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Outline Brief History of VCD

@ Hartigan and Kleiner (1981, 1984): representing an n-way
contingency table by a "mosaic display,” showing a (recursive)

Introduction . , 7
decomposition of frequencies by “tiles”, area ~ cell frequency.

NOV 1977

Generalized Mosaic Displays: ved Package wees
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Generalized Nonlinear Models: gnm & vcdExtra Packages
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e.g., a 4-way table of viewing TV
programs

Freq "Day + Week + Time +
Network
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3D Mosaics: vcdExtra Package
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Models and Visualization for Log Odds Ratios

=
=
=
=
=
=)
=
55
=
=
=
=
= 2

= 5
== =

SAT
=ae o
EE!
I:l%E

Hi
B
=
SEE]
=
£t
===
=
=/

=
=

=
5

==

=8

=

=
== B

==5

Bs

==

=

E
=

==

gg
=5
8
g

=
5

E:I
EE=
==
===

(=t

=

BS =8
E
=E=—

SUN

/

(PROGRAMS IN HALF HOUR BEGINNING AT
8:00, 8:30, 9:00,9:30, 10:00, 10:30)

3/53 4/53
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Brief History of VCD

@ Friendly (1994): developed the connection between mosaic

displays and loglinear models

o Showed how mosaic displays could be used to visualize both
observed frequency (area) and residuals (shading) from some

model.

o 1% presented at CARME 1995 (thx: Michael & Jorg!)
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Loglinear models
loglm(-A+B)
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@ Related models: logistic regression, polytomous regression, log

odds models, ...

@ Goals: Connect all with visualization methods

LI

=4 -4-2-2--0 002 24 =4

Standardized
residuals.

Brief History of VCD

e Visualizing Categorical Data (Friendly, 2000)
@ But: mosaic-like displays have a long history (Friendly, 2002)!

Birch (1964)

Visualizing von Mayr (1877)

Categorical
Data

Flachen-Diagramm mit zweimaliger Uritertheilur

Unit ng ]
Bt
i 3 | # !
7 |
1
{
i

{
Michael

_Friendly

A

@ 2002: vcd project at TU & WU, Vienna (Kurt Hornik, David
Meyer, Achim Zeileis) — vcd package

Visual overview: R packages

ved gnm
< () N; ()

L R
visualization via generalized linear &
strucplot framework nonlinear models

()
4' < mosaic3d()
’ glmlist() methods
/> LOR models
vcdExtra



Extending mosaic-like displays

Initial ideas for mosaic displays were extended in a variety of ways:

@ pairs plots and trellis-like layouts for marginal, conditional and
partial views (Friendly 1999).

@ varying the shape attributes of bar plots and mosaic displays

o double-decker plots (Hofmann 2001),
e spine plots and spinograms (Hofmann & Theus 2005)

@ residual-based shadings to emphasize pattern of association in
log-linear models or to visualize significance (Zeileis et al.,
2007).

@ dynamic interactive versions (ViSta, MANET, Mondrian):

o linking of several graphs and models
o selection and highlighting across graphs and models
e interactive modification of the visualized models

Familiar example: UCB Admissions

Data on admission to graduate programs at UC Berkeley, by Dept,
Gender and Admission
> structable(Dept ~ Gender + Admit, UCBAdmissions)

Dept A B C D E F
Gender Admit

Male Admitted 512 353 120 138 53 22
Rejected 313 207 205 279 138 351
Female Admitted 89 17 202 131 94 24
Rejected 19 8 391 244 299 317

or, as a two-way table (collapsed over Dept),

> structable(“Gender + Admit, UCBAdmissions)

Admit Admitted Rejected

Gender
Male 1198 1493
Female 557 1278

11 /53

Generalized mosaic displays

ved package and the strucplot framework

@ Various displays for n-way frequency tables
o flat (two-way) tables of frequencies
o fourfold displays
e mosaic displays
e sieve diagrams
e association plots
o doubledecker plots
e spine plots and spinograms
@ Commonalities
o All have to deal with representing n-way tables in 2D
o All graphical methods use area to represent frequency
o Some are model-based — designed as a visual representation
of an underlying statistical model
e Graphical methods use visual attributes (color, shading, etc.)
to highlight relevant statistical aspects

