

Data Visualization in Statistics Workshop

Outline

- 1. Introduction graphical methods for categorical data
- 2. Fourfold displays
- 3. Mosaic displays
 - Fitting loglinear models with mosaic displays
 - Examples
- 4. Mosaic matrices
 - Marginal views
 - Conditional views
- 5. Mosaic coplots for categorial data

Graphical Methods for Categorical Data • Goals: develop graphical methods for categorical data which serve needs of ■ *reconnaissance*—a preliminary overview of complex terrain; **exploration**—help detect patterns or unusual circumstances, or suggest hypotheses; **model building & diagnosis**—critique a fitted model as a reasonable statistical summary. Attempt to integrate these with methods for continuous data • Categorical data needs a different visual representation: count \sim area (Friendly, 1995) • Static vs Dynamic displays

A dim idea: Two-way table display

 For a two-way table, the saturated log-linear model is formally equivalent to a two-factor ANOVA model. $log(m_{ij}) = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB}$

$$E(Y_{ij}) = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij}$$

- Suggests use of Tukey's two-way display of log(Freq)
 - Rows and columns ordered by mean log(Freq)
 - Vertical position shows fitted log(Freq) under independence
 - Residuals show deviations from independence
- But: main effect ordering not useful for counts interest is on interactions

Figure 1: Expected frequencies under independence.

Hair color

286

Brown

71

Red

127

Blond

592

108

Black

Fourfold display for $2 \times 2 \times 2$ tables

- Quarter circles: **area** ~ **frequency**
- Odds ratio: θ = ratio of diagonally opposite cells
- Standardize: equal margins, same odds ratip (IPF)
- Independence: Adjacent segments equal
- **Confidence rings**: Overlap \longleftrightarrow Accept $H_0: \theta = 1$

Ex: Berkeley admissions data $\theta = \Pr\left(\frac{\text{Admit}|\text{Male}}{\text{Admit}|\text{Female}}\right) = 1.84$

Figure 2: Berkeley admissions: Evidence for sex bias?

Figure 3: Berkeley admissions, by Department

Visualization principles

- Controlled comparison compare, holding other things constant
 - Hold angles constant, vary radius → corresponding cells in same position.
 - Equate row, col, or both margins, while keeping odds ratio fixed
- Visual impact distinguish what should stand out ($\theta \neq 1$)

Mosaic displays

- Width ~ one set of marginal probabilities, p_{i+}
- Height ~ conditional probabilities, p_{j+i}
- area ~ count, n_{ij} .
- Independence: Shown when cells align

Enhanced mosaic display

- **Display residuals**, d_{ij} , by color and shading
 - Sign: color $(d_{ij} > 0, d_{ij} < 0)$ Magnitude: $|d_{ij}| \sim$ darkenss
- **Reorder categories** opposite corner pattern (CA scores)
- **Independence**: Cells are empty! ($d_{ij} \approx 0$: black)

Multi-way tables

- Generalizes to *n*-way tables (divide recursively)
- Can fit *any* log-linear model, e.g., [AB][C], [AC][BC], etc.
- Shows both the **DATA** (area) and **RESIDUALS** (shading)

Example: Joint Independence, $G^2(15) = 19.86$. (Do blue-eyed blonds have more fun?)

Sequential plots & models

• Sequential construction, for given variable ordering

$$p_{ij\,k\ell\cdots} = \underbrace{\underbrace{p_i \times p_{j|i}}_{\{ABC\}} \times p_{k|ij}}_{\{ABC\}} \times p_{\ell|ijk} \times \cdots$$
(1)

