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Abstract This paper is designed as a tutorial to highlight some recent developments for visualizing
the relationships among response and predictor variables in multivariate linear models (MLMs),

and implemented in convenient packages for R. These models include multivariate multiple re-
gression analysis (MMRA), multivariate analysis of variance (MANOVA) and multivariate analysis

of covariance (MANCOVA). The methods we describe go well beyond what can be understood and

explained from simple univariate graphical methods for the separate response variables. We de-

scribe extensions of these methods for the case of more than just a few response variables, where

the important relationships can be readily seen in the low-dimensional (2D) space that accounts

for most of the relevant information. As befits the tutorial nature of this paper, we analyze some

sample psychological research studies utilizing these multivariate designs, showing examples in

R. In the process, we also take up several practical problems related to the assumptions of MLMs,
and how these can be dealt with using graphical methods. Finally, we provide guidelines to aid

researchers in conducting multivariate research, pertaining to the analysis, visualization, and re-

porting of such designs. The graphical and statistical methods described here are all freely available

and implemented in the R packages candisc, car, heplots, andmvinfluence.
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Introduction

Multivariate response designs are common in applied psy-

chological research, and are utilized to analyze a wide

range of phenomena within that domain. A particu-

lar research outcome (e.g., depression, neuro-cognitive

functioning, academic achievement, self-concept, attention

deficit hyperactivity disorders) might take on a multivari-

ate form if it has several observed measurement scales or

related aspects by which it is quantified, or if there are

multiple theoretically distinct outcomes that should be as-

sessed in conjunction with each other (e.g., using depres-

sion, generalized anxiety, and stress inventories to model

overall happiness). In this situation, the primary concern

of the researcher is to ascertain the impact of potential pre-

dictors on two or more response variables simultaneously.

For example, if academic achievement is measured

for adolescents by their reading, mathematics, science,

and history scores, do predictors such as parent encour-

agement, socioeconomic status and school environmental

variables affect all of these outcomes? Do they affect them

in the same or different ways? Similarly, if psychiatric pa-
tients in various diagnostic categories are measured on a

battery of tests related to social skills and cognitive func-

tioning, we might want to know which measures best

discriminate among the diagnostic groups and which are

most predictive of positive outcomes. Further, how are the

relationships between the outcomes affected by the predic-
tors? Such questions obviously concern more than just the

separate univariate relations of each response to the pre-

1
Structural equation modeling (SEM) offers another route to explore and analyze the relationships among multiple predictors and multiple re-
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dictors. Equally, or perhaps more importantly, are ques-

tions of how the response variables are predicted jointly.1
Statistically, this is easy, because the classical univari-

ate response model for ANOVA and regression, y = Xβ +
u, with u ∼ N (0, σ2I) generalizes directly to an analo-
gous multivariate linear model (MLM), Y = XB +U for
multiple responses (as will be discussed in detail). Hap-

pily as well, hypothesis tests for the MLM are also straight-

forward generalizations of the familiar F and t-tests for
univariate response models.

However, with two or more response variables, visual-

izations for multivariate models are not as simple as they

are for their univariate counterparts for understanding the

effects of predictors, model parameters, or model diagnos-

tics. Consequently, the results of such studies are often ex-

plored and discussed solely in terms of coefficients and sig-

nificance, and visualizations of the relationships are only

provided for one response variable at a time, if at all.

This tradition can mask important nuances, and lead re-

searchers to draw erroneous conclusions.

The aim of this paper is to describe and illustrate some

central methods that we have developed over the last ten

years that aid in the understanding and communication of

the results of multivariate linear models (Friendly, 2007;

Friendly & Meyer, 2016; Friendly, Monette, & Fox, 2013).

These methods rely on data ellipsoids as simple, minimally
sufficient visualizations of variance that can be shown in

2D and 3D plots. As will be demonstrated, the Hypothesis-

Error (HE) plot framework applies this idea to the results

of multivariate tests of linear hypotheses.

Further, in the case where there are more than just a

few outcome variables, the important nectar of their rela-

tionships to predictors can often be distilled in a multivari-

ate juicer— a projection of the multivariate relationships

to the predictors in the low-D space that captures most of

the flavor. This idea can be applied using canonical corre-

lation plots and with canonical discriminant HE plots.

Overall, the goal of this paper is to provide a sub-

stantive and computational tutorial on how these ideas

can be implemented (in R software) and interpreted for
popular designs: multivariate multiple regression analysis

(MMRA), multivariate analysis of variance (MANOVA) and

multivariate analysis of covariance (MANCOVA). Each are

prevalent in psychological research applications, and we

hope that this paper will aid researchers in properly inter-

preting and presenting their results.

We assume the reader to have at least a basic famil-

iarity with R. While R fundamentals are outside the scope
of the current paper, we believe that this language pro-

vides a rich set of resources, far beyond that offered by

other statistical software packages, and is well worth learn-

ing. For those not familiar with R, we recommend Matloff
(2011), Wickham (2014), and Cotton (2013) for introduc-

tions to programming in the language, and Fox and Weis-

berg (2011) and Teetor (2011) for learning about how to

conduct basic statistical analyses.

Problems in understanding and communicating MLM
results
In our consulting practice within the Statistical Consult-

ing Service at York University, we see hundreds of clients

each year ranging from advanced undergraduate thesis

students, to graduate students and faculty from a variety of

fields. Over the last two decades, and across each of these

groups, we have noticed an increasing desire to utilizemul-

tivariate methods. As researchers are exposed to the util-

ity and power of multivariate tests, they see them as an ap-

pealing alternative to runningmany univariate ANOVAs or

multiple regressions for each response variable separately.

However, multivariate analyses are more complicated

than such approaches, especially when it comes to un-

derstanding and communicating results. Output is typi-

cally voluminous, and researchers will often get lost in

the numbers. While SPSS and SAS make tabular sum-
mary displays easy, these often obscure the findings that

researchers are most interested in. The most common an-

alytic oversights that we have observed are:

• Atomistic data screening: Researchers have mostly
learned the assumptions (the Holy Trinity of normal-

ity, constant variance and independence) of univari-

ate linear models, but then apply univariate tests (e.g.,

Shapiro-Wilk) and diagnostic plots (normal QQ plots) to

every predictor and every response.

• Bonferroni everywhere: Facedwith the task of report-
ing the results for multiple response measures and a

collection of predictors for each, a common tendency is

to run (and sometimes report) each of the separate uni-

variate response models and then apply a correction

for multiple testing.

• Reverting to univariate visualizations: To display re-
sults, SPSS and SASmake some visualization methods
available through menu choices or syntax, but usually

these are the wrong (or at least unhelpful) choices, in

that they generate separate univariate graphs for the

individual responses.

It is the purpose of this paper to discuss a few essen-

tial procedures for multivariate linear models, how their

interpretation can be aided through the use of well-crafted

sponses. They have the advantage of being able to test potentially complex systems of linear equations in very flexible ways; however, these methods

are often far removed from data analysis per se and except for path diagrams offer little in the way of visualization methods to aid in understanding
and communicating the results. The graphical methods we describe here can also be useful in a SEM context.
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(though novel) visualizations, and provide replicable sam-

ple code inR to showcase their use in applied psychological
research. A closing section provides some practical guide-

lines for analyzing, visualizing and reporting such models

to help avoid these and other problems.

Brief review of the MLM
The general multivariate linear model (MLM) can be un-

derstood as an extension of the univariate linear model,

with the main difference being that there are multiple re-

sponse variables instead of just one. In this context, there

are multiple techniques that can be applied depending

on the structure of the variables at hand. For instance,

with one or more continuous predictors and multiple re-

sponse variables, one could use multivariate regression

to obtain estimates useful for prediction. Instead, if the

predictors are categorical, multivariate analysis of vari-

ance (MANOVA) can be applied to test for differences be-

tween groups. Again, this is akin to multiple regression

and ANOVA in the univariate context – the same underly-

ing model is utilized by multiple statistical techniques.

In each of these cases, the underlying MLM is given

most compactly using the matrix equation,

Y
(n×p)

= X
(n×q)

B
(q×p)

+ U
(n×p)

, (1)

where Y = (y1,y2, . . . ,yp) is the matrix of n observa-
tions on p responses;X is the model matrix with columns

for q regressors, which typically includes an initial column
of 1s for the intercept; B is a matrix of regression coeffi-

cients, one column for each response variable; and U is a
matrix of errors. The structure of the model matrix X is

the same as the univariate linear model, and may contain,

therefore, dummy regressors representing factors, poly-

nomial or regression-spline terms, interaction regressors,

and so on.
2

The assumptions of the multivariate linear model en-

tirely concern the behavior of the errors: Let u′i represent
the ith row of U. Then it is assumed that u′i ∼ Np(0,Σ),
where Σ is a non-singular error-covariance matrix, con-

stant across observations; u′i and u
′
j are independent for

i 6= j; and X is fixed or independent of U. These state-
ments are simply the multivariate analogs of the assump-

tions of normality, constant variance and independence of

the errors in univariate models.

