| Extending |  |  |
| :---: | :---: | :---: |
|  | Mosaic |  |
|  |  | Displays |

# Marginal, Partial, and Conditional Views of Categorical Data 

Michael Friendly<br>York University<br>July, 1998

Data Visualization in Statistics Workshop

## Outline

- 1. Introduction - graphical methods for categorical data
- 2. Fourfold displays
- 3. Mosaic displays

■ Fitting loglinear models with mosaic displays

- Examples
- 4. Mosaic matrices

■ Marginal views

- Conditional views
- 5. Mosaic coplots for categorial data


## Graphical Methods for Categorical Data

- Goals: develop graphical methods for categorical data which serve needs of
- reconnaissance-a preliminary overview of complex terrain;
- exploration-help detect patterns or unusual circumstances, or suggest hypotheses;
- model building \& diagnosis-critique a fitted model as a reasonable statistical summary.
- Attempt to integrate these with methods for continuous data
- Categorical data needs a different visual representation: count $\sim$ area (Friendly, 1995)
- Static vs Dynamic displays


## A dim idea: Two-way table display

- For a two-way table, the saturated log-linear model is formally equivalent to a two-factor ANOVA model.

$$
\begin{gathered}
\log \left(m_{i j}\right)=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{i j}^{A B} \\
E\left(Y_{i j}\right)=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}
\end{gathered}
$$

- Suggests use of Tukey's two-way display of log(Freq)
- Rows and columns ordered by mean log(Freq)
- Vertical position shows fitted log(Freq) under independence
- Residuals show deviations from independence

O But: main effect ordering not useful for counts - interest is on interactions


Hair2way

## Graphic metaphor: count $\sim$ area

- $A \perp B \longrightarrow p_{i j}=p_{i+} \times p_{+j}$
- $\therefore$ each cell can be drawn as a rectangle, with area $=$ height $\times$ width $=$ frequency .


Figure 1: Expected frequencies under independence.

## Fourfold display for $2 \times 2 \times 2$ tables

- Quarter circles: area $\sim$ frequency
- Odds ratio: $\theta=$ ratio of diagonally opposite cells
- Standardize: equal margins, same odds ratip (IPF)
- Independence: Adjacent segments equal
- Confidence rings: Overlap $\longleftrightarrow$ Accept $H_{0}: \theta=1$

Ex: Berkeley admissions data $\theta=\operatorname{Pr}\left(\frac{\text { Admit } \mid \text { Male }}{\text { Admit } \mid \text { Female }}\right)=1.84$


Sex: Female

Figure 2: Berkeley admissions: Evidence for sex bias?

## Multiple strata

- Multiple strata - one for each
- (Different rates of acceptance not visible)


Figure 3: Berkeley admissions, by Department

## Visualization principles

- Controlled comparison - compare, holding other things constant
$■$ Hold angles constant, vary radius $\longrightarrow$ corresponding cells in same position.
■ Equate row, col, or both margins, while keeping odds ratio fixed
- Visual impact - distinguish what should stand out $(\theta \neq 1)$


## Mosaic displays

- Width $\sim$ one set of marginal probabilities, $p_{i+}$
- Height $\sim$ conditional probabilities, $p_{j \mid i}$
- area $\sim$ count, $n_{i j}$.
- Independence: Shown when cells align


Black
Brown
Red
Blond

Figure 4: Basic mosaic display for hair-color and eye color data.

## Enhanced mosaic display

- Display residuals, $d_{i j}$, by color and shading

■ Sign: color $\left(d_{i j}>0, d_{i j}<0\right)$ Magnitude: $\left|d_{i j}\right| \sim$ darkenss

- Reorder categories - opposite corner pattern (CA scores)
- Independence: Cells are empty! ( $d_{i j} \approx 0$ : black)


Figure 5: Extended mosaic, reordered and shaded.

## Multi-way tables

- Generalizes to $n$-way tables (divide recursively)
- Can fit any log-linear model, e.g., [AB][C], [AC][BC], etc.
- Shows both the DATA (area) and RESIDUALS (shading)

Example: Joint Independence, $G^{2}(15)=19.86$. (Do blue-eyed blonds have more fun?)


Figure 6: Three-way mosaic, Joint independence.