10/53
Fourfold displays for 2 x 2 tables
General ideas:
@ Model-based graphs can show both data and model tests (or
other statistical features)
@ Visual attributes tuned to support perception of relevant
statistical comparisons
Gender: Male @ Quarter circles: radius ~ ,/n;; =

area ~ frequency

@ Independence: Adjoining quadrants
~ align

@ Odds ratio: ratio of areas of
diagonally opposite cells

e Confidence rings: Visual test of
Hy : 6 =1 < adjoining rings
overlap

Admit: Admitted
Admit: Rejected

Gender: Female

12 /53



Fourfold displays for 2 x 2 xk tables Mosaic displays

e Stratified analysis: one fourfold display for each department
@ Each 2 x 2 table standardized to equate marginal frequencies
@ Shading: highlight departments for which H, : 6; # 1

@ Tiles: Area ~ observed frequencies, 7,

e Friendly shading (highlight association pattern):
o Residuals: Tijk = (nijk — m”k)/\/(m”k)
o Color— blue: r >0, red: r <0

Dept: A Dept: C Dept: E . .
Gender: Male Gender: Male Gender: Male ] Saturatlon: ‘T| < 2 (none), > 4 (max), else (mlddle)
313 120 205 53 138 . ) ) ) .
. . s s . @ (Other shadings highlight significance)
2 g = g 2 g
£ s £ 5 5 H @ (Other color schemes: HSV, HCL, ...)
: st £ : KJ :
S S o s 3 S
< < < < < <
Model: ~Dept+Gender+Admit Model: ~(Dept*Gender) + Admit Model: ~(Admit + Gender) * Dept
89 19 202 391 94 299
Gender: Female Gender: Female Gender: Female
Dept: B Dept: D Dept: F
Gender: Male Gender: Male Gender: Male

353 207 138 279 351
2 f N T 3 r \\ T 3 3
Z = 3 = 2
£ L, E L £ 2,
o 9] ° [9) O] [9)
<_(_ 1 < '3 <( '3
ANVARNNVAE :
° >l o ° © o
< < < < < <

17 8 131 244 24 317 Admited  Rejected Admitied  Rejected Admited  Rejected Admited  Rejected Adnitea Rejected dmited Rejected

Admit Admit Admit

Gender: Female Gender: Female Gender: Female
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Mosaic displays: Fitting & visualizing models
Joint independence model: Admit L (Gender, Dept)

Mosaic displays: Fitting & visualizing models
Mutual independence model: Dept | Gender L Admit

> berk.mod0 <- loglm(“Dept + Gender + Admit, data = UCB) > berk.modl <- loglm(~Admit + (Gender * Dept), data = UCB)
> mosaic(berk.mod0, gp = shading_Friendly, ...) > mosaic(berk.modl, gp = shading_ Friendly, ...)
Model: ~Dept+Gender+Admit Model: ~Admit + (Gender*Dept)
Gender Gender
Male Female Male Female
Pearson Pearson
residuals: -- I residuals:
20.2 10.7
R [’”””: 4.0
o . 1 | 2.0
4.0 8
20 & b/ 00
00 T T
-2.0 o ; 1 20
-4.0 ‘””” L,,,,_: -4.0
I-I-
Admitted Rejected Admitted  Rejected Admitted Rejected Admitted  Rejected
Admit Admit



Mosaic displays: Fitting & visualizing models

Conditional independence model: Admit L Gender |Dept
> berk.mod2 <- loglm(~(Admit + Gender) * Dept, data = UCB)
> mosaic(berk.mod2, gp = shading_Friendly, ...)

