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Abstract

This vignette indicates how to perform the analyses described in Dray
and Jombart (submitted) of data in the Guerry package, derived from
André-Michel Guerry’s (1833) Essai sur la Statistique Morale de la France,

using . It demonstrates some classical methods for analysis of multi-
variate spatial data that focus either on the multivariate aspect or on
the spatial one, as well as some more modern methods that attempt to
integrate geographical and multivariate aspects simultaneously.
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1 Introduction

A recent study (Friendly, 2007) revived André-Michel Guerry’s (1833) Essai
sur la Statistique Morale de la France. Guerry gathered data on crimes, suicide,
literacy and other “moral statistics” for various départements (i.e., counties)
in France. He provided the first real social data analysis, using graphics and
maps to summarize this georeferenced multivariate dataset. Dray and Jombart
(submitted) reanalyzed Guerry’s data using classical tools that focus on either
the multivariate or spatial aspect of the data, as well as a variety of modern
tools of spatial multivariate analysis that integrate both aspects. Here, we show
how these analyses can be carried out in . Commands are written in red and
outputs are written in blue.

1.1 Installation and loading of required packages

Several packages must be installed to run the different analyses:

pkg <- c("maptools", "spdep", "ade4", "Guerry", "spacemakeR")
inst.pkg <- row.names(installed.packages())
pkg2inst <- pmatch(pkg, inst.pkg)
if (any(is.na(pkg2inst[1:4]))) install.packages(pkg[which(is.na(pkg2inst[1:4]))],

repos = "http://cran.at.r-project.org")
if (is.na(pkg2inst[5])) install.packages("spacemakeR", repos = "http://R-Forge.R-project.org")
library(maptools)
library(ade4)
library(spdep)
library(spacemakeR)
library(Guerry)

1.2 Preliminary steps

We use the dataset gfrance85. We consider six key quantitative variables (Table
1) for each of the 85 départements of France in 1830 (Corsica, an island and
often an outlier, was excluded).

data(gfrance85)
df <- data.frame(gfrance85)[, 7:12]
xy <- coordinates(gfrance85)
dep.names <- data.frame(gfrance85)[, 6]
region.names <- data.frame(gfrance85)[, 5]
col.region <- colors()[c(149, 254, 468, 552, 26)]

2 Standard approaches

In this section, we focus on classical approaches that consider either the multi-
variate or the spatial aspect of the data.
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Table 1: Variable names, labels and descriptions. Note that four variables have
been recorded in the form of “Population per ...” so that low values correspond
to high rates whereas high values correspond to low rates. Hence, for all of the
variables, more (larger numbers) is “morally” better.

Label Description
Crime pers Population per crime against persons
Crime prop Population per crime against property
Literacy Percent of military conscripts who can read and write
Donations Donations to the poor
Infants Population per illegitimate birth
Suicides Population per suicide

2.1 Multivariate analysis

Here we consider p = 6 variables measured for n = 85 individuals (départements
of France). As only quantitative variables have been recorded, principal compo-
nent analysis (PCA, Hotelling, 1933) is well adapted. PCA summarizes the data
by maximizing simultaneously the variance of the projection of the individuals
onto the principal axes and the sum of the squared correlations between the
principal component and the variables.

pca <- dudi.pca(df, scannf = FALSE, nf = 3)

The biplot is simply obtained by:

scatter(pca)
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The first two PCA dimensions account for 35.7 % and 20 % ,respectively, of the
total variance.

pca$eig/sum(pca$eig) * 100

[1] 35.675 20.014 18.367 11.116 9.145 5.684

Correlations between variables and principal components can be represented
on a correlation circle. The first axis is negatively correlated to literacy and
positively correlated to property crime, suicides and illegitimate births. The
second axis is aligned mainly with personal crime and donations to the poor.

s.corcircle(pca$co, clabel = 0.8)
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We can add spatial information on the map representing the projections of
départements on principal axes (with the barplot of eigenvalues):

s.class(pca$l1, fac = region.names, col = col.region, cellipse = 0,
cstar = 0, clab = 0, cpoint = 0)

par(mar = rep(0.1, 4))
points(pca$l1, col = col.region[region.names], pch = 15)
pointLabel(pca$l1[, 1:2], as.character(dep.names), cex = 0.7)
add.scatter.eig(pca$eig, xax = 1, yax = 2, posi = "topleft", ratio = 0.25)

 d = 1 
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The colors represent the different regions of France.
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par(mar = rep(0.1, 4))
plot(gfrance85, col = col.region[region.names])
s.class(xy, region.names, cellipse = 0, cstar = 0, add.plot = T, cpoint = 0,

col = col.region)

For the first axis, the North and East are characterized by negative scores,
corresponding to high levels of literacy and high rates of suicides, crimes against
property and illegitimate births. The second axis mainly contrasts the West
(high donations to the the poor and low levels of crime against persons) to the
South.

