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Abstract

Visual insights into a wide variety of statistical methods, for both didactic and data analytic purposes,
can often be achieved through geometric diagrams and geometrically based statistical graphs. This paper
extols and illustrates the virtues of the ellipse and her higher-dimensional cousins for both these purposes
in a variety of contexts, including linear models, multivariate linear models, and mixed-effect models. We
emphasize the strong relationships among statistical methods, matrix-algebraic solutions, and geometry
that can often be easily understood in terms of ellipses.
Key words: added-variable plots; Bayesian estimation; concentration ellipse; data ellipse; discrimi-
nant analysis; Francis Galton; hypothesis-error plots; kissing ellipsoids; measurement error; mixed-effect
models; multivariate meta-analysis; regression paradoxes; ridge regression; statistical geometry

1 Introduction

Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections
which speak to the senses without fatiguing the mind, possess the advantage of fixing the attention on a
great number of important facts.

Alexander von Humboldt (1811, p. ciii)

In the beginning, there was an ellipse. As modern statistical methods progressed from bivariate to mul-
tivariate, the ellipse escaped the plane to a 3D ellipsoid, and then grew onwards to higher dimensions. This
paper extols and illustrates the virtues of the ellipse and her higher-dimensional cousins for both didactic and
data analytic purposes.

When Francis Galton (1886) first studied the relationship between heritable traits of parents and their
offspring, he had a remarkable visual insight— contours of equal bivariate frequencies in the joint distribution
seemed to form concentric shapes whose outlines were, to Galton, tolerably close to concentric ellipses
differing only in scale.

Galton’s goal was to to predict (or explain) how a characteristic, Y , (e.g., height) of children was related to
that of their parents, X . To this end, he calculated summaries, Ave(Y |X), and, for symmetry, Ave(X |Y ),
and plotted these as lines of means on his diagram. Lo and behold, he had a second visual insight: the lines
of means of (Y |X) and (X |Y ) corresponded approximately to the locus of horizontal and vertical tangents
to the concentric ellipses. To complete the picture, he added lines showing the major and minor axes of the
family of ellipses, with the result shown in Figure 1.

It is not stretching the point too far to say that a large part of modern statistical methods descends from
these visual insights:1 correlation and regression (Pearson, 1896), the bivariate normal distribution, and prin-

1Pearson (1920, p. 37) later stated, “that Galton should have evolved all this from his observations is to my mind one of the most
noteworthy scientific discoveries arising from pure analysis of observations.”
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cipal components (Pearson, 1901, Hotelling, 1933) all trace their ancestry to Galton’s geometrical diagram.2

Basic geometry goes back at least to Euclid, but the properties of the ellipse and other conic sections may
be traced to Apollonius of Perga (ca. 262 BC–ca. 190 BC), a Greek geometer and astronomer who gave the
ellipse, parabola, and hyperbola their modern names. In a work popularly called the Conics (Boyer, 1991),
he described the fundamental properties of ellipses (eccentricity, axes, principles of tangency, normals as
minimum and maximum straight lines to the curve) with remarkable clarity nearly 2000 years before the
development of analytic geometry by Descartes.

Figure 1: Galton’s 1886 diagram, showing the relationship of height of children to the average of their
parents’ height. The diagram is essentially an overlay of a geometrical interpretation on a bivariate grouped
frequency distribution, shown as numbers.

Over time, the ellipse would be called to duty to provide simple explanations of phenomena once thought
complex. Most notable is Kepler’s insight that the Copernican theory of the orbits of planets as concentric
circles (which required notions of epicycles to account for observations) could be brought into alignment
with the detailed observational data from Tycho Brahe and others by an exquisitely simple law: “The orbit
of every planet is an ellipse with the sun at a focus.” One century later, Isaac Newton was able to connect
this elliptical geometry with astrophysics by deriving all three of Kepler’s laws as simpler consequences of
general laws of motion and universal gravitation.

This paper takes up the cause of the ellipse as a geometric form that can provide similar service to
statistical understanding and data analysis. Indeed, it has been doing that since the time of Galton, but these
graphic and geometric contributions have often been incidental and scattered in the literature (e.g., Bryant,
1984, Campbell and Atchley, 1981, Saville and Wood, 1991, Wickens, 1995). We focus here on visual
insights through ellipses in the areas of linear models, multivariate linear models, and mixed-effect models.

2Well, not entirely. Auguste Bravais [1811–1863] (1846), an astronomer and physicist first introduced the mathematical theory
of the bivariate normal distribution as a model for the joint frequency of errors in the geometric position of a point. Bravais
derived the formula for level slices as concentric ellipses and had a rudimentary notion of correlation but did not appreciate this as
a representation of data. Nonetheless, Pearson (1920) acknowledged Bravais’s contribution, and the correlation coefficient is often
called the Bravais-Pearson coefficient in France (Denis, 2001).
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Our goal is to provide as comprehensive a treatment of this topic as possible in a single article together with
online supplements.

The plan of this paper is as follows: Section 2 provides the minimal notation and properties of ellipsoids3

necessary for the remainder of the paper. Due to length restrictions, other useful and important properties
of geometric and statistical ellipsoids have been relegated to the Appendix. Section 3 describes the use of
the data ellipsoid as a visual summary for multivariate data. In Section 4, we apply data ellipsoids and
confidence ellipsoids for parameters in linear models to explain a wide range of phenomena, paradoxes and
fallacies that are clarified by this geometric approach. This view is extended to multivariate linear models in
Section 5, primarily through the use of ellipsoids to portray hypothesis (H) and error (E) covariation in what
we call HE plots. Finally, in Section 6, we discuss a diverse collection of current statistical problems whose
solutions can all be described and visualized in terms of “kissing ellipsoids.”

2 Notation and basic results

There are various representations of an ellipse (or ellipsoid in three or more dimensions), both geometric and
statistical. Some basic notation and properties are described below.

2.1 Geometrical ellipsoids

We refer to the common notion of a bounded ellipsoid (with non-empty interior) in the p-dimensional space
Rp as a proper ellipsoid. An origin-centered proper ellipsoid may be defined by the quadratic form

E := {x : xTCx ≤ 1} , (1)

where equality in Eqn. (1) gives the boundary, x = (x1, x2, . . . , xp)
T is a vector referring to the coordinate

axes andC is a symmetric positive definite p×pmatrix. IfC is only positive semi-definite, then the ellipsoid
will be improper, having the shape of a cylinder with elliptical cross-sections and unbounded in the direction
of the null space of C. To extend the definition to singular (sometimes known as “degenerate”) ellipsoids,
we turn to a definition that is equivalent to Eqn. (1) for proper ellipsoids. Let S denote the unit sphere in Rp,

S := {x : xTx = 1} , (2)

and let
E := AS , (3)

whereA is a non-singular p×pmatrix. Then E is a proper ellipsoid that could be defined using Eqn. (1) with
C =

(
AAT

)−1. We obtain singular ellipsoids by allowingA to be any matrix, not necessarily non-singular
nor even square. A more general representation of ellipsoids based on the singular value decomposition
(SVD) of C is given in Appendix A.1. Some useful properties of geometric ellipsoids are described in
Appendix A.2.

2.2 Statistical ellipsoids

In statistical applications, C will often be the inverse of a covariance matrix (or a sum of squares and cross-
products matrix), and the ellipsoid will be centered at the means of variables, or at estimates of parameters
under some model. Hence, we will also use the following notation:

For a positive definite matrix Σ we use E(µ,Σ) to denote the ellipsoid

E := {x : (x− µ)TΣ−1(x− µ) = 1} . (4)
3As in this paragraph, we generally use the term “ellipsoid” as to refer to “ellipse or ellipsoid” where dimensionality doesn’t

matter, or context is clear.
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When Σ is the covariance matrix of a multivariate vector x with eigenvalues λ1 ≥ λ2 ≥ . . . , the
following properties represent the “size” of the ellipsoid in Rp:

Size Conceptual formula Geometry Function
(a) Generalized variance: det(Σ) =

∏
i λi area, (hyper)volume geometric mean

(b) Average variance: tr(Σ) =
∑

i λi linear sum arithmetic mean
(c) Average precision: 1/tr(Σ−1) = 1/

∑
i(1/λi) harmonic mean

(d) Maximal variance: λ1 maximum dimension supremum

For testing hypotheses for parameters of multivariate linear models, these different senses of “size” corre-
spond (with suitable transformations) to (a) Wilks’s Λ, (b) the Hotelling-Lawley trace, (c) the Pillai trace,
and (d) Roy’s maximum root tests, as we describe below in Section 5.

Note that every non-negative definite matrix W can be factored as W = AAT, and the matrix A can
always be selected so that it is square. A will be non-singular if and only if W is non-singular. A computa-
tional definition of an ellipsoid that can be used for all non-negative definite matrices and that corresponds to
the previous definition in the case of positive-definite matrices is

E(µ,W ) = µ+AS , (5)

where S is a unit sphere of conformable dimension and µ is the centroid of the ellipsoid. One convenient
choice of A is the Choleski square root, W 1/2, as we describe in Appendix A.3. Thus, for some results
below, a convenient notation in terms ofW is

E(µ,W ) = µ⊕
√
W = µ⊕W 1/2 , (6)

where ⊕ emphasizes that the ellipsoid is a scaling and rotation of the unit sphere followed by translation to a
center at µ and

√
W = W 1/2 = A. This representation is not unique, however: µ⊕B = ν ⊕C (i.e., they

generate the same ellipsoid) iff µ = ν and BBT = CCT. From this result, it is readily seen that under a
linear transformation given by a matrix L the image of the ellipse is

L[(E(µ,W ))] = E(Lµ,LWLT) = Lµ⊕
√
LWLT = Lµ⊕L

√
W . (7)

3 The data ellipse and ellipsoid

The data ellipse (Monette, 1990) (or concentration ellipse, Dempster, 1969, Ch. 7) provides a remarkably
simple and effective display for viewing and understanding bivariate marginal relationships in multivariate
data. The data ellipse is typically used to add a visual summary to a scatterplot, indicating the means,
standard deviations, correlation, and slope of the regression line for two variables. Under classical (Gaussian)
assumptions, the data ellipse provides a statistically sufficient visual summary, as we describe below.

It is historically appropriate to illustrate the data ellipse and describe its properties using Galton’s (1886,
Table I) data, from which he drew Figure 1 as a conceptual diagram,4 shown in Figure 2, where the frequency
at each point is represented by a sunflower symbol. We also overlay the 40%, 68% and 95% data ellipses, as
described below.

In Figure 2, the ellipses have the mean vector (x̄, ȳ) as their center; the lengths of arms of the central
cross show the standard deviations of the variables, which correspond to the shadows of the 40% ellipse. In
addition, the correlation coefficient can be visually represented as the fraction of a vertical tangent line from
ȳ to the top of the ellipse that is below the regression line ŷ|x, shown by the arrow labeled ‘r.’ Finally, as
Galton noted, the regression line for ŷ |x (or x̂ | y) can be visually estimated as the locus of the points of
vertical (or horizontal) tangents with the family of concentric ellipses. See Monette (1990, Figs. 5.1–5.2) and
Friendly (1991, p. 183) for illustrations and further discussion of the properties of the data ellipse.

4These data are reproduced in Stigler (1986, Table 8.2, p. 286)
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Figure 2: Sunflower plot of Galton’s data on heights of parents and their children (in.), with 40%, 68% and
95% data ellipses and the regression lines of y on x (black) and x on y (grey). The ratio of the vertical to the
regression line (labeled ‘r’) to the vertical to the top of the ellipse gives a visual estimate of the correlation
(r=0.46, here). Shadows (projections) on the coordinate axes give standard intervals, x̄ ± ksx and ȳ ± ksy,
with k = 1, 1.5, 2.45, having bivariate coverage 40%, 68% and 95%, and univariate coverage 68%, 87% and
98.6% respectively. Plotting children’s height on the abscissa follows Galton.

More formally (Dempster, 1969, Monette, 1990), for a p-dimensional sample, Yn×p, we recognize
the quadratic form in Eqn. (4) as corresponding to the squared Mahalanobis distance, D2

M (y) = (y −
ȳ)T S−1 (y− ȳ), of the point y = (y1, y2, . . . , yp)

T from the centroid of the sample, ȳ = (ȳ1, ȳ2, . . . , ȳp)
T.

Thus, we use a more explicit notation to define the data ellipsoid Ec of size (“radius”) c as the set of all points
y with D2

M (y) less than or equal to c2,

Ec(ȳ,S) := {y : (y − ȳ)T S−1 (y − ȳ) ≤ c2} , (8)

whereS = (n− 1)−1
∑n

i=1(yi−ȳ)(yi−ȳT) is the sample covariance matrix. In the computational notation
of Eqn. (6), the boundary of the data ellipsoid of radius c is thus

Ec(ȳ,S) = ȳ ⊕ cS1/2 . (9)

Many properties of the data ellipsoid hold regardless of the joint distribution of the variables; but if
the variables are multivariate normal, then the data ellipsoid approximates a contour of constant density
in their joint distribution. In this case D2

M (x, y) has a large-sample χ2
p distribution, or, in finite samples,

approximately [p(n− 1)/(n− p)]Fp,n−p).
Hence, in the bivariate case, taking c2 = χ2

2(0.95) = 5.99 ≈ 6 encloses approximately 95% of the data
points under normal theory. Other radii also have useful interpretations:

• In Figure 2, we demonstrate that c2 = χ2
2(0.40) ≈ 1 gives a data ellipse of 40% coverage with the

property that its projection on either axis corresponds to a standard interval, x̄± 1sx and ȳ± 1sy. The
same property of univariate coverage pertains to any linear combination of x and y.
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• By analogy with a univariate sample, a 68% coverage data ellipse with c2 = χ2
2(0.68) = 2.28 gives

a bivariate analog of the standard x̄ ± 1sx and ȳ ± 1sy intervals. The univariate shadows, or those of
any linear combination, then correspond to standard Scheffé intervals taking “fishing” (simultaneous
interfence) in a p = 2-dimensional space into account.
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Figure 3: Scatterplot matrices of Anderson’s iris data: (a) showing data, separate 68% data ellipses, and
regression lines for each species; (b) showing only ellipses and regression lines. Key– Iris setosa: blue, 4;
Iris versicolor: red, +; Iris virginca: green, 2.