In univariate response models, statistical hypothesis

tests and model summaries (like R2
) are based on the fa-

miliar decomposition of the total sum of squares SST into
regression or hypothesis (SSH ) and error (SSE) sums of
squares. In the multivariate linear model a similar decom-

position is applied to the total sum of squares and cross
products (SSP) matrix into regression and residual SSP ma-
trices. For the MLM this is expressed as,

SSPT
(p×p)

= Y ′Y − ny y′ =
(
Ŷ ′Ŷ − ny y′

)
+ Û′Û

= SSPH + SSPE ≡H +E,

where y is the (p × 1) vector of means for the response

variables; Ŷ = XB̂ is the matrix of fitted values; and

Û = Y − Ŷ is the matrix of residuals. This is the de-

composition that we visualize below in HE plots, where

the size and direction of H and E are represented as el-
lipsoids. An animated display of these ideas and the re-

lations between data ellipses and HE plots can be seen at

http://www.datavis.ca/gallery/animation/manova/.

The univariate F test statistic, F = SSH/dfh
SSE/dfe

assesses

“how big” SSH is relative to SSE . This has a direct mul-
tivariate analog in terms of the s = min(p, dfh) non-zero
latent roots (eigenvalues), λi, of HE

−1
(H “divided by”

E); that is, the values λi that solve

det(HE−1 − λI) = 0 =⇒HE−1λi = λivi. (2)

The various multivariate test statistics such asWilks’Λ,
the Pillai and Hotelling trace criteria, and Roy’s maximum

root test are all functions of the λi. These reflect different
geometric properties of the “size” of theH ellipsoid rela-

tive to the size of the E ellipsoid. The statistical and geo-
metric details of this relationship are described in Friendly

(2007) and Friendly et al. (2013).

The overall multivariate test for the model in Eqn. (1) is

essentially a test of the hypothesisB = 0 (excluding the in-
tercept row), or equivalently a test based on the incremen-
tal SSPH for the hypothesized terms in the model—that
is, the difference between theSSPH for the full model and
the null (intercept only) model.

Testing contrasts and linear hypotheses
More generally, these tests apply to every linear hypoth-
esis concerning the coefficients in B. Suppose we want
to test the hypothesis that a subset of rows (predictors)

and/or columns (responses) simultaneously have null ef-

fects. This can be expressed in the general linear test,

H0 : Ch×qBq×p = 0h×p, where C is a full rank h ≤ q
hypothesis matrix of constants, that selects subsets or lin-

ear combinations (contrasts) of the coefficients in B to be
tested in a h degree-of-freedom hypothesis. In this case,
the SSP matrix for the hypothesis has the form

2
For brevity, we assume thatX is of full column-rank q; allowing for less than full rank cases would introduce additional notation, but not funda-

mentally change any of the results presented here.
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H = (CB̂)T [C(XTX)−1CT]−1 (CB̂) (3)

where there are s = min(h, p) non-zero eigenvalues
of HE−1. In Eqn. (3) H measures the (Mahalanobis)

squared distances (and cross products) among the linear

combinationsCB̂ from the origin under the null hypothe-
sis.

Repeated Measure Designs
Finally, these ideas extend directly to repeated measure de-
signs, where the multivariate responses in Y arise when

a given variable is assessed for the same individual on dif-

ferent occasions or under different circumstances, or even

a collection of different outcome variables (e.g, response

speed, accuracy) measured at different occasions.
3

In this case, any linear hypothesis to be tested can be

expressed asH0 : Ch×qBq×pMp×v = 0h×v whereM is a

suitable “within-subjects” response transformation matrix

expressing contrasts among the repeated measures. See,

e.g., O’Brien and Kaiser (1985), Timm (1980), Hand and Tay-

lor (1987) for details on the multivariate approach to re-

peated measure designs; Friendly (2010) gives details and

examples of the application of the HE plot framework for

these models.

Example: Father perceived parenting data
We use a simple example of a three-group multivariate de-

sign in this section and the next to illustrate the basic ideas

of fittingMLMs inR and the graphical methods we propose
for understanding the results of such models.

The data come from an exercise (10B) in Meyers,

Gamst, and Guarino (2006) and are probably contrived, but

modeled on a real study in which fathers were assessed on

three subscales of a Perceived Parenting Competance Scale:
(a) caring, or the degree of caretaking responsibilities cor-
responding to the father; (b) emotion, the emotional sup-
port provided by the father to the child; and (c) play, the
recreational time the father spent with the child. Each of

the above variables are discrete, and range from 0 to 10.

The dataset Parenting comprises 60 fathers selected from
three groups: (a) fathers of a child with no disabilities; (b)

fathers with a physically disabled child; (c) fathers with a

mentally disabled child. The design can appropriately be

modeled using MANOVA, with three levels for the group

factor and three response variables. The main questions

concern whether group means differ on these scales, and

what the nature of these differences are.

First, we illustrate fitting a MANOVAmodel to this data.

InR, a MLM is fit with the standard lm() function simply by
using a matrix of variables as the response (left-hand) side

of the model formula. In the call to lm(), cbind() combines
the response vectors into amatrix object. For testingmodel

effects, we recommend use of the Anova() function from
the car packge (Fox & Weisberg, 2011, 2015), which pro-
vides partial (Type II) tests of model terms for the null hy-
pothesis that the three response means are all equal across

the three groups (with only one term, the standard anova()
function would return equivalent results).

data(Parenting, package="heplots")
library(car)
parenting.mod <- lm(
cbind(caring, play, emotion) ~ group,
data=Parenting

)
Anova(parenting.mod)

The results would be:

## Type II MANOVA Tests: Pillai test statistic
## Df test stat approx F num Df den Df Pr(>F)
## group 2 0.94836 16.833 6 112 8.994e-14 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

By default, Anova() reports the Pillai trace statistic; all
test statistics and the H and E matrices are provided by
summary(Anova(parenting.mod)) and any tests of linear
hypotheses or contrasts can be obtained using linearHy-
pothesis(parenting.mod) from car.
The MANOVA test above tells us that the means of the

groups differ significantly on the three scales collectively,

but it doesn’t indicate how they differ. In a univariate ap-
proach to visualization, we could make separate boxplots
for each of the response variables (shown in the supple-

mentary materials), but this would not show how they are

related. The following section details how one can generate
and interpret informative graphics for this model and will

then be demonstrated using this example for the Parenting

data.

Graphical Methods for MLMs

In this section, we describe three simple, yet fundamental

ideas behind our approach to visualizing data in relation

to MLMs. These methods are explained in more detail in

Friendly and Sigal (2014) and Fox, Friendly, and Monette

(2009).

(a) For any multivariate normal data, the graphical analog

of the minimally sufficient statistics (µ,Σ) (mean vec-
tor and covariance matrix) is a data ellipsoid centered
at µ whose size and shape is determined by Σ, and
which can be viewed in 2D, 3D, and by other means.

(b) From the theory of tests for the MLM outlined above,

3
The main practical limitation that using this MLM approach for repeated measures has is that it requires complete data. In all software environ-

ments, any missing data for a given subject causes that case to be deleted from the analysis. A mixed model approach avoids this.
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we can show any hypothesis test by superposing an
H ellipsoid representing variation against a null hy-

pothesis on an E, representing error variation. The
HE-plot method we describe provides a visual test of
significance by one common test statistic (Roy’s maxi-

mum root), signaled by theH ellipsoid projecting out-

side that ofE as illustrated below.
(c) When there are more than a few response variables,

these same relationships can be more readily seen via

projection onto a smaller space that gives a maximally

efficient 2D (or 3D) representation. This often provides

additional insight into the results of a complex multi-

variate analysis.

Detailed examples of the application of these ideas to

a selection of psychological research topics are provided

in the Section “Examples” and guidelines for their use is

explored in the Discussion, but first more information is

required to understand what is being plotted in order to

properly interpret their properties.

Data ellipsoids: Minimally sufficient visual summaries
Under classical theory that a p-dimensional variate y is
multivariate normally distributed, y ∼ Np(µ,Σ), the sam-
ple mean vector ȳ and covariance matrix S are sufficient
statistics, in the sense that they provide all the information
necessary for making inferences and predictions. Geomet-

rically, contours of constant density correspond to concen-

tric ellipsoids located at the centroid – this fact was first

discovered by Francis Galton (1886), and exemplified in the

case of his bivariate plot of heights of parents and their off-

spring (Friendly & Denis, 2005; Hanley, 2004).

Similarly, in applied data analysis, the data ellipse (or
concentration ellipse, Dempster (1969), Monette (1990) pro-
vides a remarkably simple and effective display for view-

ing and understanding bivariate relationships in multi-

variate data and generalizes to ellipsoids in p dimensions.
(In what follows, we use the term ellipsoid for the general
case and ellipse for the bivariate case, but this should be
clear from the context.)