2.2 Spatial autocorrelation

Spatial autocorrelation statistics, such as Moran (1948) Coefficient (MC) and
Geary (1954) Ratio, aim to measure and analyze the degree of dependency
among observations in a geographical context (Cliff and Ord, 1973).

2.2.1 The spatial weighting matrix

The first step of spatial autocorrelation analysis is to define a spatial weighting
matrix W = [wij ]. In the case of Guerry’s data, we simply defined a binary
neighborhood where two départements are considered as neighbors if they share
a common border. The spatial weighting matrix is then obtained after row-
standardization (style = "W"):
nb <- poly2nb(gfrance85)
lw <- nb2listw(nb, style = "W")

We can represent this neighborhood on the geographical map:
png(file = "figs/fig-fig2.png", width = 7, height = 7, units = "in",

res = 72)
par(mar = rep(0.1, 4))
plot(gfrance85, col = "grey95", border = "grey")
plot(lw, coordinates(gfrance85), add = TRUE, pch = 20, lwd = 2, cex = 2)
dev.off()

7



2.2.2 Moran’s Coefficient

Once the spatial weights have been defined, the spatial autocorrelation statistics
can then be computed. Let us consider the n-by-1 vector x = [x1 · · ·xn]T

containing measurements of a quantitative variable for n spatial units. The
usual formulation for Moran’s coefficient of spatial autocorrelation (Cliff and
Ord, 1973; Moran, 1948) is

MC(x) =
n
∑

(2) wij(xi − x̄)(xj − x̄)∑
(2) wij

∑n
i=1 (xi − x̄)2

where
∑

(2)
=

n∑
i=1

n∑
j=1

with i 6= j. (1)

MC can be rewritten using matrix notation:

MC(x) =
n

1TW1
zTWz
zTz

, (2)

where z =
(
In − 1n1T

n/n
)
x is the vector of centered values (zi = xi − x̄) and

1n is a vector of ones (of length n).
The significance of the observed value of MC can be tested by a Monte-Carlo

procedure, in which locations are permuted to obtain a distribution of MC under
the null hypothesis of random distribution. An observed value of MC that is
greater than that expected at random indicates the clustering of similar values
across space (positive spatial autocorrelation), while a significant negative value
of MC indicates that neighboring values are more dissimilar than expected by
chance (negative spatial autocorrelation).

We computed MC for the Guerry’s dataset. A positive and significant auto-
correlation is identified for each of the six variables. Thus, the values of literacy
are the most covariant in adjacent departments, while illegitimate births (In-
fants) covary least.
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l1 <- lapply(df, moran.mc, lw, 999)
l1

$Crime_pers

Monte-Carlo simulation of Moran's I

data: X[[1L]]
weights: lw
number of simulations + 1: 1000

statistic = 0.4115, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

$Crime_prop

Monte-Carlo simulation of Moran's I

data: X[[2L]]
weights: lw
number of simulations + 1: 1000

statistic = 0.2636, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

$Literacy

Monte-Carlo simulation of Moran's I

data: X[[3L]]
weights: lw
number of simulations + 1: 1000

statistic = 0.7176, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

$Donations

Monte-Carlo simulation of Moran's I

data: X[[4L]]
weights: lw
number of simulations + 1: 1000

statistic = 0.3534, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

$Infants

Monte-Carlo simulation of Moran's I

data: X[[5L]]
weights: lw
number of simulations + 1: 1000

statistic = 0.2287, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

$Suicides

Monte-Carlo simulation of Moran's I

data: X[[6L]]
weights: lw
number of simulations + 1: 1000

statistic = 0.4017, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater
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2.2.3 Moran scatterplot

If the spatial weighting matrix is row-standardized, we can define the lag vector

z̃ = Wz (i.e., z̃i =
n∑

j=1

wijxj) composed of the weighted (by the spatial weighting

matrix) averages of the neighboring values. Thus, we have:

MC(x) =
zTz̃
zTz

, (3)

since in this case 1TW1 = n. This shows clearly that MC measures the au-
tocorrelation by giving an indication of the intensity of the linear association
between the vector of observed values z and the vector of weighted averages of
neighboring values z̃. Anselin (1996) proposed to visualize MC in the form of
a bivariate scatterplot of z̃ against z. A linear regression can be added to this
Moran scatterplot, with slope equal to MC.

