Advances in Visualizing Categorical Data Using the vcd, gnm and vcdExtra Packages in R

Michael Friendly¹ Heather Turner² David Firth²
Achim Zeileis³

¹Psychology Department York University

²University of Warwick, UK

³Department of Statistics Universität Innsbruck

CARME 2011

Rennes, February 9-11, 2011 Slides: http://datavis.ca/papers/adv-vcd-4up.pdf

Co-conspirators

Heather Turner University of Warwick

David Firth University of Warwick

Achim Zeileis Universität Innsbruck

1/53

Outline

Introduction

Generalized Mosaic Displays: vcd Package

Generalized Nonlinear Models: gnm & vcdExtra Packages

3D Mosaics: vcdExtra Package

Models and Visualization for Log Odds Ratios

Brief History of VCD

• Hartigan and Kleiner (1981, 1984): representing an n-way contingency table by a "mosaic display," showing a (recursive) decomposition of frequencies by "tiles", area \sim cell frequency.

Freq ~Day + Week + Time +
Network

3/53 4/53

Brief History of VCD

- Friendly (1994): developed the connection between mosaic displays and loglinear models
 - Showed how mosaic displays could be used to visualize both observed frequency (area) and residuals (shading) from some model.
 - 1^{st} presented at CARME 1995 (thx: Michael & Jörg!)

Brief History of VCD

- Visualizing Categorical Data (Friendly, 2000)
- But: mosaic-like displays have a long history (Friendly, 2002)!

 2002: vcd project at TU & WU, Vienna (Kurt Hornik, David Meyer, Achim Zeileis) → vcd package

5 / 53

6 / 53

Visual overview: Models for frequency tables

- Related models: logistic regression, polytomous regression, log odds models, ...
- Goals: Connect all with visualization methods

Visual overview: R packages

Extending mosaic-like displays

Initial ideas for mosaic displays were extended in a variety of ways:

- pairs plots and trellis-like layouts for marginal, conditional and partial views (Friendly 1999).
- varying the shape attributes of bar plots and mosaic displays
 - double-decker plots (Hofmann 2001),
 - spine plots and spinograms (Hofmann & Theus 2005)
- residual-based shadings to emphasize pattern of association in log-linear models or to visualize significance (Zeileis et al., 2007).
- dynamic interactive versions (ViSta, MANET, Mondrian):
 - linking of several graphs and models
 - selection and highlighting across graphs and models
 - interactive modification of the visualized models

Generalized mosaic displays

vcd package and the strucplot framework

- Various displays for *n*-way frequency tables
 - flat (two-way) tables of frequencies
 - fourfold displays
 - mosaic displays
 - sieve diagrams
 - association plots
 - doubledecker plots
 - spine plots and spinograms
- Commonalities
 - All have to deal with representing n-way tables in 2D
 - All graphical methods use area to represent frequency
 - Some are model-based designed as a visual representation of an underlying statistical model
 - Graphical methods use visual attributes (color, shading, etc.) to highlight relevant statistical aspects

9/53

Familiar example: UCB Admissions

Data on admission to graduate programs at UC Berkeley, by Dept, Gender and Admission

> structable(Dept ~ Gender + Admit, UCBAdmissions)

		Dept	A	В	C	D	E	F
Gender	Admit							
Male	Admitted		512	353	120	138	53	22
	Rejected		313	207	205	279	138	351
Female	Admitted							
	Rejected		19	8	391	244	299	317
or, as a two-way table (collapsed over Dept),								
> structable(~Gender + Admit, UCBAdmissions)								
Admit Admitted Rejected								
Gender								
Male		1198	8	149	93			
Female		55	7	12	78			

Fourfold displays for 2×2 tables

General ideas:

- Model-based graphs can show both data and model tests (or other statistical features)
- Visual attributes tuned to support perception of relevant statistical comparisons