Model: ~(Admit + Gender) * Dept

Gender
Male Female

' ' 2 Pearson

' | b residuals:
< ' m 2.33

. 1 | 2.00

. D } : o
I ' o
@ ' !
[a]

0 HS

Admitted Rejected Admitted  Rejected

Admit

The strucplot framework

A general, flexible system for visualizing n-way frequency tables:

@ integrates tabular displays, mosaic displays, association plots,
sieve plots, etc. in a common framework.

@ n-way tables: variables partitioned into row and column
variables in a “flat” 2D display using model formulae

e arguments allow for fitting any loglinear model via loglm() in
the MASS package.

@ high-level functions for all-pairwise views (pairs()),
conditional views (cotabplot()).

@ low-level functions control all aspects of labeling, shading,
spacing, etc.

19/53

Double decker plots

@ Visualize dependence of one categorical (typically binary)

variable on predictors

@ Formally: mosaic plots with vertical splits for all predictor

dimensions, highlighting response

|

Admit

Rejected

-- Admitted

Male [Fe Male
A B

[ Female
[ ER——

Male Female [Mal [Female [Male _ [Femalé Gender
C D E F Dept

The strucplot framework

Components of the strucplot framework:

Level 2 |Coordinating

Level 1

pairs(), cotabplot()
mosaic(), sieve(), assoc(), doubledecker()
strucplot ()

Graphical appearance contral (“grapcon”) functions / generators
for strucplot () (Only the generators are shown below)

ruc_mosaic(), struc_sieve(),

st
Strucplot core | sc

ruc_assoc ()

Workhorse

Functions

Labeling
Legend

labeling border(},

labeling cells()

legend resbased(),

labeling list(),

legend fixed()

Shading

shading hsv(),

shading hcl{(),

Parameter
Functions

Spacing

shading_Friendly(), shading_max()

spacing_equal(), spacing_conditional(),
spacing highlighting(), spacing increase()

18/53
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Pairwise bivariate plots

@ Visualize all 2-way views of different independence models in
n-way tables: type=

"pairwise": Burt matrix: bivariate, marginal views

"total": pairwise plots for mutual independence

"conditional": marginal independence, given all others

e "joint": joint independence of all pairs from other variables

@ Panel functions for upper, lower, diagonal panels

e upper, lower: mosaic, assoc, sieve, ...
o diagonal: barplot, text, mosaic, ...

e DD" ““““““““ [ Z ™ DD"
BEEN oo ERER G R
o BRI WOW =5 m m_ o [

!9 /IR |I|H|H == [0 I

=1 il | == =5
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Loglinear models and generalized linear models

@ Loglinear models
o Model fitting in the ved package is based on loglinear models

i) =
i) =

o Fit using iterative proportional fitting (Loglm())
o — No standard errors, limited syntax for expressing models

p+ A+ 2P =[4][B]=~a + B
A B AB _ _
A AT AT A =[AB]=~A * B

log(m
log(m

@ Generalized linear models
o Link function:

9(n) = n(x)
= fo+ Pz + - Prrk
e Variance function: Var(y|x) = f(u)

o Loglinear models as special cases with log link, Poisson
dist” — Var(y | ) = u

E(y|z)

23/53

Pairwise bivariate plots
> pairs(UCBAdmissions, shade=TRUE, space=0.2,

+ diag_panel = pairs_diagonal_mosaic(offset_varnames=-3, ...))

Admited __ Rejected

Admit

Male Female

Gender

A B C DEF

Generalized nonlinear models: gnm package

@ A generalized non-linear model (GNM) is the same as a GLM,

except that we allow

g(p) = n(z; B)

where n(x; 3) is nonlinear in the parameters 3.