Considering the Literacy variable of Guerry’s data, the Moran scatterplot
clearly shows strong autocorrelation. It also shows that the Hautes-Alpes dé-
partement has a slightly outlying position characterized by a high value of Lit-
eracy compared to its neighbors.

x <- df[, 3]
x.lag <- lag.listw(lw, df[, 3])
moran.plot(x, lw)

Potentially influential observations of
lm(formula = wx ~ x) :

dfb.1_ dfb.x dffit cov.r cook.d hat
4 0.43 -0.64 -0.74_* 0.83_* 0.24 0.05
22 -0.07 0.10 0.11 1.08_* 0.01 0.06
49 -0.01 0.02 0.02 1.08_* 0.00 0.05
52 -0.07 0.09 0.11 1.08_* 0.01 0.06
65 -0.01 0.02 0.02 1.08_* 0.00 0.05

text(x[5], x.lag[5], dep.names[5], pos = 1, cex = 0.8)
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2.3 Toward an integration of multivariate and geographi-
cal aspects

The simplest approach considered a two-step procedure where the data are first
summarized with multivariate analysis such as PCA. In a second step, univariate
spatial statistics or mapping techniques are applied to PCA scores for each axis
separately. One can also test for the presence of spatial autocorrelation for the
first few scores of the analysis, with univariate autocorrelation statistics such as
MC. We mapped scores of the départements for the first two axes of the PCA of
Guerry’s data. Even if PCA maximizes only the variance of these scores, there
is also a clear spatial structure, as the scores are highly autocorrelated. The
map for the first axis corresponds closely to the split between la France éclairée
(North-East characterized by an higher level of Literacy) and la France obscure.

mc.pca <- lapply(pca$l1, moran.mc, lw, 999)
par(mar = rep(0.1, 4))
par(mfrow = c(1, 2))
plot(gfrance85, col = "grey95", border = "grey")
s.value(xy, pca$li[, 1], add.plot = TRUE)
text(240699, 2607012, paste("MC = ", round(mc.pca[[1]]$statistic, 3),

" (", mc.pca[[1]]$p.value, ")", sep = ""), cex = 0.8)
plot(gfrance85, col = "grey95", border = "grey")
s.value(xy, pca$li[, 2], add.plot = TRUE)
text(240699, 2607012, paste("MC = ", round(mc.pca[[2]]$statistic, 3),

" (", mc.pca[[2]]$p.value, ")", sep = ""), cex = 0.8)
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3 Spatial multivariate analysis

Over the last two decades, several approaches have been developed to consider
both geographical and multivariate information simultaneously. The multivari-
ate aspect is usually treated by techniques of dimensionality reduction similar to
PCA. On the other hand, several alternatives have been proposed to integrate
the spatial information.

3.1 Spatial partition

One alternative is to consider a spatial partition of the study area. In this case,
the spatial information is coded as a categorical variable, and each category
corresponds to a region of the whole study area. For instance, Guerry’s data
contained a partition of France into 5 regions.

We used the between-class analysis (BCA, Dolédec and Chessel, 1987), to
investigate differences between regions. BCA maximizes the variance between
groups.

bet <- between(pca, region.names, scannf = FALSE, nf = 2)

Here, 28.8% of the total variance (sum of eigenvalues of PCA) corresponds
to the between-regions variance (sum of the eigenvalues of BCA).

bet$ratio

[1] 0.2881

The main graphical outputs are obtained by the generic plot function:

plot(bet)
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The barplot of eigenvalues indicates that two axes should be interpreted.
The first two BCA dimensions account for 59 % and 30.2 %, respectively, of the
between-regions variance.

barplot(bet$eig)
bet$eig/sum(bet$eig) * 100

[1] 58.996 30.160 7.417 3.427

0.
0

0.
4

0.
8

The coefficients used to construct the linear combinations of variables are
represented:

s.arrow(bet$c1, clabel = 0.8)
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The first axis opposed literacy to property crime, suicides and illegitimate
births. The second axis is mainly aligned with personal crime and donations to
the poor.