- Quarter circles: radius $\sim \sqrt{n_{ij}} \Rightarrow$ area \sim frequency
- Independence: Adjoining quadrants
 ≈ align
- Odds ratio: ratio of areas of diagonally opposite cells
- Confidence rings: Visual test of $H_0: \theta = 1 \leftrightarrow \text{adjoining rings}$ overlap

Fourfold displays for $2 \times 2 \times k$ tables

- Stratified analysis: one fourfold display for each department
- ullet Each 2×2 table standardized to equate marginal frequencies
- Shading: highlight departments for which $H_a: \theta_i \neq 1$

Mosaic displays

- Tiles: Area \sim observed frequencies, n_{ijk}
- Friendly shading (highlight association pattern):
 - Residuals: $r_{ijk} = (n_{ijk} \hat{m}_{ijk}) / \sqrt{(\hat{m}_{ijk})}$
 - Color— blue: r > 0, red: r < 0
 - Saturation: |r| < 2 (none), > 4 (max), else (middle)
- (Other shadings highlight *significance*)
- (Other color schemes: HSV, HCL, ...)

13/53

Mosaic displays: Fitting & visualizing models

Mutual independence model: Dept \(\triangle \text{Gender } \triangle \text{Admit} \)
> \(\text{berk.mod0} <- \loglm(^\text{Dept} + \text{Gender} + \text{Admit}, \)
\(\text{data} = \text{UCB} \)

> mosaic(berk.mod0, gp = shading_Friendly, ...)

Mosaic displays: Fitting & visualizing models

Joint independence model: Admit \perp (Gender, Dept)

- > berk.mod1 <- loglm(~Admit + (Gender * Dept), data = UCB)</pre>
- > mosaic(berk.mod1, gp = shading_Friendly, ...)

Model: ~Admit + (Gender*Dept)

Mosaic displays: Fitting & visualizing models

Conditional independence model: Admit \(\precedeg \) Gender \(| \text{Dept} \)

> berk.mod2 <- loglm(~(Admit + Gender) * Dept, data = UCB)

> mosaic(berk.mod2, gp = shading_Friendly, ...)

The strucplot framework

A general, flexible system for visualizing n-way frequency tables:

- integrates tabular displays, mosaic displays, association plots, sieve plots, etc. in a common framework.
- *n*-way tables: variables partitioned into row and column variables in a "flat" 2D display using model formulae
- arguments allow for fitting *any* loglinear model via loglm() in the **MASS** package.
- high-level functions for all-pairwise views (pairs()), conditional views (cotabplot()).
- low-level functions control all aspects of labeling, shading, spacing, etc.

Double decker plots

- Visualize dependence of one categorical (typically binary) variable on predictors
- Formally: mosaic plots with vertical splits for all predictor dimensions, highlighting response

18 / 53

The strucplot framework

Components of the strucplot framework:

19 / 53 20 / 53

Pairwise bivariate plots

- Visualize all 2-way views of different independence models in n-way tables: type=
 - "pairwise": Burt matrix: bivariate, marginal views
 - "total": pairwise plots for mutual independence
 - "conditional": marginal independence, given all others
 - "joint": joint independence of all pairs from other variables
- Panel functions for upper, lower, diagonal panels
 - upper, lower: mosaic, assoc, sieve, ...
 - diagonal: barplot, text, mosaic, ...

Pairwise bivariate plots

- > pairs(UCBAdmissions, shade=TRUE, space=0.2,
- + diag_panel = pairs_diagonal_mosaic(offset_varnames=-3, ...))