As useful as the data ellipse might be for a single, unstructured sample, its value as a visual summary
increases with the complexity of the data. For example, Figure 3 shows scatterplot matrices of all pairwise
plots of the variables from Edgar Anderson’s 1935 classic data on three species of iris flowers found in the
Gaspé Peninsula, later used by Fisher (1936) in his development of discriminant analysis. The data ellipses
show clearly that the means, variances, correlations, and regression slopes differ systematically across the
three iris species in all pairwise plots. We emphasize that the ellipses serve as sufficient visual summaries of
the important statistical properties (first and second moments)5 by removing the data points from the plots in
the version at the right.

4 Linear models: data ellipses and confidence ellipses

Here we consider how ellipses help to visualize relationships among variables in connection with linear
models (regression, ANOVA). We begin with views in the space of the variables (data space) and progress to
related views in the space of model parameters (β space).

4.1 Simple linear regression

Various aspects of the standard data ellipse of radius 1 illuminate many properties of simple linear regression,
as shown in Figure 4. These properties are also useful in more complex contexts.

5We recognize that a normal-theory summary (first and second moments), shown visually or numerically, can be distorted by
multivariate outliers, particularly in smaller samples. In what follows, robust covariance estimates can, in principle, be substituted
for the classical, normal-theory estimates in all cases. To save space, we don’t explore these possibilities further here.
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Figure 4: Annotated standard data ellipse showing standard deviations of x and y, residual standard deviation
(se), slope (b), and correlation (r).

• One-half of the widths of the vertical and horizontal projections (dotted black lines) give the standard
deviations sx and sy respectively.

• Because the perpendicular projection onto any line through the center of the ellipse (x̄, ȳ), corresponds
to some linear combination, mx + ny, the half-width of the corresponding projection of the ellipse
gives the standard deviation of this linear combination.

• With a multivariate normal distribution the line segment through the center of the ellipse shows the
mean and standard deviation of the conditional distribution on that line.

• The standard deviation of the residuals, se can be visualized as the half-width of the vertical (red) line
at x = x̄.

• The vertical distance between the mean of y and the points where the ellipse has vertical tangents is
rsy. (As a fraction of sy, this distance is r = 0.75 in the figure.)

• The (blue) regression line of y on x passes through the points of vertical tangency. Similarly, the
regression of x on y (not shown) passes through the points of horizontal tangency.

4.2 Visualizing a confidence interval for the slope

A visual approximation to a 95% confidence interval for the slope, and thus a visual test of H0 : β = 0 can
be seen in Figure 5. From the formula for a 95% confidence interval, CI.95(β) = b± t0.975

n−2 × SE(b), we can

take t0.975
n−2 ≈ 2 and SE(b) ≈ 1√

n

(
se
sx

)
, leading to

CI.95(β) ≈ b± 2√
n
×
(
se
sx

)
. (10)
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Figure 5: Visual 95% confidence interval for the slope in linear regression. Left: Standard data ellipse
surrounded by the regression parallelogram. Right: Shrinking the diagonal lines by a factor of 2/

√
n, gives

the approximate 95% confidence interval for β.

To show this visually, the left panel of Figure 5 displays the standard data ellipse surrounded by the “re-
gression parallelogram,” formed with the vertical tangent lines and the tangent lines parallel to the regression
line. This corresponds to the conjugate axes of the ellipse induced by the Choleski factor of Syx as shown in
Figure A.3 in Appendix A.3. Simple algebra demonstrates that the diagonal lines through this parallelogram
have slopes of

b± se
sx

So, to obtain a visual estimate of the 95% confidence interval for β (not, we note, the 95% CI for the
regression line), we need only shrink the diagonal lines of the regression parallelogram toward the regression
line by a factor of 2/

√
n, giving the red lines in the right panel of Figure 5. In the data used for this example,

n = 102, so the factor is approximately 0.2 here.6 Now consider the horizontal line through the center of
the data ellipse. If this line is outside the envelope of the confidence lines, as it is in Figure 5, we can reject
H0 : β = 0 via this simple visual approximation.

4.3 Simpson’s paradox, marginal and conditional relationships

Because it provides a visual representation of means, variances, and correlations, the data ellipse is ideally
suited as a tool for illustrating and explicating various phenomena that occur in the analysis of linear models.
One class of simple, but important, examples concerns the difference between the marginal relationship
between variables, ignoring some important factor or covariate, and the conditional relationship, adjusting
(controlling) for that factor or covariate.

Simpson’s paradox (Simpson, 1951) occurs when the marginal and conditional relationships differ in
direction. This may be seen in the plots of Sepal length against Sepal width for the iris data shown in
Figure 6. Ignoring iris species, the marginal, total-sample correlation is slightly negative as seen in panel

6The data are for the rated prestige and average years of education of 102 Canadian occupations circa 1970; see Fox and
Suschnigg (1989).
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Figure 6: Marginal (a), conditional (b), and pooled within-sample (c) relationships of Sepal length and Sepal
width in the iris data. Total-sample data ellipses are shown as black, solid curves; individual-group data and
ellipses are shown with colors and dashed lines

(a). The individual-sample ellipses in panel (b) show that the conditional, within-species correlations are
all positive, with approximately equal regression slopes. The group means have a negative relationship,
accounting for the negative marginal correlation.

A correct analysis of the (conditional) relationship between these variables, controlling or adjusting for
mean differences among species, is based on the pooled within-sample covariance matrix,

Swithin = (N − g)−1
g∑
i=1

ni∑
j=1

(yij − ȳi.)(yij − ȳi.)T = (N − g)−1
g∑
i=1

(ni − 1)Si , (11)

where N =
∑
ni, and the result is shown in panel (c) of Figure 6. In this graph, the data for each species

were first transformed to deviations from the species means on both variables and then translated back to the
grand means.

In a more general context, Swithin appears as the E matrix in a multivariate linear model, adjusting or
controlling for all fitted effects (factors and covariates). For essentially correlational analyses (principal
components, factor analysis, etc.), similar displays can be used to show how multi-sample analyses can
be compromised by substantial group mean differences, and corrected by analysis of the pooled within-
sample covariance matrix, or by including important group variables in the model. Moreover, display of
the the individual within-group data ellipses can show visually how well the assumption of equal covariance
matrices, Σ1 = Σ2 = · · · = Σg, is satisfied in the data, for the two variables displayed.

4.4 Other paradoxes and fallacies

Data ellipses can also be used to visualize and understand other paradoxes and fallacies that occur with
linear models. We consider situations in which there is a principal relationship between variables y and x
of interest, but (as in the preceding subsection) the data are stratified in g samples by a factor (“group”) that
might correspond to different subpopulations (e.g., men and women, age groups), different spatial regions
(e.g., states), different points in time, or some combination of the above.

In some cases, group may be unknown, or may not have been included in the model, so we can only
estimate the marginal association between y and x, giving a slope βmarginal and correlation rmarginal. In other
cases, we may not have individual data, but only aggregate group data, (ȳi, x̄i), i = 1, . . . , g, from which
we can estimate the between-groups (“ecological”) association, with slope βbetween and correlation rbetween.
When all data are available and the model is an ANCOVA model of the form y ∼ x+ group, we can estimate
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a common conditional, within-group slope, βwithin, or, with the model y ∼ x+group+x×group, the separate
within-group slopes, βi.

Figure 7: Paradoxes and fallacies: between (ecological), within (conditional) and whole-sample (marginal)
associations. In both panels, the five groups have the same group means, and Var(x) = 6 and Var(y) = 2
within each group. The within-group correlation is r = +0.87 in all groups in the left panel, and is r = −0.87
in the right panel. The green ellipse shows the average within-group data ellipse.

Figure 7 illustrates these estimates in a simulation of five groups, with ni = 10, means x̄i = 2 i +
U(−0.4, 0.4) and ȳi = x̄i + N (0, 0.52), so that rbetween ≈ 0.95. Here U(a, b) represents the uniform
distribution between a and b, and N (µ, σ2) represents the normal distribution with mean µ and variance σ2.
For simplicity, we have set the within-group covariance matrices to be identical in all groups, with Var(x) =
6, Var(y) = 2 ,and Cov(x, y) = ±3 in the left and right panels, respectively, giving rwithin = ±0.87.

In the left panel, the conditional, within-group slope is smaller than the ecological, between-group slope,
reflecting the smaller within-group than between-group correlation. In general, however, it can be shown that

βmarginal ∈ [βwithin,βbetween] ,

which is also evident in the right panel, where the within-group slope is negative. This result follows from
the fact that the marginal data ellipse for the total sample has a shape that is a convex combination (weighted
average) of the average within-group covariance of (x, y), shown by the green ellipse in Figure 7, and the
covariance of the means (x̄i, ȳi), shown by the red between-group ellipse. In fact, the between and within
data ellipses in Figure 7 are just (a scaling of) the H and E ellipses in an hypothesis-error (HE) plot for the
MANOVA model, (x, y) ∼ group, as will be developed in Section 5. See Figure 8 for a visual demonstration,
using the same data as in Figure 7.

The right panels of Figure 7 and Figure 8 provide a prototypical illustration of Simpson’s paradox, where
βwithin and βmarginal can have opposite signs. Underlying this is a more general marginal fallacy (requiring
only substantively different estimates, but not necessarily different signs), that can occur when some impor-
tant factor or covariate is unmeasured or has been ignored. The fallacy consists of estimating the uncon-
ditional or marginal relationship (βmarginal) and believing that it reflects the conditional relationship, or that
those pesky “other” variables will somehow average out. In practice, the marginal fallacy probably occurs
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Figure 8: Visual demonstration that βmarginal lies between βwithin and βbetween. Each panel shows an HE plot
for the MANOVA model (x, y) ∼ group, in which the within and between ellipses are identical to those in
Figure 7, except for scale.

most often when one views a scatterplot matrix of (y, x1, x2, . . . ) and believes that the slopes of relation-
ships in the separate panels reflect the pairwise conditional relationships with other variables controlled. In a
regression context, the antidote to the marginal fallacy is the added-variable plot (described in Section 4.8),
which displays the conditional relationship between the response and a predictor directly, controlling for all
other predictors.

The right panels of Figure 7 and Figure 8 also illustrate Robinson’s paradox (Robinson, 1950), where
βwithin and βbetween can have opposite signs.7 The more general ecological fallacy (e.g., Lichtman, 1974,
Kramer, 1983) is to draw conclusions from aggregated data, estimating βbetween or rbetween, believing that
they reflect relationships at the individual level, estimating βwithin or rwithin. Perhaps the earliest instance of
this was André-Michel Guerry’s (1833) use of thematic maps of France depicting rates of literacy, crime,
suicide, and other “moral statistics” by department to argue about the relationships of these moral variables
as if they reflected individual behavior.8 As can be seen in Figure 7, the ecological fallacy can often be
resolved by accounting for some confounding variable(s) that vary between groups.

Finally, there are situations where only a subset of the relevant data are available (e.g., one group in
Figure 7), or when the relevant data are available only at the individual level, so that only the conditional
relationship, βwithin can be estimated. The atomistic fallacy (also called the fallacy of composition or the
individualistic fallacy), e.g., Alker (1969), Riley (1963), is the inverse to the ecological fallacy, and consists
of believing that one can draw conclusions about the ecological relationship, βbetween, from the conditional
one.

The atomistic fallacy occurs most often in the context of multilevel models (Diez-Roux, 1998) where it
is desired to draw inferences regarding variability of higher-level units (states, countries) from data collected

7William Robinson (1950) examined the relationship between literacy rate and percentage of foreign-born immigrants in the
U.S. states from the 1930 Census. He showed that there was a surprising positive correlation, rbetween = 0.526 at the state level,
suggesting that foreign birth was associated with greater literacy; at the individual level, the correlation rwithin was−0.118, suggesting
the opposite. An explanation for the paradox was that immigrants tended to settle in regions of greater than average literacy.

8Guerry was certainly aware of the logical problem of ecological inference, at least in general terms (Friendly, 2007a), and
carried out several side-analyses to examine potential confounding variables.
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from lower-level units. For example, imagine that the right panel of Figure 7 depicts the negative relationship
of mortality from heart disease (y) with individual income (x) for individuals within countries. It would be
fallacious to infer that the same slope (or even its sign) applies to a between-country analysis of heart disease
mortality vs. GNP per capita. A positive value of βbetween in this context might result from the fact that,
across countries, higher GNP per capita is associated with less healthy diet (more fast food, red meat, larger
portions), leading to increased heart disease.

4.5 Leverage, influence, and precision
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Figure 9: Leverage-Influence quartet with data ellipses. (a) Original data; (b) adding one low-leverage outlier
(O); (c) adding one “good” leverage point (L); (d) adding one “bad” leverage point (OL). In panels (b)–(d) the
dashed black line is the fitted line for the original data, while the thick solid blue line reflects the regression
including the additional point. The data ellipses show the effect of the additional point on precision.

The topic of leverage and influence in regression is often introduced with graphs similar to Figure 9,
what we call the “leverage-influence quartet.” In these graphs, a bivariate sample of n = 20 points was
first generated with x ∼ N (40, 102) and y ∼ 10 + 0.75x + N (0, 2.52). Then, in each of panels (b)–(d) a
single point was added at the locations shown, to represent, respectively, a low-leverage point with a large
residual,9 a high-leverage point with small residual (a “good” leverage point), and a high-leverage point with
large residual (a “bad” leverage point). The goal is to visualize how leverage [∝ (x − x̄)2] and residual
(y − ŷ?i ) (where ŷ?i is the fitted value for observation i, computed on the basis of an auxiliary regression

9In this context, a residual is “large” when the point in question deviates substantially from the regression line for the rest of the
data—what is sometimes termed a “deleted residual”; see below.
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in which observation i is deleted) combine to produce influential points—those that affect the estimates of
β = (β0, β1)T.