@ GNMs are very general, combining:
o classical nonlinear models
e standard link and variance functions for GLM families

@ In the context of models for categorical data, GNMs provide:
e parsimonious models for structured association
e models for multiplicative association (e.g., Goodman's RC(1)

model)

e multiple instances of multiplicative terms (RC(m
o user-defined functions for custom models

) models)

22/53
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Generalized nonlinear models: gnm package

Some models for structured associations in square tables

@ quasi-independence (ignore diagonals)
> gnm(Freq ~ row + col + Diag(row, col), family = poisson)
@ symmetry ()\50 = )\ﬁc)

> gnm(Freq ~ Symm(row, col), family = poisson)

@ quasi-symmetry = quasi + symmetry

> gnm(Freq ~ row + col + Symm(row, col), family = poisson)

o fully-specified “topological” association patterns
> gnm(Freq ~ row + col + Topo(row, col, spec = RCmatrix), ...)
All of these are actually GLMs, but the gnm package provides
convienence functions Diag, Symm, and Topo to facilitate model
specification.

25/53

Generalized nonlinear models: vedExtra package

Provides glue, extending the ved package visualization methods for
glm and gnm models

@ mosaic.glm() > mosaic methods for class "glm" and class
"gnm" objects
@ sieve.glm(), assoc.glm() > sieve diagrams and
association plots
@ Generalized residual types:
e Pearson
o deviance
e standard (adjusted) — unit asymptotic variance
@ Model lists:
o glmlist() — methods for collecting, summarizing and
visualizing a list of related models
e Kway() — generate & fit models of form ~(A+B+...)".

27 /53

Nonlinear models

@ Nonlinear terms are specified in model formulae by functions
of class "nonlin"

@ Basic nonlinear functions: Exp(), Inv(), Mult ()

@ Nonlinear terms can be nested. e.g. for a UNIDIFF model:

log tijk = i + Bjk + exp(k)dij

the exponentiated multiplier is specified as Mult (Exp(C), A:B)
@ Multiple instances. e.g., Goodman’s RC(2) model:

log Pre = Qp + Be + 7r1501 + ’Yr25c2

specified using: instances(Mult(A,B), 2)
@ user-defined functions of class "nonlin" allow further
extensions

All of these are fully general, providing residuals, fitted values, etc.

Models for ordered categories

Consider an R x C' table having ordered categories

@ In many cases, the RC association may be described more
simply by assigning numeric scores to the row & column
categories.

@ For simplicity, we consider only integer scores, 1, 2, ... here

@ These models are easily extended to stratified tables

R:C model e df Formula
Uniform association | i X j x~v | 1 it

Row effects Qi X j (I—-1) R:j

Col effects i X f3; (J—1) i:C
Row+Col eff joy +if; | I +J—3 R:j + i:C
RC(1) Gy xy | IT+J =3 Mult (R, C)
Unstructured (R:C) MEC (I -1)(J—1) | R:C

26 /53
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Example: Social mobility in US, UK & Japan First thought: try MCA

> library(ca)
> Yama.dft <- expand.dft(Yamaguchi87)
> yama.mjca <- mjca(Yama.dft)
Data from Yamaguchi (1987): Cross-national comparison of > plot(yama.mjca, what = c("none", "all"))

occupational mobility in the U.S., U.K. and Japan. Re-analysis by

‘Yamaguchi data: Mobility in US, UK and Japan, MCA

Xie (1992).
> Yama.tab <- xtabs(Freq ~ Father + Son + Country, data = Yamaguchi87) s
> structable(Country + Son ~ Father, Yama.tab[, , 1:2]) @ Dimensions seem to
Country  US UK g 3 et M o have reasonable
S ountryUK _SonUpM Fa . .
Son UpNM LoNM UpM LoM Farm UpNM LoNM UpM LoM Farm & 4 Interpretations
Father % 3 - CountryUS CountryJapan nd .
UpNM 1275 364 274 272 17 474 129 87 124 11 g « - @ 2"% glance: do they?
LoNM 1055 597 394 443 31 300 218 171 220 8 ;o onton
8 < )
UpM 1043 587 1045 951 47 438 254 669 703 16 8 m/i How do they relate to
LoM 1159 791 1323 2046 52 601 388 932 1789 37 . theories of social
Farm 666 496 1031 1632 646 76 56 125 295 191 a FeertotM mObI|Ity?
See: demo("yamaguchi-xie", package="vcdExtra") 7 @ How to understand
Country effects?