21/53 22/53

Loglinear models and generalized linear models

- Loglinear models
 - Model fitting in the **vcd** package is based on loglinear models

$$\begin{split} \log(m_{ij}) &= \mu + \lambda_i^A + \lambda_j^B \equiv [A][B] \equiv \sim \mathbb{A} + \mathbb{B} \\ \log(m_{ij}) &= \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB} \equiv [AB] \equiv \sim \mathbb{A} + \mathbb{B} \end{split}$$

- Fit using iterative proportional fitting (loglm())
- ullet No standard errors, limited syntax for expressing models
- Generalized linear models
 - Link function:

$$E(y \mid \boldsymbol{x}) = g(\mu) = \eta(\boldsymbol{x})$$

= $\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$

- Variance function: $Var(y \mid x) = f(\mu)$
- Loglinear models as special cases with log link, Poisson ${\sf dist}^n\mapsto {\sf Var}(y\,|\, {\pmb x})=\mu$

Generalized nonlinear models: gnm package

 A generalized non-linear model (GNM) is the same as a GLM, except that we allow

$$g(\mu) = \eta(\boldsymbol{x}; \boldsymbol{\beta})$$

where $\eta(x; \beta)$ is nonlinear in the parameters β .

- GNMs are very general, combining:
 - classical nonlinear models
 - standard link and variance functions for GLM families
- In the context of models for categorical data, GNMs provide:
 - parsimonious models for structured association
 - models for multiplicative association (e.g., Goodman's RC(1) model)
 - ullet multiple instances of multiplicative terms (RC(m) models)
 - user-defined functions for custom models

23 / 53 24 / 53

Generalized nonlinear models: gnm package

Some models for structured associations in square tables

• quasi-independence (ignore diagonals)

```
> gnm(Freq ~ row + col + Diag(row, col), family = poisson)
```

• symmetry $(\lambda_{ij}^{RC} = \lambda_{ji}^{RC})$

```
> gnm(Freq ~ Symm(row, col), family = poisson)
```

quasi-symmetry = quasi + symmetry

```
> gnm(Freq ~ row + col + Symm(row, col), family = poisson)
```

• fully-specified "topological" association patterns

```
> gnm(Freq ~ row + col + Topo(row, col, spec = RCmatrix), ...)
```

All of these are actually GLMs, but the **gnm** package provides convienence functions Diag, Symm, and Topo to facilitate model specification.

Nonlinear models

- Nonlinear terms are specified in model formulae by functions of class "nonlin"
- Basic nonlinear functions: Exp(), Inv(), Mult()
- Nonlinear terms can be nested. e.g. for a UNIDIFF model:

$$\log \mu_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\gamma_k)\delta_{ij}$$

the exponentiated multiplier is specified as Mult(Exp(C), A:B)

• Multiple instances. e.g., Goodman's RC(2) model:

$$\log \mu_{rc} = \alpha_r + \beta_c + \gamma_{r1}\delta_{c1} + \gamma_{r2}\delta_{c2}$$

specified using: instances(Mult(A,B), 2)

 user-defined functions of class "nonlin" allow further extensions

All of these are fully general, providing residuals, fitted values, etc.

25 / 53

26 / 53

Generalized nonlinear models: vcdExtra package

Provides glue, extending the **vcd** package visualization methods for glm and gnm models

- mosaic.glm() → mosaic methods for class "glm" and class "gnm" objects
- sieve.glm(), assoc.glm() → sieve diagrams and association plots
- Generalized residual types:
 - Pearson
 - deviance
 - standard (adjusted) unit asymptotic variance
- Model lists:
 - glmlist() methods for collecting, summarizing and visualizing a list of related models
 - Kway() generate & fit models of form $(A+B+...)^k$.

Models for ordered categories

Consider an $R \times C$ table having ordered categories

- In many cases, the RC association may be described more simply by assigning numeric scores to the row & column categories.
- For simplicity, we consider only integer scores, 1, 2, ... here
- These models are easily extended to stratified tables

R:C model	μ_{ij}^{RC}	df	Formula
Uniform association	$i \times j \times \gamma$	1	i:j
Row effects	$\alpha_i \times j$	(I-1)	R:j
Col effects	$i \times \beta_j$	(J-1)	i:C
Row+Col eff	$j\alpha_i + i\beta_j$	I+J-3	R:j + i:C
RC(1)	$\phi_i \psi_j \times \gamma$	I+J-3	Mult(R, C)
Unstructured (R:C)	$\mid \mu_{ij}^{R\check{C}} \mid$	(I-1)(J-1)	R:C

27 / 53 28 / 53

Example: Social mobility in US, UK & Japan

Data from Yamaguchi (1987): Cross-national comparison of occupational mobility in the U.S., U.K. and Japan. Re-analysis by Xie (1992).