The “standard” version of this graph shows only the fitted regression lines for each panel. So, for the
moment, ignore the data ellipses in the plots. The canonical, first-moment-only, story behind the standard
version is that the points added in panels (b) and (c) are not harmful—the fitted line does not change very
much when these additional points are included. Only the bad leverage point, “OL,” in panel (d) is harmful.
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Figure 10: Data ellipses in the Leverage-Influence quartet. This graph overlays the data ellipses and addi-
tional points from the four panels of Figure 9. It can be seen that only the OL point affects the slope, while
the O and L points affect precision of the estimates in opposite directions.

Adding the data ellipses to each panel immediately makes it clear that there is a second-moment part
to the the story—the effect of unusual points on the precision of our estimates of β. Now, we see directly
that there is a big difference in impact between the low-leverage outlier [panel (b)] and the high-leverage,
small-residual case [panel (c)], even though their effect on coefficient estimates is negligible. In panel (b),
the single outlier inflates the estimate of residual variance (the size of the vertical slice of the data ellipse at
x̄).

To make the added value of the data ellipse more apparent, we overlay the data ellipses from Figure 9
in a single graph, shown in Figure 10, to allow direct comparison. Because you now know that regression
lines can be visually estimated as the locus of vertical tangents, we suppress these lines in the plot to focus
on precision. Here, we can also see why the high-leverage point “L” [added in panel (c) of Figure 9] is called
a “good leverage point.” By increasing the standard deviation of x, it makes the data ellipse somewhat more
elongated, giving increased precision of our estimates of β.

Whether a “good” leverage point is really good depends upon our faith in the regression model (and in
the point), and may be regarded either as increasing the precision of β̂ or providing an illusion of precision.
In either case, the data ellipse for the modified data shows the effect on precision directly.

4.6 Ellipsoids in data space and β space

It is most common to look at data and fitted models in “data space,” where axes correspond to variables,
points represent observations, and fitted models are plotted as lines (or planes) in this space. As we’ve
suggested, data ellipsoids provide informative summaries of relationships in data space. For linear models,
particularly regression models with quantitative predictors, there is another space—“β space”—that provides
deeper views of models and the relationships among them. In β space, the axes pertain to coefficients and
points are models (true, hypothesized, fitted) whose coordinates represent values of parameters.
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In the sense described below, data space and β space are dual to each other. In simple linear regression,
for example, each line in data space corresponds to a point in β space, the set of points on any line in β space
corresponds to a pencil of lines through a given point in data space, and the proposition that every pair of
points defines a line in one space corresponds to the proposition that every two lines intersect in a point in
the other space.

Moreover, ellipsoids in these spaces are dual and inversely related to each other. In data space, joint
confidence intervals for the mean vector or joint prediction regions for the data are given by the ellipsoids
(x̄1, x̄2)T ⊕ c

√
S. In the dual β space, joint confidence regions for the coefficients of a response variable y

on (x1, x2) are given by ellipsoids of the form β̂ ⊕ c
√
S−1. We illustrate these relationships in the example

below.
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Figure 11: Scatterplot matrix, showing the pairwise relationships among Heart (y), Coffee (x1), and Stress
(x2), with linear regression lines and 68% data ellipses for the marginal bivariate relationships.

Figure 11 shows a scatterplot matrix among the variables Heart (y), an index of cardiac damage, Coffee
(x1), a measure of daily coffee consumption, and Stress (x2), a measure of occupational stress, in a contrived
sample of n = 20. For the sake of the example we assume that the main goal is to determine whether or not
coffee is good or bad for your heart, and stress represents one potential confounding variable among others
(age, smoking, etc.) that might be useful to control statistically.

The plot in Figure 11 shows only the marginal relationship between each pair of variables. The marginal
message seems to be that coffee is bad for your heart, stress is bad for your heart and coffee consumption is
also related to occupational stress. Yet, when we fit both variables together, we obtain the following results,
suggesting that coffee is good for you (the coefficient for coffee is now negative, though non-significant).
How can this be?
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Figure 12: Data space and β space representations of Coffee and Stress. Left: Standard (40%) data el-
lipse. Right: Joint 95% confidence ellipse (green) for (βCoffee, βStress), CI ellipse (red) with 95% univariate
shadows.

Estimate (β̂) Std. Error t value Pr(> |t|)
Intercept -7.7943 5.7927 -1.35 0.1961
Coffee -0.4091 0.2918 -1.40 0.1789
Stress 1.1993 0.2244 5.34 0.0001

Figure 12 shows the relationship between the predictors in data space and how this translates into joint and
individual confidence intervals for the coefficients in β space. The left panel is the same as the corresponding
(Coffee, Stress) panel in Figure 11, but with a standard (40%) data ellipse. The right panel shows the joint
95% confidence region and the individual 95% confidence intervals in β space, determined as

β̂ ⊕
√
dF .95

d,ν × se × S
−1/2
X

where d is the number of dimensions for which we want coverage, ν is the residual degrees of freedom for
se, and SX is the covariance matrix of the predictors.

Thus, the green ellipse in Figure 12 is the ellipse of joint 95% coverage, using the factor
√

2F .95
2,ν and

covering the true values of (βStress, βCoffee) in 95% of samples. Moreover:

• Any joint hypothesis (e.g., H0 : βStress = 1, βCoffee = 1) can be tested visually, simply by observing
whether the hypothesized point, (1, 1) here, lies inside or outside the joint confidence ellipse.
• The shadows of this ellipse on the horizontal and vertical axes give Scheffé joint 95% confidence

intervals for the parameters, with protection for simultaneous inference (“fishing”) in a 2-dimensional
space.

• Similarly, using the factor
√
F

1−α/d
1,ν = t

1−α/2d
ν would give an ellipse whose 1D shadows are 1 − α

Bonferroni confidence intervals for d posterior hypotheses.

Visual hypothesis tests and d = 1 confidence intervals for the parameters separately are obtained from the
red ellipse in Figure 12, which is scaled by

√
F .95

1,ν = t.975
ν . We call this the “confidence-interval generating
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ellipse” (or, more compactly, the “confidence-interval ellipse”). The shadows of the confidence-interval
ellipse on the axes (thick red lines) give the corresponding individual 95% confidence intervals, which are
equivalent to the (partial, Type III) t-tests for each coefficient given in the standard multiple regression output
shown above. Thus, controlling for Stress, the confidence interval for the slope for Coffee includes 0, so we
cannot reject the hypothesis that βCoffee = 0 in the multiple regression model, as we saw above in the
numerical output. On the other hand, the interval for the slope for Stress excludes the origin, so we reject the
null hypothesis that βStress = 0, controlling for Coffee consumption.

Finally, consider the relationship between the data ellipse and the confidence ellipse. These have exactly
the same shape, but the confidence ellipse is exactly a 90o rotation and rescaling of the data ellipse. In
directions in data space where the slice of the data ellipse is wide—where we have more information about
the relationship between Coffee and Stress—the projection of the confidence ellipse is narrow, reflecting
greater precision of the estimates of coefficients. Conversely, where slice of the the data ellipse is narrow
(less information), the projection of the confidence ellipse is wide (less precision). See Figure A.2 for the
underlying geometry.
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Figure 13: Joint 95% confidence ellipse for (βCoffee, βStress), together with the 1D marginal confidence in-
terval for βCoffee ignoring Stress (thick blue line), and a visual confidence interval for βStress − βCoffee = 0
(dark cyan).

The virtues of the confidence ellipse for visualizing hypothesis tests and interval estimates do not end
here. Say we wanted to test the hypothesis that Coffee was unrelated to Heart damage in the simple regression
ignoring Stress. The (Heart, Coffee) panel in Figure 11 showed the strong marginal relationship between the
variables. This can be seen in Figure 13 as the oblique projection of the confidence ellipse to the horizontal
axis where βStress = 0. The estimated slope for Coffee in the simple regression is exactly the oblique shadow
of the center of the ellipse (β̂Coffee, β̂Stress) through the point where the ellipse has a horizontal tangent onto
the horizontal axis at βStress = 0. The thick blue line in this figure shows the confidence interval for the slope
for Coffee in the simple regression model. The confidence interval doesn’t cover the origin, so we reject

16



H0 : βCoffee = 0 in the simple regression model. The oblique shadow of the red 95% confidence-interval
ellipse onto the horizontal axis is slightly smaller. How much smaller is a function of the t-value of the
coefficient for Stress.

We can go further. As we noted earlier, all linear combinations of variables or parameters in data or
models correspond graphically to projections (shadows) onto certain sub-spaces. Let’s assume that Coffee
and Stress were measured on the same scales so it makes sense to ask if they have equal impacts on Heart
disease in the joint model that includes them both. Figure 13 also shows an auxiliary axis through the origin
with slope = −1 corresponding to values of βStress − βCoffee. The orthogonal projection of the coefficient
vector on this axis is the point estimate of β̂Stress − β̂Coffee and the shadow of the red ellipse along this axis
is the 95% confidence interval for the difference in slopes. This interval excludes 0, so we would reject the
hypothesis that Coffee and Stress have equal coefficients.

4.7 Measurement error

In classical linear models, the predictors are often considered to be fixed variables, or, if random, to be mea-
sured without error and independent of the regression errors; either condition, along with the assumption of
linearity, guarantees unbiasedness of the standard OLS estimators. In practice, of course, predictor variables
are often also observed indicators, subject to error, a fact that is recognized in errors-in-variables regression
models and in more general structural equation models but often ignored otherwise. Ellipsoids in data space
and β space are well suited to showing the effect of measurement error in predictors on OLS estimates.

Figure 14: Effects of measurement error in Stress on the marginal relationship between Heart disease and
Stress. Each panel starts with the observed data (δ = 0), then adds random normal error,N (0, δ×SDStress),
with δ = {0.75, 1.0, 1.5}, to the value of Stress. Increasing measurement error biases the slope for Stress
toward 0. Left: 50% data ellipses; right: 50% confidence ellipses for (β0, βStress).

The statistical facts are well known, though perhaps counter-intuitive in certain details: measurement
error in a predictor biases regression coefficients, while error in the measurement in y increases the standard
errors of the regression coefficients but does not introduce bias.

In the top row of Figure 11, adding measurement error to the Heart disease variable would expand the
data ellipses vertically, but (apart from random variation) leaves the slopes of the regression lines unchanged.
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Measurement error in a predictor variable, however, biases the corresponding estimated coefficient toward
zero (sometimes called regression attenuation) as well as increasing standard errors.

Figure 14 demonstrates this effect for the marginal relation between Heart disease and Stress, with data
ellipses in data space and the corresponding confidence ellipses in β space. Each panel starts with the
observed data (the darkest ellipse, marked 0), then adds random normal error, N (0, δ × SDStress), with
δ = {0.75, 1.0, 1.5}, to the value of Stress, while keeping the mean of Stress the same. All of the data
ellipses have the same vertical shadows (SDHeart), while the horizontal shadows increase with δ, driving the
slope for Stress toward 0. In β space, it can be seen that the estimated coefficients, (β0, βStress) vary along a
line and approach βStress = 0 for δ sufficiently large. The vertical shadows of ellipses for (β0, βStress) along
the βStress axis also demonstrate the effects of measurement error on the standard error of βStress.

Perhaps less well-known, but both more surprising and interesting, is the effect that measurement error
in one variable, x1, has on the estimate of the coefficient for an other variable, x2, in a multiple regression
model. Figure 15 shows the confidence ellipses for (βCoffee, βStress) in the multiple regression predicting
Heart disease, adding random normal error N (0, δ × SDStress), with δ = {0, 0.2, 0.4, 0.8}, to the value of
Stress alone. As can be plainly seen, while this measurement error in Stress attenuates its coefficient, it also
has the effect of biasing the coefficient for Coffee toward that in the marginal regression of Heart disease on
Coffee alone.

Figure 15: Biasing effect of measurement error in one variable (Stress) on on the coefficient of another vari-
able (Coffee) in a multiple regression. The coefficient for Coffee is driven towards its value in the marginal
model using Coffee alone, as measurement error in Stress makes it less informative in the joint model.

4.8 Ellipsoids in added-variable plots

In contrast to the marginal, bivariate views of the relationships of a response to several predictors (e.g., such
as shown in the top row of the scatterplot matrix in Figure 11), added-variable plots (aka partial regression
plots) show the partial relationship between the response and each predictor, where the effects of all other
predictors have been controlled or adjusted for. Again we find that such plots have remarkable geometric
properties, particularly when supplemented by ellipsoids.

Formally, we express the fitted standard linear model in vector form as ŷ ≡ ŷ |X = β̂01 + β̂1x1 +
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Figure 16: Added variable plots for Stress and Coffee in the multiple regression predicting Heart disease.
Each panel also shows the 50% conditional data ellipse for residuals (x?k,y

?), shaded red.

β̂2x2 + · · · + β̂pxp, with model matrix X = [1,x1, . . .xp]. Let X[−k] be the model matrix omitting the
column for variable k. Then algebraically, the added variable plot for variable k is the scatterplot of the
residuals (x?k,y

?) from two auxillary regressions,10 fitting y and xk fromX[−k],

y? ≡ y | others = y − ŷ |X[−k]

x?k ≡ xk | others = xk − x̂k |X[−k] .

Geometrically, in the space of the observations,11 the fitted vector ŷ is the orthogonal projection of y
onto the subspace spanned by X . Then y? and x?k are the projections onto the orthogonal complement of
the subspace spanned byX[−k], so the simple regression of y? on x?k has slope β̂k in the full model, and the
residuals from the line ŷ? = β̂kx

?
k in this plot are identically the residuals from the overall regression of y

onX .
Another way to describe the added-variable plot (AVP) for xk is as a 2D projection of the space of (y,X),

viewed in a plane projecting the data along the intersection of two hyperplanes: the plane of the regression
of y on all of X , and the plane of regression of y on X[−k]. A third plane, that of the regression of xk on
X[−k] also intersects in this space, and defines the horizontal axis in the AVP. This is illustrated in Figure 17,
showing one view defined by the intersection of the three planes in the right panel.12

Figure 16 shows added-variable plots for Stress and Coffee in the multiple regression predicting Heart
disease, supplemented by data ellipses for the residuals (x?k,y

?). With reference to the properties of data
ellipses in marginal scatterplots (see Figure 4), the following visual properties (among others) are useful in
this discussion. These results follow simply from translating “marginal” into “conditional” (or “partial”) in
the present context. The essential idea is that the data ellipse of the AVP for (x?k, y

?) is to the estimate of a
coefficient in a multiple regression as the data ellipse of (x, y) is to simple regression. Thus:

10These quantities can all be computed (Velleman and Welsh, 1981) from the results of a single regression for the full model.
11The “space of the observations” is yet a third, n-dimensional, space, in which the observations are the axes and each variable is

represented as a point (or vector). See, e.g., Fox (2008, Ch. 10).
12Animated 3D movies of this plot are included among the supplementary materials for this paper.
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Figure 17: 3D views of the relationship between Heart, Coffee and Stress, showing the three regression
planes for the marginal models, Heart ∼ Coffee (green), Heart ∼ Stress (pink), and the joint model, Heart
∼ Coffee + Stress (light blue). Left: a standard view; right: a view showing all three regression planes on
edge. The ellipses in the side panels are 2D projections of the standard conditional (red) and marginal (blue)
ellipsoids, as shown in Figure 18.