- Fit a model to each sequential marginal subtable: {*A*}, {*AB*}, {*ABC*},
- Sequential models of joint independence partition the G² for mutual independence:

$$G^{2}_{[A]\![B]\![C]\![D]} = G^{2}_{[A]\![B]} + G^{2}_{[AB][C]} + G^{2}_{[ABC]\![D]}$$

Model	df	G^2
[H][E]	9	146.44
[H,E][S]	15	19.86
[H][E][S]	24	155.20

Visualization principles

- Nested multiples
 - Each mosaic shows its own marginal subtables (spacing \rightarrow visual grouping)
 - Shows DATA + RESIDUALS
- Association ordering sort the display by the effects to be observed
- Visual impact distinguish what should stand out (patterns of residuals)
- **Decomposition** show partitions of model fit in coherent ways

Example: Survival on the *Titanic*

Data from Dawson (1995) on the breakdown of 2201 passengers and crew:

			Class			
Survived	Age	Gender	1st	2nd	3rd	Crew
No	Adult	Male	118	154	387	670
Yes			4	13	89	3
No	Child		0	0	35	0
Yes			0	0	17	0
No	Adult	Female	57	14	75	192
Yes			140	80	76	20
No	Child		5	11	13	0
Yes			1	13	14	0

Order of variables: Class, Gender, Age, Survival

 $Class \times Gender:$

- % males decreases with increasing economic class,
- crew almost entirely male

Figure 7: Titanic data: Class and Gender

3 way: {Class, Gender} \perp Age ?

- Overall proportion of children quite small (about 5 %).
- % children smallest in 1st class, largest in 3rd class.
- Residuals: greater number of children in 3rd class (families?)

Survival on the Titanic

4 way: {Class, Gender, Age} \perp Survival ?

- Minimal null model when C, G, A are explanatory
- More women survived, but greater % in 1st & 2nd
- Among men, % survived increases with class.
- Fits poorly: $(G^2(15) = 671.96)$: Add SX terms

Survival on the Titanic

Figure 9: Class, Gender, Age, and Survival, Joint independence

Main effects of Class, Gender and Age on Survival: [CGA][CS][GS][AS]

- Fit is much improved (ΔG²(5) = 559.4), but not good (G²(10) = 112.56).
- \Rightarrow Interactions among Class, Gender and Age on Survival.

Figure 11: Main effects + Age*Gender on Survival

Titanic Conclusions

- Regardless of Age and Gender, lower economic status → increased mortality;
- Differences due to Class were moderated by both Age and Gender.
- Women more likely overall to survive than men, but
- Class × Gender: women in 3rd class did not have a significant advantage, while men in 1st class did (compared to men in other classes).
- Class × Age: no children in 1st or 2nd class died, but nearly two-thirds in 3rd class died;
- For adults, mortality \uparrow as economic class \downarrow .
- Summary statement: "women and children (according to class), then 1st class men".

Mosaic matrices

Quantitative data: scatterplot matrix shows $p \times (p - 1)$ marginal views in a coherent display;

- Each scatterplot a projection of data
- Detect patterns not easily seen in separate graphs.
- Only shows bivariate relations.

Categorical data: Mosaic matrix shows all $p \times (p-1)$ marginal views

- Each mosaic shows bivariate relation
- Fit: marginal independence
- Direct visualization of the "Burt" matrix analyzed in MCA to account for all pairwise associations among *p* variables

$$B = Z^{\mathsf{T}} \operatorname{diag}(n) Z = \begin{bmatrix} N_{[1]} & N_{[12]} & \cdots \\ N_{[21]} & N_{[2]} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

where $N_{[i]} =$ diagonal matrix of one-way margin; $N_{[ij]} =$ two-way margin for variables *i* and *j*,

Example: Berkeley admissions

- Admission, Gender: overall, more males admitted
- Dept A, B: highest admission rate; E, F lowest
- Males apply most to A, B, women more to C–F.

Figure 14: Mosaic matrix of Berkeley admissions.