> Yama.tab <- xtabs(Freq ~ Father + Son + Country, data = Yamaguchi87)
> structable(Country + Son ~ Father, Yama.tab[, , 1:2])

	Country	US					UK				
	Son	UpNM	LoNM	UpM	LoM	Farm	UpNM	LoNM	UpM	LoM	Farm
Father											
UpNM		1275	364	274	272	17	474	129	87	124	11
LoNM		1055	597	394	443	31	300	218	171	220	8
UpM		1043	587	1045	951	47	438	254	669	703	16
LoM		1159	791	1323	2046	52	601	388	932	1789	37
Farm		666	496	1031	1632	646	76	56	125	295	191

See: demo("yamaguchi-xie", package="vcdExtra")

First thought: try MCA

- > library(ca)
- > Yama.dft <- expand.dft(Yamaguchi87)</pre>
- > yama.mjca <- mjca(Yama.dft)</pre>
- > plot(yama.mjca, what = c("none", "all"))

Yamaguchi data: Mobility in US, UK and Japan, MCA

- Dimensions seem to have reasonable interpretations
- 2^{nd} glance: do they?
- How do they relate to theories of social mobility?
- How to understand Country effects?

29 / 53 30 / 53

Models for stratified mobility tables

Baseline models:

- Perfect mobility: Freq ~(R+C)*L
- Quasi-perfect mobility: Freq ~(R+C)*L + Diag(R, C)

Layer models:

- Homogeneous: no layer effects
- \bullet Heterogeneous: e.g., $\mu_{ijk}^{RCL} = \delta_{ij}^{RC} \exp(\gamma_k^L)$

Extended models: Baseline \oplus Layer model(R:C model)

	Layer model						
R:C model	Homogeneous	log multiplicative					
Row effects	~.+ R:j	~.+ Mult(R:j, Exp(L))					
Col effects	~.+ i:C	~.+ Mult(i:C, Exp(L))					
Row+Col eff	~.+ R:j + i:C	~.+ Mult(R:j + i:C, Exp(L))					
RC(1)	~.+ Mult(R, C)	~.+ Mult(R, C, Exp(L))					
Full R:C	~.+ R:C	~.+ Mult(R:C, Exp(L)					

Yamaguchi data: Baseline models

Minimal, null model asserts Father $\perp Son \mid Country$

- > yamaNull <- gnm(Freq ~ (Father + Son) * Country, data = Yamaguchi87,
 + family = poisson)</pre>
- > mosaic(yamaNull, "Country + Son + Father, condvars = "Country", ...)

[FC][SC] Null [FS] association (perfect mobility)

Yamaguchi data: Baseline models

```
But, theory → ignore diagonal cells
> yamaDiag <- update(yamaNull, ~. + Diag(Father, Son):Country)
> mosaic(yamaDiag, ~Country + Son + Father, condvars = "Country", ...)
[FC][SC] Quasi perfect mobility, +Diag(F,S)
```


Yamaguchi data: Fit models for homogeneous association

gnm package makes it easy to fit collections of models, with
simple update() methods

```
> Rscore <- as.numeric(Yamaguchi87$Father)
> Cscore <- as.numeric(Yamaguchi87$Son)
> yamaRo <- update(yamaDiag, ~. + Father:Cscore)
> yamaCo <- update(yamaDiag, ~. + Rscore:Son)
> yamaRpCo <- update(yamaDiag, ~. + Father:Cscore + Rscore:Son)
> yamaRCo <- update(yamaDiag, ~. + Mult(Father, Son))
> yamaFIo <- update(yamaDiag, ~. + Father:Son)

Model Rc: homogeneous row effects, +Father;

Model Co: homogeneous col effects, +iSon

Model Rc: homogeneous row effects, +Father;
```


33 / 53 34 / 53

Yamaguchi data: Models for heterogeneous association

Log-multiplicative (UNIDIFF) models:

GNM model methods:

- Summary methods: print(model), summary(model), ...
- Extractor methods: coef(model), residuals(model), ...