1. The simple regression least squares fit of y? on x?k has slope β̂k, the partial slope for xk in the full
model (and intercept = 0).

2. The residuals, (y? − ŷ?), shown in this plot are the residuals for y in the full model.
3. The correlation between x?k and y?, seen in the shape of the data ellipse for these variables, is the

partial correlation between y and xk with the other predictors inX[−k] partialled out.
4. The horizontal half-width of the AVP data ellipse is proportional to the conditional standard deviation

of xk remaining after all other predictors have been accounted for, providing a visual interpretation of
variance inflation due to collinear predictors, as we describe below.

5. The vertical half-width of the data ellipse is proportional to the residual standard deviation se in the
multiple regression.

6. The squared horizontal positions, (x?k)
2, in the plot give the partial contributions to leverage on the

coefficient β̂k of xk.
7. Items (3) and (7) imply that that the AVP for xk shows the partial influence of individual observations

on the coefficient β̂k, in the same way as in Figure 9 for marginal models. These influence statistics
are often shown numerically as DFBETA statistics (Belsley et al., 1980).

8. The last three items imply that the collection of added-variable plots for y andX provide an easy way
to visualize the leverage and influence that individual observations—and indeed the joint influence of
subsets of observations—have on the estimation of each coefficient in a given model.

Elliptical insight also permits us to go further, to depict the relationship between conditional and marginal
views directly. Figure 18 shows the same added-variable plots for Heart disease on Stress and Coffee as in
Figure 16 (with a zoomed-out scaling), but here we also overlay the marginal data ellipses for (xk, y), and
and marginal regression lines for Stress and Coffee separately. In 3D data space, these are the shadows
(projections) of the data ellipsoid onto the planes defined by the partial variables. In 2D AVP space, they are
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Figure 18: Added-variable + marginal plots for Stress and Coffee in the multiple regression predicting Heart
disease. Each panel shows the 50% conditional data ellipse for x?k, y

? residuals (shaded, red) as well as the
marginal 50% data ellipse for the (xk, y) variables, shifted to the origin. Arrows connect the mean-centered
marginal points (open circles) to the residual points (filled circles).

just the marginal data ellipses translated to the origin.
The most obvious feature of Figure 18 is that the AVP for Coffee has a negative slope in the conditional

plot (suggesting that controlling for Stress, coffee consumption is good for your heart), while in the marginal
plot increasing coffee seems to be bad for your heart. This serves as a regression example of Simpson’s
paradox, which we considered earlier.

Less obvious is the fact that the marginal and AVP ellipses are easily visualized as a shadow versus a
slice of the full data ellipsoid. Thus, the AVP ellipse must be contained in the marginal ellipse, as we can see
in Figure 18. If there are only two xs, then the AVP ellipse must touch the marginal ellipse at two points. The
shrinkage of the intersection of the AVP ellipse with the y axis represents improvement in fit due to other xs.

More importantly, the shrinkage of the width (projected onto a horizontal axis) represents the square
root of the variance inflation factor (VIF), which can be shown to be the ratio of the horizontal width of the
marginal ellipse of (xk, y), with standard deviation s(xk) to the width of the conditional ellipse of (x?k, y

?),
with standard deviation s(xk | others). This geometry implies interesting constraints among the three quanti-
ties: improvement in fit, VIF, and change from the marginal to conditional slope.

Finally, Figure 18 also shows how conditioning on other predictors works for individual observations,
where each point of (x?k,y

?) is the image of (xk,y) along the path of the marginal regression. This reminds
us that the AVP is a 2D projection of the full space, where the regression plane of y on X[−k] becomes the
vertical axis and the regression plane of xk onX[−k] becomes the horizontal axis.

5 Multivariate linear models: HE plots

Multivariate linear models (MvLMs) have a special affinity with ellipsoids and elliptical geometry, as de-
scribed in this section. To set the stage and establish notation, we consider the MvLM (e.g., Timm (1975))
given by the equation Y = XB + U , where Y is an n × p matrix of responses in which each column
represents a distinct response variable; X is the n × q model matrix of full column rank for the regressors;
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B is the q × p matrix of regression coefficients or model parameters; and U is the n × p matrix of errors,
with vec(U) ∼ Np(0, In ⊗Σ), where ⊗ is the Kronecker product.

A convenient feature of the MvLM for general multivariate responses is that all tests of linear hypotheses
(for null effects) can be represented in the form of a general linear test,

H0 : L
(h×q)

B
(q×p)

= 0
(h×p)

, (12)

where L is a rank h ≤ q matrix of constants whose rows specify h linear combinations or contrasts of the
parameters to be tested simultaneously by a multivariate test.

For any such hypothesis of the form given in Eqn. (12), the analogs of the univariate sums of squares for
hypothesis (SSH ) and error (SSE) are the p× p sum of squares and cross-products (SSP) matrices given by:

H ≡ SSPH = (LB̂)T [L(XTX)−LT]−1 (LB̂) , (13)

and
E ≡ SSPE = Y TY − B̂T(XTX)B̂ = ÛTÛ , (14)

where Û = Y −XB̂ is the matrix of residuals. Multivariate test statistics (Wilks’s Λ, Pillai trace, Hotelling-
Lawley trace, Roy’s maximum root) for testing Eqn. (12) are based on the s = min(p, h) non-zero latent
roots λ1 > λ2 > · · · > λs of the matrix H relative to the matrix E, that is, the values of λ for which
det(H − λE) = 0, or equivalently the latent roots ρi for which det[H − ρ(H + E)] = 0. The details
are shown in Table 1. These measures attempt to capture how “large” H is, relative to E in s dimensions,
and correspond to various “means” as we described earlier. All of these statistics have transformations to
F statistics giving either exact or approximate null-hypothesis F distributions. The corresponding latent
vectors provide a set of s orthogonal linear combinations of the responses that produce maximal univariate
F statistics for the hypothesis in Eqn. (12); we refer to these as the canonical discriminant dimensions.

Table 1: Multivariate test statistics as functions of the eigenvalues λi solving det(H −λE) = 0 or eigenval-
ues ρi solving det[H − ρ(H +E)] = 0.

Criterion Formula “mean” of ρ Partial η2

Wilks’s Λ Λ =
∏s
i

1
1+λi

=
∏s
i (1− ρi) geometric η2 = 1− Λ1/s

Pillai trace V =
∑s

i
λi

1+λi
=
∑s

i ρi arithmetic η2 = V
s

Hotelling-Lawley trace H =
∑s

i λi =
∑s

i
ρi

1−ρi harmonic η2 = H
H+s

Roy maximum root R = λ1 = ρ1
1−ρ1 supremum η2 = λ1

1+λ1
= ρ1

Beyond the informal characterization of the four classical tests of hypotheses for multivariate linear mod-
els given in Table 1, there is an interesting geometrical representation that helps one to appreciate their relative
power for various alternatives. This can be illustrated most simply in terms of the canonical representation,
(H +E)?, of the ellipsoid generated by (H +E) relative to E, as shown in Figure 19 for p = 2.

With λi as described above, the eigenvalues and squared radii of (H + E)? are λi + 1, so the lengths
of the major and minor axes are a =

√
λ1 + 1 and b =

√
λ2 + 1 respectively. The diagonal of the triangle

comprising the segments a, b (labelled c) has length c =
√
a2 + b2. Finally, a line segment from the origin

dropped perpendicularly to the diagonal joining the two ellipsoid axes is labelled d.
In these terms, Wilks’s test, based on

∏
(1 + λi)

−1 is equivalent to a test based on a × b which is
proportional to the area of the framing rectangle, shown shaded in Figure 19. The Hotelling-Lawley trace
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Figure 19: Geometry of the classical test statistics used in tests of hypotheses in multivariate linear models.
The figure shows the representation of the ellipsoid generated by (H +E) relative to E in canonical space
where E? = I and (H +E)? is the corresponding transformation of (H +E).

test, based on
∑
λi is equivalent to a test based on c =

√∑
λi + p. Finally, the Pillai Trace test, based

on
∑
λi(1 + λi)

−1 can be shown to be equal to 2 − d−2 for p = 2. Thus it is strictly monotone in d and
equivalent to a test based directly on d.

The geometry makes it easy to see that if there is a large discrepancy between λ1 and λ2, Roy’s test
depends only on λ1 while the Pillai test depends more on λ2. Wilks’s Λ and the Hotelling-Lawley trace
criterion are also functional averages of λ1 and λ2, with the former being penalized when λ2 is small. In
practice, when s ≤ 2, all four test criteria are equivalent, in that their standard transformations to F statistics
are exact and give rise to identical p-values.

5.1 Hypothesis-Error (HE) plots

The essential idea behind HE plots is that any multivariate hypothesis test, Eqn. (12), can be represented
visually by ellipses (or ellipsoids beyond 2D) that express the size of covariation against a multivariate null
hypothesis (H) relative to error covariation (E). The multivariate tests, based on the latent roots of HE−1,
are thus translated directly to the sizes of the H ellipses for various hypotheses, relative to the size of the E
ellipse. Moreover, the shape and orientation of these ellipses show something more—the directions (linear
combinations of the responses) that lead to various effect sizes and significance.

Figure 20 illustrates this idea for two variables from the iris dataset. Panel (a) shows the data ellipses for
sepal length and petal length, equivalent to the corresponding plot in Figure 3. Panel (b) shows the HE plot
for these variables from the one-way MANOVA model yij = µi + uij testing equal mean vectors across
species, H0 : µ1 = µ2 = µ3. Let Ŷ be the n × p matrix of fitted values for this model, i.e., Ŷ = {ȳi·}.
ThenH = Ŷ TŶ −nȳȳT (where ȳ is the grand-mean vector), and theH ellipse in the figure is then just the
2D projection of the data ellipsoid of the fitted values, scaled as described below. Similarly, Û = Y − Ŷ ,
andE = ÛTÛ = (N −g)Spooled, so theE ellipse is the 2D projection of the data ellipsoid of the residuals.
Visually, the E ellipsoid corresponds to shifting the separate within-group data ellipsoids to the centroid, as
illustrated above in Figure 6(c).
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Figure 20: (a) Data ellipses and (b) corresponding HE plot for sepal length and petal length in the iris dataset.
TheH ellipse is the data ellipse of the fitted values defined by the group means, ȳi· TheE ellipse is the data
ellipse of the residuals, (yij − ȳi·). Using evidence (“significance”) scaling of the H ellipse, the plot has
the property that the multivariate test for a given hypothesis is significant by Roy’s largest-root test iff theH
ellipse protrudes anywhere outside the E ellipse.

In HE plots, the E matrix is first scaled to a covariance matrix E/dfe, dividing by the error degrees of
freedom, dfe. The ellipsoid drawn is translated to the centroid y of the variables, giving y ⊕ cE1/2/dfe.
This scaling and translation also allows the means for levels of the factors to be displayed in the same space,
facilitating interpretation. In what follows, we show these as “standard” bivariate ellipses of 68% coverage,
using c =

√
2F .68

2,dfe
, except where noted otherwise.

The ellipse for H reflects the size and orientation of covariation against the null hypothesis. In relation
to the E ellipse, the H ellipse can be scaled to show either the effect size or strength of evidence against H0

(significance).
For effect-size scaling, each H is divided by dfe to conform to E. The resulting ellipse is then exactly

the data ellipse of the fitted values, and corresponds visually to a multivariate analog of univariate effect-size
measures (e.g., (ȳ1 − ȳ2)/se where se is the within-group standard deviation).

For significance scaling, it turns out to be most visually convenient to use Roy’s largest-root statistic as
the test criterion. In this case, the H ellipse is scaled to H/(λαdfe) where λα is the critical value of Roy’s
statistic.13 Using this scaling gives a simple visual test of H0: Roy’s test rejects H0 at a given α level iff
the corresponding α-level H ellipse protrudes anywhere outside the E ellipse.14 Moreover, the directions
in which the hypothesis ellipse exceed the error ellipse are informative about the responses and their linear
combinations that depart significantly from H0. Thus, in Figure 20(b), the variation of the means of the iris
species shown for these two variables appears to be largely one-dimensional, corresponding to a weighted
sum (or average) of petal length and sepal length, perhaps a measure of overall size.

13The F test based on Roy’s largest root uses the approximation F = (df2/df1)λ1 with degrees of freedom df1, df2, where df1 =
max(dfh, dfe) and df2 = dfe−df1+dfh. Inverting the F statistic gives the critical value for an α-level test: λα = (df1/df2)F 1−α

df1,df2
14Other multivariate tests (Wilks’s Λ, Hotelling-Lawley trace, Pillai trace) also have geometric interpretations in HE plots (e.g.,

Wilks’s Λ is the ratio of areas (volumes) of theH andE ellipses (ellipsoids); Hotelling-Lawley trace is based on the sum of the λi),
but these statistics do not provide such simple visual comparisons. All HE plots shown in this paper use significance scaling, based
on Roy’s test.
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5.2 Linear hypotheses: geometries of contrasts and sums of effects

Just as in univariate ANOVA designs, important overall effects (dfh > 1) in MANOVA may be usefully
explored and interpreted by the use of contrasts among the levels of the factors involved. In the general linear
hypothesis test of Eqn. (12), contrasts are easily specified as one or more (hi × q) L matrices, L1,L2, . . . ,
each of whose rows sums to zero.