Projections of départements on the BCA axes can be represented on the
factorial map:

s.class(bet$ls, fac = region.names, col = col.region, cellipse = 0,
cstar = 1, clab = 0, cpoint = 0)

par(mar = rep(0.1, 4))
points(bet$ls, col = col.region[region.names], pch = 15)
pointLabel(bet$ls[, 1:2], as.character(dep.names), cex = 0.7, col = col.region[(region.names)])
s.class(bet$ls, fac = region.names, col = col.region, cellipse = 0,

cstar = 0, clab = 1, cpoint = 0, add.plot = T)
add.scatter.eig(bet$eig, xax = 1, yax = 2, posi = "topleft", ratio = 0.25)
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The scores can be mapped to show the spatial aspects:

png(file = "figs/fig-fig5d.png", width = 6, height = 3, units = "in",
res = 72)

par(mar = rep(0.1, 4))
par(mfrow = c(1, 2))
plot(gfrance85, col = col.region[region.names], border = "transparent")
s.value(xy, bet$ls[, 1], add.plot = TRUE)
plot(gfrance85, col = col.region[region.names], border = "transparent")
s.value(xy, bet$ls[, 2], add.plot = TRUE)
dev.off()
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The results are very close to those obtained by PCA: the first axis contrasted
the North and the East (la France éclairée) to the other regions while the South
is separated from the other regions by the second axis. The high variability of
the region Centre is also noticeable. In contrast, the South is very homogeneous.

3.2 Spatial explanatory variables

Principal component analysis with respect to the instrumental variables (PCAIV,
Rao, 1964), and related methods, have been often used in community ecology to
identify spatial relationships. The spatial information is introduced in the form
of spatial predictors and the analysis maximized the ”spatial variance” (i.e., the
variance explained by spatial predictors). Note that BCA can also be consid-
ered as a particular case of PCAIV, where the explanatory variables are dummy
variables indicating group membership.

3.2.1 Trend surface of geographic coordinates

Student (1914) proposed to express observed values in time series as a polyno-
mial function of time, and mentioned that this could be done for spatial data
as well. Borcard et al. (1992) extended this approach to the spatial and mul-
tivariate case by introducing polynomial functions of geographic coordinates as
predictors in PCAIV. We call this approach PCAIV-POLY.

The centroids of départements of France were used to construct a second-
degree orthogonal polynomial.

png(file = "figs/fig-fig6.png", width = 6, height = 4, units = "in",
res = 72)

poly.xy <- poly(xy, degree = 2)
layout(matrix(c(1, 2, 0, 1, 2, 4, 3, 5, 4, 3, 5, 0), byrow = T, nrow = 4),

width = 1, height = 1/2)
par(mar = rep(0.1, 4))
lab <- c(expression(x), expression(x^2), expression(y), expression(xy),

expression(y^2))
for (i in 1:ncol(poly.xy)) {

plot(gfrance85, col = "grey95", border = "grey")
s.value(xy, poly.xy[, i], add.plot = TRUE, clegend = 0)
text(240699, 2607012, lab[i], cex = 2)

}
dev.off()
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PCAIV is then performed using the pcaiv function:

pcaiv.xy <- pcaiv(pca, poly.xy, scannf = FALSE, nf = 2)

Here, 32.4% of the total variance (sum of eigenvalues of PCA) is explained
by the second-degree polynomial (sum of eigenvalues of PCAIV). The first two
dimensions account for 51.4 % and 35.2 %, respectively, of the explained vari-
ance.
sum(pcaiv.xy$eig)/sum(pca$eig) * 100

[1] 32.36

pcaiv.xy$eig/sum(pcaiv.xy$eig) * 100

[1] 51.423 35.152 5.954 4.799 2.671

The outputs of PCAIV-POLY (coefficients of variables, maps of départements
scores, etc.) are very similar to those obtained by BCA. They can be represented
easily by the generic plot function:

plot(pcaiv.xy)
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3.2.2 Moran’s eigenvector maps

An alternative way to build spatial predictors is by the diagonalization of the
spatial weighting matrix W. Moran’s eigenvector maps (MEM, Dray et al.,
2006) are the n − 1 eigenvectors of the doubly-centered matriw W. They are
orthogonal vectors with a unit norm maximizing MC (Griffith, 1996). MEM
associated with high positive (or negative) eigenvalues have high positive (or
negative) autocorrelation. MEM associated with eigenvalues with small absolute
values correspond to low spatial autocorrelation, and are not suitable for defining
spatial structures.