Visualization:

- Diagnostics: plot(model)
- Mosaics, etc: mosaic(model)

Yamaguchi data: Comparing models

glmlist() and related methods facilitate model comparison

```
> models <- glmlist(yamaNull, yamaDiag,
                    yamaRo, yamaRx, yamaCo, yamaCx, yamaRpCo,
                    yamaRpCx, yamaRCo, yamaRCx, yamaFIo, yamaFIx)
> summarise(models)
Model Summary:
         LR Chisq Df Pr(>Chisq)
                                    AIC
                                           BIC
           5591.5 48
                       0.000000 5495.5 5098.5
vamaNull
yamaDiag
           1336.2 33
                       0.000000 1270.2
                                         997.3
vamaRo
            156.0 29
                       0.000000
                                   98.0 -141.9
            147.5 27
vamaRx
                       0.000000
                                   93.5 -129.8
yamaCo
             67.7 29
                       0.000061
                                    9.7 - 230.1
             58.8 27
                                    4.8 - 218.5
vamaCx
                       0.000378
yamaRpCo
             38.8 26
                       0.050895
                                 -13.2 -228.2
             33.0 24
                       0.103405
yamaRpCx
                                 -15.0 -213.5
vamaRCo
             37.7 26
                       0.064227
                                 -14.3 -229.3
yamaRCx
             32.1 24
                       0.123995
                                 -15.9 -214.4
yamaFIo
             36.2 22
                       0.028784
                                   -7.8 - 189.7
             30.9 20
                                   -9.1 -174.5
vamaFIx
                       0.055991
```

Yamaguchi data: Comparing models

glmlist() and related methods facilitate model comparison

> BIC <- matrix(summarise(models)\$BIC[-(1:2)], 5, 2, byrow = TRUE)

- Homogeneous models all preferred by BIC
- (Xie preferred heterogeneous models)
- Little diffce among Col, Row+Col and RC(1) models
- $\bullet \mapsto R:C$ association \sim Row scores (Father's status)

Yamaguchi data: Comparing models

glmlist() and related methods facilitate model comparison

> AIC <- matrix(summarise(models)\$AIC[-(1:2)], 5, 2, byrow = TRUE)

- AIC prefers heterogeneous models
- Row+Col and RC(1) model fit best
- $\bullet \mapsto R:C$ association \sim Father's status, not just scores
- Model summary plots provide sensitive comparisons!

38 / 53

37 / 53

39 / 53

3D mosaic displays

- Loglinear models rely on $\log(n_{ijk}) \sim$ linear model
 - $\bullet \mapsto n_{ijk} \sim \text{multiplicative model}$
- ullet Mosaic displays rely on (nested) use of Area = Height imesWidth to represent frequencies in n-way tables
- How to take this to 3D?