As an important special case, for an overall effect with dfh degrees of freedom (and balanced sample
sizes), a set of dfh pairwise orthogonal (1 × q) L matrices (LT

i Lj = 0 for i 6= j) gives rise to a set of
dfh rank-one Hi matrices that additively decompose the overall hypothesis SSCP matrix (by a multivariate
analog of Pythagoras’ Theorem),

H = H1 +H2 + · · ·+Hdfh ,

exactly as the univariate SSH may be decomposed in an ANOVA. Each of these rank-one Hi matrices will
plot as a vector in an HE plot, and their collection provides a visual summary of the overall test, as partitioned
by these orthogonal contrasts. Even more generally, where the subhypothesis matrices may be of rank > 1,
the subhypotheses will have hypothesis ellipses of dimension rank(Hi) that are conjugate with respect to the
hypothesis ellipse for the joint hypothesis, provided that the estimators for the subhypotheses are statistically
independent.
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Figure 21: H and E matrices for sepal width and sepal length in the iris data, together with H matrices for
testing two orthogonal contrasts in the species effect.

To illustrate, we show in Figure 21 an HE plot for the sepal width and sepal length variables in the iris
data, corresponding to panel (1:2) in Figure 3. Overlayed on this plot are the one-dfH matrices obtained from
testing two orthogonal contrasts among the iris species: setosa vs. the average of versicolor and virginica
(labeled “S:VV”), and versicolor vs. virginica (“V:V”), for which the contrast matrices are

L1 = ( −2 1 1 )

L2 = ( 0 1 −1 ) ,
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where the species (columns) are taken in alphabetical order. In this view, the joint hypothesis testing equality
of the species means has its major axis in data space largely in the direction of sepal length. The 1D degener-
ate “ellipse” for H1, representing the contrast of setosa with the average of the other two species, is closely
aligned with this axis. The “ellipse” forH2 has a relatively larger component aligned with sepal width.

5.3 Canonical projections: ellipses in data space and canonical space

HE plots show the covariation leading toward rejection of a hypothesis relative to error covariation for two
variables in data space. To visualize these relationships for more than two response variables, we can use
the obvious generalization of a scatterplot matrix showing the 2D projections of the H and E ellipsoids for
all pairs of variables. Alternatively, a transformation to canonical space permits visualization of all response
variables in the reduced-rank 2D (or 3D) space in whichH covariation is maximal.
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Figure 22: Canonical HE plot for the Iris data. In this plot, theH ellipse is shown using effect-size scaling to
preserve resolution, and the variable vectors have been multiplied by a constant to approximately fill the plot
space. The projections of the variable vectors on the coordinate axes show the correlations of the variables
with the canonical dimensions.

In the MANOVA context, the analysis is called canonical discriminant analysis (CDA), where the em-
phasis is on dimension-reduction rather than hypothesis testing. For a one-way design with g groups and
p-variate observations i in group j, yij , CDA finds a set of s = min(p, g − 1) linear combinations, z1 =
cT1 y, z2 = cT2 y, . . . , zs = cTs y, so that: (a) all zk are mutually uncorrelated; (b) the vector of weights
c1 maximizes the univariate F statistic for the linear combination z1; (c) each successive vector of weights,
ck, k = 2, . . . , s, maximizes the univariate F -statistic for zk, subject to being uncorrelated with all other
linear combinations.
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The canonical projection of Y to canonical scores Z is given by

Yn×p 7→ Zn×s = Y E−1V /dfe , (15)

where V is the matrix whose columns are the eigenvectors of HE−1 associated with the ordered non-zero
eigenvalues, λi, i = 1, . . . , s. A MANOVA of all s linear combinations is statistically equivalent to that of
the raw data. The λi are proportional to the fractions of between-group variation expressed by these linear
combinations. Hence, to the extent that the first one or two eigenvalues are relatively large, a two-dimensional
display will capture the bulk of between-group differences. The 2D canonical discriminant HE plot is then
simply an HE plot of the scores z1 and z2 on the first two canonical dimensions. (If s ≥ 3, an analogous 3D
version may also be obtained.)

Because the z scores are all mutually uncorrelated, the H and E matrices will always have their axes
aligned with the canonical dimensions. When, as here, the z scores are standardized, the E ellipse will be
circular, assuming that the axes in the plot are equated so that a unit data length has the same physical length
on both axes.

Moreover, we can show the contributions of the original variables to discrimination as follows: Let P
be the p × s matrix of the correlations of each column of Y with each column of Z, often called canonical
structure coefficients. Then, for variable j, a vector from the origin to the point whose coordinates p·j are
given in row j of P has projections on the canonical axes equal to these structure coefficients and squared
length equal to the sum squares of these correlations.

Figure 22 shows the canonical HE plot for the iris data, the view in canonical space corresponding to
Figure 21 in data space for two of the variables (omitting the contrast vectors). Note that for g = 3 groups,
dfh = 2, so s = 2 and the representation in 2D is exact. This provides a very simple interpretation: Nearly
all (99.1%) of the variation in species means can be accounted for by the first canonical dimension, which
is seen to be aligned with three of the four variables, most strongly with petal length. The second canonical
dimension is mostly related to variation in the means on sepal width, and this variable is negatively correlated
with the other three.

Finally, imagine a 4D version of the HE plot of Figure 21 in data space, showing the four-dimensional
ellipsoids for H and E. Add to this plot unit vectors corresponding to the coordinate axes, scaled to some
convenient constant length. Some rotation would show that the H ellipsoid is really only two-dimensional,
while E is 4D. Applying the transformation given by E−1 as in Figure A.4 and projecting into the 2D sub-
space of the non-zero dimensions of H would give a view equivalent to the canonical HE plot in Figure 22.
The variable vectors in this plot are just the shadows of the original coordinate axes.

6 Kissing ellipsoids

In this section, we consider some circumstances in which there is a data stratification factor or there are two
(or more) principles or procedures for deriving estimates of a parameter vector β of a linear model, each with
its associated estimated covariance matrix, e.g., β̂A with covariance matrix V̂ar(β̂A), and β̂B with covariance
matrix V̂ar(β̂B). The simplest motivating example is two-group discriminant analysis (Section 6.2). In data
space, solutions to this statistical problem can be described geometrically in terms of the property that the data
ellipsoids around the group centroids will just “kiss” (or osculate) along a path between the two centroids.
We call this path the locus of osculation, whose properties are described in Section 6.1.

Perhaps more interesting and more productive is that the same geometric ideas apply equally well in
parameter (β) space. Consider, for example, method A to be OLS estimation and several alternatives for
method B, such as ridge regression (Section 6.3) or Bayesian estimation (Section 6.4). The remarkable fact
is that the geometry of such kissing ellipsoids provides a clear visual interpretation of these cases and others,
whenever we consider a convex combination of information from two sources. In all cases, the locus of
osculation is interpretable in terms of the statistical goal to be achived, taking precision into account.
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6.1 Locus of osculation

The problems mentioned above all have a similar and simple physical interpretation: Imagine two stones
dropped into a pond at locations with coordinates m1 and m2. The waves emanating from the centers
form concentric circles which osculate along the line from m1 to m2. Now imagine a world with ellipse-
generating stones, where instead of circles, the waves form concentric ellipses determined by the shape
matrices A1 and A2. The locus of osculation of these ellipses will be the set of points where the tangents
to the two ellipses are parallel (or equivalently, that their normals are parallel). An example is shown in
Figure 23, usingm1 = (−2, 2),m2 = (2, 6), and

A1 =

(
1.0 0.5
0.5 1.5

)
, A2 =

(
1.5 −0.3
−0.3 1.0

)
, (16)

where we have found points of osculation by trial and error.

Figure 23: Locus of osculation for two families of ellipsoidal level curves, with centers atm1 = (−2, 2) and
m2 = (2, 6), and shape matrices A1 and A2 given in Eqn. (16). The left ellipsoids (red) have radii=1, 2, 3.
The right ellipsoids have radii=1, 1.74, 3.1, where the last two values were chosen to make them kiss at the
points marked with squares. The black curve is an approximation to the path of osculation, using a spline
function connectingm1 tom2 via the marked points of osculation.

An exact general solution can be described as follows: Let the ellipses for i = 1, 2 be given by

fi(x) = (x−mi)
TAi(x−mi){

x : fi(x) = c2
}

= mi ⊕
√
Ai

and denote their gradient-vector functions as

∇f(x1, x2) =

(
∂f

∂x1
,
∂f

∂x2

)
(17)
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so that

∇f1(x) = 2A1(x−m1)

∇f2(x) = 2A2(x−m2) .

Then, the points where ∇f1 and ∇f2 are parallel can be expressed in terms of the condition that their
vector cross product, u~ v = u1v2 − u2v1 = vTCu = 0, where C is the skew-symmetric matrix

C =

(
0 1
−1 0

)
satisfying C = −CT. Thus, the locus of osculation is the set O, given by O = {x ∈ R2 | ∇f1(x) ~
∇f2(x) = 0}, which implies

(x−m2)TAT
2 C A1 (x−m1) = 0 . (18)

Eqn. (18) is a bilinear form in x, with central matrix AT
2 C A1, implying that O is a conic section in the

general case. Note that when x = m1 or x = m2, Eqn. (18) is necessarily zero, so the locus of osculation
always passes throughm1 andm2.

A visual demonstration of the theory above is shown in Figure 24 (left), which overlays the ellipses in
Figure 23 with contour lines (hyperbolae, here) of the vector cross-product function contained in Eqn. (18).
When the contours of f1 and f2 have the same shape (A1 = cA2), as in the right panel of Figure 24, Eqn. (18)
reduces to a line, in accord with the stones-in-pond interpretation. The above can be readily extended to
ellipsoids in higher dimension, where the development is more easily understood in terms of normals to the
surfaces.
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Figure 24: Locus of osculation for two families of ellipsoidal level curves, showing contour lines of the vector
cross-product function Eqn. (18). The thick black curve shows the complete locus of osculation for these two
families of ellipses, where the cross-product function equals 0. Left: with parameters as in Figure 23 and
Eqn. (16). Right: with the same shape matrixA1 for both ellipsoids.
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6.2 Discriminant analysis

The right panel of Figure 24, considered in data space, provides a visual interpretation of the classical,
normal theory two-group discriminant analysis problem under the assumption of equal population covariance
matrices, Σ1 = Σ2. Here, we imagine that the plot shows the contours of data ellipsoids for two groups, with
mean vectorsm1 andm2, and common covariance matrixA = Spooled = [(n1−1)S1 + (n2−1)S2]/(n1 +
n2 − 2).

The discriminant axis is the locus of osculation between the two families of ellipsoids. The goal in
discriminant analysis, however, is to determine a classification rule based on a linear function, D(x) = bTx,
such that an observation x will be classified as belonging to Group 1 if D(x) ≤ d, and to Group 2 otherwise.
In linear discriminant analysis, the discriminant function coefficients are given by

b = S−1
pooled(m1 −m2) .

All boundaries of the classification regions determined by d will then be the tangent lines (planes) to the
ellipsoids at points of osculation. The location of the classification region along the line from m1 to m2

typically takes into account both the prior probabilities of membership in Groups 1 and 2, and the costs of
misclassification. Similarly, the left panel of Figure 24 is a visual representation of the same problem when
Σ1 6= Σ2, giving rise to quadratic classification boundaries.

6.3 Ridge regression

In the univariate linear model, y = Xβ + ε, high multiple correlations among the predictors in X lead to
problems of collinearity—unstable OLS estimates of the parameters in β with inflated standard errors and
coefficients that tend to be too large in absolute value. Although collinearity is essentially a data problem
(Fox, 2008), one popular (if questionable) approach is ridge regression, which shrinks the estimates toward
0 (introducing bias) in an effort to reduce sampling variance.

Suppose the predictors and response have been centered at their means and the unit vector is omitted
from X . Further, rescale the columns of X to unit length, so that XTX is a correlation matrix. Then, the
OLS estimates are given by

β̂OLS = (XTX)−1XTy . (19)

Ridge regression replaces the standard residual sum of squares criterion with a penalized form,

RSS(k) = (y −Xβ)T(y −Xβ) + kβTβ (k ≥ 0) , (20)

whose solution is easily seen to be

β̂RR
k = (XTX + kI)−1XTy (21)

= Gβ̂OLS ,

where G =
[
I + k(XTX)−1

]−1. Thus, as the “ridge constant” k increases, G decreases, driving β̂RR
k

toward 0 (Hoerl and Kennard, 1970a,b). The addition of a positive constant k to the diagonal of XTX
drives det(XTX + kI) away from zero even if det(XTX) ≈ 0.

The penalized Lagrangian formulation in Eqn. (20) has an equivalent form as a constrained minimization
problem,

β̂RR = argmin
β

(y −Xβ)T(y −Xβ) subject to βTβ ≤ t(k) , (22)

which makes the size constraint on the parameters explicit, with t(k) an inverse function of k. This form
provides a visual interpretation of ridge regression, as shown in Figure 25. Depicted in the figure are the
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Figure 25: Elliptical contours of the OLS residual sum of squares for two parameters in a regression, together
with circular contours for the constraint function, β2

1 + β2
2 ≤ t. Ridge regression finds the point βRR where

the OLS contours just kiss the constraint region.

elliptical contours of the OLS regression sum of squares, RSS(0) around β̂OLS. Each ellipsoid marks the
point closest to the origin, i.e., with minβTβ. It is easily seen that the ridge regression solution is the point
where the elliptical contours just kiss the constraint contour.

Another insightful interpretation of ridge regression (Marquardt, 1970) sees the ridge estimator as equiv-
alent to an OLS estimator, when the actual data in X are supplemented by some number of fictitious obser-
vations, n(k), with uncorrelated predictors, giving rise to an orthogonal X0

k matrix, and where y = 0 for all
supplementary observations. The linear model then becomes,(

y
0

)
=

(
X
X0
k

)
βRR +

(
e
e0
k

)
, (23)

which gives rise to the solution,

β̂RR = [XTX + (X0
k)TX0

k ]−1XTy . (24)

But because X0
k is orthogonal, (X0

k)TX0
k is a scalar multiple of I , so there exists some value of k making

Eqn. (24) equivalent to Eqn. (21). As promised, the ridge regression estimator then reflects a weighted
average of the data [X,y] with n(k) observations [X0

k ,0] biased toward β = 0. In Figure 25, it is easy to
imagine that there is a direct translation between the size of the constraint region, t(k), and an equivalent
supplementary sample size, n(k), in this interpretation.