T T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Dim 1: Farm vs. Other (52.6%)

29/53 30/53

Models for stratified mobility tables Yamaguchi data: Baseline models

Minimal, null model asserts Father L Son | Country
> yamaNull <- gnm(Freq ~ (Father + Son) * Country, data = Yamaguchi87,

@ Perfect mobility: Freq ~(R+C)*L + family = poisson)

Baseline models:

Qo (Quaﬂ-peﬁbctrnobiﬁnﬁ Freq "(R+C)*L + Diag(R, C) > mosaic(yamaNull, ”?oyntry + Son +.Father, condvars = "Country", ...)
[FC][SC] Null [FS] association (perfect mobility)

Layer models: Sons status

@ Homogeneous: no layer effects B S e s— N pearson

o Heterogeneous: e.g., pfre " = 071 exp(vf) s
Extended models: Baseline & Layer model( R:C model ) 5

Layer model . E

R:C model Homogeneous log multiplicative :% — g »

Row effects | ~.+ R:j ~.+ Mult(R:j, Exp(L)) 48

Col effects ~.+ i:C ~.+ Mult(i:C, Exp(L)) = E— - e

Row+Col eff | ~.+ R:j + i:C | ~.+ Mult(R:j + i:C, Exp(L))

RC(1) ~.+ Mult(R, C) | ~.+ Mult(R, C, Exp(L)) g g;g}g#o

Full R:C ~.+ R:C ~.+ Mult(R:C, Exp(L) v

31/53 32/53



Yamaguchi data: Baseline models

But, theory +— ignore diagonal cells
> yamaDiag <- update(yamaNull, ~. + Diag(Father, Son):Country)
> mosaic(yamaDiag, ~“Country + Son + Father, condvars = "Country",
[FC][SC] Quasi perfect mobility, +Diag(F,S)
Son's status

UpNM LoNM UpM LoM Farm

Pearson
residuals:
17.1

4.0
20
0.0
-2.0
-4.0

%)
=
s
2]
»
7}
S
'

UK

-11.9

Japan

33/

Yamaguchi data: Models for heterogeneous association

Log-multiplicative (UNIDIFF) models:

yamaRx <- update(yamaDiag, ~
yamaCx <- update(yamaDiag, ~
yamaRpCx <- update(yamaDiag,

. + Mult(Rscore:Son, Exp(Country)))
~ . + Mult(Father:Cscore +

~ . + Mult(Father,Son, Exp(Country)))
~ . + Mult(Father:Son, Exp(Country)))

yamaRCx <- update(yamaDiag,
yamaFIx <- update(yamaDiag,

VV 4+ V VYV

GNM model methods:

@ Summary methods: print(model), summary(model), ...
@ Extractor methods: coef (model), residuals(model), ...

Visualization:

@ Diagnostics: plot(model)
@ Mosaics, etc: mosaic(model)

35/

Rscore:Son, Exp(Country)))

/53

. + Mult(Father:Cscore, Exp(Country)))

53

Yamaguchi data: Fit models for homogeneous association

gnm package makes it easy to fit collections of models, with
simple update () methods

Rscore
Cscore
yamaRo
yamaCo

V V VVVYVYV

Model Ro: homogeneous row effects, +Father;j

as.numeric(Yamaguchi87$Father)

as.numeric (Yamaguchi87$Son)
update (yamaDiag,
update (yamaDiag,
yamaRpCo <- update(yamaDiag,
yamaRCo <- update(yamaDiag,
yamaFIo <- update(yamaDiag,

. + Father:Son)

. + Father:Cscore)
~. + Rscore:Son)

. + Father:Cscore + Rscore:Son)
. + Mult(Father, Son))

Model Co: homogeneous col effects, +i:Son

Model RCo: homogeneous RC(1)