We used the spatial weighting matrix defined above to construct MEM. The
first ten MEM, corresponding to the highest levels of spatial autocorrelation,
have been mapped:

png(file = "figs/fig-fig7.png", width = 10, height = 4, units = "in",
res = 72)

mem <- scores.listw(lw)
par(mfrow = c(2, 5), mar = rep(0.1, 4))
for (i in 1:10) {

plot(gfrance85, col = "grey95", border = "grey")
s.value(xy, mem$vectors[, i], add.plot = TRUE, clegend = 0)
text(270000, 2600000, bquote(paste("MC=", .(round(mem$values[i],

3)))), cex = 1.5)
}
dev.off()
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We introduced the first ten MEM as spatial explanatory variables in PCAIV.
We call this approach PCAIV-MEM.

Here, 44.1% of the total variance (sum of eigenvalues of PCA) is explained
by the first ten MEM (sum of eigenvalues of PCAIV). The first two dimensions
account for 54.9 % and 26.3 %, respectively, of the explained variance.

sum(pcaiv.mem$eig)/sum(pca$eig) * 100

[1] 44.12

pcaiv.mem$eig/sum(pcaiv.mem$eig) * 100

[1] 54.929 26.300 9.042 4.574 3.533 1.622

The outputs of PCAIV-MEM (coefficients of variables, maps of départements
scores, etc.) are very similar to those obtained by BCA. They can be represented
easily by the generic plot function:

plot(pcaiv.mem)
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3.3 Spatial graph and weighting matrix

The MEM framework introduced the spatial information into multivariate anal-
ysis through the eigendecomposition of the spatial weighting matrix. Usually,
we consider only a part of the information contained in this matrix because
only a subset of MEM are used as regressors in PCAIV. In this section, we
focus on multivariate methods that consider the spatial weighting matrix under
its original form.

Wartenberg (1985) was the first to develop a multivariate analysis based
on MC. His work considered only normed and centered variables (i.e., normed
PCA) for the multivariate part and a binary symmetric connectivity matrix
for the spatial aspect. Dray et al. (2008) generalized Wartenberg’s method
by introducing a row-standardized spatial weighting matrix in the analysis of a
statistical triplet. This approach is very general and allows us to define spatially-
constrained versions of various methods (corresponding to different triplets) such
as correspondence analysis or multiple correspondence analysis. MULTISPATI
finds coefficients to obtain a linear combination of variables that maximizes a
compromise between the classical multivariate analysis and a generalized version
of Moran’s coefficient.

ms <- multispati(pca, lw, scannf = FALSE)
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The main outputs of MULTISPATI can be represented easily by the generic
plot function:

plot(ms)
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The barplot of eigenvalues suggests two main spatial structures. Eigenvalues
of MULTISPATI are the product between the variance and the spatial autocor-
relation of the scores, while PCA maximizes only the variance. The differences
between the two methods are computed by the summary function:

sum.ms <- summary(ms)

Multivariate Spatial Analysis
Call: multispati(dudi = pca, listw = lw, scannf = FALSE)

Scores from the initial duality diagramm:
var cum ratio moran

RS1 2.140 2.140 0.3567 0.5506
RS2 1.201 3.341 0.5569 0.5614
RS3 1.102 4.443 0.7406 0.1806

Multispati eigenvalues decomposition:
eig var moran

CS1 1.286 2.017 0.6375
CS2 0.694 1.177 0.5898

sum.ms
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eig var moran
CS1 1.28587 2.0172 0.63746
CS2 0.69399 1.1766 0.58985
CS3 0.17948 1.0072 0.17821
CS4 0.16856 0.6645 0.25366
CS5 0.03803 0.7531 0.05050
CS6 0.01045 0.3815 0.02739

Hence, there is a loss of variance compared to PCA (2.14 versus 2.017 for axis 1;
1.201 versus 1.177 for axis 2) but a gain of spatial autocorrelation (0.551 versus
0.637 for axis 1; 0.561 versus 0.59 for axis 2).

Coefficients of variables allow to interpret the structures:

s.arrow(ms$c1, clabel = 0.8)
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The first axis opposes literacy to property crime, suicides and illegitimate births.
The second axis is aligned mainly with personal crime and donations to the
poor. The maps of the scores show that the spatial structures are very close to
those identified by PCA. The similarity of results between PCA and its spatially
optimized version confirm that the main structures of Guerry’s data are spatial.

