	Visualizing Mutivariate Uncertainty guerry
Visualizing Multivariate Uncertainty: Some Graphical Methods for Multivariable Spatial Data Michael Friendly York University http://www.math.yorku.ca/SCS/friendly.html National Academy of Sciences Washington, DC, Mar, 2005	Multivariate Uncertainty and "Moral Statistics" ~ 1800 It is a capital mistake to theorize before one has data. Sherlock Homes in Scandal in Bohemia - What to do about crime? ■ Liberal view: increase education, literacy - Conservative view: build more prisons ■ What to do about poverty? ■ Liberal view: increase social assistance - Conservative view: build more poor-houses - But: - Little actual data - all armchair theorizing - No ways to understand or visualize relationships between variables - Statistical graphics just invented (Playfair) - line graph, bar chart, pie chart - All 1D or 1.5D (time series)
Outline - Multivariate uncertainty and "moral statistics" - A. M. Guerry's Moral Statistics of France - Guerry's data and analyses ■ Multivariate analyses: Data-centric displays - Bivariate plots and data ellipses - Biplots - Canonical discriminant plots - HE plots for multivariate linear models - Multivariate mapping: Map-centric displays - Star maps - Reduced-rank color maps	The rise of "moral statistics" and modern social science - Political arithmetic: William Petty (and others) - 1654- first attempt at scientific survey (on Irish estates) - 1687- idea that wealth and strength of a state depended on its subjects (number and characteristics) - Demography: Johann Peter Süssmilch (1741)— - importance of measuring and analyzing population distributions - idea that ethical and state policies could encourage growth and wealth (increase birth rate, decrease death rate) - discourage alcohol, gambling, prostitution \& priestly celibacy - encourage state support for medical care, distribution of land, lower taxes - Statistik: Numbers of the state (1800-1820), Germany and France - collect data on imports, exports, transportation, ... - Guerry \& Quetelet - Quetelet: Concepts of "average man" and "social physics" - Guerry: First real social data analysis (Guerry, 1833)

Guerry's data

- Compte général de l'administration de la justice criminelle en France
- The first national compilation of official justice data (1825)
- detailed data on all charges and disposition
- collected quarterly in all 86 departments.

Other sources: Bureau de Longitudes (illegitimate births); Parent-Duchâtelet (prostitutes in Paris); Compte du ministere du guerre (military desertions); ..

- Moral variables: Scaled so 'more' is 'better'

Crime_pers Population per Crime against persons Crime_prop Population per Crime against property
Donations Donations to the poor
Infants Population per illegitimate birth
Literacy Percent who can read \& write
Suicides Population per suicide

- Tried to define these to ensure comparability and representativeness
- Crime: Use number of accused rather than convicted
- Literacy: Reported levels of education unreliable; use data from military draft examinations (\% of young men able to read and write)
■ Other variables: Ranks by department: wealth, commerce, ...

National Academies of Sciences, March 2005
(c) Michael Friendly

Guerry's Questions

■ Should crime and other moral variables be considered as structural, lawful characteristics of society, or simply as indicants of individual behavior?

■ Statistical regularity as the key to social science ("social physics") social equivalent of "law of large numbers")
\square Guerry showed that rates of crime had nearly invariant distributions over time (1825-1830) when classified by region, sex of accused, type of crime, etc. "We would be forced to recognze that the facts of moral order, like those of physical order, obey invariant laws..." (p.14)

■ Relations between crime and other moral variables
■ Do crimes against persons and crimes against property show the same or different trends?

- How does crime relate to education and literacy?
- Some "armchair" arguments had suggested increasing literacy to decrease crime: "The definitive result shows that 67 out of 100 prisoners can neither read nor write. What stronger proof could there be that ignorance is the mother of all vices" (A. Taillander, 1828)
■ Does crime vary coherently over regions of France (C, N, S, E, W)?

HE plots: Visualization for Multivariate Linear Models

■ How are p responses, $\boldsymbol{Y}=\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{p}\right)$ related to q predictors, $\boldsymbol{X}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{q}\right)$? (Friendly, 2004a)

■ MANOVA: $\boldsymbol{X} \sim$ discrete factors
■ MMRA: $\boldsymbol{X} \sim$ quantitative predictors

- MANCOVA, response surface models, All the same MLM:

$$
\underset{(n \times p)}{\boldsymbol{Y}}=\underset{(n \times q)}{\boldsymbol{X}} \underset{(q \times p)}{\boldsymbol{B}}+\underset{(n \times p)}{\boldsymbol{E}}
$$

■ Analogs of univariate tests:
■ Explained variation: $M S_{H} \longmapsto(p \times p)$ covariance matrix, \boldsymbol{H}
■ Residual variation: $M S_{E} \longmapsto(p \times p)$ covariance matrix, \boldsymbol{E}
■ Test statistics: $F \longmapsto|\boldsymbol{H}-\lambda \boldsymbol{E}|=0 \mapsto \lambda_{1}, \lambda_{2}, \ldots \lambda_{s}$
■ How big is \boldsymbol{H} relative to \boldsymbol{E} ?
■ Latent roots $\lambda_{1}, \lambda_{2}, \ldots \lambda_{s}$ measure the "size" of \boldsymbol{H} relative to \boldsymbol{E} in $s=\min \left(p, d f_{h}\right)$ orthogonal directions.

- Test statistics: Wilks' Λ, Pillai trace, Hotelling-Lawley trace, Roy's maximum root combine these into a single number

Simple example: Iris data

(a) Data ellipses and (b) \boldsymbol{H} and \boldsymbol{E} ellipses

■ \boldsymbol{H} ellipse: Shows 2D covariation of predicted values (means)

- \boldsymbol{E} ellipse: Shows 2D covariation of residuals
- points: show group means on both variables

National Academies of Sciences, March 2005
Visualizing Multivariate Uncertainty

HE plots: Visualization for Multivariate Linear Models

■ HE plot: for two response variables, $\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)$, plot a \boldsymbol{H} ellipse and \boldsymbol{E} ellipse
■ HE plot matrices: For all p responses, plot an HE scatterplot matrix

Baseball data: Variation by position

■ How do relations among variables vary with player's position?
\square Fit MANOVA model,
(logSal Years Homer Runs Hits RBI Atbat Walks Putouts Assists Errors) = Position
■ HE plots for selected pairs: (Years, logSal), (Putouts, Assists)

- stars for Q1, Median, Q3

■ How to show unusua depts?

National Academies of Sciences, March 2005
Visualizing Multivariate Uncertainty

References

Friendly, M. (1991). SAS System for Statistical Graphics. Cary, NC: SAS Institute, 1st edn.
Friendly, M. (2002). Corrgrams: Exploratory displays for correlation matrices. The American Statistician, 56(4), 316-324.
Friendly, M. (2004a). Graphical methods for the multivariate general linear model. Journal of Computational and Graphical Statistics. (submitted 2/17/04; resubmitted: 10/02/04).
Friendly, M. (2004b). Milestones in the history of data visualization: A case study in statistical historiography. In W. Gaul and C. Weihs, eds., Studies in Classification, Data Analysis, and Knowledge Organization. New York: Springer. (In press)

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal components analysis. Biometrics, 58(3), 453-467.

Guerry, A.-M. (1833). Essai sur la statistique morale de la France. Paris. English translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y. : Edwin Mellen Press, c2002.

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45