Yamaguchi data: Comparing models

glmlist () and related methods facilitate model comparison

> models <- glmlist(yamaNull, yamaDiag,
yamaRo, yamaRx, yamaCo, yamaCx, yamaRpCo,
yamaRpCx, yamaRCo, yamaRCx, yamaFIo, yamaFIx)

+
+

> summarise(models)

Model Summary:
LR Chisq

yamaNull
yamaDiag
yamaRo
yamaRx
yamaCo
yamaCx
yamaRpCo
yamaRpCx
yamaRCo
yamaRCx
yamaFIo
yamaFIx

5591.
1336.
156.
147.
67.
58.
38.
33.
37.
32.
36.
30.

ON P NO0WO0WwNULOoONO

Df Pr(>Chisq)

48
33
29
27
29
27
26
24
26
24
22
20

0.
.000000
.000000
.000000
.000061
.000378
.050895
.103405
.064227
.123995
.028784
.055991

[eNeNeoNeoNeNeoNeoNeNeoNeoNe]

000000

5495.
1270.
98.
93.

-13.
-15.
-14.
-15.
-7.
-9.

BIC

5098.

997.
-141.
-129.
-230.
-218.
-228.
-213.
-229.
-214.
-189.
-174.

NP> WOITN O 00O wOo
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Yamaguchi data: Comparing models

BIC

3D

Hair color

glmlist () and related methods facilitate model comparison

> BIC <- matrix(summarise(models)$BIC[-(1:2)], 5, 2, byrow = TRUE)

‘Yamaguchi—-Xie models: R:C model by Layer model Summary

@ Homogeneous models
all preferred by BIC

-140

-160
1

@ (Xie preferred

Country model
heterogeneous models)

log multiplicative e

ol . @ Little diff*® among Col,
h )
i omoseeeLm Row+Col and RC(1)
& models
g | B @ — R:C association ~
S— Row scores (Father's
T T T T T
row eff col eff row+col RC(1) R:C StatUS)
Father—Son model
37/53
mosaic displays
@ Loglinear models rely on log(n;;) ~ linear model
e > n;;; ~ multiplicative model
@ Mosaic displays rely on (nested) use of Area = Height x
Width to represent frequencies in n-way tables
@ How to take this to 3D?
Mutual independence: ~Hair+Eye+Sex Mutual independence: Expected frequencies
Eye color Eye color
Brown HazelGreen Blue Brown Hazel Green Blue
g ([ [S((— -
Gl I | s ' g [ —— '
c D g 4.00 c DD = 4.00
12} % uE)m
0.00 * 0.00
7] I | I | N |
l l -2.00 3 I | N | -2.00

-4.19
p-value =
<2.22e-16

-4.19
p-value =
<2.22e-16

FemaleMaleemaltele Female
FemaleMaleFema¥tale
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Yamaguchi data: Comparing models

AIC

glmlist () and related methods facilitate model comparison

> AIC <- matrix(summarise(models)$AIC[-(1:2)], 5, 2, byrow = TRUE)

‘Yamaguchi—-Xie models: R:C model by Layer model Summary

100
1

@ AIC prefers
heterogeneous models

@ Row+Col and RC(1)
model fit best

80
1

@ — R:C association ~
Father's status, not just
scores

Count del
ounity moce @ Model summary plots

logPiaRGHHEAYE B . .-
: \Of provide sensitive
(=]
& T T T T T H |
row eff col eff row+col RC(1) R:C comparisons:

Father—Son model
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3D mosaic displays

> mosaic3d (HEC)

@ mosaic3d() in the vcdExtra package

@ partitition unit cube — nested set of 3D tiles, Volume ~
frequency

@ uses rgl package: interactive, 3D graphs

> mosaic3d(HEC, type="expected")

Hair

Black
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Log odds ratios

@ In any two-way, R x C' table, all associations can be
represented by a set of (R — 1) x (C' — 1) odds ratios,

0, — nij/ni+1,j Mg X N1 41
1] -

Nij41/Mit1 41 Miglj X Nij4+1

ln(eij)Z( 1 -1 -1 1 )ln( Nig Ni41,5 Mij+1 T41,5+1 )T

joo j C

i I -1 | 1 1
i+1 1 B

R -1 -1
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Models for log odds ratios: Computation

@ Consider an R x C x K1 x Ko x ... frequency table n;;...,
with factors K1, Ko ... considered as strata.

o Let n = vec(nj...) be the N x 1 vectorization of the table.