Conditional plots for quantitative data

Iris data — scatterplot matrix

Figure 15: Scatterplot matrix for Iris data

Conditional plots for quantitative data

Iris data — conditional scatterplot matrix

• Plot $\widetilde{X_i} = X_i - \widehat{X_i}$ | others vs. $\widetilde{X_j} = X_j - \widehat{X_j}$ | others $\forall i, j$

• Removes species effect (correlated means)

Figure 16: Conditional scatterplot matrix for Iris data

Conditional plots for quantitative data

$$\rho_{ij| \text{ others}} = 0 \iff \sigma^{ij} = 0$$

$$\iff X_i \perp X_j | \text{ others}$$
(2)

- Zero partial correlation plays same role for quantitative variables as two-way terms in graphical log-linear models.
- Conditional scatterplot matrix provides a visualization of the conditional independence relations.
- When *Y* is a response, panels in the row for *Y* are just the partial regression (added variable) plots. Other rows treat each variable in turn as a response.

Figure 17: Independence graph for Iris Data

"Mixed" models: Categorical and Continuous Data

Marginal views

- \blacksquare X, Y pairs: scatterplot
- A, B pairs: mosaic
- \blacksquare X, A pairs: boxplot

• Conditional views

■ Fit graphical mixed model: *AB* / / *XY* (Edwards, 1995)?

Fit GLMs:

$$g(\mu_i) = x_{others}^{\mathsf{T}} \beta$$

 $g(\mu_j) = x_{others}^{\mathsf{T}} \beta$

with identity link for X, Y, log link for A, BPlot residuals as in marginal views

"Mixed" models: Categorical and Continuous Data

Iris data — Mixed scatterplot matrix

- Discrete: Species, SepalLen (divided into thirds)
- Continuous: PetalLen, PetalWid

Figure 18: Mixed scatterplot matrix for Iris data

Example: A 5-way table

Heckman & Willis 1977 data:

 Table 2: Labour force participation of married women 1967-1971

				19	68	
Employed?		Yes		No		
			1967			
1969	1970	1971	Yes	No	Yes	No
Yes	Yes	Yes	426	73	21	54
No			11	9	8	36
Yes	No		16	7	0	6
No			12	5	5	35
Yes	Yes	No	38	11	7	16
No			2	3	3	24
Yes	No		47	17	9	28
No			28	24	43	559

Marginal relations

- All years strongly associated: employment status persists
- Strength of association \downarrow as lag \uparrow .

Figure 19: Mosaic matrix for pairwise associations

Fitting Markov models

Table 3: Markov chain models fit to Heckman-Willis data

Order	Model	df	G^2	p
M1	[67,68][68,69][69,70][70,71]	22	210.225	0.000
M2	[67,68,69][68,69,70][69,70,71]	16	62.672	0.000
M3	[67,68,69,70][68,69,70,71]	8	9.023	0.340

i.e., $67 \perp 71 | \{68, 69, 70\}$ 5-way mosaics:

Figure 21: Markov chain models of order 1–3

Coplots for categorical data

- Conditional relations may also be visualized by stratifying the data on the given variables, rather than by partialling out.
- Quantitative variables: coplot display (Cleveland, 1993)
- Categorical variables: array of mosaics, stratified by given variables
- Each panel then shows the *partial* associations among the foreground variables
- the collection of such plots show how these change with the given variables.
- Models of independence fit to the strata separately decompose a model of conditional independence fit to the whole table.

$$G_{A\perp B\mid C}^{2} = \sum_{k}^{K} G_{A\perp B\mid C(k)}^{2}$$
(3)

- Collection of mosaic displays for the dependence of A and B for each of the levels of C provides a natural visualization of this decomposition.
- Adjusts automatically for differing marginals across strata—controlled comparison of foreground associations.

Example: Berkeley admissions

Admit \perp Dept | Gender ?

- Strong association between Admission and Department—different rates of admission,
- *Pattern* of association is qualitatively similar for both men and women
- association is quantitatively stronger for men than women—larger differences in admission rates across departments.

Figure 22: Mosaic coplot of Berkeley admissions, given Gender.

Figure 23: Mosaic coplot of Berkeley admissions, given Department.

