 11 6 10 8.7 ,788 
0 0 2 9 8 9 7.0 ,636 

11 11 11 11 11 11 11.0 1.000 
8 0 4 5 7 8 6.4 ,582 

a Entries rounded off to three significant digits. 

In general, the proximities will need to be subjected to further analytical 
scrutiny to reveal the underlying organization reflected in the order of 
recall. How this is done depends on the underlying model assumed for the 
structure of organization. 

SPATIAL REPRESENTATIONS OF ORGANIZATIONAL STRUCTURE 

To each of the three general models of memory structure, there 
corresponds a natural way of representing the relations among items in 
recall on the basis of output order proximities. The term “natural” in this 
context means that the representation is a useful graphical realization of a 
plausible memory structure and that the characteristics and parameters of 
these representations bear reasonable interpretations in the context of the 
corresponding structural models. In each case the representation involves 
a mapping of the proximities into distance-like values, say, dij, with the 
property that 

where P is the symmetric L x L matrix of proximities, and d is the 
corresponding matrix of distances under the model. The notation 22 
indicates that the proximities are approximately monotonic with the dij, 
i.e., ifPij > Pkl then dij 4 dkl. In essence, the representations are obtained 
by applying relatively well-known scaling methods to the proximities. The 
cases are distinguished by the additional restrictions on the dij which are 
imposed by the scaling analog of the particular memory model. The 
correspondences are shown in Table 3 and explained in the remainder of 
this section. 
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Since the mathematical bases of these techniques have been treated 
extensively elsewhere, the descriptions which follow will be incomplete in 
some respects. The comments below focus on issues particular to their use 
for representing memory structures. Several of the methods are illustrated 
using sample data. However, no claim is made that the particular 
representations are perfectly suitable for all types of semantic domains. 

Dimensional Representations 

Some dimensional models assume that each item has a unique location in 
a continuous multidimensional Euclidean space; others are concerned with 
discrete or binary features. In the former case the proximities may be 
regarded as monotonically related to distances among points in such a 
Euclidean space. That is, we seek a representation of the list items as points 
in a Euclidean space such that the spatial distance between two points 
represents the average recall proximity between the corresponding items. 
The closer together the items are recalled, the closer should be their points 
in the spatial representation. 

Using a nonmetric multidimensional scaling (MDS) procedure (e.g., 
Kruskal, 1964a,b; Young & Torgerson, 1967), it is possible to determine 

TABLE 2 

MATRIX OF AVERAGE PROXIMITIES 

1 2 3 4 5 6 7 8 9 10 11 12 

1. Inventor 

2. Professor 

3. Highway 

4. Mast 

5. North 

6. Structure 

7. Assault 

8. Quarrel 

9. Captive 

10. Execution 

11. Decree 

12. Urge 

b 100* 

55 52 47 52 67 57 

48 45 38 43 61 48 

64 61 60 61 76 70 

68 65 65 80 80 75 

58 53 68 80 82 86* 

64 64 69 68 79 82* 70 67 76 76 76 

Note. Entries are expressed as a percentage of the maximum possible value, and have been 
rounded (decimal points omitted). Entries marked with an asterisk (*) are explained 
later in the text. 
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TABLE 3 

MEMORYMODELSANDTHECORRESPONDINGSCALINGMETHODSPRODUCINGANM-GRAM 
REPRESENTATION FROM RECALL PROXIMITIES 

Memory model Representation Scaling methods 

Dimensional Euclidean space 
Overlapping attribute sets 

Multidimensional scaling; INDSCAL 

Arabie & Shepard (Note 3) 

Tree structure 

Network 

Strict hierarchy 

Hierarchy with overlapping 
clusters 

Complete-link HCS 

Br clusters 

Undirected graph Single-link HCS 
Minimum spanning tree 
Maximal connected subgraphs 
BI, graph 

the location of items in a Euclidean space as well as the number of 
dimensions necessary to fit the proximities adequately. The item locations 
are specified by a matrix of coordinates, X = {xilc} i = 1, . . . , L; 
k=l,. . .) m, where m is the number of dimensions. In the MDS 
solution the distances, d, referred to in Eq. (4), are related to the 
coordinates by 

Although L items can always be represented in a space of L - 1 dimen- 
sions (Kruskal, 1964a), a Euclidean representation would not be very use- 
ful unless the proximities could be fit into a space of considerably smaller 
dimension. In the MDS procedure due to Kruskal, the adequacy of a 
dimensional representation is indexed by a normalized residual sum of 
squares coefftcient, called stress,4 (S J 

sl = C Cdij - Jij)’ 1 “’ 

Cdij2 ’ 
(6) 

4 An alternative formula for stress, Sp, uses x(dij - a)* as the normalizing factor [the 
denominator in Eq. (6)], where 2 is the mean of the distances. It has been found that Sr 
sometimes produces degenerate solutions, especially when the items cluster strongly into 
groups such that all proximities within a group are greater than any of the proximities between 
groups (see Shepard, 1974). In analyzing recall proximities, such degeneracies are particularly 
likely when the items belong to salient taxonomic categories. In such cases Sp will often help 
avoid degenerate solutions. However, with words of this sort a representation in terms of 
continuous underlying dimensions will not typically be appropriate to display a categorical 
structure. Instead, one of the hierarchical or nonhierarchical clustering methods discussed in 
the following subsection would be more appropriate. 
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.otiono I 

Non-i/iolent 

FIG. 2. Multidimensional scaling solution for the proximities in Table 2. 

where & are the best-fitting distances which strictly preserve the order of 
the interitem proximities. Approximate significance tests of fit are 
available from the work of Wagenaar and Padmos (1971), Stenson and 
Knoll (1969), and Spence and Ogilvie (1973). 

The interpretation of the M-gram which results from applying MDS to 
the recall-order proximities is simplified to the extent that an adequate fit in 
two or three dimensions can be obtained, so that the representation is 
readily visualized. The interpretation of the spatial configuration is then 
largely a matter of searching for meaningful clusters or orderings of the 
item points in the space. In addition, several objective methods for locating 
reference axes and rotating the space (Carroll & Chang, 1964; Miller, 
Shepard, & Chang, 1964; Shepard, 1972) can be used as aids in interpreting 
the space. For categorized lists, Degerman’s (1970) rotation method is 
particularly useful for separating qualitative variation due to class 
membership from quantitative variation due to semantic dimensions. 

For illustration, the MDS procedure was applied to the proximity matrix 
in Table 2. The computer program KYST (Kruskal, Young, & Seery, Note 
7) was used to obtain the solution. 5 A two-dimensional solution was 
obtained having a stress value S, = .064, which may be regarded as a 
reasonably good fit. The resulting configuration is shown in Fig. 2. The 

Since KYST allows the proximities to be weighted differentially, the pair recall 
frequencies, wijl, were entered as weights. For this set of data, the frequencies range from 
three to six and have little effect on the solution; when the proximities are obtained by 
averaging over more subject-trials, the use of weights gives emphasis to item-pairs in direct 
proportion to the frequency with which they are both recalled on the same trials. 
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dimensions in this M-gram representation might be interpreted as 
Violent-Nonviolent andImpulsive-Rational. However these dimensional 
labels do not appear to be strongly compelling, since the words were 
selected as “unrelated” words. (Since highway, mast, north, andstructure 
are inanimate, the label Nonviolent is somewhat strained.) The structural 
relations among these items are captured better, in this instance, by the 
clusters circled in Fig. 2. These correspond to the subjective clusters noted 
by inspection in Table 2; but in addition, several subgroups within the two 
larger clusters may be noted. It would not be unreasonable to define 
subjective memory units as such relatively compact isolated clusters which 
appear in the MDS solution. More objective criteriaforidentifying memory 
groupings are considered later. 

Discrete features. When the memory structure is assumed to be 
represented in terms of discrete features, rather than continuous 
dimensions, the model of Euclidean space can no longer be used. One 
possibility for representing the structure of recall proximities within such a 
conception is embodied in a procedure developed by Arabie and Shepard 
(Note 3). In their method the set of items are assumed to be characterized 
by a total of m distinct properties which vary in psychological salience. 
Any pair of items will share some features and the proximity between two 
items is assumed to arise as a sum of the salience values of all shared 
features, i.e., 

wkvikvjkv (7) 
k=l 

where V& = 1 if item i has property k and equals zero otherwise; wk is a 
nonnegative weight representing the psychological salience of property k. 
The method determines m overlapping groups of items which possess each 
feature and each feature may be interpreted by identifying the common 
property which all items in the corresponding group share. Although the 
representation of memory structure embodied in this method is not 
inherently a graphical one, the results may be displayed graphically by 
circling the overlapping groups in the manner of Fig. 5 below. Initial 
applications reported by Arabie and Shepard (Note 3) suggest that their 
method may provide a useful representation of memory structures for 
models such as that proposed by Smith et al. (1974). 

Tree-Structure Representations 

On the view that memory is structured in terms of a hier- 
archical classification of items into memory units, it is natural to 
seek a representation of the structure underlying proximities in 
terms of compact, nested clusters. Such a representation may be obtained 
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using methods of hierarchical cluster analysis. In this representation the 
items appear as terminal branches of a tree structure rather than as points in 
space. The braches representing items which are recalled contiguously 
merge sooner in the hierarchy than the branches of items recalled less 
proximally. The relations of items within memory units and higher-order 
units are represented by the sequence of mergings of the branches. 