For example, all properties of bivariate regression

(means, standard deviations, correlation, and slopes of

both regression lines, residual standard error, etc.) can be

immediately seen in terms of properties of the data ellipse

(see Figure 1). See Friendly et al. (2013) for a complete dis-

cussion of the role of ellipsoids in statistical data visual-

ization. Moreover, because a data ellipsoid is an exact ge-

ometrical representation of multivariate location (µ) and
scatter (Σ), we call this a sufficient visual summary.
Formally, for a p-dimensional sample,Yn×p, withmean

vector ȳ, the p×p covariance matrixS can be represented
by the p-dimensional data ellipsoid, Ec of size (“radius”) c
translated to ȳ. This is defined as the set of all points y
satisfying

Ec(ȳ,S) := {y : (y − ȳ)T S−1 (y − ȳ) ≤ c2}, (4)

It is readily seen that the quadratic form in Eqn. (4) cor-

responds to the set of points whose squared Mahalanobis

distances D2
M (y) = (y − ȳ)T S−1 (y − ȳ), from the cen-

troid of the sample, ȳ = (ȳ1, ȳ2, . . . , ȳp)
T
, are less than or

equal to c2.
When the data variables are multivariate normal, the

data ellipsoid approximates a contour of constant den-

sity in their joint distribution. In this case D2
M (y) has a

large-sample χ2
p distribution, or, in finite samples, approx-

imately [p(n − 1)/(n − p)]Fp,n−p. Hence, in the bivariate
case, taking c2 = χ2

2(0.95) = 5.99 ≈ 6 encloses approxi-
mately 95% of the data points under normal theory. A 68%

coverage data ellipse with c2 = χ2
2(0.68) = 2.28 gives a

bivariate analog of the standard x̄± 1sx and ȳ± 1sy inter-
vals.

4

Data ellipses are illustrated in Figure 1, using a bi-

variate normal sample of n = 300 observations with
(µX , µY ) = (0, 0), (σX , σY ) = (10, 10) and ρ = .50.
In this figure, the ellipses have the sample mean vector

(x̄, ȳ) as their center; the lengths of arms of the central
cross (dashed) show the standard deviation of each vari-

able, which may be seen to correspond to the shadows of

the 40% ellipse. In what follows, we typically use a 68%

ellipse to show a standard bivariate “unit” region.

HE plots: Visualizing sources of significance in MLMs
With the mathematical properties of data ellipsoids de-

scribed above, a 2D HE plot for two response variables

(see: Figure 2) simply overlays two types of data ellipses

for these variables; a 3D HE plot does the same for three

response variables. The first is a standard 68% data ellipse

showing residual (error) variation reflected in the E ma-
trix of the residuals inU . This is scaled asE/dfe so that its
size is analogous to amean square error in univariate tests.

This 68% scaling allows researchers to “read” the residual

standard deviation as the half-length of the shadow of the

E ellipse on any axis. Translating the E ellipse to the over-

all (grand) means of the variables plotted also allows us to

show the means for factor levels on the same scale, facili-

tating interpretation.

The second is an ellipse representing the variation

in the means of a factor (or any other term reflected in

4
Of course no real data is ever exactly multivariate normal, but when the data differs from this theory by only moderate skewness and kurtosis

and/or the possible presence of even many outliers, the classical mean and product-moment estimate, Ŝ =
∑

(y− ȳ)(y− ȳ)T/(n−1) can be readily
replaced by robust estimates (Rousseeuw & Leroy, 1987) of location and scatter. Popular choices are provided for example by the minimum covariance

determinant (MCD) algorithm (Rousseeuw & Van Driessen, 1999) or minimum volume ellipsoid (MVE) method.
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Figure 1 Plot of artificial data showing properties of data ellipses. The ellipses have theoretical coverage of 40% (blue),

68% (red) and 95% (gray) of the data points. The regression line of y on x (black) goes through the points where the
ellipses have vertical tangent lines. The ratio of the vertical distance from the mean of y to the regression line (labeled
‘r’) to the vertical to the top of the ellipse gives a visual estimate of the sample correlation (r = 0.51, here).
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Eqn. (3) in theH matrix) which is simply the data ellipse

of the fitted values for that term. Scaling the H matrix

as H/dfe puts this on the same scale as the E ellipse.

We refer to this as effect size scaling, because it is simi-
lar to an effect size index used in univariate models, e.g.,

ES = (x̄2 − x̄2)/s in a two-group, univariate design.
For the Parenting data, and the two responses caring

and play, effect size scaling is shown in the left panel of Fig-
ure 2, indicating that the variation of means of the groups

is about the same size as within-group variance. Means for

the groups indicate that fathers of normal children have

higher scores on play, while fathers of physically disabled
children are highest on caring.

Significance scaling
The geometry of ellipsoids and multivariate tests allow

us to go further, to provide visual tests of significance for
terms in aMLM. This is achieved simply by dividingH/dfe
further by the α-critical value of the corresponding test
statistic. Among the various multivariate test statistics,

Roy’s maximum root test givesH/(λαdfe) has the attrac-
tive visual property that the scaled H ellipsoid will pro-

trude somewhere outside the standard E ellipsoid if and

only if Roy’s test is significant at significance level α. For
these data, the HE plot using significance scaling is shown

in the right panel of Figure 2. Note that although we use

a conventional α = 0.05 criterion in these plots, the em-
phasis is not on simplistic p-values for significance testing,
but rather on visual assessment of the strength of evidence

against a null hypothesis and how this relates to the re-

sponse variables shown.

Example: Father perceived parenting data
In our R implementation, the HE plots shown in this fig-
ure are produced directly from the "mlm" object, parent-
ing.mod generated earlier. This uses heplot() from the

heplots package (Fox & Friendly, 2014), which can be in-
stalled and loaded as follows:

install.packages("heplots", dependencies
=TRUE)

library("heplots")

When heplot() is given the "mlm" object, it produces a
bivariate HE plot for any pair of response variables in the

model (the first two, by default). At their core, the two plots

in Figure 2 are produced by these calls to heplot():

# effect scaling
heplot(parenting.mod, size="effect")
# significance scaling is the default,
# so no size argument is required
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Figure 2 HE plots for the variables caring and play in the Parenting data set. (a) Effect scaling of the H matrix. (b)

Significance scaling of theH matrix, α = 0.05.
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heplot(parenting.mod)

We can interpret these plots as follows: for caring and
play, the within-group residuals (E) are slightly negatively
correlated: within a given group, fathers who score higher

on caring score slightly lower on play. The variation among

the group means (H) is in the same direction: The group
(Physical Disability) scoring highest on caring scores low-

est on play. In general, for any HE plot, the direction of the

H ellipsoid relative to that of E reflects the linear combi-
nations of the response variables shown with the greatest

effect.

In this example, the Parenting data has p = 3 di-
mensions, and the residual E ellipsoid is 3D. However,

with three groups, dfh = 2, so the H ellipsoid has only

s = min(p, dfh) = 2 non-zero dimensions. To see these re-
lations for all variables together, it is easy to use a scatter-

plot matrix format, using the pairs() function on a "mlm"
object, or in 3D using heplot3d(). The 3D plots are inter-
active, in that they can be rotated and zoomed by mouse

control, and dynamic, in that they can be made to spin and

saved as movies. To save space, these plots are not shown

here.

# all pairwise 2D projections
pairs(parenting.mod)
# interactive 3D plot
heplot3d(parenting.mod)

Visualizing contrasts and linear hypotheses
In a MANOVA, it is often desired to follow a significant

overall test for a factor by tests of contrasts (e.g., β1 − β2

= 0) or other linear hypotheses (β1 = 0) As noted ear-
lier, such tests are just examples of the general linear test,

H0 : CB = 0 for a specified matrix of constantsC giving
linear combinations of the parameters to be tested.

As an important special case, for an overall effect with

dfh degrees of freedom (and balanced sample sizes), a set

of dfh pairwise orthogonal (1× q)C matrices (CT
i Cj = 0)

gives rise to a set of dfh rank 1Hi matrices that additively

decompose the overall hypothesis SSCP matrix,

H = H1 +H2 + · · ·+Hdfh
,

exactly as the univariate SSH may be decomposed in an
ANOVA. Each of these rank 1Hi matrices will plot as a de-

generate ellipse— a line in an HE plot. Their collection pro-
vides a visual summary of the overall test, as partitioned by

these orthogonal contrasts, but more importantly, an “ex-

planation” for the overall test in terms of answers to dfh

independent questions.

To illustrate, we can set up and test two orthogonal con-

trasts for the Parenting data to answer the following ques-

tions: (a) Do fathers of children with no disabilities differ

from the average of those with either physical or mental

disabilities? (b) Is there a difference between fathers of
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physically disabled children and those with a mental dis-

ability? In R, this is done by specifying two contrast vec-
tors as the columns of a matrix assigned to group with the
contrasts() function.

contrasts(Parenting$group) <- matrix(
c(2, -1, -1,
0, 1, -1), nrow=3, ncol=2)

contrasts(Parenting$group)

## [,1] [,2]
## Normal 2 0
## Physical Disability -1 1
## Mental Disability -1 -1

Then, after fitting the model parenting.mod with lm(),
the linearHypothesis() function from the car package can
be used to test them individually, where the set of contrasts

are labelled sequentially, e.g., group1, group2:

print(linearHypothesis(parenting.mod,
"group1"), SSP=FALSE)

## Multivariate Tests:
## Df test stat approx F numDf denDf Pr(>F)
## Pillai 1 0.5210364 19.94376 3 55 7.1051e-09 ***
## Wilks 1 0.4789636 19.94376 3 55 7.1051e-09 ***
## H-L 1 1.0878413 19.94376 3 55 7.1051e-09 ***
## Roy 1 1.0878413 19.94376 3 55 7.1051e-09 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

in which H-L denotes the Hotteling-Lawley test. For a one

degree-of-freedom hypotheses like this, all test statistics

will produce the same F values and p-values.
Similarly, heplot() allows any such set of linear hy-

potheses to be visualized via the hypotheses argument.
The following call (simplified here) gives Figure 3, in which

the two linear hypotheses appear as lines overlaid on the

hypothesis and error ellipsoids:

hyp <- list("N:MP" = "group1",
"M:P" = "group2")

heplot(parenting.mod, hypotheses = hyp)

This HE plot shows that, for these two variables, the

greatest between-group difference is the contrast of the

Normal group versus the others (labeled “N:MP”), and that

this contrast largely reflects differences on the play scale.