37

Breakdown of G^2 for model Admit \perp Gender | Dept:

Table 4: Partial tests of independence of Gender and Admission, byDepartment

Dept	df	G^2	p
А	1	19.054	0.000
В	1	0.259	0.611
С	1	0.751	0.386
D	1	0.298	0.585
Е	1	0.990	0.320
F	1	0.384	0.536
Total	6	21.735	0.001

Effect Ordering for Data Displays

- Where data values are labelled by factors, the ordering of levels has considerable impact on graphical displays.
- With unordered factors, sort the data by effects to be observed.
- Sorting brings similar items together, making them easier to compare.
 - For quantitative data, sort boxplots, dotplots and tables by means, medians, or row and column effects ("*main effects ordering*")
- Multivariate glyph plots, stars, faces, parallel coordinates plots - order variables by PCA / biplot dimensions ("*correlation ordering*")

Multivariate plots of means - order variables by canonical discriminant dimensions ("*discriminant ordering*").

Mstars

Mosaic matrices: Structure of Log-linear Models

- Show relations among variables in log-linear models (Theus and Lauer, 1998).
- Display *expected* frequencies under a given model
- E.g., [A] [B] [C] → all pairs marginally *and* conditionally independent

Figure 24: Mosaic matrix for mutual independence.

Figure 25: Mosaic matrix for joint independence.

[Further Info]

- A large collection of documents and programs for graphical data analysis on WWW:
 - http://www.math.yorku.ca/SCS/friendly.html
 - ftp:
 - //hotspur.psych.yorku.ca/pub/sas/mosaics
- Static implementations:
 - SAS/IML: MOSAICS:
 - http://www.math.yorku.ca/SCS/mosaics.html
 - SAS/INSIGHT (not exemplary)
 - S-Plus: Jay Emerson
 - http://www.stat.yale.edu/~emerson/JCGS/
- Dynamic/interactive implementations:
 - CGI: http:
 - //www.math.yorku.ca/SCS/Online/mosaics/
 - Java: Martin Theus-Mondrian http://www.research. att.com/~theus/Mondrian/Mondrian.html
 - Java: David McClelland, "Seeing Statistics"
 - Mac: Heike Hoffman, Antony Unwin, Martin Theus-Manet http://wwwl.math.uni-augsburg.de/Manet/
 - XlispStat
 - * Ernest Kwan: mosaics.lsp
 - * Forrest Young: Vista (5.10)

http://forrest.psych.unc.edu/research/

References

Cleveland, W. S. Visualizing Data. Hobart Press, Summit, NJ, 1993. 34

- Dawson, R. J. M. The "unusual episode" data revisited. *Journal of Statistics Education*, 3(3), 1995. 13
- Edwards, D. Introduction to Graphical Modelling. Springer-Verlag, New York, 1995. 28
- Friendly, M. Mosaic displays for loglinear models. In ASA, Proceedings of the Statistical Graphics Section, pages 61–68, Alexandria, VA, 1992.
- Friendly, M. Mosaic displays for multi-way contingency tables. *Journal of the American Statistical Association*, 89:190–200, 1994.
- Friendly, M. Conceptual and visual models for categorical data. *Amer. Statistician*, 49:153–160, 1995. 2
- Friendly, M. Conceptual models for visualizing contingency table data. In Greenacre, M. and Blasius, J., editors, *Visualization of Categorical Data*, chapter 2, pages 17–35. Academic Press, San Diego, CA, 1997.
- Hartigan, J. A. and Kleiner, B. Mosaics for contingency tables. In Eddy, W. F., editor, *Computer Science and Statistics: Proceedings of the 13th Symposium* on the Interface, pages 286–273. Springer-Verlag, New York, 1981.
- Heckman, J. J. and Willis, R. J. A beta-logistic model for the analysis of sequential labor force participation by married women. *Journal of Political Economy*, 85:27–58, 1977. 30
- Theus, M. and Lauer, S. R. W. Visualizing loglinear models. *Journal of Computational and Statistical Graphics*, 7:??–??, 1998. In press. 42