Spatial autocorrelation can be seen as the link between one variable and the
lagged vector. This interpretation is used to construct the Moran scatterplot
and can be extended to the multivariate case in MULTISPATI by analyzing the
link between scores and lagged scores:

s.match(ms$li, ms$ls, clabel = 0, pch = 15)
s.match(ms$li[c(10, 41, 27), ], ms$ls[c(10, 41, 27), ], label = dep.names[c(10,

41, 27)], clabel = 0.8, add.plot = TRUE, pch = 15)
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 d = 2 

 Aude 
 Haute−Loire 

 Finistere 

Each département can be represented on the factorial map by an arrow (the
bottom corresponds to its score, the head corresponds to its lagged score. A
short arrow reveals a local spatial similarity (between one plot and its neigh-
bors) while a long arrow reveals a spatial discrepancy. This viewpoint can be
interpreted as a multivariate extension of the local index of spatial association
(Anselin, 1995). For instance, Aude has a very small arrow, indicating that this
département is very similar to its neighbors. On the other hand, the arrow for
Haute-Loire has a long horizontal length which reflects its high values for the
variables Infants (31017), Suicides (163241) and Crime prop (18043) compared
to the average values over its neighbors (27032.4, 60097.8 and 10540.8 for these
three variables). Finistère corresponds to an arrow with a long vertical length
which is due to its high values compared to its neighbors for Donations (23945
versus 12563) and Crime pers (29872 versus 25962).

The link between the scores and the lagged scores (averages of neighbors
weighted by the spatial connection matrix) can be mapped in the geographical
space. For the first axis, we have:

png(file = "figs/fig-fig8e.png", width = 6, height = 3, units = "in",
res = 72)

par(mar = rep(0.1, 4))
par(mfrow = c(1, 2))
plot(gfrance85, , col = "grey95", border = "grey")
s.value(xy, ms$li[, 1], add.plot = TRUE)
plot(gfrance85, , col = "grey95", border = "grey")
s.value(xy, ms$ls[, 1], add.plot = TRUE)
dev.off()
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4 Conclusions

Even if the methods presented are quite different in their theoretical and practi-
cal viewpoints, their applications to Guerry’s dataset yield very similar results.
We provided a quantitative measure of this similarity by computing Procrustes
statistics (Peres-Neto and Jackson, 2001; Dray et al., 2003) between the scores of
the départements onto the first two axes for the different analyses. All the values
of the statistic are very high and significant; this confirms the high concordance
between the outputs of the different methods.

mat <- matrix(NA, 4, 4)
mat.names <- c("PCA", "BCA", "PCAIV-POLY", "PCAIV-MEM", "MULTISPATI")
colnames(mat) <- mat.names[-5]
rownames(mat) <- mat.names[-1]
test1 <- procuste.randtest(pca$li[, 1:2], bet$ls[, 1:2])
test2 <- procuste.randtest(pca$li[, 1:2], pcaiv.xy$ls[, 1:2])
test3 <- procuste.randtest(pca$li[, 1:2], pcaiv.mem$ls[, 1:2])
test4 <- procuste.randtest(pca$li[, 1:2], ms$li[, 1:2])
test5 <- procuste.randtest(bet$ls[, 1:2], pcaiv.xy$ls[, 1:2])
test6 <- procuste.randtest(bet$ls[, 1:2], pcaiv.mem$ls[, 1:2])
test7 <- procuste.randtest(bet$ls[, 1:2], ms$li[, 1:2])
test8 <- procuste.randtest(pcaiv.xy$ls[, 1:2], pcaiv.mem$ls[, 1:2])
test9 <- procuste.randtest(pcaiv.xy$ls[, 1:2], ms$li[, 1:2])
test10 <- procuste.randtest(pcaiv.mem$ls[, 1:2], ms$li[, 1:2])
mat[1:4, 1] <- c(test1$obs, test2$obs, test3$obs, test4$obs)
mat[2:4, 2] <- c(test5$obs, test6$obs, test7$obs)
mat[3:4, 3] <- c(test8$obs, test9$obs)
mat[4, 4] <- test10$obs
mat

PCA BCA PCAIV-POLY PCAIV-MEM
BCA 0.9789 NA NA NA
PCAIV-POLY 0.9792 0.9897 NA NA
PCAIV-MEM 0.9886 0.9936 0.9954 NA
MULTISPATI 0.9869 0.9954 0.9951 0.9986
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