## Sequential plots \& models

- Sequential construction, for given variable ordering

$$
\begin{equation*}
p_{i j k \ell \cdots}=\overbrace{\{A B C\}}^{\{A B\}} \overbrace{p_{i} \times p_{j \mid i}}^{\left\{x p_{k \mid i j}\right.} \times p_{\ell \mid i j k} \times \cdots \tag{1}
\end{equation*}
$$

- Fit a model to each sequential marginal subtable: $\{A\},\{A B\},\{A B C\}, \ldots$
- Sequential models of joint independence partition the $G^{2}$ for mutual independence:

$$
G_{[A][B][C][D]}^{2}=G_{[A][B]}^{2}+G_{[A B][C]}^{2}+G_{[A B C][D]}^{2}
$$




| Model | df | $G^{2}$ |
| :--- | ---: | ---: |
| $[H][E]$ | 9 | 146.44 |
| $[H, E][S]$ | 15 | 19.86 |
| $[H][E][S]$ | 24 | 155.20 |

## Visualization principles

- Nested multiples

■ Each mosaic shows its own marginal subtables (spacing $\rightarrow$ visual grouping)

- Shows DATA + RESIDUALS
- Association ordering - sort the display by the effects to be observed
- Visual impact - distinguish what should stand out (patterns of residuals)
- Decomposition - show partitions of model fit in coherent ways


## Example: Survival on the Titanic

Data from Dawson (1995) on the breakdown of 2201 passengers and crew:

Table 1: Survival on the Titanic

|  |  |  | Class |  |  |  |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| Survived | Age | Gender | 1 st | 2nd | 3rd | Crew |
| No | Adult | Male | 118 | 154 | 387 | 670 |
| Yes |  |  | 4 | 13 | 89 | 3 |
| No | Child |  | 0 | 0 | 35 | 0 |
| Yes |  |  | 0 | 0 | 17 | 0 |
| No | Adult | Female | 57 | 14 | 75 | 192 |
| Yes |  |  | 140 | 80 | 76 | 20 |
| No | Child |  | 5 | 11 | 13 | 0 |
| Yes |  |  | 1 | 13 | 14 | 0 |

Order of variables: Class, Gender, Age, Survival

Class $\times$ Gender:

- \% males decreases with increasing economic class,
- crew almost entirely male

Survival on the Titanic


Figure 7: Titanic data: Class and Gender

3 way: $\{$ Class, Gender $\} \perp$ Age ?

- Overall proportion of children quite small (about $5 \%$ ).
- \% children smallest in 1st class, largest in 3rd class.
- Residuals: greater number of children in 3rd class (families?)


Figure 8: Titanic data: Class, Gender, Age

4 way: $\{$ Class, Gender, Age $\} \perp$ Survival ?

- Minimal null model when C, G, A are explanatory
- More women survived, but greater $\%$ in 1st \& 2nd
- Among men, \% survived increases with class.
- Fits poorly: $\left(G^{2}(15)=671.96\right)$ : Add $S X$ terms


Figure 9: Class, Gender, Age, and Survival, Joint independence

Main effects of Class, Gender and Age on Survival:
$[C G A][C S][G S][A S]$

- Fit is much improved $\left(\Delta G^{2}(5)=559.4\right)$, but not good $\left(G^{2}(10)=112.56\right)$.
- $\Rightarrow$ Interactions among Class, Gender and Age on Survival.

Main effects of Age, Class, Sex on Survival


Figure 10: Main effects of Age, Gender and Class on Survival
"women and children first" $\longrightarrow$ model $[C G A][C S][G A S]$

- Model improved slightly, but still not good $\left(G^{2}(9)=94.54\right)$.


Figure 11: Main effects + Age*Gender on Survival

Class interacts with Age and Gender: [CGA][CGS][CAS]

- $G^{2}(4)$ now 1.69 , a very good fit (too good?).


Figure 12: Main effects + Age*Gender + Class*Gender

## Titanic Conclusions

- Regardless of Age and Gender, lower economic status $\longrightarrow$ increased mortality;
- Differences due to Class were moderated by both Age and Gender.
- Women more likely overall to survive than men, but
- Class $\times$ Gender: women in 3rd class did not have a significant advantage, while men in 1st class did (compared to men in other classes).
- Class $\times$ Age: no children in 1st or 2nd class died, but nearly two-thirds in 3rd class died;
- For adults, mortality $\uparrow$ as economic class $\downarrow$.
- Summary statement: "women and children (according to class), then 1st class men".