The second contrast (“M:P”) appears mainly in terms of

caring: fathers of physically disabled engage in more care-

taking than those with mentally disability. In general, the

directions of these hypotheses in a given plot show how the
group means differ in terms of a given contrast.

5

Low-D views: Generalized canonical discriminant HE
plots
The HE plot framework so far provides views of all the ef-

fects in a MLM in variable space, that we can see in 2D (3D)
for selected pairs (triples) of response variables, or for all

pairwise views in scatterplot matrix format.

However in a one-wayMANOVA design withmore than

three response variables, it is difficult to visualize how the

groups vary on all responses together, and how the differ-

ent variables contribute to discrimination among groups.

In this situation, canonical discriminant analysis (CDA) is

often used, to provide a low-D visualization of between-

group variation, analogous to the biplot technique for

purely quantitative variables.

The key to this is the eigenvalue decomposition,

HE−1λi = λivi (Eqn. (2)) ofH relative to E. The eigen-
values, λi, give the “size” of each s orthogonal dimensions
on which the multivariate tests are based, but also, the cor-

responding eigenvectors, vi, give the weights for the re-
sponse variables in s linear combinations that maximally
discriminate among the groups.

Thus, CDA amounts to a transformation of the p
responses, Yn×p into the canonical space, Zn×s =
Y E−1/2V , where V contains the eigenvectors ofHE−1

and s = min(p, dfh). It is well-known (e.g., Gittins, 1985)
that canonical discriminant plots of the first two (or three,
in 3D) columns ofZ corresponding to the largest canonical
correlations provide an optimal low-D display of the varia-

tion between groups relative to variation within groups.

For a one-way design, the canonical HE plot is simply
the HE plot of the canonical scores in the analogous MLM

model that substitutes Z for Y . This is shown in Figure 4
for the Parenting data. The interpretation of this plot is the

same as before: if the hypothesis ellipse extends beyond

the error ellipse, then that dimension is significant. Vec-

tors for each predictor are then superimposed and show

the relation between each and the two canonical dimen-

sions; these are the structure coefficients (correlations) of

the responses in Y with the canonical scores in Z , scaled
to conveniently fill the plot window. The relative lengths of

the variable vectors is proportional to their contributions

to group mean differences.

The interpretation of this plot is simple: in canonical

space, variation of the means for the groups is entirely

two-dimensional. Dimension 1 (60% of the group effect) is
largely attributable to the play scale. The remaining 40% is
attributable to the differences on caring, which separates
the two disability groups. The emotion scale contributes a
little, but in the opposite direction. In this example, there

5
That theH ellipses for the contrasts subtend that for the overall test of group is no accident. In fact this is true in p-dimensional space for any

linear hypothesis, and orthogonal contrasts have the additional geometric property that they form conjugate axes for the overallH ellipsoid relative

to theE ellipsoid (Friendly et al., 2013).
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Figure 3 HE plot for two variables in the Parenting data set, showing the (degenerate)H ellipses corresponding to two

orthogonal contrasts among the groups.
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is little gained from viewing the model in canonical space.

The advantage over views in variable space comes when

there are more response variables, as we shall see in the

“Examples” section.

This and related methods for canonical correlation are

implemented in the R package candisc (Friendly & Fox,
2013). candisc() calculates the canonical analysis for one
term in a MLM, returning a "candisc" object or for mul-
tiple terms giving a "candiscList". The heplot.candisc()
and heplot3d.candisc() methods in that package give 2D
and 3D plots in canonical space. The essence of Figure 4 is

produced by these calls:

library(candisc)
parenting.can <- candisc(parenting.mod)
heplot(parenting.can)

Examples

This section provides a set of examples applying these

graphical methods to a prototypical selection of research

problems employing MMRA, MANOVA and MANCOVA de-

signs. The main goal is to illustrate how these methods can

be useful in helping the researcher to understand the sub-

stantive interpretation provided beyond what can be seen

in tables of statistical tests and model coefficients.

All examples have been run directly with R software (R
version 3.2.5) using the knitr (Xie, 2015) package. To save
space, we often omit most of the R details of code used to
generate analyses and figures, sometimes replacing argu-

ments that just make graphs prettier by “...”. Some sam-
ple annotated code is collected in the Appendix and the

full scripts pertaining to all analyses and figures are avail-

able in online supplements to this article (https://mattsigal.

github.io/graph-MLM/).

Multivariate multiple regression
Rohwer data
Imagine the following scenario: You are a methodology

specialist in your department, and a colleague comes to

you with the following problem: She has done a study as-

sessing the relationship between a set of “ability”measures

(a scholastic aptitute test (SAT), the Peabody Picture Vocab-

ulary Test (PPVT), and the Raven progressive matrices test)

in kindergarden children and a collection of memory tasks

(measures of paired associate (PA) learning, under differ-

ent conditions) she had them perform. She ran a set of sep-

arate multiple regressions for each of the responses, and

was disappointed to find only very weak evidence: some

of the ability measures had only small R2
, and in these,
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Figure 4 A canonical HE plot, visualizing the two canonical dimensions of the Parenting dataset, with α = .05. The
contributions of the response variables to differences in group means is shown by the direction and relative length of the

variable vectors.
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only a few of the PA measures showed individual signifi-

cance of their regression coefficients. Can you help rescue

her?

This scenario is all too common in our consulting work,

and the context we described comes from a classical teach-

ing example of a MMRA research study byWilliam Rohwer

given in Timm (1975), examples 4.3, 4.7, and 4.23). The

complete data for this study pertains to 69 children in two

groups (schools) stratified by socioecomomic status (SES)

and contained in the data set Rohwer in the heplots pack-
age. In this example we focus on the analysis of the rela-

tionships between the ability and PA measures in the high

SES group (n = 32), corresponding to Timm’s Example 4.7.
We return to this data set in the example on MANCOVA,

where the SES variable is also analyzed.

The PA tasks varied in how the stimuli were presented,

and are called named (n), still (s), named still (ns), named
action (na), and sentence still (ss), but the details of these
conditions are unknown. The scores are the total number

of items correct on two presentations of 20 items, and thus

have a potential range of 0–40.

The separate univariate multiple regressions can be

run as follows:

data("Rohwer", package="heplots")
Rohwer2 <- subset(Rohwer,

subset = group==2 )

# subset for high SES
rownames(Rohwer2)<- 1:nrow(Rohwer2)

rohwer.mod1 <- lm ( SAT ~ n + s + ns +
na + ss, data = Rohwer2)

rohwer.mod2 <- lm ( PPVT ~ n + s + ns +
na + ss, data = Rohwer2)

rohwer.mod3 <- lm ( Raven ~ n + s + ns +
na + ss, data = Rohwer2)

The results of these models are conveniently summa-

rized in a publication-quality table (Table 1) using the

stargazer package:

stargazer(rohwer.mod1, rohwer.mod2,
rohwer.mod3)

However, they are indeed disappointing. Only the

model for SAT is strongly significant overall and only two

predictors, ns and na, have coefficients significantly differ-
ent from 0. However, the multivariate regression model

tells a quite different, and more encouraging story. Here,

three of the five predictors are significant by the multivari-

ate test on all three response.

rohwer.mlm <- lm(cbind(SAT, PPVT, Raven)
~ n + s + ns + na + ss, data=Rohwer2
)
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Table 1 Univariate regression models for Rohwer data.

Dependent variable:
SAT PPVT Raven

n 3.26∗ 0.07 0.06
(1.30) (0.62) (0.13)

s 3.00 0.37 0.49∗∗

(1.50) (0.72) (0.15)
ns −5.86∗∗∗ −0.37 −0.16

(1.54) (0.74) (0.16)
na 5.67∗∗∗ 1.52∗ 0.12

(1.34) (0.64) (0.14)
ss −0.62 0.41 −0.12

(1.14) (0.54) (0.12)
Observations 32 32 32
R
2 0.56 0.35 0.31
Adjusted R

2 0.47 0.23 0.18
Residual Std. Error (df = 26) 25.67 12.25 2.61
F Statistic (df = 5; 26) 6.54∗∗∗ 2.85∗ 2.32

Note. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Anova(rohwer.mlm)

## Type II MANOVA Tests: Pillai test statistic
## Df test stat approx F num Df den Df Pr(>F)
## n 1 0.20177 2.0222 3 24 0.13760
## s 1 0.30970 3.5891 3 24 0.02836 *
## ns 1 0.35795 4.4601 3 24 0.01260 *
## na 1 0.46516 6.9576 3 24 0.00157 **
## ss 1 0.08873 0.7790 3 24 0.51725
## ---
## Signif.codes:’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’

’ 1

Moreover, we can also test the overall null hypothesis

for the entire MLM,H0 : B = 0 and this test very strongly
rejectsH0 by all test criteria.

linearHypothesis(rohwer.mlm,
c("n", "s", "ns", "na", "ss"))

## Multivariate Tests:
## Df test stat approx F num Df den Df Pr(>F)
## Pillai 5 1.0386 2.753 15 78.00 0.001912 **
## Wilks 5 0.2431 2.974 15 66.65 0.001154 **
## H-L 5 2.0615 3.115 15 68.00 0.000697 ***
## Roy 5 1.4654 7.620 5 26.00 0.000160 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

So, how do we help the client understand these results?