@ Then, all log odds ratios and their asymptotic covariance
matrix can be calculated as:

~

e In(@) = C'ln(n)
o S = Var[ln(8)] = C diag(n)"* CT
where C' is an N-column matrix containing all zeros, except
for two +1 elements and two —1 elements in each row.
oeg,fora2x2table C=[1 -1 -1 1]
@ With strata, C can be calculated as
C=Cpre®Ig @I,
@ loddsratio() in vedExtra package provides generic
methods (coef (), vcov(), confint(), ...)

Log odds ratios

e Inb;; ~ N(0,0?), with estimated asymptotic standard error:
j
N 1, -1 —1 1 1/2
d(Inb;;) = (nij +n Tt ni+1,j+1) /

@ This extends naturally to 6, in higher-way tables, stratified
by one or more “control” variables.

@ Many models have a simpler form expressed in terms of
11’1(9”)

e e.g., Uniform association model
In(mi;) = p+ A+ A7 +ya:b; = n(0;) =

@ Direct visualization of log odds ratios permits more sensitive
comparisons than area-based displays.

Models for log odds ratios: Estimation

@ A log odds ratio linear model for the In(0) is
In(6) = X

where X is the design matrix of covariates
@ The (asymptotic) ML estimates B are obtained by GLS via

3= (XT51X>_1 XTS o

where S = Var[In(0)] is the estimated covariance matrix

e — Standard diagnostic and graphical methods can be adapted
to this case.

o diagnostics: influence plots, added-variable plots, ...
e visualization: effect plots, ...
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Example: Breathlessness & Wheeze in Coal Miners

> fourfold(CoalMiners,

Age: 25-29
Wheeze: W

Age: 30-34
Wheeze: W

mfcol =

c(2, 4), fontsize =

Age: 35-39
Wheeze: W

18)

Age: 40-44
Wheeze: W

Breathlessness: B

105

9

Breathlessness: NoB

Breathlessness: B

177 6.

19

Breathlessness: NoB

Breathlessness: B

257

48

5

Breathlessness: NoB

Breathlessness: B

6, 54

Breathlessness: NoB

273 7

Wheeze: NoW

Age: 45-49
Wheeze: W

Wheeze: NoW

Age: 50-54
Wheeze: W

Wheeze: Now

Age: 55-59
Wheeze: W

Wheeze: NoW

Age: 60-64
Wheeze: W

Breathlessness: B

6!

324

88

Breathlessness: NoB

12

Breathlessness: B

245 2

40, 117

Breathlessness: NoB

Breathlessness: B

40

225

152

67

Breathlessness: NoB

Breathlessness: B

37, 106

Breathlessness: NoB

132 26

Wheeze: Now

Wheeze: NoW

Wheeze: NowW

@ There is a strong + association at all ages

@ But can you see the trend?

Wheeze: Now
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Example: Breathlessness & Wheeze in Coal Miners

Plot log odds ratios and fitted regressions: The trend is now clear!

