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[Multivariate Uncertainty and “Moral Statistics” ~ 1800]

It is a capital mistake to theorize before one has data. Sherlock Homes in

Scandal in Bohemia

m What to do about crime?
m Liberal view: increase education, literacy
m Conservative view: build more prisons

m What to do about poverty?

m Liberal view: increase social assistance
m Conservative view: build more poor-houses

= But:

m Little actual data — all armchair theorizing

m No ways to understand or visualize relationships between variables
e Statistical graphics just invented (Playfair)— line graph, bar chart, pie chart
e All 1D or 1.5D (time series)
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m Multivariate uncertainty and “moral statistics”
m A. M. Guerry's Moral Statistics of France
m Guerry’s data and analyses

m Multivariate analyses: Data-centric displays

m Bivariate plots and data ellipses

m Biplots

m Canonical discriminant plots

m HE plots for multivariate linear models

m Multivariate mapping: Map-centric displays

m Star maps
m Reduced-rank color maps
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[The rise of “moral statistics” and modern social science]

m Political arithmetic: william Petty (and others)

m 1654— first attempt at scientific survey (on Irish estates)
m 1687— idea that wealth and strength of a state depended on its subjects
(number and characteristics)

m Demography: Johann Peter Suissmilch (1741)—

® importance of measuring and analyzing population distributions

m idea that ethical and state policies could encourage growth and wealth
(increase birth rate, decrease death rate)
e discourage alcohol, gambling, prostitution & priestly celibacy
e encourage state support for medical care, distribution of land, lower taxes

m Statistik: Numbers of the state (1800-1820), Germany and France
m collect data on imports, exports, transportation, ...

m Guerry & Quetelet

m Quetelet: Concepts of “average man” and “social physics”
m Guerry: First real social data analysis (Guerry, 1833)
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m Compte général de 'administration de la justice criminelle en France

m The first national compilation of official justice data (1825)
e detailed data on all charges and disposition
e collected quarterly in all 86 departments.

m Other sources: Bureau de Longitudes (illegitimate births); Parent-Duchatelet
(prostitutes in Paris); Compte du ministere du guerre (military desertions); ...

m Moral variables: Scaled so 'more’ is 'better
Crime_pers Population per Crime against persons
Crime_prop Population per Crime against property
Donations Donations to the poor
Infants Population per illegitimate birth
Literacy  Percentwho canread & write
Suicides Population per suicide
m Tried to define these to ensure comparability and representativeness
e Crime: Use number of accused rather than convicted
e Literacy: Reported levels of education unreliable; use data from military draft
examinations (% of young men able to read and write)

m Other variables: Ranks by department: wealth, commerce, ...
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[Guerry’s Questions]

m Should crime and other moral variables be considered as structural, lawful
characteristics of society, or simply as indicants of individual behavior?

m Statistical regularity as the key to social science (“social physics”) social
equivalent of “law of large numbers”)

m Guerry showed that rates of crime had nearly invariant distributions over time
(1825-1830) when classified by region, sex of accused, type of crime, etc. “We
would be forced to recognze that the facts of moral order, like those of physical
order, obey invariant laws...” (p.14)

m Relations between crime and other moral variables

m Do crimes against persons and crimes against property show the same or
different trends?
m How does crime relate to education and literacy?

e Some “armchair” arguments had suggested increasing literacy to decrease
crime: “The definitive result shows that 67 out of 100 prisoners can neither
read nor write. What stronger proof could there be that ignorance is the
mother of all vices” (A. Taillander, 1828)

m Does crime vary coherently over regions of France (C, N, S, E, W)?
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[Guerry‘s analyses]

Literacy

Relate variables by comparing maps and ranked lists (1St|| coordinate plot)

m Conclusion: no clear relation between crime and literacy

[=][=]x

Literacy | [vi Outline [ Invert |vi Rank

Literacy

\_

Ranked lists
m Similar analyses for other variables (suicide, illegitimate births, ...)

Crimes against persons
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[Bivariate plots: Points and visual summaries]
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[Graphical methods for multivariate data]

relations more clearly and effectively

m Scatterplot matrices
m Corrgrams and visual thinning

variance

\_

m Bivariate displays: Bivariate displays can be enhanced to show statistical

m Scatterplots with data (concentration) ellipses and smoothed (loess) curves

m Reduced-rank displays: Multivariate visualization techniques can show the
statistical data in simple ways, using dimension reduction techniques.

m Biplots - show variables and observations in space accounting for greatest

m Canonical discriminant plots - show variables and observations in space
accounting for greatest between-group variation

m HE plots: Visualization for Multivariate Linear Models
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[The Data Ellipse: Galton’s Discovery]