## Mosaic matrices

Quantitative data: scatterplot matrix shows $p \times(p-1)$ marginal views in a coherent display;

- Each scatterplot a projection of data
- Detect patterns not easily seen in separate graphs.
- Only shows bivariate relations.

Categorical data: Mosaic matrix shows all $p \times(p-1)$ marginal views

- Each mosaic shows bivariate relation
- Fit: marginal independence
- Direct visualization of the "Burt" matrix analyzed in MCA to account for all pairwise associations among $p$ variables

$$
B=Z^{\top} \operatorname{diag}(n) Z=\left[\begin{array}{lll}
N_{[1]} & N_{[12]} & \cdots \\
N_{[21]} & N_{[2]} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

where $N_{[i]}=$ diagonal matrix of one-way margin; $N_{[i j]}=$ two-way margin for variables $i$ and $j$,

## Titanic: Multiple Correspondence Analysis

- 2D solution: $50 \%$ of all pairwise assoc ( $3 \mathrm{D}=67 \%$ )
- Dim1: Gender, Survival; Dim2: Class, Age
- Binary factors: Distance from origin $\sim p_{i}^{-1}$
- Mosaic matrix: $100 \%$, makes form of association explicit

Survival on the Titanic


## Example: Berkeley admissions

- Admission, Gender: overall, more males admitted
- Dept A, B: highest admission rate; E, F lowest
- Males apply most to $\mathrm{A}, \mathrm{B}$, women more to $\mathrm{C}-\mathrm{F}$.


Reject







Figure 14: Mosaic matrix of Berkeley admissions.

## Conditional plots for quantitative data

Iris data - scatterplot matrix

| SepalLen |  |  |  |
| :---: | :---: | :---: | :---: |




Figure 15: Scatterplot matrix for Iris data

## Conditional plots for quantitative data

Iris data - conditional scatterplot matrix

- Plot $\widetilde{X_{i}}=X_{i}-\widehat{X_{i}} \mid$ others vs. $\widetilde{X_{j}}=X_{j}-\widehat{X_{j}} \mid$ others $\forall i, j$
- Removes species effect (correlated means)


Figure 16: Conditional scatterplot matrix for Iris data

## Conditional plots for quantitative data

$$
\begin{align*}
\rho_{i j \mid} \text { others }=0 & \Longleftrightarrow \sigma^{i j}=0  \tag{2}\\
& \Longleftrightarrow X_{i} \perp X_{j} \mid \text { others }
\end{align*}
$$

- Zero partial correlation plays same role for quantitative variables as two-way terms in graphical log-linear models.
- Conditional scatterplot matrix provides a visualization of the conditional independence relations.
- When $Y$ is a response, panels in the row for $Y$ are just the partial regression (added variable) plots. Other rows treat each variable in turn as a response.


Figure 17: Independence graph for Iris Data

## "Mixed" models: Categorical and Continuous Data

- Marginal views
- $X, Y$ pairs: scatterplot
- $A, B$ pairs: mosaic
- $X, A$ pairs: boxplot
- Conditional views

Fit graphical mixed model: $A B / / X Y$ (Edwards, 1995) ?
■ Fit GLMs:

$$
\begin{aligned}
& g\left(\mu_{i}\right)=x_{\text {others }}^{\top} \beta \\
& g\left(\mu_{j}\right)=x_{\text {others }}{ }^{\top}{ }^{\top}
\end{aligned}
$$

with identity link for $X, Y, \log$ link for $A, B$
Plot residuals as in marginal views

## 'Mixed" models: Categorical and Continuous Data

Iris data - Mixed scatterplot matrix

- Discrete: Species, SepalLen (divided into thirds)
- Continuous: PetalLen, PetalWid


Figure 18: Mixed scatterplot matrix for Iris data

## Example: A 5-way table

Heckman \& Willis 1977 data:

Table 2: Labour force participation of married women 1967-1971

| 1969 | mployed? |  | 1968 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Yes |  | No |  |
|  |  |  | 1967 |  |  |  |
|  | 1970 | 1971 | Yes | No | Yes | No |
| Yes | Yes | Yes | 426 | 73 | 21 | 54 |
| No |  |  | 11 | 9 | 8 | 36 |
| Yes | No |  | 16 | 7 | 0 | 6 |
| No |  |  | 12 | 5 | 5 | 35 |
| Yes | Yes | No | 38 | 11 | 7 | 16 |
| No |  |  | 2 | 3 | 3 | 24 |
| Yes | No |  | 47 | 17 | 9 | 28 |
| No |  |  | 28 | 24 | 43 | 559 |

## Marginal relations

- All years strongly associated: employment status persists
- Strength of association $\downarrow$ as lag $\uparrow$.