Several types of hierarchical clustering procedures have been developed 
(Hartigan, 1967; Lance & Williams, 1967; McQuitty, 1960, 1964; Ward, 
1963). Among these, two closely related techniques have received wide 
attention in psychological applications concerned with memory and verbal 
learning (e.g., Anglin, 1970; Fillenbaum & Rapoport, 1971; Kintsch, 1970; 
Martin, 1970; Miller, 1967, 1969). These hierarchical clustering schemes 
are the single-link (SL) method (also called connectedness method and 
nearest neighbor clustering) and the complete link (CL) method (also called 
diameter method and furthest neighbor). The discussion below follows 
Johnson (1967) and Miller (1969), whose work appears to have had the 
greatest impact on psychologists. 

A hierarchical clustering scheme (HCS) consists of a tree structure with 
numerical values at the branches. The tree structure is composed of a 
sequence of partitions Co, C1, . . . , CLP1 of the items such that each 
successive partition in the series is formed by merging clusters from the 
immediately preceding partition. The numerical levels, {a,,, 
ffl,. . . , aLeI}, represent the compactness of the clusters at each stage. 

The method begins with the finest partition, Co (the disjoint or “weak” 
clustering), in which all clusters consist of single items. The first nontrivial 
clustering is found by placing together the most proximal items in recall. 
The merged items are subsequently treated as a single element, and 
proximities between this new cluster and all other items are determined. 
Suppose that the two most proximal items are wi and wI with a distance of 
Dij = L - Pi*. These items are therefore merged to form the cluster (wi, wj) 
and distance Dcijjk is assigned between the cluster (wi, wj) and any other 
item, wle. For example, in Fig. 1, inventor and professor were recalled 
adjacently on all trials and have the highest possible proximity. When these 
are joined to form a cluster, the procedure assigns a proximity between this 
cluster and any other item, e.g., urge. Again, the most similar 
items/clusters are joined, and so forth until all items have been merged into 
a single cluster (the conjoint or “strong” clustering). 

In a sense the complete-link and single-link methods provide opposite 
extremes of hierarchical clusterings which could be derived from the data. 
In the CL method when items wi and wj are joined to form a cluster, the 
distance between this cluster and any other item wk is assigned max (Diky 
Djk), i.e., the distance between wk and the farthest element in the cluster. 
Since it is the most proximal elements which are merged at any step, this 
algorithm produces clusters with minimum diameters, where the diameter 
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FIG. 3. Single-link and complete-link clustering solutions for the data of Table 2. 

of any cluster is the largest distance within the cluster. Equivalently, for a 
given criteria1 distance, the CL method does not admit an item to a cluster 
unless it is at least that close to all items in the cluster. The method 
therefore produces clusters which are completely connected. 

In contrast, in the SL method the distance between an item and a cluster 
is set equal to the distance between wk and its nearest neighbor in the 
cluster, i.e., the minimum of Dik and Djk. This scheme will add an item to a 
cluster as soon as it is at a given distance from any item in the cluster, and 
the method produces clusters with minimum chain-distances (the smallest 
path of links connecting two items) which are only locally connected. 

To illustrate how these methods work, they have been applied to the 
matrix for the 12 words in Table 2. The results are shown in Fig. 3. (The 
cluster analyses were performed using Gruvaeus and Wainer’s (1972) 
algorithm, which orders the clusters so that items on the edge of each 
cluster are adjacent to that item outside the cluster which is most 
proximal). The first clusters formed contain those items which were 
recalled by this subject in immediately adjacent output positions on all 
trials (inventor, professor) and (assault, quarrel). The next highest 
proximity is between captive and execution, so these items are merged 
next, and so on, until all items have been merged into one cluster. 

In this case, there is reasonably good agreement between the two 
methods. Both solutions indicate assault, quarrel, captive, execution, and 
decree as a higher-order unit, although they disagree on the order with 
which the smaller units (assault, quarrel), (captive, execution), and 
(decree) merged together. Highway, mast, north, and structure are 
clustered by both methods. The methods disagree most on the order in 
which these clusters and urge (seemingly a loner) merge subsequently. 

This result is fairly typical of data from experiments using unrelated lists. 
A moderate degree of subjective clustering is observed, but sometimes 
these clusters do not appear to be tightly organized; occasionally no 
apparent structure above the level of two- or three-item clusters can be 
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discerned. When subjects learn lists of related sets of items, on the other 
hand, subjective groupings of the items are more obvious, more 
consensual, and output orders reflect more strongly connected S-units (cf. 
Cofer, 1965). 

A small demonstration experiment was conducted to provide an 
illustration of the organization of categorized lists. Subjects in this 
experiment learned a list consisting of 18 items grouped into three 
categories, Animals, Vegetables, and Body parts. Six paid subjects 
received oral, randomized presentation for eight study-test trials and wrote 
their recalls. The hierarchical M-gram obtained by the CL method for a 
typical subject, with proximities pooled over all trials, is shown in Fig. 4. 

The tree structure displays the strong grouping of the items into tightly 
knit, isolated clusters corresponding to the list categories. The items within 
the list categories merge together at high levels of interitem proximity, 
while separate categories do not merge until relatively low levels of 
proximity are reached. The merging of these categories with each other, 
((Animals, Vegetables), Body parts), appears sensible, but is not 
statistically reliable. 

Interpretable subgroupings can also be identified within the major 
categories. The items in the Vegetabte and Animal categories were 
selected to have subclass relations with, respectively, two and three 
subcategories; the Body parts items have whole-part relations (e.g., 

face-mouth) with three subcategories. The M-gram in Fig. 4 displays this 
detailed structure clearly for the Vegetables and Animals, while the Body 
parts items only partially preserve the whole-part relation. This pattern of 
subgrouping, which generally appeared for all subjects tested, is interesting 
in itself and provides graphic support for Wood’s (1972) suggestion that 
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FIG. 4. Complete-link hierarchical clustering for subject A. G., obtained from free recall 
proximities, pooled over eight trials. The filled nodes represent “significant” clusters 
indicated by Johnson’s (Note 6) cluster statistic. 
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subjects will utilize structure within memory units to divide them into 
smaller ones. 

Goodness of $r. Since the SL and CL methods will produce tree 
structures whatever the nature of the data, some means are needed for 
evaluating the degree to which a hierarchical representation actually is 
consistent with the data. The question of goodness of fit involves a 
numerical comparison between the data values and a set of fitted distances 
implied by the tree structure. In either method, the fitted tree-distance, Uij, 
between items wi and wj is defined as the level value, (Ye, at which that pair 
first belongs to the same cluster. 

Uij = rn:n {a,lwi, wj belong to the same cluster in C,}. (8) 

Note that Llij and (Y/ are defined as distances rather than proximities. In 
examples, where normalized proximities, P’, are used, corresponding 
distances and cluster values, czl, will be defined as 1 - P’. The 
tree-distances are monotonically related to the proximities as in Eq. (4) and 
also satisfy the ultrametric inequality (UMI), 

Uij 5 lllaX{Ujk,Ujk}, (9) 

for all triples, Wi, Wj, wk. The UMI is more restrictive than the triangle 
itleqUdity, Dij 5 Dik + Djk, which must hold for any set of metric 
distances. Furthermore, the ultrametric tree-distances derived from the 
single-link (us) and complete-link (uc) methods are related to the input 
distances by 

uijs 5 Dij 5 uijc. (10) 

The importance of this is that when the UMI holds for an empirical 
distance matrix, the SL and CL methods give identical results and there is 
an exact equivalence between the distance matrix and a hierarchical 
clustering (Hartigan, 1967; Johnson, 1967; Miller, 1969). Thus, although 
the SL and CL methods are opposite extremes in the sense elaborated 
earlier, the solutions they produce for a given set of proximity data will 
agree to the extent that the UMI is satisfied. It is important to note, 
however, that the UMI is a sufficient condition, but not a necessary one for 
the existence of a “perfect hierarchy,” i.e., one in which the item pairs 
within a cluster at any level in the hierarchy are at least as proximal as item 
pairs belonging to different clusters (Hubert, 1974a). 

Descriptive indices of goodness of fit of a proximity matrix to the UMI 
were proposed by Hartigan (1967) and by Jardine and Sibson (1971). 
Approximate overall significance tests for the nonrandomness of an 
obtained hierarchy were developed by Cunningham and Ogilvie (1972) and 
Hubert (1974a). Hubert’s test applies they statistic developed by Goodman 
and Kruskal (1954) to measure the association between the ranks of item 
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pairs in the proximity matrix and their corresponding ranks in the tree 
structure. 

The y statistic may also be used descriptively to assess the similarity of 
two tree structures on the same set of items. Alternatively, a product 
moment correlation may be computed between the ultrametric tree- 
distances resulting in the two tree structures, although this requires 
stronger assumptions about the metric properties of the proximities. These 
indices are useful for comparing the organizational structures of different 
subjects or groups or for comparing the results of different clustering 
methods applied to the same data. 

Although both the SL and CL methods have been applied to memory and 
learning data, the CL method, on logical grounds, is more appropriate to 
reveal the type of hierarchical structures considered by organizational 
theorists (Tulving, 1962a; Mandler, 1967). The complete-link procedure 
constructs partitions that contain optimally compact clusters of minimum 
diameter, with all items within a cluster interlinked. This criterion is 
consistent with an intuitive idea of what subjective memory units should 
be,6 as well as with experimental evidence. That is, in recall a memory unit 
functions as a redintegrative ensemble such that retrieval of one item 
within the unit provides, with high probability, access to the remaining 
items in the unit (Cohen, 1966; Horowitz & Prytulak, 1969; Tulving & 
Patterson, 1968). Lists with an experimenter-imposed (Bower et al., 1969) 
or subject-defined (Friendly, Note 4) hierarchical structure lead to high 
recall because they provide multiple retrieval links for the subject to 
“move” within higher-order memory units and from one unit to the next at 
recall (Wood, 1972). Thus, it is not surprising that investigators who have 
applied clustering methods to episodic memory (Kintsch, 1970; Koh, 
Vernon, & Bailey, 1971) and semantic memory studies (Anglin, 1970) have 
tended to favor the CL method, usually on the grounds that it gave more 
reasonable or interpretable results. Nevertheless, it is shown later that the 
single-link method corresponds to a natural and reasonable representation 
of structural organization within the context of a network model, 
corresponding to the notion of a minimum cost retrieval route on a 
network. 