3D mosaic displays

- mosaic3d() in the vcdExtra package
- ullet partitition unit cube \mapsto nested set of 3D tiles, Volume \sim frequency
- uses rgl package: interactive, 3D graphs

> mosaic3d(HEC)

> mosaic3d(HEC, type="expected")

Log odds ratios

• In any two-way, $R \times C$ table, all associations can be represented by a set of $(R-1) \times (C-1)$ odds ratios,

$$\theta_{ij} = \frac{n_{ij}/n_{i+1,j}}{n_{i,j+1}/n_{i+1,j+1}} = \frac{n_{ij} \times n_{i+1,j+1}}{n_{i+1,j} \times n_{i,j+1}}$$

$$\ln(\theta_{ij}) = \begin{pmatrix} 1 & -1 & -1 & 1 \end{pmatrix} \ln \begin{pmatrix} n_{ij} & n_{i+1,j} & n_{i,j+1} & n_{i+1,j+1} \end{pmatrix}^{\mathsf{T}}$$

Log odds ratios

• $\ln \theta_{ij} \sim \mathcal{N}(0, \sigma^2)$, with estimated asymptotic standard error:

$$\widehat{\sigma}(\ln \theta_{ij}) = (n_{ij}^{-1} + n_{i+1,j}^{-1} + n_{i,j+1}^{-1} + n_{i+1,j+1}^{-1})^{1/2}$$

- This extends naturally to $\theta_{ij|k}$ in higher-way tables, stratified by one or more "control" variables.
- Many models have a simpler form expressed in terms of $ln(\theta_{ij})$.
 - e.g., Uniform association model

$$\ln(m_{ij}) = \mu + \lambda_i^A + \lambda_j^B + \gamma \boldsymbol{a}_i \boldsymbol{b}_j \equiv \ln(\theta_{ij}) = \gamma$$

• Direct visualization of log odds ratios permits more sensitive comparisons than area-based displays.

41 / 53

42 / 53

Models for log odds ratios: Computation

- Consider an $R \times C \times K_1 \times K_2 \times ...$ frequency table n_{ij} ..., with factors $K_1, K_2 ...$ considered as strata.
- Let $n = \text{vec}(n_{ij...})$ be the $N \times 1$ vectorization of the table.
- Then, all log odds ratios and their asymptotic covariance matrix can be calculated as:
 - $\ln(\widehat{\boldsymbol{\theta}}) = \boldsymbol{C} \ln(\boldsymbol{n})$
 - $S = Var[\ln(\theta)] = C \operatorname{diag}(n)^{-1} C^{\mathsf{T}}$

where C is an N-column matrix containing all zeros, except for two +1 elements and two -1 elements in each row.

- e.g., for a 2×2 table, $C = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}$
- ullet With strata, C can be calculated as $C = C_{RC} \otimes I_{K_1} \otimes I_{K_2} \otimes \cdots$
- loddsratio() in vcdExtra package provides generic methods (coef(), vcov(), confint(), ...)

Models for log odds ratios: Estimation

ullet A log odds ratio linear model for the $\ln(oldsymbol{ heta})$ is

$$ln(\boldsymbol{\theta}) = \boldsymbol{X}\boldsymbol{\beta}$$

where $oldsymbol{X}$ is the design matrix of covariates

ullet The (asymptotic) ML estimates \widehat{eta} are obtained by GLS via

$$\widehat{oldsymbol{eta}} = \left(oldsymbol{X}^\mathsf{T} oldsymbol{S}^{-1} oldsymbol{X}
ight)^{-1} oldsymbol{X}^\mathsf{T} oldsymbol{S}^{-1} \ln \widehat{oldsymbol{ heta}}$$

where $oldsymbol{S} = \mathsf{Var}[\ln(oldsymbol{ heta})]$ is the estimated covariance matrix

- Standard diagnostic and graphical methods can be adapted to this case.
 - diagnostics: influence plots, added-variable plots, ...
 - visualization: effect plots, ...

Example: Breathlessness & Wheeze in Coal Miners

> fourfold(CoalMiners, mfcol = c(2, 4), fontsize = 18)

- There is a strong + association at all ages
- But can you see the trend?

Example: Breathlessness & Wheeze in Coal Miners

log odds ratios for Wheeze and Breathlessness by Age 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 3.695 3.398 3.141 3.015 2.782 2.926 2.441 2.638

> (lor.CM <- loddsratio(CoalMiners))</pre>

Fit linear and quadratic models in Age using WLS:

45 / 53 46 / 53

Example: Breathlessness & Wheeze in Coal Miners

Plot log odds ratios and fitted regressions: The trend is now clear!