DIAGRAM BASED ON TABLE 1I.
(all fewale heights are multiplied by I'08)
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Pearson (1920): “... one of the most noteworthy scientific discoveries arising from pure
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[The Data Ellipse: Details]

m Visual summary for bivariate marginal relations

m Shows: means, standard deviations, correlation, regression line(s)
m Defined: set of points whose squared Mahalanobis distance < c?,

D’y)=y-9) 'S ' (y-9 <

S = sample variance-covariance matrix

m Radius: when ¥y is approx. bivariate normal, Dz(y) has a large-sample X%

distribution with 2 degrees of freedom.
o ¢ = x3(0.40) ~ 1: 1 std. dev univariate ellipse— 1D shadows:
e ¢? = x3(0.68) = 2.28: 1 std. dev bivariate ellipse
e Small samples: ¢? &~ 2F5 ,_o(1 — «)
m Construction: Transform the unit circle, U = (sin 8, cos 8),

=7+ cSYU

S1/2 = any “square root” of S (e.g., Cholesky)
® Robust version: Use robust covariance estimate (MCD, MVE)
m Nonparametric version: Use kernel density estimation

\
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[Bivariate plots: Region differences]
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[Bivariate plots: Data ellipse and smoothing]
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[Bivariate plots: Scatterplot matrices]
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[Corrgrams— Correlation matrix displays]

m How to show a correlation matrix for different purposes? (Friendly, 2002)

m Render a correlation to depict sign and magnitude (tasks: lookup, comparison,
detection)
Correlation value (x 100)
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Task-specific renderings:
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Rendering | Number Circle Shading
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[Corrgrams— Variable ordering]

Baseball data: (a) alpha vs. (b) correlation ordering

” (a) Alpha order " (b) PC2/1 order
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See: http://www.math.yorku.ca/SCS/sasmac/corrgram.html
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[Corrgrams— Rendering]

Baseball data: (lower) Patterns vs. (upper) comparison

Baseball data PC2/1 order
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[Corrgrams— Variable ordering]

m Reorder variables to show similarities: PC1 or angles (PC2/PC1)
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[Corrgrams— Guerry data]
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[Visual thinning: Minimal summaries for large data sets]

Guerry data: schematic scatterplot matrix: 68% data ellipse + loess smooth
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Dimension 2 (15.8%)
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[Guerry data— Variable ordering]
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[Multivariate analyses: Reduced rank displays]

m Multivariate visualization techniques can show the statistical data in simple ways,
using dimension reduction techniques.

m Biplots - show variables and departments in space accounting for greatest
variance

m Canonical discriminant plots - show variables and departments in space
accounting for greatest between-region variation

m Can try to show geographic location by color coding or other visual attributes.
m Color code by region
m Show data ellipse to summarize regions

m — Data-centric displays: The multivariate data is shown directly; geographic
relations indirectly

. J
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m Biplots represent both variables (attributes) and observations (departments) in the
same plot— a low-rank (2D) approximation to a data matrix (Gabriel, 1971)

d
Y*'=Y -Y.= AB" =) aib],
k=1

m Variables are usually represented by vectors from origin (mean)
m Observations are usually represented by points
m Can show clusters of observations by data ellipses

m Properties:

® Angles between vectors show correlations (r ~ cos(@))

m Length of variable vectors ~ % variance accounted for

L ainj: projection of observation on variable vector

m Dimensions are uncorrelated overall (but not necessarily within group)

. J
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[Biplots: Baseball data]
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[Blplots: Guerry data]
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[Canonical discriminant plots: Guerry data, by Region]
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[Canonical discriminant plots]

m Project the variables into a low-rank (2D) space that maximally discrimates among
regions (Friendly, 1991)
m Visual summary of a MANOVA
m Canonical dimensions are linear combinations of the variables with maximum
univariate F'-statistics.
m Vectors from the origin (grand mean) for the observed variables show the
correlations with the canonical dimensions

m Properties:

m Canonical variates are uncorrelated

m Circles of radius \/Xg(l — a)/ni give confidence regions for group means.
m Variable vectors show how variables discriminate among groups

m Lengths of variable vectors ~ contribution to discrimination

. J
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[CDA plots: Baseball data, by player position]

\

6a1ssists

errors

Canonical Dimension 2 (27.1%)

-4 N
Positon ©®°®°® 1B ©°°¢°C s a5 DH
i ooao ”: * k% OF [ololc) UT
67 T T ! r . : :
642 0 2 4 6 8

Canonical Dimension 1 (72.9%)

J

National Academies of Sciences, March 2005

31

(© Michael Friendly




Visualizing Multivariate Uncertainty heplots

(" )