S-units and clusters. The cluster analyses provide a family of clusterings, 
rather thanjust a single partition of the items. In order to identify subjective 
memory units, it is useful to be able to determine the strengths of clusters 
formed at different levels in the tree structure. Two features of clusters can 

6The CL criterion actually seems more severe than is necessary, since it requires clusters to 
be completely interlinked. If the representation errs, however, it will be in the direction of 
failing to recognize memory units, rather than producing spurious ones. For some possible 
ways in which the CL criterion can be relaxed, while retaining the spirit of homogeneity, see 
Hubert (1974b). 
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serve as guides in interpreting S-units: compactness and isolation. These 
notions may be defined precisely in terms of the cluster analysis. 

For the complete-link method, the cluster diameter (the largest 
intracluster distance, or smallest proximity) provides a natural measure of 
compactness. The diameter of any specific cluster (wi, Wj, wkr . . .) is the 
cluster value, CQ associated with the first level in which the items wi, wj, wk, 
. . . are all in the same cluster. In the complete-link solution of Fig. 3, for 
instance, the diameter of the cluster (highway, mast, north, structure) is 
1 - .79 = .16; .79 is the smallest proximity among those items of Table 2. 

The cluster diameter, however, gives no information about the 
relationship between clusters. Two clusters may both be compact, but be 
so close to each other that one would not want to consider them as distinct 
memory units. The notion of cluster isolation can be used to distinguish 
among units at different levels of a hierarchy. The isolation of a clusterX 
expresses the diameter ofX relative to the diameter of the first clustering in 
whichX is merged with another cluster. If the clusterx is formed at levelg 
in the hierarchy and the smallest cluster which properly includes X is 
formed at level h, the isolation of cluster X is Z(X) = 1 og - (Ye I. The 
isolation of a cluster can be thought of as a measure of the “empty space” 
or “moat” (Estabrook, 1966) around it. In Fig. 4 the isolation of the animal 
cluster is I(1 - .849) - (1 - .629) 1 = .22. Ling( 1973) developed asimilar 
measure, using proximities converted to ranks, and derived the 
distribution theory necessary to provide a statistical test. 

Using these notions, an S-unit may be defined as a cluster which is 
sufficiently compact and isolated. Although the criteria for “sufficiently” 
are left unspecified here, reasonable choices would likely identify reliable 
S-units. Alternatively, a more objective criterion may be obtained using 
Johnson’s (Note 6) test for reliable clusters, which incorporates both the 
compactness and isolation criteria. The test statistic, A, is based on the 
difference between the average within-cluster proximity and the average 
proximity between an item in the cluster and an item outside the cluster. 
Fillenbaum and Rapoport (1971) discuss the use of this statistic to provide a 
conservative significance test for individual clusters. This test was used to 
determine the significant clusters in Fig. 4. 

Overlapping clusters. While the CL method yields hierarchical 
representations that conform closely with theories of organization in free 
recall and are quite reasonable for many types of lists, the requirement that 
the clusters be strictly nested seems too restrictive for some purposes. As 
indicated by Shepard (1974), “although hierarchical systems can represent 
some of the discrete or categorical structure underlying a set of similarity 
data, it cannot represent psychological properties, however salient, that 
correspond to overlapping subsets” (p. 413). 

A number of clustering procedures which lead to overlapping subsets at 
each level have recently been proposed. Of these, the Bk procedures 
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TABLE 4 

CLUSTERS OBTAINED BY B, METHOD FOR THE DATA OF TABLE 1 

Proximity 
values B, clusters 

1.000 (12) U,W 
.984 (1,2) (7,8) (9,lO) 
.970 (12) (7,8) (799) (9,lO) 
.955” (132) (576) (7,8) (779) (9710) 
.945 (12) (596) (73) (739) (9910) (10,ll) 
.939 (12) (374) (576) (778) (7 79) (9,lO) (10,lU 
909” (1,2) (394) (3,6) (576) (778) (7,9) (9,lO) (l&11) 
.894 (12) (3 94) US9 (5,6) U,@ (7,9,10) (10,11) 
.879 (1,2) (3 74) (3 76) (5,6) C’,W’,W (lO,ll) 
.873” (1,2) (394) (3,6) (5 36) (7,8,910,11) 
.864 (12) (3,4) (3,6) (4,5) (536) 611) G’,85’,10,11) 
.848” (la Q/45,6) (611) 6’,8,9,10,11) 
.818 (132) (3,4,5,6,11) (6,12) (7,8,9,10,11) 
,802 (12) WA6,28,%10,11) (6,121 
.791 (127 (133) (3,4,5,6,7,8,9,10,11) (6,12) 
.788 (1,2) (133) (3,4,5,6,7,8,9,10,11,12) 
,782 (1,W (3,4,5,6,7,8,9,10,11,12) 
.773 (1,2,3,4,5,6,7,8,9,10,11,12) 

Note. The items are numbered as in Table 1, i.e., 1, Inventor; 2, Professor; 3, Highway; 4, 
Mast; 5, North; 6, Structure; 7, Assault; 8, Quarrel; 9, Captive; 10, Execution; 11, Decree; 
12, Urge. 

(1 These clusters are shown graphically in Fig. 5. 

developed by Jar-dine and Sibson (1968, 1971) are relatively simple to 
understand, have been studied widely (Hubert, 1974b; Rohlf, 1975), and 
have been implemented in several computer algorithms (Cole & Wishart, 
1970; Jardine & Sibson, 1971, Appendix 3; Rohlf, 1974; Shafto, 1974). The 
BI, methods constitute a generalization of the single-link method in which 
any pair of clusters at a given level is allowed to overlap to at most k - 1 
items in common. B, produces disjoint clusters and is identical to the SL 
method; B, yields clusters which may share one item, etc. As the amount of 
overlap allowed increases, successively better fit to the original proximities 
is obtained, though at the cost of increased complexity in the 
representation. 

Since the BI, methods are rather close in spirit to single-link clustering, 
they do not adequately capture the homogeneity criterion which is required 
to identify subjective memory units. The intent of this discussion is to 
indicate the possibility for representations of memory structures in terms 
of overlapping subsets, rather than to suggest that theBk methods provide a 
fully satisfactory solution. Alternative methods for overlapping cluster 
representations, which correspond more closely to current notions of 
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FIG. 5. Clusters found by the B, method, mapped on the MDS space of Fig. 2. 

subjective memory units, may be found in Peay (Note 9, Note 10; also 
described in Fillenbaum & Rapoport, 1971), Constantinescu (1966), and 
Hubert ( 1974b). 

To illustrate the type of structures which result when memory units are 
allowed to overlap, theB, clusters derived from the unrelated list proximity 
matrix (Table 2) are listed in Table 4. Since the overlap allowed between 
clusters, even fork = 2, makes this type of representation somewhat more 
difficult to apprehend, it is often convenient to display the clusters formed 
at a small number of levels. The result is shown in Fig. 5, where the clusters 
at four levels have been mapped onto the two-dimensional MDS space of 
Fig. 2. 

Network Representations 

In the network models considered earlier, it is generally assumed that the 
subjects’ retrieval processes search through the memory network, 
following tagged or activated links. In this context, the proximities among 
items in free recall output order may be considered to reflect the pattern of 
links among item nodes in this structure. Representations of the network 
structure may be obtained by applying the methods and results of graph 
theory to the proximities. Indeed, the types of network structures which 
theorists have proposed as models for a memory data base correspond 
closely to various types of abstract graph-theoretic systems developed in 
combinatorial mathematics. The literature of graph theory is extremely 
extensive, however, and a thorough discussion of even those aspects 
which are relevant to the present purposes would require more space than 
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is available, as well as the introduction of considerable notation and 
terminology. The discussion that follows is therefore highly selective. In 
particular, no discussion is given to the area of random graph theory (e.g., 
Erdos & Renyi, 1960) or its application (Rapoport, Rapoport, Livant, & 
Boyd, 1966; Fillenbaum & Rapoport, 1971) to graphs constructed by 
subjects in semantic memory tasks. Nor is much attention per se given to 
directed graphs (Harary, Norman, & Cartwright, 1965) which has been 
used by Allen (Note 2) to develop empirical techniques for identifying 
memory units in free recall and by Hollan (1974) to study the 
“epistemological structure” of concepts in mathematics. For a general, 
elementary discussion of graph theory, see Ore (1963); a more advanced 
treatment is given in Harary (1969), Busacker and Saaty (1965), and 
Marshall (1971). These latter texts should be referred to for a rigorous 
discussion of what is presented here informally. 

Graph theory deals with structural properties and relations between the 
elements of two sets, points and lines (alternatively, nodes and edges). In 
this discussion a node will generally correspond to the internal 
representation (“trace”) of a word concept in a person’s memory, while an 
edge may be interpreted as the mental “link” or “connection” between 
traces. Various types of graphs are distinguished by the properties ascribed 
to the points and lines. An undirected graph consists of a set of nodes, W, 
together with a collection of edges ,E, denoted as unordered pairs ( wi,wj) of 
elements of W. If the lines of agraph have a direction assigned to them, then 
the graph is a directed graph or digruph. If numerical values are also 
associated with directed lines, the graph is called a network. (Use of the 
term “network” to characterize the general class of structural memory 
models under discussion will be distinguished from its graph theory usage 
by context or by modification, e.g., “memory network’ or “graph 
network.“) 

In the simplest type of network memory model (e.g., Pollio, 1966), items 
in memory are assumed to be connected or associated in an all-or-none 
fashion. This structural model is a realization of asimple undirectedgraph. 
In asimple graph no node may be linked to itself, and multiple edges are not 
allowed (i.e., at most one link between a given pair of nodes). 