CoalMiners data: Log odds ratio plot

Attitudes toward corporal punishment

A four-way table, classifying 1,456 persons in Denmark (Punishment data in **vcd** package).

- Attitude: approves moderate punishment of children (moderate), or refuses any punishment (no)
- Memory: Person recalls having been punished as a child?
- Education: highest level (elementary, secondary, high)
- Age group: (15-24, 25-39, 40+)

47 / 53

		Age	15–24		25-39		40+	
Education	Attitude	Memory	Yes	No	Yes	No	Yes	No
Elementary	No		1	26	3	46	20	109
_	Moderate		21	93	41	119	143	324
Secondary	No		2	23	8	52	4	44
	Moderate		5	45	20	84	20	56
High	No		2	26	6	24	1	13
	Moderate		1	19	4	26	8	17

Attitudes toward corporal punishment

Fourfold plots: Association of Attitude with Memory

> cotabplot(punish, panel = cotab_fourfold)

Log odds ratio plot

> (lor.pun <- loddsratio(punish))</pre>

```
log odds ratios for memory and attitude by age, education
education
age elementary secondary high
15-24 -1.7700 -0.2451 0.3795
25-39 -1.6645 -0.4367 0.4855
40+ -0.8777 -1.3683 -1.8112
```

Attitudes toward corporal punishment

- Structure now completely clear
- Little diffce between younger groups
- \bullet Opposite pattern for the 40+
- Need to fit an LOR model to confirm appearences (SEs large)
- (These methods are under development)

49 / 53 50 / 53

Summary

- Effective data analysis for categorical data depends on:
 - Flexible models, with syntax to specify possibly complex models — easily
 - Flexible visualization tools to help understand data, models, lack of fit, etc. *easily*
- The vcd package provides very general visualization methods via the strucplot framework
- The gnm package extends the class of applicable models for contingency tables considerably
 - Parsimonious models for structured associations
 - Multiplicative and other nonlinear terms
- The vcdExtra package provides glue, and a testbed for new visualization methods

Further information

```
vcd Zeileis A, Meyer D & Hornik K (2006). The
    Strucplot Framework: Visualizing Multi-Way
    Contingency Tables with vcd. Journal of Statistical
    Software, 17(3), 1-48.
    http://www.jstatsoft.org/v17/i03/
    vignette("strucplot", package="vcd").

gnm Turner H & Firth D (2010). Generalized nonlinear
    models in R: An overview of the gnm package.
    http://CRAN.R-project.org/package=gnm
    vignette("gnm0verview", package="gnm").

vcdExtra Friendly M & others (2010). vcdExtra: vcd
    additions. http:
    //CRAN.R-project.org/package=vcdExtra.
    vignette("vcd-tutorial").
```

51/53 52/53

References I

- Friendly, M. (1994). Mosaic displays for multi-way contingency tables. Journal of the American Statistical Association, 89, 190–200. URL http://www.jstor.org/stable/2291215.
- Friendly, M. (2000). *Visualizing Categorical Data*. Cary, NC: SAS Institute.
- Friendly, M. (2002). A brief history of the mosaic display. *Journal of Computational and Graphical Statistics*, 11(1), 89–107.
- Hartigan, J. A. and Kleiner, B. (1981). Mosaics for contingency tables. In W. F. Eddy (Ed.), *Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface*, (pp. 268–273). New York, NY: Springer-Verlag.
- Hartigan, J. A. and Kleiner, B. (1984). A mosaic of television ratings. *The American Statistician*, 38, 32–35.
- Zeileis, A., Meyer, D., and Hornik, K. (2007). Residual-based shadings for visualizing (conditional) independence. *Journal of Computational and Graphical Statistics*, 16(3), 507–525.