This classic version of the ridge regression problem can be generalized in a variety of ways, giving other
geometric insights. Rather than a constant multiplier k of βTβ as the penalty term in Eqn. (20), consider a
penalty of the form βTKβ with a positive definite matrixK. The choiceK = diag (k1, k2, . . . ) gives rise to
a version of Figure 25 in which the constraint contours are ellipses aligned with the coordinate axes, with axis
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lengths inversely proportional to ki. These constants allow for differential shrinkage of the OLS coefficients.
The visual solution to the obvious modification of Eqn. (22) is again the point where the elliptical contours
of RSS(0) kiss the contours of the (now elliptical) constraint region.

6.3.1 Bivariate ridge trace plots

Ridge regression is touted (optimistically we think) as a method to counter the effects of collinearity by
trading off a small amount of bias for an advantageous decrease in variance. The results are often visualized
in a a ridge trace plot (Hoerl and Kennard, 1970b), showing the changes in individual coefficient estimates
as a function of k. A bivariate version of this plot, with confidence ellipses for the parameters is introduced
here. This plot provides greater insight into the effects of k on coefficient variance.15

Confidence ellipsoids for the OLS estimator are generated from the estimated covariance matrix of the
coefficients,

V̂ar(βOLS) = σ̂2
e(X

TX)−1 .

For the ridge estimator, this becomes (Marquardt, 1970)

V̂ar(βRR) = σ̂2
e [X

TX + kI]−1(XTX)[XTX + kI]−1 , (25)

which coincides with the OLS result when k = 0.
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Figure 26: Bivariate ridge trace plots for the coefficients of Unemployed and Population against the coeffi-
cient for GNP in Longley’s data, with k = 0, 0.005, 0.01, 0.02, 0.04, 0.08. In both cases the coefficients are
driven on average toward zero, but the bivariate plot also makes clear the reduction in variance. To reduce
overlap, all variance ellipses are shown with 1/2 the standard radius.

Figure 26 uses the classic Longley (1967) data to illustrate bivariate ridge trace plots. The data consist
of an economic time series (n = 16) observed yearly from 1947 to 1962, with the number of people Em-
ployed as the response and the following predictors: GNP, Unemployed, Armed.Forces, Population, Year,

15Bias and mean-squared error are a different matter: Although Hoerl and Kennard (1970a) demonstrate that there is a range of
values for the ridge constant k for which the MSE of the ridge estimator is smaller than that of the OLS estimator, to know where
this range is located requires knowledge of β. As we explain in the following subsection, the constraint on β̂ incorporated in the
ridge estimator can be construed as a Bayesian prior; the fly in the ointment of ridge regression, however, is that there is no reason
to suppose that the ridge-regression prior is in general reasonable.
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and GNP.deflator (using 1954 as 100).16 For each value of k, the plot shows the estimate β̂, together with the
variance ellipse. For the sake of this example, we assume that GNP is a primary predictor of Employment,
and we wish to know how other predictors modify the regression estimates and their variance when ridge
regression is used.

For these data, it can be seen that even small values of k have substantial impact on the estimates β̂.
What is perhaps more dramatic (and unseen in univariate trace plots) is the impact on the size of the variance
ellipse. Moreover, shrinkage in variance is generally in a similar direction to the shrinkage in the coefficients.
This new graphical method is developed more fully in Friendly (2012), including 2D and 3D plots, as well
as more informative representations of shrinkage by ellipsoids in the transformed space of the SVD of the
predictors.

6.4 Bayesian linear models

In a Bayesian alternative to standard least squares estimation, consider the case where our prior information
about β can be encapsulated in a distribution with a prior mean βprior and covariance matrixA. We show that
under reasonable conditions the Bayesian posterior estimate, β̂posterior, turns out to be a weighted average of
the prior coefficients βprior and the OLS solution β̂OLS, with weights proportional to the conditional prior
precision,A−1, and the data precision given byXTX . Once again, this can be understood geometrically as
the locus of osculation of ellipsoids that characterize the prior and the data.

Under Gaussian assumptions, the conditional likelihood can be written as

L(y |X,β, σ2) ∝ (σ2)−n/2 exp

[
− 1

2σ2
(y −Xβ)T(y −Xβ)

]
.

To focus on alternative estimators, we can complete the square around β̂ = β̂OLS to give

(y −Xβ)T(y −Xβ) = (y −Xβ̂)T(y −Xβ̂) + (β − β̂)T(XTX)(β − β̂) . (26)

With a little manipulation, a conjugate prior, of the form Pr(β, σ2) = Pr(β |σ2)×Pr(σ2) can be expressed
with Pr(σ2) an inverse gamma distribution depending on the first term on the right hand side of Eqn. (26)
and Pr(β |σ2) a normal distribution,

Pr(β |σ2) ∝ (σ2)−p × exp

[
− 1

2σ2
(β − βprior)T A(β − βprior)

]
. (27)

The posterior distribution is then Pr(β, σ2 |y,X) ∝ Pr(y |X,β, σ2) × Pr(β |σ2) × Pr(σ2), whence,
after some simplification, the posterior mean can be expressed as

β̂posterior = (XTX +A)−1(XTXβ̂OLS +Aβprior) (28)

with covariance matrix (XTX +A)−1. The posterior coefficients are therefore a weighted average of the
prior coefficients and the OLS estimates, with weights given by the conditional prior precision, A, and the
data precision, XTX . Thus, as we increase the strength of our prior precision (decreasing prior variance),
we place greater weight on our prior beliefs relative to the data.

In this context, ridge regression can be seen as the special case where β̂prior = 0 andA = kI , and where
Figure 25 provides an elliptical visualization. In Eqn. (24), the number of observations, n(k) corresponding
toX0

k can be seen as another way of expressing the weight of the prior in relation to the data.
16Longley (1967) used these data to demonstrate the effects of numerical instability and round-off error in least squares computa-

tions based on direct computation of the crossproducts matrix, XTX . Longley’s paper sparked the development of a wide variety
of numerically stable least squares algorithms (QR, modified Gram-Schmidt, etc.) now used is almost all statistical software. Even
ignoring numerical problems (not to mention problems due to lack of independence), these data would be anticipated to exhibit high
collinearity because a number of the predictors would be expected to have strong associations with year and/or population, yet both
of these are also included among the predictors.
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6.5 Mixed models: BLUEs and BLUPs

In this section we make implicit use of the duality between data space and β space, where lines in one map
into points in the other and ellipsoids help to visualize the precision of estimates in the context of the linear
mixed model for hierarchical data. We also show visually how the best linear unbiased predictors (BLUPs)
from the mixed model can be seen as a weighted average of the best linear unbiased estimates (BLUEs)
derived from OLS regressions performed within clusters of related data and the overall mixed model GLS
estimate.

The mixed model for hierarchical data provides a general framework for dealing with dependence among
observations in linear models, such as occurs when students are sampled within schools, schools within
counties, and so forth (e.g., Raudenbush and Bryk, 2002). In these situations, the assumption of OLS that
the errors are conditionally independent is probably violated, because, for example, students nested within
the same school are likely to have more similar outcomes than those from different schools. Essentially the
same model, with provision for serially correlated errors, can be applied to longitudinal data (e.g., Laird and
Ware, 1982), although we will not pursue this application here.

The mixed model for the ni × 1 response vector yi in cluster i can be given as

yi = Xiβ +Ziui + εi (29)

ui ∼ Nq(0,Gi)
εi ∼ Nni(0,Ri)

where β is a p× 1 vector of parameters corresponding to the fixed effects in the ni × p model matrixXi; ui
is a q× 1 vector of coefficients corresponding to the random effects in the ni× q model matrix Zi;Gi is the
q × q covariance matrix of the random effects in ui; andRi is the ni × ni covariance matrix of the errors in
εi.

Stacking the yi,Xi, Zi, and so forth in the obvious way then gives

y = Xβ +Zu+ ε (30)

where u and ε are assumed to have normal distributions with mean 0 and

Var

(
u
ε

)
=

[
G 0
0 R

]
, (31)

where G = diag (G1, ...,Gm), R = diag (R1, ...,Rm) and m is the number of clusters. The variance of y
is therefore V = ZGZT +R, and when Z = 0 andR = σ2I , the mixed model in Eqn. (30) reduces to the
standard linear model.

We now consider the case in which Zi = Xi and we wish to predict βi = β + ui, the vector of
parameters for the ith cluster. At one extreme, we could simply ignore clusters and use the common mixed-
model generalized-least-square estimate,

β̂GLS = (XTV −1X)−1XTV −1y (32)

whose sampling variance is Var(β̂GLS) = (XTV −1X)−1. It is an unbiased predictor of βi sinceE(β̂GLS−
βi) = 0. With moderately largem, the sampling variance may be small relative toGi and Var(β̂GLS−βi) ≈
Gi.

At the other extreme, we ignore the fact that clusters come from a common population and we calculate
the separate BLUE estimate within each cluster,

β̂blue
i = (XT

i Xi)
−1XT

i yi with Var(β̂blue
i |βi) ≡ Si = σ2(XT

i Xi)
−1 . (33)
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Both extremes have drawbacks: whereas the pooled overall GLS estimate ignores variation between
clusters, the unpooled within-cluster BLUE ignores the common population and makes clusters appear to
differ more than they actually do.

This dilemma led to the development of BLUPs (best linear unbiased predictor) in models with random
effects (Henderson, 1975, Robinson, 1991, Speed, 1991). In the case considered here, the BLUPs are an
inverse-variance weighted average of the mixed-model GLS estimates and of the BLUEs. The BLUP is then:

β̃
blup
i =

(
S−1
i +G−1

i

)−1 (
S−1
i β̂blue

i +G−1
i β̂

GLS
i

)
. (34)

This ”partial pooling” optimally combines the information from cluster i with the information from all clus-
ters, shrinking β̂blue

i towards β̂GLS. Shrinkage for a given parameter βij is greater when the sample size ni is
small or when the variance of the corresponding random effect, gijj , is small.

Eqn. (34) is of the same form as Eqn. (28) and other convex combinations of estimates considered earlier
in this section. So once again, we can understand these results geometrically as the locus of osculation of
ellipsoids. Ellipsoids kiss for a reason: to provide an optimal convex combination of information from two
sources, taking precision into account.

6.5.1 Example: Math achievement and SES

To illustrate, we use a classic data set from Bryk and Raudenbush (1992) and Raudenbush and Bryk (2002)
dealing with math achievement scores for a subsample of 7,185 students from 160 schools in the 1982 High
School & Beyond survey of U.S. public and Catholic high schools conducted by the National Center for
Education Statistics (NCES). The data set contains 90 public schools and 70 Catholic schools, with sample
sizes ranging from 14 to 67.

The response is a standardized measure of math achievement, while student-level predictor variables
include sex and student socioeconomic status (SES), and school-level predictors include sector (public or
Catholic) and mean SES for the school (among other variables). Following Raudenbush and Bryk (2002),
student SES is considered the main predictor, and is typically analyzed centered within schools, CSESij =
SESij − (meanSES)i, for ease of interpretation (making the within-school intercept for school i equal to the
mean SES in that school).

For simplicity, we consider the case of CSES as a single quantitative predictor inX in the example below.
We fit and compare the following models:

yi ∼ N (β0 + xiβ1, σ
2) pooled OLS (35)

yi ∼ N (β0i + xiβ1i, σ
2
i ) unpooled BLUEs (36)

yi ∼ N (β0 + xiβ1 + u0i + xiu1i, σ
2
i ) BLUPs: random intercepts and slopes (37)

and also include a fixed effect of sector, common to all models; for compactness, the sector effect is elided in
the notation above.

In expositions of mixed-effects models, such models are often compared visually by plotting predicted
values in data space, where each school appears as a fitted line under one of the models above (sometimes
called “spaghetti plots”). Our geometric approach leads us to consider the equivalent but simpler plots in the
dual β space, where each school appears as a point.

Figure 27 plots the unpooled BLUE estimates against the BLUPs from the random effects model, with
separate panels for intercepts and slopes to illustrate the shrinkage of different parameters. In these data, the
variance in intercepts (average math achievement for students at CSES = 0), g00, among schools in each
sector is large, so the mixed effects estimates have small weight and there is little shrinkage. On the other
hand, the variance component for slopes, g11, is relatively small, so there is greater shrinkage toward the GLS
estimate.
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Figure 27: Comparing BLUEs and BLUPs. Each panel plots the OLS estimates from separate regressions
for each school (BLUEs) versus the mixed model estimates from the random intercepts and slopes model
(BLUPs). Left: intercepts; Right: slopes for CSES. The shrinkage of the BLUPs toward the GLS estimate is
much greater for slopes than intercepts.

For the present purposes, a more useful visual representation of these model comparisons can be shown
together in the space of (β0, β1), as in Figure 28. Estimates for individual schools are not shown, but rather
these are summarized by the ellipses of 50% coverage for the BLUEs and BLUPs within each sector. The
centers of the ellipsoids indicate the relatively greater shrinkage of slopes compared to intercepts. The sizes
of ellipsoids show directly the greater precision of the BLUPs, particularly for slopes.

6.6 Multivariate meta-analysis

A related situation arises in random effects multivariate meta-analysis (Berkey et al., 1998, Nam et al.,
2003), where several outcome measures are observed in a series of similar research studies and it is desired
to synthesize those studies to provide an overall (pooled) summary of the outcomes, together with meta-
analytic inferences and measures of heterogeneity across studies.

The application of mixed model ideas in this context differs from the standard situation in that individual
data are usually unavailable and use is made instead of summary data (estimated treatment effects and their
covariances) from the published literature. The multivariate extension of standard univariate methods of
meta-analysis allows the correlations among outcome effects to be taken into account and estimated, and
regression versions can incorporate study-specific covariates to account for some inter-study heterogeneity.
More importantly, we illustrate a graphical method based (of course) on ellipsoids that serves to illustrate bias,
heterogeneity, and shrinkage in BLUPs, and the optimism of fixed-effect estimates when study heterogeneity
is ignored.