A proximity matrix, P, on a set of items, wl, w2 . . . , wL can be 
represented by simple graphs in several ways. First, for any given 
proximity value, s, a corresponding threshold graph G, may be defined 
where wi and wj are linked if and only ifPij L s. This definition reduces the 
proximity matrix to a graph whose links correspond to proximities at least 
as great as the threshold, s. Choosing a high value for s will yield a graph 
with few connections and many isolated nodes, i.e., items with no links; a 
low value results in a graph with a great many links. Waern (1971) has 
considered ways of representing the structure in a proximity matrix by 
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FIG. 6. Graphs illustrating some graph theory concepts. 

such graphs, using either a single, well-selected threshold value, or several 
ordered thresholds simultaneously. 

Further, the set of graphs {G,} generated by considering all distinct 
proximity values in P bear strong relations with the clusters identified by 
the single-link and complete-link methods (Hubert, 1974b). In order to 
describe these relations and other structural features of graphs efficiently, a 
number of graph theory terms are defined here informally and illustrated 
with the graphs in Fig. 6. 

A subgraph of a graph G consists of selected nodes and edges of G. A 
maximal subgraph consists of a subset of the nodes of G together with all 
links of G which join pairs of nodes included in the subset. A spanning 
subgraph of G contains all of the nodes of G together with a subset of the 
links of G. In Fig. 6, graphs a, b, c, and d are all subgraphs of e, whiled is a 
subgraph of c . Graph b is a maximal subgraph of e defined on the nodes w 1, 
w$, w,; graphs a, c, and d are spanning subgraphs of e. 

Several graph theory concepts deal with groups of interconnected items. 
A graph or subgraph is connected if every distinct pair of nodes is joined by 
at least onepath, i.e., a series of intervening linked nodes. A (sub)graph is 
complete if and only if every pair of nodes is directly linked. In Fig. 6, 
graphs b and e are complete, while b is a maximal complete subgraph of e. 
Graphs b, c, d, and e are all connected, and b is a maximal connected 
subgraph of e. Completeness is thus a stronger condition than connected- 
ness, since all complete (sub)graphs are connected, but not conversely. 
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Finally, a subgraph of a connected graph G is called a spanning tree if it 
contains no closed paths (i.e., a series of linked nodes which form a closed 
curve) and includes all nodes of G. Graph d in Fig. 6 is a tree spanning graph e . 

Using these concepts, the clusters formed in the single-link algorithm 
can be characterized in a way which leads to representations of memory 
structure which seem natural within the context of network models of 
memory. Reference to the description given earlier shows that the SL 
clusters at a given level, (Ye, consist of the maximal connected subgraphs of 
the threshold graph at that proximity level, G,,.7 The graphs at levels (Y,, (the 
disjoint clustering) and CY~ (the conjoint clustering) are noninformative. At 
theL - 1 intermediate levels, items wi and wj belong to the same cluster at 
level (Ye if they are connected by a path in G,,. In a network memory model, 
such a connected path corresponds to the notion of a retrieval route, i.e., a 
succession of memory nodes joined by links which have been activated or 
strengthened during prior study and retrieval. Sets of stimulus words which 
form serial chains could be expected to be organized in these connected 
paths by all or most subjects. For example, in mediated associative chains 
(e.g., Shapiro & Palermo, 1967) such as billiards, pool, water, tap, dance, 
each item has strong, normative associations to its immediate neighbors, 
but is not directly linked to nonadjacent items. This type of chaining would 
also be expected when individuals organize a list alphabetically (Tulving, 
1962b). For unrelated lists, it is also plausible for subjects to develop 
consistent retrieval plans involving search through a network, although the 
particular configurations of linked nodes will vary from one person to the 
next. 

Minimum spanning tree. The SL clusters in the set of threshold graphs 
G,,. . . . , G,,-, contain rather complete information regarding the 
connectedness of a memory network derived from interitem proximity in 
free recall. The information in these graphs, however, is difficult to 
apprehend for lists of reasonable length. A more compact representation of 
memory structure may be obtained in terms of minimum spanning tree 
(Gower & Ross, 1969; Rohlf, 1974) defined on the matrix of single-link tree 
distances. 

In the graphs G,,, . . . , G,_, items are linked at level CX~ if and only if 
Uij I OQ, but all links which appear are equivalent in simple undirected 
graphs. In contrast, links in theminimum spanning tree (MST) are assigned 
values equal to the cluster levels, (Y, at which components first become 
connected, and only a single such graph with real-valued links is necessary 
to represent the structure contained in the proximity matrix. The minimum 
spanning tree is then defined as the spanning tree with minimum total length 

’ Analogously, CL clusters may be described as maximal complete subgraphs in G,,. 
However, as noted earlier, the CL clusters are closer in spirit to S-units discussed in the 
context of the tree structure models. 
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FIG. 7. Minimum spanning tree representation of the proximities in Table 2. The values 
assigned to the links correspond to the entries marked with asterisks (*) in Table 2. 

of all links. (For a clustering performed on proximity values, the MST 
would have maximum sum of proximity values for any spanning tree.) 

If connected graph components are interpreted in a network memory 
model as retrieval routes in this structure, and the proximity between items 
wi and wj is considered to index (inversely) the retrieval cost of accessing 
item wi from wj (or vice versa), then the MST is readily interpreted as a 
retrieval path of minimum overall cost or effort. The MST may be derived 
directly from the proximity matrix (e.g., Prim, 1957; Gower & Ross, 1969), 
or it may be found from the ultrametric tree distances (uijs) resulting from 
the single-link method (Rohlf, 1974). When the proximities are distinct,8 
there will be exactly L - 1 elements among the uij for which Uij = Dij, and 
for these elements equality holds in Eq. (10). These values are also the 
cluster values Q~, . . . , crLml and the item pairs for which this equality 
holds correspond to the links in the minimum spanning tree; the (cost) 
value assigned to the link is uij. 

The MST derived from the data in Table 2 is shown in Fig. 7. For reasons 
explained below, the locations of points in this figure were taken from the 
MDS configuration presented earlier (Fig. 2). The reader can verify that the 
links in this figure connect item pairs whose proximity value is marked with 
an * in Table 2, and that the values assigned to the links are the cluster 

*When there are ties among the proximities, the MST will not be unique, as there will be 
more than one configuration of links with minimum sum, and more than L - 1 equalities will 
occur. In such cases, one can select one link from each set of tied values. 
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values in the single-link solution (Fig. 3, left) at which members of the 
linked pair first belong to the same cluster. 

The single-link hierarchy in Fig. 3 and the MST in Fig. 7 are isomorphic, 
in the sense that each contains all the information needed to construct the 
other. Nevertheless, the MST representation has two virtues. First, since 
the nodes in a graph may be positioned arbitrarily, the MST may be 
embedded freely in a spatial configuration to give added information about 
the structural relations among items. In the SL method it is the small 
distances (large proximities) which have the greatest influence in 
determining the tree. MDS on the other hand, apparently gives all 
proximities equal weight. Thus, an MDS spatial representation may 
contain some information which is not preserved in the single-link 
hierarchical clustering from which the minimum spanning tree is derived. 
Second, the MST shows the specific interitem links in a representation 
which may be interpreted as having overall minimum retrieval cost. This 
format is useful in that it may stimulate research questions different from 
those suggested by the hierarchical clustering scheme. 

These graph theory methods can be used to provide meaningful 
representations of memory structure which are compatible with a number 
of network models reviewed earlier. Some mention should be made, 
however, of the types of memorial information which are beyond the scope 
of these methods. First, these methods are not quite powerful enough to 
completely represent the type of activated structural network discussed by 
Kiss (1967, 1969) and Fridja (1972). In particular, these models make the 
reasonable assumption that links between items in the memory structure 
vary in strength. Although the value assigned to a link in the MST may be 
considered to be an index of the strength of the relationship between the 
items in memory, the MST is best interpreted as apath through the memory 
network, rather than as the complete network itself. Kiss (1968, 1969) has 
shown how the more general methods of graph networks and signal-flow 
graphs may be applied to proximity data obtained in word association 
tasks. These methods assume, however, that the proximities have at least 
interval scale properties. As the interest in nonmetric (i.e., ordinal) scaling 
attests, this assumption is often difficult to justify. One possible solution to 
this problem would be to subject the proximities to a preliminary 
transformation to bolster their metric properties and then perform a 
network analysis on the transformed values. Such a procedure has in fact 
been suggested by Cunningham and Shepard (1974). They describe a 
procedure of “maximum variance nondimensional scaling”(MVNDS) for 
transforming ordinal proximity measures into distances in a general metric 
space. The transformed values are required to satisfy the metric axioms 
(e.g., the triangle inequality), to be as nearly monotonic with the original 
proximities as possible, and to have maximum variance. Cunningham and 
Shepard (1974) note that they 
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are currently exploring the possibility of using the maximally additive distances 
determined by MVNDS to construct agraph or network with n nodes, representing 
then objects, and a minimum set of weighted internode links such that the distances 
determined by MVNDS are, as nearly as possible, approximated by the sum of 
weights over the minimum connected path between appropriate pairs of nodes in 
the network. Such an adjunct to MVNDS appears quite straight-forward and, as we 
have suggested, might provide useful representations of the structure underlying 
similarity data from various semantic and cognitive domains (p. 361). 