HE plots to the rescue! Figure 5 shows pairwise views of all

of the multivariate tests carried out above, including the

overall test of H0 : B = 0 labeled “Regr”. E has rank

3, so the error ellipsoid is 3D. For the multivariate tests of

each predictor, eachHi has only one non-zero latent root,

so these plot as degenerate lines. With the multivariate re-

gression model rohwer.mlm, this plot is produced by our

pairs() function for "mlm" objects as follows:

hyp <- list("Regr" = c("n", "s", "ns", "
na", "ss"))

pairs(rohwer.mlm, hypotheses = hyp, ...)

To interpret Figure 5, recall that: (a) Any hypothesis el-

lipsoid that protrudes anywhere outside theE ellipsoid is a
significant effect (at α = 0.05) by Roy’s test. (b) The length
of each predictor line indicates the strength of its relation-

ship to the two responses jointly. (c) The orientation of each
predictor line shows its relationship to the two response

variables in a given panel, and contributes to making the

H ellipsoid for the overall test “fat” in its direction.

Thus, in the plot for (PPVT, SAT) in the second row, first

column (2, 1) panel, only na and ns appear individually sig-
nificant. However, the s and n tests are also positively asso-
ciated with SAT, and contribute something to theRegr test.
The significant effect of the s test is only seen in the pan-
els involving the Raven, shown in the (3, 3) panel. Overall,

the predicted values for all three responses are positively

correlated and because of this the separate predictors each

contribute power to the multivariate test.

To complete this example, we note that for multi-

variate multiple regression, canonical correlation analy-

sis provides similar dimension reduction strategy to that

described earlier for canonical discriminant HE plots in

MANOVA designs. With p = 3 responses and q = 5 pre-
dictors for this problem, the canonical correlation analysis

of [Y ,X] results in s = min(p, q) = 3 non-zero eigenval-
ues (canonical correlations), and the associated eigenvec-
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Figure 5 HE scatterplot matrix for the Rohwer data, high SES group. Each panel shows one bivariate view of the 3DH
and E matrices. The multivariate tests for the predictor variables each have 1 df, and so appear as lines. The numbers
in the diagonal panels give the range of each variable.
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tors give the linear combinations of the Y variables most
predictable from linear combinations of the X variables

(and vice-versa). The candisc package contains a cancor()
function for the analysis and plot() and heplot() methods
for visualizing these results in the HE plot framework.

MANOVA designs
Multivariate analysis of variance is of course just a special

case of the MLM (Eqn. (1)), where the X matrix is com-

posed entirely of columns (dummy variables) that repre-

sent discrete factors and their possible interactions. How-
ever, they differ from regression designs in terms of use-

ful and applicable data visualization methods, particularly

for data exploration. In R, this is mostly masked by object-
oriented methods; for example, plot(y ~ x) gives a scatter-
plot for a quantitative x, but a boxplot when x is a factor.
HE plots don’t care about this distinction, because every

term in a model is just an ellipsoid for the corresponding

H matrix.

The following example takes up a larger MANOVA de-

sign with several sets of analyses, and also serves as a vehi-

cle for illustrating the kinds of model checking that should

be part of any statistical analysis of an MLM. Further, it

utilizes real world data from the psychological literature.

Neuro- and Social-Cognitive Measures in Psychiatric Groups
This example is concerned with the following substantitive

questions:

• Towhat extent can patients diagnosed as schizophrenic

or with schizoaffective disorder (using the DSM-IV

Structured Clinical Interview) be distinguished from a

normal control sample using a well-validated, compre-

hensive neurocognitive battery specifically designed

for individuals with psychosis (Heinrichs et al., 2015)?
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• If they differ, do any of the cognitive domains (process-

ing speed, attention, working memory, verbal learn-

ing, visual learning, problem solving) show larger or

smaller differences among these groups? Do they dis-

criminate in the same or different ways?

• Moreover, are the schizophrenic patients distinguish-

able from those with schizoaffective disorder on such

measures (Heinrichs, Ammari, McDermid Vaz, & Miles,

2008)?

• For the above questions, how do the results differ when

assessed by measures of social cognition instead of the
neurocognitive measures?

These are the questions addressed in a recent PhD

dissertation by (Hartman, 2016) at York University. Her

study involved a total clinical sample comprising 116 pa-

tients who had a diagnosis of schizophrenia (n = 70) or
schizoaffective disorder (n = 46), screened for absence of
learning disability, neurological disorder and substance

use disorder. A demographically matched sample of non-

psychiatric control participants consisted of n = 146 sub-
jects, screened for absence of medical and psychiatric ill-

ness and history of substance abuse.

Neurocognitive function in all subjects was assessed

using the MATRICS Consensus Cognitive Battery (MCCB;

Nuechterlein et al., 2008), developed by the NIMH

Measurement and Treatment to Improve Cognition in

Schizophrenia (MATRICS) initiative. A subset of 139 of

the subjects from all groups (n = 43, 30, 66 in the three
groups) also completed a battery of tests designed to mea-

sure aspects of social cognition (called here: managing

emotions, theory of mind, externalizing bias, personaliz-

ing bias).

The data presented in these analyses are subsets that

are comprised only of observations with complete data. By

the kind permission of Leah Hartman, these data are in-

cluded (and described further) in the data sets NeuroCog
and SocialCog in the heplots package. See the help pages
(via ? NeuroCog and ? SocialCog) for further details on
the structure of the dataset and pertinent references.

In the brief descriptions of the results of analyses of

these data, we focus on those that are important for an-

swering the above substantative questions and visualiza-

tions that support their interpretation.

Neurocognitive measures The main factor here is diag-

nostic group, called Dx in the dataset. To facilitate an-
swering questions regarding group differences, the fol-

lowing contrasts were applied: the first column compares

the control group to the average of the diagnosed groups,

the second compares the schizophrenia group against the

schizoaffective group.

data(NeuroCog, package="heplots")

contrasts(NeuroCog$Dx)

## [,1] [,2]
## Schizophrenia -0.5 1
## Schizoaffective -0.5 -1
## Control 1.0 0

TheMLM for the six neurocognitive responsemeasures

can be fit and tested as follows:

NC.mlm <- lm(cbind(Speed, Attention,
Memory, Verbal, Visual, ProbSolv) ~
Dx, data=NeuroCog)

Anova(NC.mlm)

## Type II MANOVA Tests: Pillai test statistic
## Df test stat approx F num Df den Df Pr(>F)
## Dx 2 0.2992 6.8902 12 470 1.562e-11 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

We also test the linear hypotheses for the contrasts,

but for brevity do not display the results here. The con-

trastDx1 for control vs. diagnosed is highly significant, but
the second contrastDx2 comparing the schizophrenic and
schizoaffective group is not.

print(linearHypothesis(NC.mlm, "Dx1"),
SSP=FALSE)

print(linearHypothesis(NC.mlm, "Dx2"),
SSP=FALSE)

So the question becomes: how to understand these re-

sults. HE plots tell a very simple story (Figure 6): The con-

trol group performs higher on all measures than the di-

agnosed groups, which do not differ between themselves.

This pattern is consistent across all of the response vari-

ables, as we see from a plot of pairs(NC.mlm) (not shown
to conserve space).

heplot(NC.mlm, variables=1:2, ...)

We can gain further insight, and a simplified plot show-

ing all the response variables by projecting the MANOVA

into the canonical space, which is entirely 2-dimensional

(because dfn = 2). However, the output from candisc()
shows that 98.5% of the mean differences among groups

can be accounted for in one canonical dimension.

NC.can <- candisc(NC.mlm)
NC.can

## Canonical Discriminant Analysis for Dx:
##
## CanRsq Eigenvalue Difference Percent Cumulative
## 1 0.2929499 0.4143270 0.40803 98.504 98.504
## 2 0.0062532 0.0062926 0.40803 1.496 100.000
##
## Test of H0: The canonical correlations in the
## current row and all that follow are zero

The Quantitative Methods for Psychology 322

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.13.1.p020


¦ 2017 Vol. 13 no. 1

Figure 6 HE plot for the ‘NeuroCog‘ data MANOVA showing Attention vs. Speed of processing. All other pairwise plots

follow the same pattern.
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##
## LR test stat approx F num Df den Df Pr(> F)
## 1 0.70263 22.9659 4 476 <2e-16 ***
## 2 0.99375 1.5039 1 239 0.2213
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

Figure 7 is the result of the plot()method for "candisc"
objects, that is, the result of calling plot(NC.can, ...). It
plots the two canonical scores, Zn×2 for the subjects, to-
gether with data ellipses for each of the three groups.

6
As

noted earlier, the projections of the variable vectors in this

plot on the coordinate axes are proportional to the correla-

tions of the responses with the canonical scores.

The interpretation of Figure 7 is again fairly straight-

forward. The separation of the groups is essentially one-

dimensional, with the control group higher on all mea-

sures. Moreover, the variables processing speed and visual

memory are the purest measures of this dimension, but all

variables contribute positively. The second canonical di-

mension accounts for only 1.5% of groupmean differences

and is non-significant (by a likelihood ratio test). Yet, if we

were to interpret it, we would note that the schizophrenia

group is slightly higher on this dimension, scoring better

in problem solving and slightly worse onworkingmemory,

attention, and verbal learning tasks.