Log odds ratio: Wheeze x Breathlessness

26 28 30 32 34 36 38

2.4

CoalMiners data: Log odds ratio plot

‘

T
25-29

T
30-34

T
35-39

T
40-44

Age

45-49

T
50-54

T
55-59

T
60-64
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Example: Breathlessness & Wheeze in Coal Miners

> (lor.CM <- loddsratio(CoalMiners))

log odds ratios for Wheeze and Breathlessness by Age

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
3.695 3.398 3.141 3.015 2.782 2.926 2.441 2.638

Fit linear and quadratic models in Age using WLS:

>

>
>
>
>

Analysis
Model 1:
Model 2:

1
2

Attitudes toward corporal punishment

A four-way table, classifying 1,456 persons in Denmark

lor.CM.df <- as.data.frame(lor.CM)
age <- seq(25, 60, by = 5)
CM.modl <- 1m(LOR ~ age, weights=1/ASE"2, data=lor.CM.df)
CM.mod2 <- Im(LOR ~ poly(age,2), weights=1/ASE~2, data=lor.CM.df)
anova(CM.mod1, CM.mod2)

Res.Df
6 356
5 349

of Variance Table
LOR ~ age
LOR ~ poly(age, 2)

RSS Df Sum of Sq

1 6.85 0.1

F Pr(>F)

0.77

(Punishment data in ved package).

@ Attitude: approves moderate punishment of children

(moderate), or refuses any punishment (no)

@ Memory: Person recalls having been punished as a child?

@ Education: highest level (elementary, secondary, high)
e Age group: (15-24, 25-39, 40+)

Age 15-24 25-39 40+
Education  Attitude | Memory Yes No Yes No Yes No
Elementary No 1 26 3 46 20 109
Moderate 21 93 41 119 143 324
Secondary No 2 23 8 52 4 44
Moderate 5 45 20 84 20 56
High No 2 26 6 24 1 13
Moderate 1 19 4 26 8 17
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Attitudes toward corporal punishment

Fourfold plots: Association of Attitude with Memory

> cotabplot(punish, panel = cotab_fourfold)

age = 15-24

education = elementary
ooy yes

age = 15-24

education = secondary
ooy yes

age = 15-24
education = high

age = 25-39 age = 25-39
education = elementary | education = secondary

memory:yes memory. ye: “memory:yes

X

age = 40+ age = 40+
education = elementary | education = secondary

yove: oy ye:

Summary
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o Effective data analysis for categorical data depends on:
o Flexible models, with syntax to specify possibly complex
models — easily
o Flexible visualization tools to help understand data, models,
lack of fit, etc. — easily
@ The ved package provides very general visualization methods
via the strucplot framework
@ The gnm package extends the class of applicable models for
contingency tables considerably
e Parsimonious models for structured associations
o Multiplicative and other nonlinear terms
@ The vcdExtra package provides glue, and a testbed for new
visualization methods
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Log odds ratio plot

> (lor.pun <- loddsratio(punish))

log odds ratios for memory and attitude by age, education

education
age elementary secondary high
15-24 -1.7700 -0.2451 0.3795
25-39 -1.6645 -0.4367 0.4855
40+ -0.8777 -1.3683 -1.8112

Attitudes toward corporal punishment

Structure now completely clear

Opposite pattern for the 40+
Need to fit an LOR model to

Log odds ratio: Attitude x Memory
-1
1
]
11 B
NG
-J"-;K
] _'_"_:_:_:_.' =
_____l/'_'_'_'_'_____

(These methods are under
N : 2 development)

elementary secondary high

Education

Further information

vced Zeileis A, Meyer D & Hornik K (2006). The
Strucplot Framework: Visualizing Multi-Way
Contingency Tables with ved. Journal of Statistical
Software, 17(3), 1-48.
http://www.jstatsoft.org/v17/103/
vignette("strucplot", package="vcd").

Turner H & Firth D (2010). Generalized nonlinear
models in R: An overview of the gnm package.
http://CRAN.R-project.org/package=gnm
vignette ("gnmOverview", package="gnm").
Friendly M & others (2010). vcdExtra: vcd
additions. http:
//CRAN.R-project.org/package=vcdExtra.
vignette("vcd-tutorial").

gnm

vcdExtra

Little diff*® between younger groups

confirm appearences (SEs large)
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http://www.jstatsoft.org/v17/i03/
http://CRAN.R-project.org/package=gnm
http://CRAN.R-project.org/package=vcdExtra
http://CRAN.R-project.org/package=vcdExtra
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