Second, the methods of graph theory, including the more general ones 
just mentioned, cannot represent the type of relational network models 
developed by semantic memory theorists (Anderson & Bower, 1973; 
Kintsch, 1974; Norman & Rummelhart, 1975; Quillian, 1968). In these 
models interitem links in the memory structure are labeled according to the 
type of relation which connects them. Structurally, these models can be 
described as directed edge-labeled graphs, but this appellation does not 
provide a means of determining such structures on the basis of empirical 
data from free recall or from semantic memory tasks. In the present 
context, this means that although the methods of graph theory can be used 
to determine which items are linked together in an individual’s memory in 
free recall, they do not directly show the qualitative ways in which links 
differ. The type of relations represented by the links must be determined by 
the investigator as part of the interpretation of the graph. 

Individual Differences 

It was noted earlier that the averaging of proximities over subjects in a 
group is only appropriate to the extent that the subjects share a common 
organization of the list. In practice this condition tends to be fulfilled when 
subjects learn categorized lists. However, subject differences in organiza- 
tion are more prevalent if unrelated lists are used. When analysis of group 
proximities must be ruled out due to heterogeneity of organizational 
structure, the alternative of a separate analysis for each individual may be 
unattractive because it is unwieldy. In such cases it is desirable to have a 
technique to determine the nature and extent of individual differences in 
organization. 

In the context of the dimensional models, a number of methods are 
available for analyzing individual differences in MDS (Carroll & Chang, 
1970; McGee, 1968; Tucker & Messick, 1963). The Carroll-Chang 
INDSCAL method assumes that a single set of dimensions is common to all 
individuals but that these dimensions are differentially salient or important 
to different individuals. The weighting of dimensions has the effect of 
differentially stretching or shrinking the common group configuration in 
directions corresponding to the coordinate axes. This method is based on 
the assumption that the interitem proximities are linearly related to 
distances in space, rather than being merely monotonically related as in 
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FIG. 8. Two-dimensional group configuration of list items resulting from individual 
differences analysis of recall proximities. 

nonmetric MDS. Nevertheless, to the extent that this stronger assumption 
is fulfilled,$ the Carroll-Chang method leads to a representation which 
provides valuable information about the extent of individual differences 
within a group of learners and helps to characterize the nature of these 
differences. 

In the demonstration experiment described previously, the subjects also 
learned a second list. This list consisted of 18 concrete words which were 
neither related nor completely unrelated, but rather were chosen to be 
relatable in different ways. Eight presentation-recall trials were given to 
each of the six subjects. Proximities over all trials were computed for each 
subject, and the Carroll-Chang INDSCAL program was run on these data. 
In addition, the group average proximity matrix was included in the 
analysis to serve as a reference point. The results indicated that a 

9A strong suggestion that the proximities approximately satisfy the linearity condition was 
provided by the MDS solutions for the data presented in this paper, as well as by several other 
sets of data which have been run. In these cases, the plots of the original proximities from 
individual and group data against the recovered distances in MDS solutions showed no 
systematic deviations from linearity. The exceptions to this statement occurred for lists with 
salient taxonomic categories. For categorized lists, these plots have the appearance of a 
step-function. 
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FIG. 9. Subjects’ weights on the dimensions of Fig. 8 derived from INDSCAL analysis. 

three-dimensional solution provided an excellent fit to the data, accounting 
for 96% of the variance in the proximities. A two-dimensional configuration 
did not fit as well (variance accounted for = 62%), but is simpler and is 
adequate for the purpose of illustration here. The two-dimensional group 
stimulus space, together with the complete-link clusters obtained from the 
group average proximity data, is shown in Fig. 8. The subject weights on 
these two dimensions are plotted in Fig. 9. This plot shows considerable 
difference among subjects in their weighting of the dimensions. It is 
apparent that the group average data do not represent the data of any of the 
subjects particularly well. Nor is it the case that the subjects fall into 
distinct subgroups corresponding to different organizational schemes. 
Subject 2 and the group average data weight the two dimensions of Fig. 8 
about equally; the results of separate MDS analyses of these two sets of 
data are very similar to Fig. 8. Subjects 4 and 1 have moderate or high 
weights on dimension 1, but negligible weights on dimension 2. The 
consistent recall units for these subjects include (priest, palm, candle) and 
(dungeon ,plank, log) which cut across dimension 2. Subject 3, on the other 
hand, had units like (tobacco, alcohol, gutter), (palm, hurricane, log), and 
(sin, damsel, captain), which result in a negligible weight on dimension 1. 

Aside from the relative weighting of dimensions, the positions of subject 
points in Fig. 9 also indicate the goodness of fit of the Carroll-Chang model 
to an individual’s data: The greater the distance from the origin, the higher 
the proportion of variance accounted for. Interestingly, the group average 
proximities are fit best in the analysis, which reflects the reduction of noise 
achieved by averaging over individuals. In addition, Tulving’sSO measure 
(Tulving, 1962a), an index of amount of subjective organization, was found 

I I I I 

, 
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to correlate strongly with the variance accounted for in the INDSCAL 
analysis, r = .78. This result serves to underline the importance of 
examining the structure of organization rather than just its amount: 
Subjects 3 and 4 had nearly the same SO scores, but as Fig. 9 shows, their 
organizational schemes were quite different. 

Individual differences in organizational structure can also be explored 
with hierarchical representations. The basis for one simple method is 
provided by the measures of similarity between two HCS representations 
mentioned previously. Since an HCS is equivalent to the matrix of 
ultrametric tree distances, u (Johnson, 1967), the similarity of two 
hierarchies can be assessed by computing a measure of similarity between 
the entries in the corresponding matrices. Gruvaeus and Wainer (1972) 
have suggested using the Spearman rank-order correlation, p, or Pearson’s 
r when the proximities have interval scale properties. The Goodman- 
Kruskal y suggested by Hubert (1974a) is superior to p in that it is not 
affected by ties, although it is somewhat more difficult to compute. 

Using one of these measures a second-order clustering of the subjects 
can be performed as follows: From the individual cluster analyses for S 
subjects, obtain ul, u2, . . . , us. Then compute the similarity index for all 
pairs of subjects and array these in anS x S matrix, R. A cluster analysis of 
R will then indicate subgroups of the subjects whose organizational 
groupings produce similar hierarchical representations. This approach is 
illustrated later in this paper. 

VALIDATION 

This section presents some data obtained to test the validity, sensitivity, 
and utility of the approach to recall organization described here. No 
attempt is made to determine which of the three representational formats is 
most valid, sensitive, or useful. As indicated previously, each may have its 
place in the context of different theories and with different types of word 
lists. It is primarily the nature of the proximities among items in recall and 
the extent to which they can be said to capture the structure of organization 
which is at issue here. Tree-structure representations are employed where 
the format is immaterial to the discussion. 

Recovery of Known Organizational Schemes 

,The minimal test which the method must pass is that it should perform 
appropriately when the organizational scheme used in recalling a list may 
be specified a priori. To provide such a test, artificial recall protocols were 
created for two types of conceptual subjects. For both groups the list 
consisted of 20 items, grouped into four categories (labeled A, B, C, D) with 
five exemplars each (e.g., AI, A2, . . . , A5). Four trials were 
constructed for each subject according to a “some-or-none” model 
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(Cohen, 1966): On trial t, a subject recalled a given number of items (say, r) 
from each of r categories, and none from the remaining categories. 
Schematically, the pattern of recalls can be indicated as, 

Trial 1: A’ 

Trial 2: A’B’ 

Trial 3: ArBV 

Trial 4: A’B’C’D’ 

where for example, A’ means r items recalled from category A. Thus these 
artificial subjects “learned” by remembering one additional category on 
each trial. The number of items per category varied across subjects from 
r = 2 to r = 5. For half of the subjects in each group the pattern of category 
recall was as shown above; for the remaining subjects, the assignment of 
categories to trials was reversed, i.e., the categories recalled on the four 
trials were D’; DV; D’ CT BT; D’ C’ BPAr. This provided some balance in 
the frequencies of recall of the individual categories across subjects. 

The organization for one group consisted of independent clusters 
corresponding to the categories of the list. These protocols were 
constructed by randomly ordering the categories recalled on each trial and 
randomly ordering the positions of items within categories. As indicated 
previously, the complete-link HCS is most appropriate for this type of 
organization and should display the categories as compact, isolated 
clusters. 

The second group of subjects recalled according to a linear organization, 
such as might be expected with alphabetical organization or mediated 
associative chains. In these protocols the categories recalled on a given 
trial appeared either in alphabetic order (ABCD) or the reverse (DCBA). 
The items appearing in a given category came either from the beginning of 
the category (e.g., AZ, A2) or the end (Ad, A.5) and appeared either in 
numerical order or the reverse (A2, Al and A5, Ad). For this group either 
the single-link clusters or the minimum spanning tree representations are 
appropriate. The MST representation would be expected to show four 
regular chains (one for each category) with one link between each 
successive pair of categories. 

There were 16 artificial subjects in each group. Collectively, the two 
groups recalled at exactly the same level since the protocols for the cluster 
group were constructed by randomizing those of the linear group on a 
subject-by-subject basis. Any differences in the organizational structure of 
these groups must be a consequence of different order of recall, and cannot 
be due to differential recall. 