Social cognitive measures The social cognitive mea-

sures were designed to tap various aspects of the percep-

tion and cognitive processing of emotions of others. Emo-

tion perception was assessed using a Managing Emotions

score from the MCCB. A “theory of mind” (ToM) score as-
sessed ability to read the emotions of others from pho-

tographs of the eye region of male and female faces. Two

other measures, externalizing bias (ExtBias) and person-
alizing bias (PersBias) were calculated from a scale mea-
suring the degree to which individuals attribute internal,

personal or situational causal attributions to positive and

negative social events.

The analysis of the SocialCog data proceeds in a simi-
lar way: first we fit the MANOVA model, then test the over-

all differences among groups using Anova(), and finally
test the same two contrasts using linearHypothesis().We
find that the overall multivariate test is again significant,

but now both contrasts are significant (Dx1: F (4, 133) =
5.21, p < 0.001; Dx2: F (4, 133) = 2.49, p = 0.0461), the
test forDx2 just barely.

data(SocialCog, package="heplots")
SC.mlm <- lm(cbind(MgeEmotions,ToM,

6
A canonical HE plot, such as shown in Figure 4 would result from calling plot(NC.can, ...).
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Figure 7 Canonical discriminant plot for the ‘NeuroCog‘ data MANOVA. Scores on the two canonical dimensions are

plotted, together with 68% data ellipses for each group.

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2

Canonical dimension 1 (98.5%)

C
an

on
ic

al
 d

im
en

si
on

 2
 (

1.
5%

)

++ +
Schizophrenia

Schizoaffective
Control

Speed

Attention

Memory

Verbal

Visual

ProbSolv

ExtBias, PersBias) ~ Dx,
data=SocialCog)

Anova(SC.mlm)
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linearHypothesis(SC.mlm, "Dx2")

These results are important, because, if they are reli-

able and make sense substantitively, they imply that pa-

tients with schizophrenia and schizoaffective diagnoses

can be distinguished by their performance on tasks assess-
ing social perception and cognition.

At this point, it is useful to visualize the nature of these

differences among groups with HE plots. Corresponding to

Figure 6 for the neurocognitive responses, Figure 8 shows

the HE plot for the first two response variables, together

with the (degenerate) ellipses representing the tests of the

Dx1 andDx2 contrasts.

heplot(SC.mlm, variables=1:2, hypotheses
=list("Dx1"="Dx1", "Dx2"="Dx2"), ...)

It can be seen that the three group means are approx-

imately equally spaced on the ToM measure, whereas for

MgeEmotions, the control and schizoaffective groups are
quite similar, and both are higher than the schizophrenic

group. This ordering of the three groups was somewhat

similar for the other responses, as we could see in a

pairs(SC.mlm) plot.

Model checking
Normally, we would continue this analysis, and consider

other HE and canonical discriminant plots to further inter-

pret the results, in particular the relations of the cognitive

measures to group differences, or perhaps an analysis of

the relationships between the neuro- and social-cognitive

measures. We don’t pursue this here for reasons of length,

and this example actually has a more important lesson to

demonstrate.

Before beginning theMANOVA analyses, extensive data

screening was done by the client using SPSS, in which all

the response and predictor variables were checked for uni-
variate normality and multivariate normality (MVN) for

both sets. This traditional approach yielded a huge amount

of tabular output and no graphs, and did not indicate any

major violation of assumptions.
7

A simple visual test of MVN and the possible presence

of multivariate outliers is related to the theory of the data

ellipse: Under MVN, the squared Mahalanobis distances

D2
M (y) = (y − ȳ)T S−1 (y − ȳ) should follow a χ2

p distri-

bution. Thus, a quantile-quantile plot of the ordered D2
M

7
Actually, multivariate normality of the predictors inX is not required in the MLM. This assumption applies only to the contidional values Y |X ,

i.e., that the errors u′
i ∼ Np(0,Σ) with constant covariance matrix. Moreover, the widely used MVN test statistics, such as Mardia’s (1970) test based

on multivariate skewness and kurtosis are known to be quite sensitive to mild departures in kurtosis (Mardia, 1974) which do not threaten the validity

of the multivariate tests.
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Figure 8 HE plot for the ‘SocialCog‘ data MANOVA showing theory of mind vs. managing emotions. The embedded lines

show theH ellipses for the contrasts ‘Dx1‘ and ‘Dx2‘.
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values vs. corresponding quantiles of the χ2
distribution

should approximate a straight line (Cox, 1968; Healy, 1968).

Note that this should be applied to the residuals from the
model – residuals(SC.mlm) – and not to the response vari-
ables directly.

The heplots package implements a cqplot()method for
"mlm" objects that does this. Calling this function for the
model SC.mlm produces Figure 9. It is immediately ap-

parent that there is one extreme multivariate outlier; the

remaining observations are within the 95% confidence en-

velope (using the classical product-moment estimate of S).

cqplot(SC.mlm, id.n=0, ...)

Further checking revealed that this was a data entry

error where one case (15) in the schizophrenia group had

a score of -33 recorded on the ExtBias measure, whose
valid range was (-10, +10). In R, it is very easy to re-fit a
model to a subset of observations (rather than modifying

the dataset itself) using update(). The result of the over-
all Anova() and the test of Dx1 were unchanged; how-
ever, the multivariate test for the most interesting con-

trast Dx2 comparing the schizophrenia and schizoaffec-
tive groups became non-significant at the α = 0.05 level
(F (4, 133) = 2.18, p = 0.0742).

SC.mlm1 <- update(SC.mlm, subset=
rownames(SocialCog)!="15")

Anova(SC.mlm1)
print(linearHypothesis(SC.mlm1, "Dx1"),

SSP=FALSE)
print(linearHypothesis(SC.mlm1, "Dx2"),

SSP=FALSE)

This outcome creates a bit of a quandry for further

analysis (univariate follow-up tests? try a robust model?)

and reporting (what to claim about theDx2 contrast?) that
we don’t explore here. Rather, we proceed to attempt to

interpret the MLM with the aid of canonical analysis and

a canonical HE plot. The canonical analysis of the model

SC.mlm1 now shows that both canonical dimensions are
significant, and account for 83.9% and 16.1% of between

group mean differences respectively.

SC.can1 <- candisc(SC.mlm1)
SC.can1

## Canonical Discriminant Analysis for Dx:
##
## CanRsq Eigenvalue Difference Percent Cumulative
## 1 0.164496 0.196882 0.15909 83.897 83.897
## 2 0.036412 0.037788 0.15909 16.103 100.000
##
## Test of H0: The canonical correlations in the
## current row and all that follow are zero
##
## LR test stat approx F num Df den Df Pr(> F)
## 1 0.80508 7.6715 4 268 7.254e-06 ***
## 2 0.96359 5.1014 1 135 0.02551 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

The HE plot version of this canonical plot is shown in

Figure 10. Because the heplot() method for a "candisc"
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Figure 9 χ2
quantile-quantile plot for residuals from the model ‘SC.mlm‘. The confidence band gives a point-wise 95%

envelope, providing information about uncertainty. One extreme multivariate outlier is highlighted.
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object refits the original model to the Z canonical scores,
it is easy to also project other linear hypotheses into this

space. Note that in this view, both the Dx1 and Dx2 con-
trasts project outsideE ellipse8.

heplot(SC.can1, fill=TRUE,
hypotheses=list("Dx1"="Dx1", "Dx2

"="Dx2"), ...)

This canonical HE plot has a very simple description:

(a) Dimension 1 orders the groups from control to schizoaf-

fective to schizophrenia, while dimension 2 separates the

schizoaffective group from the others; (b) Externalizing

bias and theory of mind contributes most to the first di-

mension, while personal bias and managing emotions are

more aligned with the second; and, (c) the relations of the

two contrasts to group differences and to the response vari-

ables can be easily read from this plot.

MANCOVA and homogeneity of regression
As an extension of the MANOVA model, MANCOVA incor-

porates one or more continuous predictors (covariates)

whose effect is “averaged out” of the model for the factors,

thus controlling for their effects. For the same data struc-

ture (a mixture of discrete factors and continuous predic-

tors) and a focus on regression relations inMMRA, but with

an additional discrete factor, the questions of interest re-

late to homogeneity of regression.

Rohwer data
The Rohwer data used in theMMRA example has a discrete

two-level variable pertaining to the socioeconomic status

(SES) of the children, and in the previous analysis only

the high SES group were analyzed. If we were to model

the complete dataset, the intercepts for the low and high

SES student groups would be constrained to be equal if the

SES variable is not included in the model. The MANCOVA

model allows the intercepts to be freely estimated and pro-

vides a test of group differences inmeans on the responses,

controlling for any included covariates.

To extend our previousmodel, this can be incorporated

by simply adding the relevant factor variable name (SES) to

the call to lm():

rohwer.mod <- lm(cbind(SAT, PPVT, Raven)
~ SES + n + s + ns + na + ss,

data=Rohwer)

The summary output from this model indicates that

SES does have a significant effect— indicating that the in-

tercepts cannot be considered equal. This relationship can

be visualized pairwise, as shown in Figure 11. The (degen-

erate) H ellipsoid for the SES effect has a positive slope

in all panels, showing that the high SES group has greater

conditional means for all the ability response variables.