The general mixed-effects multivariate meta-analysis model can be written as

yi = Xiβ + δi + ei , (38)

where yi is a vector of p outcomes (means or treatment effects) for study i; Xi is the matrix of study-level
predictors for study i or a unit vector when no covariates are available; β is the population-averaged vector of
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Figure 28: Comparing BLUEs and BLUPs. The plot shows ellipses of 50% coverage for the estimates of
intercepts and slopes from OLS regressions (BLUEs) and the mixed model (BLUPs), separately for each
sector. The centers of the ellipses illustrate how the BLUPS can be considered a weighted average of the
BLUEs and the mixed-model GLS estimate, ignoring sector. The relative sizes of the ellipses reflect the
smaller variance for the BLUPs compared to the BLUEs, particularly for slope estimates.

regression parameters or effects (intercepts, means) when there are no covariates; δi is the p-vector of random
effects associated with study i, whose p×p covariance matrix ∆ represents the between-study heterogeneity
unaccounted for byXiβ; and, finally, ei is the p-vector of random sampling errors (independent of δi) within
study i, having the p× p covariance matrix Si.

With suitable distributional assumptions, the mixed-effects model in Eqn. (38) implies that

yi ∼ Np(Xiβ,∆ + Si) (39)

with Var(yi) = ∆ + Si. When all the δi = 0, and thus ∆ = 0, Eqn. (38) reduces to a fixed-effects model,
yi = Xiβ + ei, which can be estimated by GLS to give,

β̂GLS = (XTSX)−1XTS−1y (40)

V̂ar(β̂GLS) = (XTSX)−1 , (41)

where y and X are the stacked yi and Xi, and S is the block-diagonal matrix containing the Si. The fixed-
effects model ignores unmodelled heterogeneity among the studies, however, and consequently the estimated
effects in Eqn. (40) may be biased and the estimated uncertainty of these effects in Eqn. (41) may be too
small.

The example we use here concerns the comparison of surgical (S) and non-surgical (NS) procedures for
the treatment of moderate periodontal disease in five randomized split-mouth design clinical trials (Antczak-
Bouckoms et al., 1993, Berkey et al., 1998). The two outcome measures for each patient were pre- to post-
treatment changes after one year in probing depth (PD) and attachment level (AL), in mm, where successful
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treatment should decrease probing depth and increase attachment level. Each study was summarized by the
mean difference, yi = (ySi − yNSi ), between S and NS treated teeth, together with the covariance matrix Si
for each study. Sample sizes ranged from 14 to 89 across studies.

Figure 29: Multivariate meta-analysis visualizations for five periodontal treatment studies with outcome
measures PD and AL. Left: Individual study estimates yi and 40% standard ellipses for Si (dashed, red)
together with the pooled, fixed effects estimate and its associated covariance ellipse (blue). Right: BLUPs
from the random effects multivariate meta-analysis model and their associated covariance ellipses (red, solid),
together with the pooled, population averaged estimate and its covariance ellipse (blue), and the estimate of
the between-study covariance matrix, ∆ (green). Arrows show the differences between the FE and the RE
models.

The left panel of Figure 29 shows the individual study estimates of PD and AL together with their covari-
ances ellipses in a generic form that we propose as a more useful visualization of multivariate meta-analysis
results than standard tabular displays: individual estimates plus model-based summary, all with associated
covariance ellipsoids.17

It can be seen that all studies show that surgical treatment yields better probing depth (estimates are
positive), while non-surgical treatment results in better attachment level (all estimates are negative). As well,
within each study, there is a consistently positive correlation between the two outcome effects: patients with
a greater surgical vs. non-surgical difference on one measure tend to have a greater such difference on the
other, and greater within-study variation on PD than on AL.18 The overall sizes of the ellipses largely reflect
(inversely) the sample sizes in the various studies. As far as we know, these results were not noted in previous
analyses of these data. Finally, the fixed-effect estimate, β̂GLS = (0.307,−0.394), and its covariance ellipse
suggest that these effects are precisely estimated.

The random-effects model is more complex because β and ∆ must be estimated jointly. A variety of
methods have been proposed (full maximum likelihood, restricted maximum likelihood, method of moments,
Bayesian methods, etc.), whose details (for which see Jackson et al., 2011) are not relevant to the present
discussion. Given an estimate ∆̂, however, the pooled, population-averaged point estimate of effects under

17The analyses described here were carried out using the mvmeta package for R (Gasparrini, 2012).
18Both PD and AL are measured on the same scale (mm), and the plots have been scaled to have unit aspect ratio, justifying this

comparison.

38



the random-effects model can be expressed as

β̂RE =

(∑
i

XT
i Σ−1

i Xi

)−1(∑
i

XT
i Σ−1

i yi

)
, (42)

where Σi = Si+∆̂. The first term in Eqn. (42) gives the estimated covariance matrix V ≡ V̂ar(β̂RE) of the
random-effect pooled estimates. For the present example, this is shown in the right panel of Figure 29 as the
blue ellipse. The green ellipse shows the estimate of the between-study covariance, ∆̂, whose shape indicates
that studies with a larger estimate of PD also tend to have a larger estimate of AL (with correlation = 0.61). It
is readily seen that, relative to the fixed-effects estimate β̂GLS, the unbiased estimate β̂RE = (0.353,−0.339)
under the random-effects model has been shifted toward the centroid of the individual study estimates and
that its covariance ellipse is now considerably larger, reflecting between-study heterogeneity. In contrast to
the fixed-effect estimates, inferences on H0 : β̂RE = 0 pertain to the entire population of potential studies of
these effects.

Figure 29 (right) also shows the best linear unbiased predictions of individual study estimates and their
associated covariance ellipses, superposed (purely for didactic purposes) on the fixed-effects estimates to
allow direct comparison. For random-effects models, the BLUPs have the form

β̂BLUP
i = β̂RE + ∆̂Σ−1

i (yi − β̂RE) , (43)

with covariance matrices
V̂ar(β̂BLUP

i ) = V + (∆̂− ∆̂Σ−1
i ∆̂) . (44)

Algebraically, the BLUP outcome estimates in Eqn. (43) are thus a weighted average of the population-
averaged estimates and the study-specific estimates, with weights depending on the relative sizes of the
within- and between-study covariance matrices Si and ∆. The point BLUPs borrow strength from the as-
sumption of an underlying multivariate distribution of study parameters with covariance matrix ∆, shrinking
toward the mean inversely proportional to the within-study covariance. Geometrically, these estimates may
be described as occurring along the locus of osculation of the ellipses E(yi,Si) and E(β̂, ∆̂).

Finally, the right panel of Figure 29 also shows the covariance ellipses of the BLUPs from Eqn. (43). It
is clear that their orientation is a blending of the correlations in V and Si, and their size reflects the error in
the average point estimates V and the error in the random deviation predicted for each study.

7 Discussion and Conclusions

I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order
expressed by the “[Elliptical] Law of Frequency of Error.” The law would have been personified by the
Greeks and deified, if they had known of it. ... It is the supreme law of Unreason. Whenever a large
sample of chaotic elements are taken in hand and marshaled in the order of their magnitude, an
unsuspected and most beautiful form of regularity proves to have been latent all along.

Sir Francis Galton, Natural Inheritance, London: Macmillan, 1889 (“[Elliptical]” added).

We have taken the liberty to add the word “Elliptical” to this famous quotation from Galton (1889).
His “supreme law of Unreason” referred to univariate distributions of observations tending to the Normal
distribution in large samples. We believe he would not take us remiss, and might perhaps welcome us for
extending this view to two and more dimensions, where ellipsoids often provide an “unsuspected and most
beautiful form of regularity.”

In statistical data, theory, and graphical methods, one fundamental organizing distinction can be made
depending on the dimensionality of the problem. A coarse but useful scale considers the essential defining
distinctions to be among:
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• ONE (univariate),
• TWO (bivariate),
• MANY (multivariate).

This scale19 at least implicitly organizes much of current statistical teaching, practice, and software. But
within this classification, the data, theory, and graphical methods are often treated separately (1D, 2D, nD),
without regard to geometric ideas and visualizations that help to unify them.

This paper starts from the premise that one geometric form—the ellipsoid—provides a unifying frame-
work for many statistical phenomena, with simple representations in 1D (a line) and 2D (an ellipse) that
extend naturally to higher dimensions (an ellipsoid). The intellectual leap in statistical thinking from ONE
to TWO in Galton (1886) was enormous. Galton’s visual insights derived from the ellipse quickly led to
an understanding of the ellipse as a contour of a bivariate normal surface. From here, the step from TWO
to MANY would take another 20–30 years, but it is hard to escape the conclusion that geometric insight
from the ellipse to the general ellipsoid in nD played an important role in the development of multivariate
statistical methods.

In this paper, we have tried to show how ellipsoids can be useful tools for visual statistical thinking, data
analysis, and pedagogy in a variety of contexts often treated separately and from a univariate perspective.
Even in bivariate and multivariate problems, first-moment summaries (a 1D regression line or 2+D regression
surface) show only part of the story—that of the expectation of a response y given predictors X . In many
cases, the more interesting part of the story concerns the precision of various methods of estimation, which
we’ve shown to be easily revealed through data ellipsoids and elliptical confidence regions for parameters.

The general relationships among statistical methods, matrix algebra, and geometry are not new here. To
our knowledge, Dempster (1969) was the first to exploit these relationships in a systematic fashion, estab-
lishing the connections among abstract vector spaces, algebraic coordinate systems, matrix operations and
properties, the dualities between observation space and variable space, and the geometry of ellipses and pro-
jections.The roots of these connections go back much further—to Cramér (1946) (the idea of the concentra-
tion ellipsoid), to Pearson (1901) and Hotelling (1933) (principal components), and, we maintain, ultimately
to Galton (1886). Throughout this development, elliptical geometry has played a fundamental role, leading
to important visual insights.

The separate and joint roles of statistical computation and computational graphics should not be under-
estimated in appreciation of these developments. Dempster’s analysis of the connections among geome-
try, algebra, and statistical methods was fueled by the development and software implementation of algo-
rithms (Gram-Schmidt orthogonalization, Cholesky decomposition, sweep and multistandardize operators
from Beaton, 1964) that allowed him to show precisely the translation of theoretical relations from abstract
algebra to numbers and thence to graphs and diagrams.

Monette (1990) took these ideas several steps further, developing interactive 3D graphics focused on
linear models, geometry, and ellipsoids, and demonstrating how many statistical properties and results could
be understood through the geometry of ellipsoids. Yet, even at this later date, the graphical facilities of
readily available statistical software were still rather primitive, and 3D graphics was available only on high-
end workstations.

Several features of the current discussion may help to present these ideas in a new light. First, the ex-
amples we have presented rely heavily on software for statistical graphics developed separately and jointly
by all three authors. These have allowed us to create what we hope are compelling illustrations, all statisti-
cally and geometrically exact, of the principles and ideas that form the body of the paper. Moreover, these
are now general methods, implemented in a variety of R packages, e.g., (Fox and Weisberg, 2011, Friendly,
2007b) and a large collection of SAS macros (http://datavis.ca/sasmac), so we hope this paper
will contribute to turning the theory we describe into practice.

19This idea, as a unifying classification principle for data analysis and graphics, was first suggested to the first author in seminars
by John Hartigan at Princeton, c. 1968.
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Second, we have illustrated, in a wide variety of contexts, comprising all classical (Gaussian) linear
models, multivariate linear models, and several extensions, how ellipsoids can contribute substantially to the
understanding of statistical relationships, both in data analysis and in pedagogy. One graphical theme un-
derlying a number of our examples is how the simple addition of ellipses to standard 2D graphical displays
provides an efficient visual summary of important bivariate statistical quantities (means, variances, correla-
tion, regression slopes, etc.) While first-moment visual summaries are now common adjuncts to graphical
displays in standard software, often by default, we believe that the second-moment visual summaries of
ellipses (and ellipsoids in 3D) now deserve a similar place in statistical practice.

Finally, we have illustrated several recent or entirely new visualizations of statistical methods and results,
all based on elliptical geometry. HE plots for MANOVA designs (Friendly, 2007b) and their projections into
canonical space (Section 5) provide one class of examples where ellipsoids provide simple visual summaries
of otherwise complex statistical results. Our analysis of the geometry of added variable-plots suggested
the idea of superposing marginal and conditional plots, as in Figure 18, leading to direct visualization of
the difference between marginal and conditional relationships in linear models. The bivariate ridge trace
plots described in Section 6.3.1 are a direct outgrowth of the geometric approach taken here, emphasizing the
duality between views in data space and in parameter (β) space. We believe these all embody von Humboldt’s
(1811) dictum, quoted in the introduction.
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A Geometrical and statistical ellipsoids

This appendix outlines useful results and properties concerning the representation of geometric and statis-
tical ellipsoids. A number of these can be traced to or have more general descriptions within the abstract
formulation of Dempster (1969), but casting them in terms of ellipsoids provides a simpler and more easily
visualized framework.

A.1 Taxonomy and representation of generalized ellipsoids

Section 2.1 defined a proper (origin-centered) ellipsoid in Rp by E := {x : xTCx ≤ 1} that is bounded
with non-empty interior (call these “fat” ellipsoids). For more general purposes, particularly for statistical
applications, it is useful to give ellipsoids a wider definition. To provide a complete taxonomy, this wider
definition should also include ellipsoids that may be unbounded in some directions in Rp (an infinite cylinder
of ellipsoidal cross-section) and degenerate (singular) ellipsoids that are “flat” in Rp with empty interior,
such as when a 3D ellipsoid has no extent in one dimension (collapsing to an ellipse), or in two dimensions
(collapsing to a line). These ideas are made precise below with a definition of the signature, G(C), of a
generalized ellipsoid.