In analyzing these data, the proximity measure described here was 
compared to a measure of proximity in recall which has been used by others 
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TABLE 5 

BADNESS-OF-FIT MEASURES FOR HIERARCHICAL CLUSTERING (HCS) AND 
MULTIDIMENSIONAL SCALING (MDS) REPRESENTATIONS 

OF ARTIFICIAL DATA 

Measure Group 

HCS badness-of-fit (A) 

Single-link Complete link 
MDS 
stress 

Adjacency Linear .518 .31.5 ,118 
Cluster ,401 ,220 .286 

Proximity Linear .047 .064 ,034 
Cluster .lOl .043 .280 

(Anglin, 1970; Kintsch, 1970; Koh et al., 1971; Schwartz & Humphreys, 
1973). These investigators have essentially used the proportion of times a 
pair was recalled in adjacent output positions as their index of proximity. 
As discussed earlier, the criterion of adjacency in output discards much of 
the information about organizational structure in a subject’s order of recall. 
The proximity measure, which takes into account varying degrees of 
contiguity, should therefore do better. To provide an empirical test of this 
statement, both measures were computed for each group, in all cases 
averaging across subjects. 

Both the single-link and complete-link hierarchical clustering solutions 
were obtained for each of the four matrices (two groups x two measures). 
Goodness of fit of the data to the tree structures was assessed using the 
normalized root-mean-squared error suggested by Jardine and Sibson 
(1971): 

A = 

[ 

CCDfj - uij)2 

I 

1’2 

CDit ’ 

where uij is the tree distance defined in Eq. (8). Although sig- 
nificance levels for this statistic are unknown, values below .10 may be 
regarded as indicating an adequate fit. In addition, two-dimensional MDS 
representations were obtained for the four matrices. The stress value for 
each solution, as well as the HCS badness-of-fit measure, A, is shown in 
Table 5. The solutions for the adjacency measure are shown in Fig. 10; 
solutions obtained using the proximity measure appear in Fig. 11. It is clear 
from Table 5 and Fig. 10 that the adjacency measure in general is too weak 
to pick up the recall organizations constructed in the artificial data. In all 
four cases the fit of the data to the tree structure is intolerably poor. The 
complete-link solutions show rather diffuse clusters which do not 
adequately capture the strong categorical structure of the list. The 
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FIG. 10. Hierarchical clustering solutions obtained using adjacency measure. 

single-link solutions fare better in this regard, because they depend on only 
the local interitem relations to which the adjacency measure is sensitive. 

The values in Table 5 indicate that all solutions for the proximity measure 
are at least adequate fits to the data. For the data of the Cluster group (top 
half of Fig. 11) the complete-link solution has the best fit. Furthermore, it 
shows the expected grouping of the items into four clusters which are 
tightly integrated internally (the least within-cluster proximity is .9), but 
isolated from each other. In the data of the linear organization group, the 
single-link solution fits best, as expected. The merging of all items within 
each category at the same level (P’ = 1.0) is characteristic of linear 
schemes of organization. The minimum spanning tree representation in 
Fig. 12 shows the linear structure more clearly. Again, the locations of the 
points in the MST graph were found from a two-dimensional multidimen- 
sional scaling solution. It is worth noting that of the four matrices, only the 
one based on the proximity measure for the linear group resulted in an 
adequate stress in the MDS solutions (see Table 5). The horizontal spacing 
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FIG. 11. Hierarchical clustering solutions obtained using proximity measure. 

of the categories and the vertical spacing of the items within categories 
arises from the linear ordering of recalls and the counter balancing design 
on the categories and items. All links within a category in the MST have a 
proximity value of 1.0, reflecting the fact that the linked pairs were always 
adjacent in this organizational scheme. 

Thus, the analyses based on the proximity measure showed that the 
organizational structures built into the artificial data, independent clusters 
and linear chains, are revealed by the appropriate representations. On the 
other hand, the results obtained from the adjacency measure were not 
nearly as convincing, even though the organization of the artificial 
protocols was strong and completely consistent among subjects in each 
group. The difference between these measures is likely to be magnified for 
experimental data, which are typically less strongly organized and more 
variable from subject to subject. In the light of these results it is not 
surprising that Kintsch (1970) seemed less than enthusiastic about his 
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FIG. 12. Minimum spanning tree representation for the linear group artificial data 
(proximity measure). All within-category links have the value 1.0; values for the three 
intercategory links are as shown. The positions of points were determined from a two- 
dimensional MDS solution. 

results based on the adjacency measure and found no consistent 
organization in recall of an unrelated list. 

Sensitivity to Structural Differences 

These results show that the proximity method can recover built-in 
organization and distinguish between grossly different structures. The next 
question investigated is whether the method can distinguish among small or 
subtle variations in organizational structure. For this purpose, some results 
from an experiment involving hierarchical organization in free recall 
(Friendly, Note 4) are presented here. 

The experiment was designed to determine whether different subjects 
could be induced to organize a single list differentially by manipulating 
presentation order alone. The list contained 42 items structured in 
taxonomic categories nested at three levels. All of the items were edible 
substances (level 1). At the second level, the items belonged to three 
1Citem categories (Seafood, Farm produce, Animalfoods). Each of these 
major categories contained two 7-item subcategories (e.g., Farm produce 
contained Fruit and Vegetables at level 3. 

Four groups of subjects received presentation blocked at different levels 
of the hierarchy. In blocked presentation the items within a “block” are 
always presented together, but the order of the blocks and the order of 
items within a block are randomized from trial to trial. Three experimental 
groups differed according to whether the items were blocked into major 
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categories at level 2 of the hierarchy (Group B2), blocked according to the 
six minor categories at level 3 (Group B3), or blocked according to both 
level 2 and level 3 categories (Group B4). A control group (Group Bl) 
received a different completely random ordering of the stimulus list on each 
trial. Each subject received 12 presentation-recall trials. The number of 
subjects per group ranged from 35 to 42. 

In recall, Group B4 recalled the greatest amount and Group B 1 recalled 
the least. The difference between Group B4 and the two groups which 
received presentation blocked atjust one level of the hierarchy (B2 and B3) 
was not large, however. For the present purposes, the interesting results 
concern the representations of organizational structure obtained from 
proximity analysis. Average interitem proximities were computed for each 
group, averaging over subjects and trials. The proximities were analyzed 
by the hierarchical clustering procedure. The complete-link solutions for 
Group B2 and B3 are shown in Figs. 13 and 14. These figures, as well as 
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FIG. 13. Organizational structure (complete-link clustering) for Group B2. Filled nodes 
indicate clusters which appeared identically in the complete-link and single-link methods. 
Data pooled over subjects and trials. 
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FIG. 14. Organizational structure (complete-link clustering) for Group B3. Filled nodes 
indicate clusters which appeared identically in the complete-link and single-link methods. 
Data pooled over subjects and trials. 

corresponding solutions for Groups Bl and B4 (not shown here) look 
qualitatively similar. The tree structures for all four groups match the 
hierarchical structure of the list. This is not surprising since (a) the 
clustering method always fits a hierarchy, and (b) subjects tended to 
discover and utilize the additional levels of list structure not made obvious 
by presentation order. 

The differences in recall structure among the four groups are reflected 
quantitatively in the tree diagrams in the relative strengths of the category 
systems at level 2 and level 3 of the hierarchy. The dashed lines in Figs. 13 
and 14 show the average diameters of the level 2 and level 3 categories. The 
separation between these lines represents the (average) isolation of the 
level 3 categories. For Group B2, the clusters which are both compact and 
isolated are those at level 2, corresponding to the blocking condition which 
that group received. In contrast, the compact, isolated clusters in the 
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Group B3 M-gram are those at level 3. Again this corresponds exactly to 
the presentation condition of that group. 

These differences in cohesiveness of the organizational structures at the 
two levels of the list hierarchy may be seen more readily in Fig. 15, which 
displays the diameter and isolation measures for the four groups. It can be 
seen that the strength of organization of the level 3 categories increases 
steadily (diameters decrease) from Group Bl to Group B4. A different 
picture is presented by the diameters at level 3 and the degree of separation 
between the two organizational schemes. Subjects whose presentation was 
blocked at level 2 (B2) have the most cohesive organization at this level and 
their clusters at level 3 are least isolated. The reverse is true of Group B3: 
These subjects have the weakest organization at level 2 and the greatest 
isolation between the two systems of categories. 

The diameters of clusters obtained from the hierarchical clustering 
evidently convey fairly detailed information about organizational struc- 
ture. In fact, even if the nature of the list organization and of the blocking 
conditions were not known, the sequence of cluster diameters, cro, 
ffl, * . . 7 CyLY could by themselves provide strong indications of a 
dual-level list structure in which the strengths of the levels varied across 
groups, Figure 16 shows a plot of the successive differences of diameter 
values, oi - oyi+l, against the number of clusters at level i in the 
complete-link hierarchies. The “spikes” appearing at 3 and 6 clusters show 

I- 

j- 

,- 

lsolotion 1 

&iii1 

Lev4/2 
Level 3 
diametw 

diameter 

>3: BI 82 83 

1 

1 
-I 

FIG. 15. Cluster isolation and diameter from complete-link HCS. For each group, the total 
height of the bar represents the mean diameter of the major (level 2) categories. The shorter 
the bar, the more tightly knit is organization at this level. The average diameters of the minor 
categories (level 3) are indicated by the filled portions of the bars, while the lengths of the 
unfilled portions indicate the isolation of these two modes of organization. 
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FIG. 16. Successive differences in cluster diameters vs number of clusters at that level. The 
peaks at the 3 and 6 clusters correspond to the major and minor categories, respectively. 

the same pattern as that displayed in Fig. 15. Experience has shown that 
successive difference plots such as Fig. 16 provide a valuable means of 
identifying real clusters. 