Figure 19: Mosaic matrix for pairwise associations

## Conditional relations

- 3-way plots: row $\perp$ other $\mid$ col ?
- Employment status persists over several years.














1971

Figure 20: Mosaic matrix for conditional associations

## Fitting Markov models

Table 3: Markov chain models fit to Heckman-Willis data

| Order | Model | df | $G^{2}$ | $p$ |
| :---: | :---: | ---: | ---: | ---: |
| M1 | $[67,68][68,69][69,70][70,71]$ | 22 | 210.225 | 0.000 |
| M2 | $[67,68,69][68,69,70][69,70,71]$ | 16 | 62.672 | 0.000 |
| M3 | $[67,68,69,70][68,69,70,71]$ | 8 | 9.023 | 0.340 |

i.e., $67 \perp 71 \mid\{68,69,70\} 5$-way mosaics:


Figure 21: Markov chain models of order 1-3

## Coplots for categorical data

- Conditional relations may also be visualized by stratifying the data on the given variables, rather than by partialling out.
- Quantitative variables: coplot display (Cleveland, 1993)
- Categorical variables: array of mosaics, stratified by given variables
- Each panel then shows the partial associations among the foreground variables
- the collection of such plots show how these change with the given variables.
- Models of independence fit to the strata separately decompose a model of conditional independence fit to the whole table.

$$
\begin{equation*}
G_{A \perp B \mid C}^{2}=\sum_{k}^{K} G_{A \perp B \mid C(k)}^{2} \tag{3}
\end{equation*}
$$

- Collection of mosaic displays for the dependence of $A$ and $B$ for each of the levels of $C$ provides a natural visualization of this decomposition.
- Adjusts automatically for differing marginals across strata-controlled comparison of foreground associations.


## Example: Berkeley admissions

## Admit $\perp$ Dept $\mid$ Gender?

- Strong association between Admission and Department-different rates of admission,
- Pattern of association is qualitatively similar for both men and women
- association is quantitatively stronger for men than women-larger differences in admission rates across departments.


Figure 22: Mosaic coplot of Berkeley admissions, given Gender.

## Example: Berkeley admissions

## Admit $\perp$ Gender $\mid$ Dept ?

- No association, except in Dept. A, where females more likely to gain admission
- Changes in \% admitted, and \% female may also be seen.








Figure 23: Mosaic coplot of Berkeley admissions, given Department.

Breakdown of $G^{2}$ for model Admit $\perp$ Gender $\mid$ Dept:

Table 4: Partial tests of independence of Gender and Admission, by Department

| Dept | df | $G^{2}$ | $p$ |
| :---: | :---: | ---: | :---: |
| A | 1 | 19.054 | 0.000 |
| B | 1 | 0.259 | 0.611 |
| C | 1 | 0.751 | 0.386 |
| D | 1 | 0.298 | 0.585 |
| E | 1 | 0.990 | 0.320 |
| F | 1 | 0.384 | 0.536 |
| Total | 6 | 21.735 | 0.001 |

## Effect Ordering for Data Displays

- Where data values are labelled by factors, the ordering of levels has considerable impact on graphical displays.
- With unordered factors, sort the data by effects to be observed.
- Sorting brings similar items together, making them easier to compare.

For quantitative data, sort boxplots, dotplots and tables by means, medians, or row and column effects ("main effects ordering")

Multivariate glyph plots, stars, faces, parallel coordinates plots - order variables by PCA / biplot dimensions ("correlation ordering")

Multivariate plots of means - order variables by canonical discriminant dimensions ("discriminant ordering").