The motivation for this more general representation is to allow a notation for a class of generalized
ellipsoids to be algebraicly closed under operations (a) image and preimage under a linear transformation,
and (b) inversion. The goal is to be able to think about, visualize, and compute a linear transformation
of an ellipsoid with central matrix C or its inverse transformation via an analog of C−1, which applies
equally to unbounded and/or degenerate ellipsoids. Algebraically, the vector space of C is the dual of that
of C−1 (Dempster, 1969, Ch. 6) and vice-versa. Geometrical applications can show how points, lines, and
hyperplanes in Rp are all special cases of ellipsoids. Statistical applications concern the relationship between
a predictor data ellipsoid and the corresponding β confidence ellipsoid (Section 4.6): The β ellipsoid will
be unbounded (some linear combinations will have infinite confidence intervals) iff the corresponding data
ellipsoid is flat, as when p > n or some predictors are collinear.

Defining ellipsoids with {x : xTCx ≤ 1} produces proper ellipsoids for C positive definite and un-
bounded, fat ellipsoids for C positive semi-definite. But it does not produce degenerate (i.e. flat) ellipsoids.
On the other hand, the representation in Eqn. (3), E := AS, with S the unit sphere, produces proper ellip-
soids when C =

(
ATA

)−1 where A is a non-singular p × p matrix and degenerate ellipsoids when A is a
singular, but does not produce unbounded ellipsoids.

One representation that works for all ellipsoids—fat or flat and bounded or unbounded—can be based on
a singular value decomposition (SVD) representationA = U∆V T, with

E := U(∆S) , (A.1)

whereU is orthogonal and ∆ is diagonal with non-negative reals or infinity.20 The ‘inverse’ of an ellipsoid E
is then simplyU(∆−1S). The connection with traditional representations is that, if ∆ is finite,A = U∆V T

where V can be any orthogonal matrix, and if ∆−1 is finite, C = U∆−2UT.
20Note that the parentheses in this notation are obligatory: ∆ as defined transforms the unit sphere, which is then transformed by

U . V T, also orthogonal, plays no role in this representation, because an orthogonal transformation of S is still a unit sphere.
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Figure A.1: Two views of an example of generalized ellipsoids. C1 (blue) determines a proper, fat ellipsoid;
its inverse C−1

1 also generates a proper ellipsoid. C2 (red) determines an improper, flat ellipsoid, whose
inverse C−1

2 is an unbounded cylinder of elliptical cross section. The scale of these images is defined by a
unit sphere (gray). The left panel shows that C2 is a projection of C1 onto the plane where z = 0. The right
panel shows a view illustrating the orthogonality of each C and its dual, C−1.

The U(∆S) representation also allow us to characterize any such generalized ellipsoid in Rp by its
signature,

G(C) = #[δi > 0, δi = 0, δi =∞] with
∑
G(C) = p , (A.2)

a 3-vector containing the number (#) of positive, zero and infinite singular values. For example, in R3, any
proper ellipsoid has the signature G(C) = (3, 0, 0); a flat, 2D ellipsoid has G(C) = (2, 1, 0); a flat, 1D
ellipsoid (a line) has G(C) = (1, 2, 0). Unbounded examples include an infinite flat plane, with G(C) =
(0, 1, 2), and an infinite cylinder of elliptical cross-section, with G(C) = (2, 0, 1).

Figure A.1 illustrates these ideas, using two generating matrices, C1 and C2, in this more general repre-
sentation,

C1 =

 6 2 1
2 3 2
1 2 2

 , C2 =

 6 2 0
2 3 0
0 0 0


whereC1 generates a proper ellipsoid andC2 generates an improper, flat ellipsoid. C1 and its dual,C−1

1 both
have signatures (3, 0, 0). C2 has the signature (2, 1, 0), while its inverse (dual) has the signature (2, 0, 1).
These varieties of ellipsoids are more easily understood in the 3D movies included in the online supplements.

A.2 Properties of geometric ellipsoids

• Translation: An ellipsoid centered at x0 has the definition E := {x : (x − x0)TC(x − x0) = 1} or
E := x0 ⊕AS in the notation of Section 2.2.

• Orthogonality: IfC is diagonal, then the origin-centered ellipsoid has its axes aligned with the coordi-
nate axes and has the equation

xTCx = c11x
2
1 + c22x

2
2 + · · ·+ cppx

2
p = 1 , (A.3)
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Figure A.2: Some properties of geometric ellipsoids, shown in 2D. Principal axes of an ellipsoid are given
by the eigenvectors of C, with radii 1/

√
λi. For an ellipsoid defined by Eqn. (1), the comparable ellipsoid

for 2C has radii multiplied by 1/
√

2. The ellipsoid for C−1 has the same principal axes, but with radii
√
λi,

making it small in the directions where C is large and vice-versa.

where 1/
√
cii = c

−1/2
ii are the radii (semi-diameter lengths) along the coordinate axes.

• Area and volume: In two dimensions, the area of the axis-aligned ellipse is π(c11c22)−1/2. For p = 3,
the volume is 4

3π(c11c22c33)−1/2. In the general case, the hypervolume of the ellipsoid is proportional
to |C|−1/2 = ||A|| and is given by πp/2det(C)−1/2/

[
Γ
(p

2 + 1
)]

(Dempster, 1969, §3.5) where the
first two factors are familiar as the normalizing constant of the multivariate normal density function.

• Principal axes: In general, the eigenvectors, vi, i = 1, . . . , p, of C define the principal axes of the
ellipsoid and the inverse of the square roots of the ordered eigenvalues, λ1 > λ2 . . . , λp, are the
principal radii. Eigenvectors belonging to eigenvalues that are 0 are directions in which the ellipsoid
is unbounded. With E = AS, we consider the singular-value decomposition A = UDV T, with U
and V orthogonal matrices andD a diagonal non-negative matrix with the same dimension asA. The
column vectors of U , called the left singular vectors, correspond to the eigenvectors of C in the case
of a proper ellipsoid. The positive diagonal elements of D, d1 > d2 > ... > dp > 0, are the principal
radii of the ellipsoid with di = 1/

√
λi. In the singular case, the left singular vectors form a set of

principal axes for the flattened ellipsoid.21

• Inverse: When C is positive definite, the eigenvectors of C and C−1 are identical, while the eigen-
values of C−1 are 1/λi. It follows that the ellipsoid for C−1 has the same axes as that of C, but
with inversely proportional radii. In R2, the ellipsoid for C−1 is, with rescaling, a 90◦ rotation of the
ellipsoid for C, as illustrated in Figure A.2.

• Generalized inverse: A definition for an inverse ellipsoid that is equivalent in the case of proper ellip-
21Corresponding left singular vectors and eigenvectors are not necessarily equal, but sets that belong to the same eigen-

value/singular value span the same space.
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soids,
E−1 := {y : |xTy| ≤ 1 , ∀x ∈ E} , (A.4)

generalizes to all ellipsoids. The inverse of a singular ellipsoid is an improper ellipsoid and vice versa.

• Dimensionality: The ellipsoid is bounded if C is positive definite (all λi > 0). Each λi = 0 increases
the dimension of the space along which the ellipsoid is unbounded by one. For example, with p = 3,
λ3 = 0 gives a cylinder with an elliptical cross-section in 3-space, and λ2 = λ3 = 0 gives an infinite
slab with thickness 2

√
λ1. With E = AS , the dimension of the ellipsoid is equal to the number of

positive singular values ofA.

• Projections: The projection of a p dimensional ellipsoid into any subspace is P E , where P is an
idempotent p× p (projection) matrix, i.e., PP = P 2 = P . For example, in R2 and R3, the matrices

P2 =

[
1 1
0 0

]
, P3 =

 1 0 0
0 1 0
0 0 0


project, respectively, an ellipse onto the line x1 = x2, and an ellipsoid into the (x1, x2) plane. If P
is symmetric, then P is the matrix of an orthogonal projection, and it is easy to visualize P E as the
shadow of E cast perpendicularly onto span(P ). Generally, P E is the shadow of E onto span(P )
along the null space of P .

• Linear transformations: A linear transformation of an ellipsoid is an ellipsoid, and the pre-image of
an ellipsoid under a linear transformation is an ellipsoid. A non-singular linear transformation maps a
proper ellipsoid into a proper ellipsoid in the form shown in Section 2.2, Eqn. (7).

• Slopes and tangents: The slopes of the ellipsoidal surface in the directions of the coordinate axes
are given by ∂/∂x (xTCx) = 2Cx. From this, it follows that the tangent hyperplane to the unit
ellipsoidal surface at the point xα, where xT

α ∂/∂x(xTCx) = 0, has the equation xT
αCx = 1.

A.3 Conjugate axes and inner-product spaces

For any non-singular A in Eqn. (5) that generates an ellipsoid, the columns of A = [a1,a2, · · · ,ap] form a
set of “conjugate axes” of the ellipsoid. (Two diameters are conjugate iff the tangent line at the endpoint of
one diameter is parallel to the other diameter.) Each vector ai lies on the ellipsoid, and the tangent hyperplane
at that point is parallel to the span of all the other column vectors of A. For p = 2 this result is illustrated in
Figure A.3 (left) in which

A =
[
a1 a2

]
=

[
1 1.5
2 1

]
⇒ W = AAT =

[
3.25 3.5
3.5 5

]
. (A.5)

Consider the inner-product space with inner product matrix

W−1 =

[
1.25 −0.875
−0.875 0.8125

]
and inner product 〈x,y〉 = x′W−1y .

Because ATW−1A = AT
(
AAT

)−1
A = AT(AT)−1A−1A = I , we see that a1 and a2 are orthogonal

unit vectors (in fact, an orthonormal basis) in this inner product:

〈ai,ai〉 = aTi W
−1ai = 1

〈a1,a2〉 = a′1W
−1a2 = 0 .
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Figure A.3: Conjugate axes of an ellipse with various factorizations of W and corresponding basis vectors.
The conjugate vectors lie on the ellipse, and their tangents can be extended to form a parallelogram framing
it. Left: for an arbitrary factorization, given in Eqn. (A.5). Right: for the Choleski factorization (solid, green,
b1, b2) and the principal component factorization (dashed, brown, c1, c2).

Now, if W = BBT is any other factorization of W , then the columns of B have the same properties
as the columns of A. Particular factorizations yield interesting and statistically useful sets of conjugate
axes. The illustration in Figure A.3 (right) shows two such cases with special properties: In the Choleski
factorization (shown solid in green), where B is lower triangular, the last conjugate axis, b2, is aligned with
the coordinate axis x2. Each previous axis (b1, here) is the orthogonal complement to all later axes in the
inner-product space ofW−1. The Choleski factorization is unique in this respect, subject to a permutation of
the rows and columns ofW . The subspace {c1b1 + ...+ cp−1bp−1, ci ∈ R}, is the plane of the regression of
the last variable on the others, a fact that generalizes naturally to ellipsoids that are not necessarily centered
at the origin.

In the principal-component (PC) factorization (shown dashed in brown in Figure A.3, right)W = CCT,
where C = ΓΛ1/2 and hence W = ΓΛΓ′ is the spectral decomposition of W . Here, the ellipse axes are
orthogonal in the space of the ellipse (so the bounding tangent parallelogram is a rectangle) as well as in
the inner-product space of W−1. The PC factorization is unique in this respect (up to reflections of the axis
vectors).

As illustrated in Figure A.3, each pair of conjugate axes has a corresponding bounding tangent parallel-
ogram. It can be shown that all such parallelograms have the same area and equal sums of squares of the
lengths of their diameters.

A.4 Ellipsoids in a generalized metric space

In Appendix A.3, we considered the positive semi-definite matrix W and corresponding ellipsoid to be
referred to a Euclidean space, perhaps with different basis vectors. We showed that various measures of the
“size” of the ellipsoid could be defined in terms of functions of the eigenvalues λi ofW .

We now consider the generalized case of an analogous p × p positive semi-definite symmetric matrix
H , but where measures of length, distance, and angles are referred to a metric defined by a positive-definite
symmetric matrix E. As is well known, the generalized eigenvalue problem is to find the scalars λi and

48



vectors vi, i = 1, 2, . . . p, such thatHv = λEv, that is, the roots of det(H − λE) = 0.
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Figure A.4: Left: Ellipses for H and E in Euclidean “data space.” Right: Ellipses for H? and E? in the
transformed “canonical space,” with the eigenvectors of H relative to E shown as blue arrows, whose radii
are the corresponding eigenvalues, λ1, λ2.

For such H and E, we can always find a factor A of E, so that E = AAT, whose columns will be
conjugate directions for E and whose rows will also be conjugate directions for H , in that H = ATDA,
where D is diagonal. Geometrically, this means that there exists a unique pair of bounding parallelograms
for theH andE ellipsoids whose corresponding sides are parallel. A linear transformation ofE andH that
transforms the parallelogram for E to a square (or cuboid), and hence E to a circle (or spheroid), generates
an equivalent view in what we describe below as canonical space.

In statistical applications (e.g., MANOVA, canonical correlation), the generalized eigenvalue problem is
transformed to an ordinary eigenvalue problem by considering the following equivalent forms with the same
λi, vi,

(H − λE)v = 0

⇒ (HE−1 − λI)v = 0

⇒ (E−1/2HE−1/2 − λI)v = 0 ,

where the last form gives a symmetric matrix, H? = E−1/2HE−1/2. Using the square root of E defined
by the principal-component factorization E1/2 = ΓΛ1/2 produces the ellipsoid H?, the orthogonal axes
of which correspond to the vi, whose squared radii are the corresponding eigenvalues λi. This can be seen
geometrically as a rotation of “data space” to an orientation defined by the principal axes ofE, followed by a
re-scaling, so that the E ellipsoid becomes the unit spheroid. In this transformed space (“canonical space”),
functions of the the squared radii λi of the axes of H? give direct measures of the “size” of H relative to
E. The orientation of the eigenvectors vi can be related to the (orthogonal) linear combinations of the data
variables that are successively largest in the metric of E.

To illustrate, Figure A.4 (left) shows the ellipses generated by

H =

[
9 3
3 4

]
and E =

[
1 0.5

0.5 2

]
together with their conjugate axes. For E, the conjugate axes are defined by the columns of the right factor,
AT, in E = AAT; for H , the conjugate axes are defined by the columns of A. The transformation to
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H? = E−1/2HE−1/2 is shown in the right panel of Figure A.4. In this “canonical space,” angles and
lengths have the orginary interpretation of Euclidean space, so the size of H? can be interpreted directly in
terms of functions of the radii

√
λ1 and

√
λ2.
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