Sensitivity to within-group differences. The analyses of organizational 
structure described above were based on the average proximities for each 
group, and therefore reflect the aspects of organization common to each 
group as a whole. Although these results are relatively clear-cut, an even 
stronger demonstration of the sensitivity of proximity analysis would be 
provided by showing that the method can distinguish among identically 
treated subjects on the basis of their output organizations. Therefore the 
Gruvaeus-Wainer (1972) individual differences procedure was used to 
obtain rank-order correlations between the complete-link solutions for all 
pairs of subjects in each group. The average proximity matrix for each 
group was included in this analysis as a point of reference. In general, the 
correlations were quite high; the median intersubject correlations were .65, 



234 MICHAEL L. FRIENDLY 

.74, .80, and .83 for Groups Bl to B4. Thus, as the degree of structure 
present in the input order increased, so too did the agreement among 
subjects of their output structure. 

A cluster analysis was then performed on the intersubject correlation 
matrix for each group. The results of this analysis showed that subjects 
within a group tended to vary in the degree to which their organization 
resembled the modal organization for the group, rather than forming 
homogeneous subgroups. Each group was divided into roughly equal 
halves: those whose organization was most like (“central”) and least like 
(“remote”) the average for the group. Pooling the proximities within each 
subgroup separately, it was found that the remote subjects differed mainly 
in that their organization was less cohesive at the level of the minor 
categories of the hierarchy (see Fig. 17). Some qualitative differences 
between remote and central subjects in the pattern of organization were 
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FIG. 17. Category diameters and mean recall for empirically isolated subgroups. C, central 
subgroup; R, remote subgroup. Panel A shows mean diameters of minor categories (shaded 
portion) and major categories (total height). Panel B shows average recall over all trials for the 
subgroups. 
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also apparent. For example, most of the remote subjects in Group B2 
organized the items according to the three major categories with little 
subgrouping according to the minor categories, while the central subjects 
in this group tended to organize in terms of both levels. Many of the remote 
B3 subjects also organized primarily at one level: that of the minor 
categories. 

The category diameters determined for these subgroups appear in Fig. 17 
which also shows performance in recall, averaged over trials for each 
subgroup. Comparison of the shaded portions of the two panels shows that 
recall varies directly with the cohesiveness (inversely with diameters) of 
the level 3 categories. The recall results are quite surprising. They indicate 
that the difference in recall between subgroups determined empirically 
within a given experimental group is at least as large as the range of mean 
recall scores UC~USS all groups in this experiment. Since all individuals in a 
given experimental group were treated identically, and since the use of 
categorized words usually tends to reduce intersubject variability 
(Marshall, 1967), it may be that the magnitude of individual differences in 
free recall has been vastly underestimated. 

Thus the between-group and within-group analyses of the hierarchical 
list experiment both demonstrate that the method of proximity analysis can 
distinguish among relatively subtle differences in organizational structure. 
It may be concluded that the method is sufficiently sensitive for the types of 
free recall experiments one might contemplate. 

Freedom from Bias 

One possible objection to proximity analysis is that the method may be 
confounding, to an unknown degree, amount of recall with order of recall 
information. If so, the results described earlier would have considerably less 
impact. Although the proximity measure was constructed so that it would 
not be influenced by sheer frequency of recall (i.e., by dividing by Z &), 
better evidence comes from comparisons in which differences between 
subjects can be attributed to organization, but not recall. To do this, 
statistical subjects were generated, yoked to real subjects from the 
hierarchical list experiment under two possible models of random 
organization. Under an independent trace (IT) model, a statistical subject 
was matched to each real subject only in terms of number of items recalled. 
The specific items recalled by the statistical subject and their sequential 
order was chosen at random with uniform probability. According to a 
dependent truce (DT) model, a yoked subject was matched item-for-item to 
each real subject and only recall order was randomized. Repetitions and 
intrusions were eliminated from the protocols in both cases. 

Essentially, these two models consider the information contained in a 
real subject’s protocol as consisting of three parts: (a) the number of items 
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recalled; (b) the co-occurrence of pairs of items in recall in terms of 
conditional probabilities of recall, P(i Ij), i,j = 1,2, . . . , L; and (c) the 
sequential order of recall. Artificial subjects generated under the 
independent trace model are equated with real subjects in number recalled 
only. If the proximity method is indeed independent of recall 
performance per se, no resemblance to the real subject’s organization 
should appear in the IT data. Any differences between real and IT 
organization should depend only on recall order and the probabilities that 
some items are recalled, given that other items appear in output. 

On the other hand, artificial data generated under the dependent trace 
model match real subjects in all but the last of the three components. A 
comparison of the proximity results of real subjects with their DT yoked 
counterparts should depend only on the order of recall. The notion of “item 
properties,” which Bousfield and Bousfield (1966) felt should be excluded 
from measures of organization, encompasses both total recall and condi- 
tional recall probabilities. Their measures of category clustering @CR) 
and subjective organization (ITR) are therefore based upon a comparison 
of observed values with chance expectation under the dependent trace 
model. 

Finally, the extent to which the mere co-occurrence of particular sets of 
items in recall influences the proximity results can be judged by comparing 
the results for IT and DT data, since they differ only in that the conditional 
probabilities of item recall are included in the latter. The concept of a 
higher-order memory unit implies that recall of a single item from such a 
unit should increase the probability that other items from that unit are also 
recalled. Therefore, the conditional probabilities might be expected to 
provide some information regarding organization. 

Interitem proximities were computed from the protocols of IT and DT 
statistical subjects in an analysis parallel to that described for Groups B 1 to 
B4. To summarize these results, two measures of organization were 
derived from the proximity matrices. To the extent that subjects 
consistently organize groups of items, some proximities will be high and 
others will be low. Thus the range of proximity values is one indicant of the 
degree of subjective organization. Also, if subjects organize according to 
some predetermined set of categories, the average value of proximities for 
pairs belonging to the same category should exceed the average value for 
pairs belonging to different categories. The difference between these two 
average values can be taken as a simple index of categorical organization. 

The results in terms of these statistics were quite simple. Artificial data 
generated under both models displayed no semblance of organization in the 
proximities among items. Table 6 presents the summary statistics from the 
analyses carried out for subjects yoked to Groups Bl and B4. The 
difference of within-category proximities and between-category proximities 
determined from real data exceeded the corresponding values for 



STRUCTURE OF ORGANIZATION 237 

TABLE 6 

PARTIAL SUMMARYOF PROXIMITY ANALYSES FORREAL AND STATISTICAL SUBJECTS 

Group Data 

Subjective 
organization 

(range of 
proximities) 

Category clustering 

Within Between Difference 

Badness of 
fit to 

hierarchy (A) 

Bl Real 13.88 35.74 28.05 7.69 .0140 
IT 3.12 30.12 30.24 -0.12 .0145 
DT 3.99 30.19 30.18 0.01 .0152 

B4 Real 16.17 38.30 27.29 11.01 .0112 
IT 3.40 29.32 29.35 -0.03 .0136 
DT 4.60 29.36 29.34 0.02 .0157 

both types of statistical subjects by several orders of magnitude. Similarly, 
the range of proximity scores for real data was about four times that of the 
statistical data. However, Table 6 also shows small differences between 
the DT and IT models. The dependent trace subjects matched in terms 
of the actual items recalled display slightly more organization by these 
measures than their independent trace counterparts. 

It may be concluded that proximity analysis (a) is dependent almost 
entirely on the order in which items are recalled, (b) is influenced to a slight 
extent by the conditional probabilities among items in recall, but (c) is 
virtually independent of the overall level of recall. One further point should 
be noted regarding the use of the badness-of-fit measure to evaluate cluster 
analysis results (see Table 6, last column). While the tree structures 
determined for statistical data were not meaningful in any sense, they did fit 
a hierarchical clustering scheme as well as the solutions derived from real 
data. Thus, although a good fit to a hierarchy is a necessary condition for 
interpreting an organizational structure, it is by no means a sufficient 
condition for useful results. 

Utility of Proximity Analysis 

The results above have concentrated mainly on the measurement 
properties of the proximity analysis. This section attempts to illustrate the 
utility of the method in a situation where standard methods (e.g., number 
recalled, or amount of organization) alone provide insufficient evidence for 
strong conclusions. These results will be described more fully in a 
forthcoming paper. 

The application concerns the effects of organization on part- whole 
transfer in free recall. In such studies the subject learns a list for several 
trials and then learns a second list which contains the first-list items. In 
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MFR, the transfer paradigm provides a means for determining the 
functional significance in a subsequent task of higher-order memory units 
which have been developed in prior learning. If memory units are more 
than a momentary product of recall, the relation between units formed in 
the two tasks should be an important determinant of performance on the 
second list. In fact, if one assumes that the number of memory units which 
can be retrieved on a given trial is limited, then learning the whole list 
should require the subject to reorganize the part-list memory units in order 
to accommodate the new items on the whole list (Tulving, 1966). This 
necessity to reorganize should, according to this view, interfere with or 
delay learning on the whole list. 

This counterintuitive result was demonstrated by Tulving (1966). Two 
groups learned different initial 18-item lists, and transferred to a common 
second list of 36 words. The first-list items for a part-whole group (Group 
PW-R) all reappeared on the second list; a control group (C) learned 
an entirely different set of items initially. On the second list 
the part-whole subjects did no better than the controls. In fact, 
the part- whole group seemed to show a slower rate of whole-list learning. 

Tulving’s account is quite plausible and predictions from organization 
theory have been confirmed in a number of other transfer studies 
(Birnbaum, 1968; Bower & Lesgold, 1969; Novinski, 1969; Ornstein, 
1970). Tulving’s (1966) data, however, do not compel an explanation based 
on inappropriate S-units. In fact, there are other explanations which are 
equally compatible with the data. 