[HE plots: Visualization for Multivariate Linear Models]

m How are p responses, Y = (yl, Yo, .. ,yp) related to g predictors,
X = (x1, @2, ..., x4)? (Friendly, 2004a)

® MANOVA: X ~ discrete factors
m MMRA: X ~ guantitative predictors Y = X B+ E
m MANCOVA, response surface models, (nxp)  (nxq)(gxp) (nXp)

All the same MLM:

m Analogs of univariate tests:
m Explained variation: M Sy —— (p X p) covariance matrix, H
m Residual variation: M Sk — (p X p) covariance matrix, E
m Teststatistics: F' — |H — AE| =0 — A1, Ao, ... Aq

m How big is H relative to EZ ?

m Latent roots A1, Aa, ... A\s measure the “size” of H relative to E' in
s = min(p, dfy,) orthogonal directions.

m Test statistics: Wilks’ A, Pillai trace, Hotelling-Lawley trace, Roy’s maximum
root combine these into a single number

(" )
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[Simple example: Iris data]
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(a) Data ellipses and (b) H and FE ellipses

m H ellipse: Shows 2D covariation of predicted values (means)
m F ellipse: Shows 2D covariation of residuals
m points: show group means on both variables
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[HE plots: Visualization for Multivariate Linear Models]

m HE plot: for two response variables, (yl, y2), plot a H ellipse and F ellipse
m HE plot matrices: For all p responses, plot an HE scatterplot matrix

m — Shows: size, dimensionality, and effect-correlation of H relative to E .

Individual group scatter Between and Within Scatter

Y2 Y2
40 40
Deviations of group means from ”
Scatter around group means grand mean (outer) and pooled How big is H relative to E?
represented by each ellipse within-group (inner) ellipses.
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Essential ideas behind multivariate tests: (a) Data ellipses; (b) H and E ellipses
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[Baseball data: Variation by position]

m How do relations among variables vary with player’s position?
m Fit MANOVA model,
(logSal Years Homer Runs Hits RBI Atbat Walks Putouts
Assists Errors) = Position
m HE plots for selected pairs: (Years, logSal), (Putouts, Assists)

Model: logSal Years ... Errors = Position Model: logSal Years ... Errors = Position

log Salary
Assists

[ matrix Hypothesis — — - Error Matrix Hypothesis — — - Error
20 -100
0 5 10 15 20 0 100 200 300 400 500 600
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[Guerry data: Predicting crime]

m How do rates of crime vary with other variables?
m Fit MANCOVA model,
(Crime_pers Crime_prop) = Region + Wealth + Suicides
+ Literacy + Donations + Infants
m HE plots: Overall, plus for Region and covariate effects

Region effect Covariates: Wealth Suicides Literacy Donations Infants
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Model: logSal Years ... Errors = Position
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Region effect
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m Overall: Predicted crimes against persons and property are negatively correlated
B Larger variation in crimes against property
m Region variation greater in crimes against persons
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Covariates: Wealth Suicides Literacy Donations Infants
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m Each quantitative variable (covariate) plots as a 1D ellipse (vector)
m Orientation: relation of x; to Y1, Y2
m Length: strength of relation
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[Multivariate mapping: Map-centric displays]

m How to generalize choropleth maps to more than one variable?

~

m Star maps: Show multivariate data on the map using star icons, variable ~

length of ray

m Reduced-rank RGB displays: Factor analysis — (F1, F2, F3) factor scores

— (R, G, B) shading

m PREFMAP (X, y) maps: Fit data variables to (Long, Lat) map coordinates.

Display variables as vectors in map coordinates.

\_
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[Star maps: Medians by region]
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[Star maps: Multivariate boxplots by region]

Crime_prop, nfants
Instruction Suicides

Donations  Crime_pers

m stars for Q1, Median, Q3
m How to show unusual
depts?
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[Reduced-rank color-coded displays]

RGB 3-factor map: R=f1, G=f2, B=f3

Variables: Crime_pers Crime_prop Literacy Infants Donations Suicides
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[Reduced-rank color-coded displays]

m Use dimension-reduction technique (PCA, Factor analysis, ...) to produce scores
for observations (departments) on 3 dimensions (F1, F5, F3)

Factorl Factor2  Factor3
Variable Civil society  Moral values Crime
Pop per Crime against persons 097
Pop per Crime against property 075 039
Percent Read & Write -072
Pop per illegitimate birth 062 042
Donations to the poor 089
Pop per suicide 080

m Scale (F, Fy, F3) —[0,1]
m Color mapping function, e.g., C(Fi, Fy, F3) — rgb(F;, F}, Fy,)
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