## Star plot of Means for MANOVA

- Display means for 2 or more groups on $m$ measures
- Error bars display Least Significant Difference

O Effect ordering: variables ordered by discriminant dim1


## Effect Ordering for Categorical Data Displays

O Two-way display of log(Freq) shows the local pattern of association
The ordering of rows and columns by marginal mean $\log (F)$ conceals the global structure.
E.g., British Social Mobility: Occupations of Fathers and Sons (Glass, 1954)


## Effect Ordering for Categorical Data Displays

- Mosaic display orders rows and columns by largest Correspondence Analysis dimension.

|  | Prof | Manager | Superv | Skilled | Unskilled | RowDim1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prof | 23.32 | 6.35 | -2.17 | -4.78 | -4.82 | 2.09 |
| Manager | 3.36 | 12.61 | 2.37 | -3.38 | -7.41 | 0.54 |
| Superv | -1.18 | 0.66 | 5.10 | 0.79 | -4.44 | 0.05 |
| Skilled | -4.69 | -4.20 | -0.93 | 3.93 | 0.39 | -0.17 |
| Unskilled | -4.48 | -7.03 | -3.72 | -1.41 | 10.49 | -0.36 |
| Coldim1 | 2.22 | 0.62 | 0.04 | -0.15 | -0.34 |  |

Residuals from independence are displayed in the context of this global structure.

$$
\text { British Social Mobility G2 (16) }=792.19
$$



## Mosaic matrices: Structure of Log-linear Models

- Show relations among variables in log-linear models (Theus and Lauer, 1998).
- Display expected frequencies under a given model
- E.g., $[A][B][C] \longrightarrow$ all pairs marginally and conditionally independent


Figure 24: Mosaic matrix for mutual independence.

## Joint Independence

- $[A B][C] \longrightarrow\{A, B\} \perp C$ and also $A \perp B \mid C$, but $A \not \perp B$.


Figure 25: Mosaic matrix for joint independence.

## Conditional Independence

- $[A C][B C] \longrightarrow A \perp B \forall C_{i}$, but no pair is marginally independent


Figure 26: Mosaic matrix for conditional independence

## Further Info

- A large collection of documents and programs for graphical data analysis on WWW:
■ http://www.math.yorku.ca/SCS/friendly.html
- ftp:
//hotspur.psych.yorku.ca/pub/sas/mosaics
- Static implementations:

■ SAS/IML: MOSAICS:
http://www.math.yorku.ca/SCS/mosaics.html
■ SAS/INSIGHT (not exemplary)
■ S-Plus: Jay Emerson
http://www.stat.yale.edu/~emerson/JCGS /

- Dynamic/interactive implementations:

■ CGI: http:
//www. math.yorku.ca/SCS/Online/mosaics /
■ Java: Martin Theus-Mondrian http://www.research.
att.com/~theus/Mondrian/Mondrian.html
■ Java: David McClelland, "Seeing Statistics"

- Mac: Heike Hoffman, Antony Unwin, Martin Theus- Manet http://www1.math.uni-augsburg.de/Manet/
- XlispStat
* Ernest Kwan: mosaics.lsp
* Forrest Young: Vista (5.10)
http://forrest.psych.unc.edu/research/


## References

Cleveland, W. S. Visualizing Data. Hobart Press, Summit, NJ, 1993. 34
Dawson, R. J. M. The "unusual episode" data revisited. Journal of Statistics Education, 3(3), 1995. 13

Edwards, D. Introduction to Graphical Modelling. Springer-Verlag, New York, 1995. 28

Friendly, M. Mosaic displays for loglinear models. In ASA, Proceedings of the Statistical Graphics Section, pages 61-68, Alexandria, VA, 1992.

Friendly, M. Mosaic displays for multi-way contingency tables. Journal of the American Statistical Association, 89:190-200, 1994.

Friendly, M. Conceptual and visual models for categorical data. Amer. Statistician, 49:153-160, 1995. 2

Friendly, M. Conceptual models for visualizing contingency table data. In Greenacre, M. and Blasius, J., editors, Visualization of Categorical Data, chapter 2, pages 17-35. Academic Press, San Diego, CA, 1997.

Hartigan, J. A. and Kleiner, B. Mosaics for contingency tables. In Eddy, W. F., editor, Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface, pages 286-273. Springer-Verlag, New York, 1981.

Heckman, J. J. and Willis, R. J. A beta-logistic model for the analysis of sequential labor force participation by married women. Journal of Political Economy, 85:27-58, 1977. 30

Theus, M. and Lauer, S. R. W. Visualizing loglinear models. Journal of Computational and Statistical Graphics, 7:??-??, 1998. In press. 42