One possibility is that PW subjects employ an input strategy of 
selectively attending and rehearsing the new items in List 2 at the expense 
of old items. In addition, new items tend to be recalled earlier in output than 
old items (Roberts, 1969). Such a strategy would make new items less 
susceptible to intratrial forgetting (Tulving, 1964) during the recall period. 
However, the combined effects of input strategy (selectively attend to new 
items) and recall strategy (recall new items first) would cause old, 
previously learned items to undergo interference. Essentially, the recall of 
old items would be attempted after greater intervening time and 
interpolated recall. This explanation of negative transfer has also been 
suggested by Postman (1971) and is supported by the finding that prior 
part-list learning produces a greater negative effect on the recall of old 
words than of new words (Bower & Lesgold, 1969). 

On the basis of Tulving’s transfer studies (Tulving, 1966; Tulving & 
Osler, 1967), nothing more can be said to decide between these two 
explanations. However, the organizational account can be tested directly 
by using the method of proximity analysis to determine the contents of 
S-units at the end of List 1 learning and their composition at various stages 
in List 2 learning. In addition, it would be useful to compare organizational 
structure on List 2 for conditions where prior-list organization was 
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FIG. 18. Comparison of List 1 and List 2 organization for a subject receiving blocked 
presentation (O/N) of List 2. Data from Omstein (1970, Expt I). 

appropriate for transfer. Several studies by Omstein (1970) have 
manipulated prior-list organization in ways which provide data for this test. 

One of Omstein’s experiments (1970, Expt I) attempted to maintain 
prior-list subjective organization by presenting List 2 in blocks of old and 
new items, in contrast to the Tulving study in which the two sets of words 
were randomly intermixed on the final list. In addition to groups replicating 
Tulving’s study, Ornstein’s design included a group (Group PW-O/N) 
which received the final list in a blocked fashion. Blocked presentation 
should serve to facilitate discrimination of old and new subsets and allow 
subjects to develop a separate parallel organization for the new items, 
while preserving List 1 groupings of the old words. Transfer was from a 
12-word list to a 24-word list, all unrelated words, and eight trials were 
given on both lists. 

As in Tulving’s study, Group PW-R, which received the List 2 items 
randomly arranged, did no better than the control on the final recall task. 
Group PW-O/N, however, showed large positive transfer. 

This result is consistent with the organizational interpretation, but a 
strong, direct test of this view can be made by analyzing the proximities 
among items in List 2 recall for subjects in these groups. In order for 
Tulving’s hypothesis to be supported, Group PW-O/N subjects should 
maintain the organizational pattern developed in List 1, while subjects in 
the random presentation, part-whole group should show structures for 
which the organization of old items is fragmented with respect to List 1 
organization. 

The data first used to illustrate the method of proximity analysis (Fig. 1) 
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FIG. 19. List 2 organization for Group PW-(O/N). 

were taken from List 1 recall protocols of one of the PW-O/N subjects. The 
cluster analysis performed on the proximities from this person’s data (Fig. 
3) indicated a hierarchical organization which could be described by three 
S-units. Figure 18 presents the organizational structure for this subject 
derived from the List 2 protocols (Trials l-8). The corresponding List 1 
M-gram for old words has been redrawn at the left of Fig. 18 for ease of 
comparison. The most striking feature of the List 2 organization is the 
separation of the tree structure into “old” and “new” components. The 
separation is not perfect--laboratory and sear merge with the old rather 
than new items-but these two words are only weakly associated with the 
old items. The groupings of the new items (shown in lower case) seem to 
make sense semantically: (end, phrase), (hunger, pfenry), (dawn, night), 
and (spear, treaty). Also, comparing the organization of the old items with 
this subject’s structure in first-list learning, it can be seen that the major 
subjective units uncovered earlier have remained intact: (inventor, 
professor), (highway, structure, must, north), (decree, captive, execution, 
assault, quarrel). lo 

Although this analysis was in terms of a single subject, the most general 
results also obtain at the group level, i.e., segregation into old and new 
components, and maintenance of higher-order units of List 1 items. Figure 

loPerhaps the greatest difference between the two M-grams is in the position of uaoa. This 
word did not appear consistently near any other word during List 1 learning, but is merged 
with NORTH at the highest proximity level in List 2. The reason for this is not entirely clear, but 
the proximity of NORTH and URGE may have been underestimated in List 1. Table 1 shows the 
trial-to-trial proximities of these two items. On trial 3 these items appeared at opposite ends of 
the protocol (P = 3), but on four of the five remaining trials, they were recalled in adjacent or 
nearly adjacent positions. 
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Group PW - Random (Subject 57) List 2 
I I II I I I Ii I I I II 

Average Proximity (Trials l-8) 

FIG. 20. List 2 organization for a subject from group PW-R. Data from Omstein (1970). 

19 shows the clustering results for the pooled data of the seven subjects in 
this group. 

With random presentation, Group PW-R showed no positive transfer. 
The structure of List 2 organization for a fairly typical subject from this 
group is shown in Fig. 20. The old and new items in the M-gram for this 
subject are completely mingled. This mixing of items from the two subsets 
in the organization of List 2 occurred for every subject in Group PW-R. 

First-list organization for this subject appears in Figure 21. The 
groupings differed so markedly that the first and second list hierarchies 
could not be juxtaposed without considerable crossing of lines. 
Comparison of the two M-grams indicates that several of the highly 
proximal pairs of old items do carry over when the whole list is learned: 
(decree, execution), (highway, strucrure), and (professor, urge). However, 
unlike the situation in Group PW-O/N, subjects in the random group seem 
to have either lost or discarded the higher level S-units in whole list 
learning. Again, this general pattern of intermixing of old and new in List 2 
structure, with maintenance of only the strongest primary S-units, appears 
for almost all subjects in this group. 

As a result of these analyses, it seems that for both groups, the highly 
organized, primary S-units acquired in learning the part list are maintained 
and used by the subject in recalling the whole list. What differentiates the 
groups is the degree to which they use the higher-order units of List 1 to aid 
recall of List 2. If higher-order units can be thought of as access routes 
which guide the retrieval system from one primary S-unit to the next, then, 
anything which interferes with these informationally rich units should have 
a disruptive effect on the overall success of recall. This appears to be 
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Group PW - Random (Subject 51) List I 
Ill III,,, , , 1 , 1 

I I I I I I I I I , , ] 
1.0 0.9 0.8 0.7 086 0.5 On4 

Average Proximity (Trials 3-S) 

FIG. 21. Organization of “old” words in List 1 learning for the subject whose List 2 M- 
Gram is shown in Fig. 20. Data from Omstein (1970). 

precisely what has occurred in Group PW-R. Subjects receiving blocked 
input on the whole list, however, maintain the higher-order units of List 1. 
For the most part they develop a separate and parallel organization for the 
new item. 

CONCLUDING REMARKS 

The last two decades have witnessed successively more detailed 
attempts to characterize the nature of the information handled by the 
human memory system. The early steps in this direction occurred with the 
application of information theory to study of the structure of stimulus and 
response events (Garner, 1962); and it is of interest that Tulving’s (1962a) 
formulation of the subjective organization measure was based on 
information theory. While both approaches have led to much useful 
research, they share a common limitation: Both compress an information- 
ally rich ensemble of responses into a single number. What is gained 
thereby in precision, is paid for by loss of scope. L. A. Steen, a 
mathematician concerned with catastrophe theory recently observed that 
“when the mind must work with numbers, it works linearly, on one track. 
But if a particular problem can be transformed into a picture, then the mind 
grasps the problem as a whole and can think creatively about solutions“ 
(Newsweek, January 19,1976, p. 54). I believe his comments apply equally 
to study of the organization of memory. 

The initial success of the information processing approach and the 
emergence of free recall as a paradigm for the study of mnemonic 
organization led theorists to seek broader scope. The structuring of 
information in memory was characterized in such terms as chunks, S-units, 
tree structures, semantic markers, feature lists, semantic networks, and so 
forth. Most recently, such theories have become greatly more comprehen- 
sive. Anderson and Bower (1973), Norman and Rumelhart (1975), and 
Kintsch (1974) among others have developed detailed specifications for the 
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internal representation of the knowledge of the world, of language and of 
experienced events which we store in memory. Obviously, it is important 
to confront these theories with empirical data. This paper has developed a 
methodology for extracting structural information from free recall output 
and fitting these data to three general models into which these theories may 
be classed. 

It should be noted that the techniques described herein apply to 
situations other than free recall. At one level, the proximity measure may 
be used in any case where the order of a set of responses is observed over a 
series of occasions. For example, proximity analysis could be used to study 
the organization of chess (Chase & Simon, 1973) or Go pieces from data 
obtained when subjects attempt to reproduce a given board configuration 
from memory. At a second level, the scaling methods described earlier may 
be used to extract representations of organizational structure in any 
situation where measures of interitem similarity can be obtained by other 
means. 

Given proximity analysis, together with analogous procedures for 
semantic memory tasks (Miller, 1969), a number of interesting questions 
may be posed and perhaps resolved. Is it reasonable to suppose, for 
example, that semantic similarity judgments and output order organization 
in free recall reflect a single underlying semantic configuration? Schwartz 
and Humphreys (1973) report moderately large correlations between these 
two types of data which are consistent with this hypothesis. It would be 
useful, however, to compare the actual organizational structures, and also 
to determine whether such correspondences hold with other semantic 
memory tasks. Further, developmental studies have indicated that free 
recall performance can increase with age without corresponding increases 
in amount of subjective organization (Ornstein, Hale, & Morgan, Note 8). 
It is hoped that the approach developed here can suggest explanations of 
this and other puzzles. 
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