The significant regression effects of na and ns can also be

8
The direct application of significance tests to canonical scores probably requires some adjustment because these are computed to have the optimal

between-group discrimination.
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Figure 10 Canonical HE plot for the corrected ‘SocialCog‘ MANOVA. The variable vectors show the correlations of the

responses with the canonical variables. The embedded lines show the projections ofH ellipses for the contrasts ‘Dx1‘

and ‘Dx2‘ in canonical space.
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seen in most panels, as can the combined effect (“Regr”)

for all the paired association tests. A useful exercise for

the reader of this tutorial is to compare the pattern of rela-

tionships for the MANCOVA model in Figure 11 with those

in the MMRA model for the high SES group shown in Fig-

ure 5.

pairs(rohwer.mod,
hypotheses=list("Regr" =
c("n", "s", "ns", "na", "ss")),
fill=TRUE, fill.alpha=0.1)

However, the MANCOVA test of the SES effect assumes

that the slopes for the low and high SES groups are equiv-
alent, an assumption that seems dubious at best. A conve-

nient feature of lm() in R is that it allows for incorporating
interactions between the predictors and the covariate. This

is available in model formulas by using “*” and parenthe-
ses, which indicate that all two-way interactions with SES

should be added to the model (along with the main effects

that are marginal to the interactions).

rohwer.mod1 <- lm(cbind(SAT, PPVT, Raven
) ~ SES * (n + s + ns + na + ss),

data=Rohwer)
Anova(rohwer.mod1)

## Type II MANOVA Tests: Pillai test statistic
## tDf test stat approx F numDf den Df Pr(>F)
## SES 1 0.39123 11.7822 3 55 4.55e-06 ***
## n 1 0.07901 1.5727 3 55 0.2063751
## s 1 0.12524 2.6248 3 55 0.0595192 .
## ns 1 0.25412 6.2461 3 55 0.0009995 ***
## na 1 0.30663 8.1077 3 55 0.0001459 ***
## ss 1 0.06017 1.1738 3 55 0.3281285
## SES:n 1 0.07231 1.4290 3 55 0.2441738
## SES:s 1 0.09942 2.0240 3 55 0.1211729
## SES:ns 1 0.11757 2.4425 3 55 0.0738258 .
## SES:na 1 0.14801 3.1850 3 55 0.0308108 *
## SES:ss 1 0.05733 1.1150 3 55 0.3509357
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

The above table reveals only 1 significant interaction

with SES by the separate multivariate tests. However, the

MANCOVA model assumes that all slopes are equal, and
this can be tested collectively using linearHypothesis():

# store coefficient names in a vector
coefs <- rownames(coef(rohwer.mod1))
# only test for interaction effects
print(linearHypothesis(rohwer.mod1,
coefs[grep(":", coefs)]), SSP=FALSE)

## Multivariate Tests:
## Df test stat approx F numDf denDf Pr(>F)
## Pillai 5 0.4179376 1.845226 15 171.000 0.0320861 *
## Wilks 5 0.6235824 1.893613 15 152.232 0.0276949 *
## H-L 5 0.5386513 1.927175 15 161.000 0.0239619 *
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Figure 11 Pairwise HE plot for MANCOVA model for the Rohwer data. The effect of SES, with 1 df, plots as a line deter-

mined by the conditional means of the high and low SES groups. The numbers in the diagonal panels give the range of

each variable.

## Roy 5 0.3846488 4.384997 5 57.000 0.0019053 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

The above shows that collectively the interactions are

significant, no matter which criteria is chosen.

Another way to view the question of homogeneity of

regression is to fit separatemultivariate regression models
for the two groups, using the subset argument to lm(). This
has the disadvantage of being less efficient than the ho-

mogeneity of regression test from the model rohwer.mod1
above, but the advantage of allowing us to visualize possi-

ble differences in within-group error covariance.

rohwer.ses1 <- lm(cbind(SAT, PPVT, Raven
) ~ n + s + ns + na + ss, data =
Rohwer, subset = SES == "Hi")

rohwer.ses2 <- lm(cbind(SAT, PPVT, Raven

) ~ n + s + ns + na + ss, data =
Rohwer, subset = SES == "Lo")

Here we show the complete code to produce a visu-

alization of these models allowing them to be visualized

together and compared for all features: intercepts, slopes
and error covariances. It illustrates the high level of con-

trol of graphic features available in R and in the hep-
lots and other packages for producing publication-quality
graphs. Figure 12 is generated by two calls to heplot() us-
ing add=TRUE to overlay them.

# Low SES students:
heplot(rohwer.ses2,
col = c("red", rep("black",5),"blue"),
hypotheses = list("B=0, Low SES" = c("
n", "s", "ns", "na", "ss")),
level = 0.5, cex = 1.25,
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fill = c(TRUE, FALSE), fill.alpha =
0.05,
xlim = c(-15, 110),
ylim = c(40, 110),
xlab = "Student Achievement Test",
ylab = "Peabody Picture Vocabulary
Test",
label.pos = c(1, rep(NULL, 5), 1))

# High SES students:
heplot(rohwer.ses1, col = c("red", rep("

black", 5), "blue"),
hypotheses = list("B=0, High SES" = c(
"n", "s", "ns", "na", "ss")),
level = 0.5, cex = 1.25,
# place both plots on same graphic
add = TRUE,
# error ellipse not drawn by default
error = TRUE,
fill = c(TRUE, FALSE), fill.alpha =
0.05,
xlim = c(-15, 110),
ylim = c(40, 110))

In Figure 12 the greater mean scores for the high SES

group on both measures is readily apparent. It can also be

seen that the overall regression ellipsoid testingH0 : B =
0 is more aligned with the SAT axis for the high SES group
than for the low group, reflecting better prediction of SAT

than PPVT for the high group. Among the individual pre-

dictors, na and ns are also more important in the high SES
group.

Guidelines for analyzing, visualizing and reporting
MLMs

From the above description and examples, and from our

broader experience in consulting with researchers in psy-

chology, we offer the following guidelines for analysis, vi-

sualization and reporting of research using multivariate

linear models.

Analysis
• Reproducible analysis: Errors and confusion can
creep in when an analysis is conducted frommany dis-

crete, manual steps, especially if done via unreplicable

GUI menu choices. It is highly recommended to always

keep and maintain a script of syntax that can be re-run

to recreate your research data set from its source. Doc-

ument special features andmodifications in comments.

• Data screening vs. model checking: Data screening is
important, but if done in a rote univariate manner (test

everything for normality) and without data displays,

can generate too much output to comprehend, and rely

on tests that are neither necessary nor sufficient. In-

stead, we recommend the utilization of visualizations

that allow direct inspection of these assumptions. For

example, the assumption of homogeneity of variance

in MANOVA is often tested by univariate Levene-type

tests (Brown & Forsythe, 1974; Levene, 1960). The hep-
lots package implements several graphical methods for
this question (e.g., plot methods for Box’s M test; Box,

1949).

• Residuals from a multivariate linear model contain all
the information about what doesn’t fit the data, and

careful analysis of residuals is more important than

rote data screening. MLMs are more complex, because

there are residuals for each response. Mahalanobis

squared distances of the residuals provide a good sum-

mary of outlyingness and a χ2
QQ plot such as Figure 9

is an excellent screening device, providing information

relevant to the assumption of multivariate normality

and the presence of outliers.

• Sensitivity tests: Many questions regarding the details
of choices made in an analysis (include or exclude out-

liers?) or the impact of potential violation of assump-

tions can be answered by conducting a sensitivity test:

Run the the analysis in a different way (e.g., use a ro-

bust method) and ask whether it makes a difference in

your conclusions. If not, great (and report this); if it

does, investigate why the results differ.

Visualization
• Tweaking graphs: Graphs for analysis purposes only
need to be good enough for you to see the important

features. Often the defaults are sufficient, but plot an-

notations, such as adding smoothed (“loess”) curves

(Cleveland, Grosse, & Shu, 1992) and data ellipses, can

be helpful; see Fox (2008) for these methods.

• The 80-20 rule: For publication graphs, remember the
80-20 rule (Friendly & Meyer, 2016, §1.4.7): You can

usually get 80% of a useful graph with 20% of total ef-

fort, but the remaining 80% of effortmay be required to

get the remaining 20%. Among other things, this means

paying careful attention to font sizes, axis ranges, titles

and tick mark values, grouping attributes (color, style)

for points and lines, area fill to highlight regions (like

data ellipses), and so forth.

• Raw data: For multivariate data, scatterplot matri-
ces, supplemented by data ellipsoids, regression lines

and/or smoothed curves (the scatterplotMatrix() in
the car package is the most useful) are very helpful.
Organize the variables as (Y ,X) to examine the re-
lations within and between sets. Make points small if

n is large,or remove them entirely to the see the sum-
maries alone. The function covEllipses() in heplots can
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Figure 12 HE plot for the models fitting separate slopes and intercepts to the high and low SES groups.

produce just the raw data ellipses.

• Transformations: Linear models assume that the
residuals are normally distributed, but makes no such

assumptions about the predictors. In regression de-

signs, the question of linearity of regression relations is

more important. Thus, don’t worry so much about uni-

variate measures of skewness and kurtosis. Rather, use

non-parametric smoothed (e.g., loess) curves in scat-

terplots to see the trend in the data. If this is decid-

edly non-linear, consider transformations such as
√
x

or log x. The car package contains many useful tools
for data transformations (e.g., boxCox(), powerTrans-
form()).

• Low-D views: For more than a few variables, biplots
(Greenacre, 2010) can show a 2D (or 3D) summary view

of the data points and variable relations (as vectors),

using results of a principal component analysis. The

nicest implementation in R is the ggbiplot (Vu, 2011)
package.

• Model-appropriate visualizations: Always try to rely
on visualizations that are model appropriate: if the

model of interest is multivariate, remember that uni-

variate and bivariate displays only show limited views

of the data, and can obscure the higher level rela-

tionships. When the right-hand side of the model is

complex (many terms or interactions), effect plots (Fox,
2003) are among the most effective visual summaries

for interpretation.

• HE plots and their scatterplot-matrix version can be
used to visualize the effects of model terms in relation

to the response variables as we demonstrated above. In

aMANOVA setting, dimension reduction techniques via

canonical HE plots should be used to show the dimen-
sions that account for maximal discrimination among

groups. For MMRA designs, related canonical correla-

tion plots are implemented in the candisc package.

Reporting
• Reproducible reporting: Try to avoid the tempta-
tion to just cut and paste analysis results into a paper

or presentation. The facilities available in R— knitr,
rmarkdown, and the user interface provided by RStu-
dio (https://www.rstudio.com/) provide an integrated

environment for both doing analysis and writing it up.

There is a bit of a learning curve, but well worth the

effort. The important benefit is that if the data or de-
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tails of the analysis change, the paper or slides can be

automatically updated.
• Tabular displays: Multivariate models provide a

plethora of potential results to present, and so re-

quire greater selectivity in what to present and how
to present it. Tables like Table 1 can be easily gen-

erated (by stargazer) if you want to record the model
coefficients, but often it is just the significance stars

your readers will see. Gelman, Pasarica, and Dod-

hia (2002) provide some useful advice for turning ta-

bles into graphs, and ideas for visualizing tables us-

ing shaded backgrounds or other cues (e.g., tableplots;

Kwan & Friendly, 2012) to show importance or patterns

are becoming increasingly available.

• Graphs are more common in some journals than oth-
ers, but you have to choose wisely andmake themmost

effective for what you want to show and say. If the

reviewer or reader cannot see or understand what is

important and why, you may need to make the essen-

tial features more salient, and/or describe clearly in the

plot title or figure caption what should be understood

from the graph.

• Novel graphical methods like HE plots and their
canonical cousins may be unfamiliar to most readers,

but if you’ve understood the examples in this paper,

you should be able to explain them sufficiently, or else

just use them as analysis graphs that lead to your un-

derstanding of the results. Remember that Playfair

(1801) took five pages to explain what a barchart repre-

sented, but barcharts are now (perhaps too) common-

place.

Discussion

Graphical methods for univariate linear models are now

widely developed and widely used, from exploratory plots

to tools for model diagnosis (influence plots of leverage

vs. residuals) and interpretation (effect plots). Although

the theory of multivariate linear models is a straight-

forward generalization of their univariate counterparts,

the corresponding extension of visualization techniques

has only been relatively recent and remains incomplete in

some respects. The goal of this paper was to illustrate, with

tutorial examples in R, a collection of methods we have de-
veloped over the last decade to fill this gap, and which we

believe are sufficiently advanced to be helpful to psycho-

logical researchers.

So, what is still missing to complete this extension of

univariate graphical methods to the multivariate domain?

• In R (and most other software) it is now relatively easy
to obtain a reasonable collection of standard diagnostic

plots for univariate responsemodels with a simple com-
mand, menu option or mouse click. For example, the

generic plot() in R produces the “regression quartet”
(residuals vs. fitted values, normal QQ plots, spread-

level plots for checking homogeneity of variance, and

leverage-influence plots) when applied to a univariate

"lm" or "glm" (generalized linear model) object.
• Yet, this idea has not yet been extended to MLMs: The

call plot(my.model) for a "mlm" object gives the dis-
heartening message Error: 'plot.mlm' is not imple-
mented yet. Another package we have developed, mv-
influence implements multivariate analogs of leverage
and influence (Cook’s D) and a set of influencePlot()
methods to make some steps in this direction.

• Robust methods for univariate linear (and generalized
linear) models have come a long way in recent years,

and their implementation in software is growing and

maturing (e.g., lmRob() in the robust package; PROC
ROBUSTREG in SAS); however their widespread use by

researchers remains to catch up to theory. These are

important because they provide a means to protect re-

searchers from some of the effects of messy data. Anal-

ogous robust methods for MLMs are not yet fully de-

veloped, but our implementation of robmlm() in the
heplots package goes a long way toward filling this gap.

• Other visualizations for MLMs: Aside from the ques-

tions of multivariate normality of residuals and ab-

sence of multivariate outliers, the other main assump-

tion of MANOVA is that of equality of covariance matri-

ces. We recently implemented several graphical meth-

ods related to Box’s M test (Box, 1949) and a multivari-

ate generalization of Levene’s test (Levene, 1960) in the

heplots package.
The HE plot framework we have described serves as

a means to help researchers visualize the sources of sig-

nificance for model effects and the relationships between

the predictors and the various response outcomes. Their

geometry provides a visual means of judging both effect

size and significance. The canonical, dimension-reduction

techniques we described makes it easier to understand

these relations for relatively many response variables. As

we have illustrated, this often leads to surprisingly simple

interpretations of MLMs that could not readily be achieved

otherwise.
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Appendix A: Sample Code for Multivariate Analyses

The following block contains annotated R code that produces the core visualizations and statistical analyses featured in
this paper. These excerpts provide an excellent starting point for working with such data. The full script, including code

that enhances the graphical output for publication, is available online.

# Core Packages
library("car") # for Anova()
library("heplots") # for HE plots framework and datasets
library("candisc") # for Canonical Discrimination analysis

## MULTIVARIATE MULTIPLE REGRESSION #####
data("Rohwer", package="heplots")
Rohwer2 <- subset(Rohwer, subset = group==2) # subset the high SES children

rohwer.mlm <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data = Rohwer2)
Anova(rohwer.mlm) # Model MANOVA tests

# Evaluate and print multivariate test
print(}linearHypothesis(rohwer.mlm, c("n", "s", "ns", "na", "ss")), SSP=FALSE)

# HE scatterplot matrix
hyp <- list("Regr" = c("n", "s", "ns", "na", "ss"))
pairs(rohwer.mlm, hypotheses = hyp)

## MANOVA #####
data(NeuroCog, package="heplots")
NC.mlm <- lm(cbind(Speed, Attention, Memory, Verbal, Visual, ProbSolv) ~ Dx,

data = NeuroCog)
Anova(NC.mlm) # Model MANOVA tests
cqplot(NC.mlm) # Model checking
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# Evaluate linear contrasts:
print(linearHypothesis(NC.mlm, "Dx1"), SSP=FALSE)
print(linearHypothesis(NC.mlm, "Dx2"), SSP=FALSE)

heplot(NC.mlm, variables=1:2)

## CANONICAL DISCRIMINATION #####

NC.can <- candisc(NC.mlm)
NC.can # View canonical model

plot(NC.can) # Basic CD plot
heplot(NC.can, # HE plot of canonical analysis

fill=TRUE, fill.alpha=.1)

## MANCOVA #####

rohwer.mod <- lm(cbind(SAT, PPVT, Raven) ~ SES + n + s + ns + na + ss,
data = Rohwer) # Main effects model

pairs(rohwer.mod, # Basic pairwise HE plot
hypotheses = list("Regr" = c("n", "s", "ns", "na", "ss")),
fill = TRUE, fill.alpha = 0.1)

rohwer.mod1 <- lm(cbind(SAT, PPVT, Raven) ~ SES * (n + s + ns + na + ss),
data = Rohwer) # Interaction model

Anova(rohwer.mod1) # View model coefficients

coefs <- rownames(coef(rohwer.mod1)) # store coefficient names in a vector
print(linearHypothesis(rohwer.mod1, # only test for interaction effects

coefs[grep(":", coefs)]), SSP = FALSE)

# Fit separate models by SES level:
rohwer.ses1 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss,

data = Rohwer, subset = SES == "Hi")

rohwer.ses2 <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss,
data = Rohwer, subset = SES == "Lo")

# Low SES students:
heplot(rohwer.ses2, col = c("red", rep("black",5), "blue"),

hypotheses = list("B=0, Low SES" = c("n", "s", "ns", "na", "ss")),
level = 0.5, cex = 1.25,
fill = c(TRUE, FALSE), fill.alpha = 0.05,
xlim = c(-15, 110), ylim = c(40, 110),
xlab = "Student Achievement Test",
ylab = "Peabody Picture Vocabulary Test",
label.pos = c(1, rep(NULL, 5), 1))

(continue on next page)
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# High SES students:
heplot(rohwer.ses1, col = c("red", rep("black", 5), "blue"),

hypotheses = list("B=0, High SES" = c("n", "s", "ns", "na", "ss")),
level = 0.5, cex = 1.25,
add = TRUE, # place both plots on same graphic
error = TRUE, # error ellipse is not drawn by default with add = TRUE
fill = c(TRUE, FALSE), fill.alpha = 0.05,
xlim = c(-15, 110), ylim = c(40, 110))
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