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The Generalized Ridge Trace Plot: Visualizing
Bias and Precision

Michael FRIENDLY

In ridge regression and related shrinkage methods, the ridge trace plot, a plot of
estimated coefficients against a shrinkage parameter, is a common graphical adjunct to
help determine a favorable trade-off of bias against precision (inverse variance) of the
estimates. However, standard unidimensional versions of this plot are ill-suited for this
purpose because they show only bias directly and ignore the multidimensional nature
of the problem.

A generalized version of the ridge trace plot is introduced, showing covariance
ellipsoids in parameter space, whose centers show bias and whose size and shape show
variance and covariance, respectively, in relation to the criteria for which these methods
were developed. These provide a direct visualization of both bias and precision. Even
two-dimensional bivariate versions of this plot show interesting features not revealed in
the standard univariate version. Low-rank versions of this plot, based on an orthogonal
transformation of predictor space extend these ideas to larger numbers of predictor
variables, by focusing on the dimensions in the space of predictors that are likely to
be most informative about the nature of bias and precision. Two well-known datasets
are used to illustrate these graphical methods. The genridge package for R implements
computation and display.

Key Words: Biplot; Model selection; Multivariate bootstrap; Regression shrinkage;
Ridge regression; Ridge trace plot; Singular value decomposition; Variance-shrinkage
trade-off.

1. INTRODUCTION

The classical linear model for a univariate response is considered, y = β01 + Xβ + ε,
where E(ε) = 0, var(ε) = E(εεT) = σ 2 I and X is (n × p) and of full rank. In this context,
high multiple correlations among the predictors lead to well-known problems of collinearity
under ordinary least squares (OLS) estimation, which result in unstable estimates of the
parameters in β: standard errors are inflated and estimated coefficients tend to be too large
in absolute value on average.

Ridge regression and related shrinkage methods have a long history, initially stemming
from problems associated with OLS regression with correlated predictors (Hoerl and
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GENERALIZED RIDGE TRACE PLOT 51

Kennard 1970a) and more recently encompassing a wide class of model selection methods,
of which the LASSO method of Tibshirani (1996) and the LAR method of Efron et al.
(2004) are well-known instances. See, for example, the reviews in Vinod (1978) and
McDonald (2009) for details and context omitted here.

An essential idea behind these methods is that the OLS estimates are constrained in
some way, shrinking them, on average, toward zero, to satisfy other considerations. In the
modern literature on model selection, interest is often focused on predictive accuracy, since
the OLS estimates will typically have low bias but large prediction variance. The general
goal of these methods is to achieve a more favorable trade-off between bias and variance
to improve overall predictive accuracy.

Another common characteristic of these methods is that they involve some tuning
parameter (k) or criterion to quantify the trade-off between bias and variance. In many
cases, analytical or computationally intensive methods have been developed to choose an
optimal value of the tuning parameter, for example, using generalized cross-validation,
bootstrap methods, or any of a number of criteria developed through extensive simulation
studies (Gibbons 1981).

The interest here concerns the graphical methods that are commonly used as adjuncts to
these methods, to display how the estimated coefficients are affected by the model shrinkage
or selection method, and perhaps to allow the analyst to adjust the tuning parameter or
criterion to take account of substantive or other nonstatistical considerations. The prototype
of such graphical displays is the (univariate) ridge trace plot, introduced by Hoerl and
Kennard (1970b). An illustration of this graphical form is shown in Figure 1, using an
example of ridge regression described in Section 3.

It is commonly believed (McDonald 2009) that such plots provide a visual assessment of
the effect of the choice of k that supplements the multitude of (often diverging) numerical
criteria, thus, allowing the analyst to make more informed decisions.

For interpretative purposes, such plots are sometimes annotated with vertical lines show-
ing the tuning constant selected by one or more methods (as in Figure 1), or worse, are
superposed with separate graphs showing some measure of predictive variance, of necessity
on a separately scaled vertical axis, thereby committing a venal, if not cardinal, graphical
sin. These graphs fail their intended purpose—to display the trade-off between bias and
variance—because they use the wrong graphical form: an essentially univariate plot of trace
lines for what is essentially a multivariate problem.

In this article, a multivariate generalization of the ridge trace plot is described and
illustrated, based on the consideration of the primary quantities to be estimated: a p-vector
of estimated coefficients, β∗(k), and its associated variance-covariance matrix, var[β∗(k)],
as a function of some tuning constant, k. In the article, it is not asserted that the univariate
ridge trace plot (of β∗(k) versus k) has no value, but rather it cannot escape flatland, and its
higher-dimensional cousins have more to offer.

To give the flavor of this generalized ridge trace plot, Figure 2 shows one version for
the Longley data, discussed in more detail in Section 3.1. What you should see here is that,
for pairs of coefficients, the estimated coefficients (centers of the ellipses) are driven in a
systematic path as the ridge constant k varies. First, this gives additional information about
how the change in one coefficient can affect other coefficients. Second, the relative size and
orientation of the ellipses, corresponding to bivariate confidence regions, show directly the
relative precision associated with each ridge estimate.
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52 M. FRIENDLY

Figure 1. Univariate ridge trace plots for the coefficients of predictors of Employment in Longley’s data via ridge
regression, with ridge constants k = 0, 0.005, 0.01, 0.02, 0.04, 0.08. The dotted lines show choices for the ridge
constant by two commonly used criteria due to HKB: Hoerl, Kennard, and Baldwin (1975) and LW: Lawless and
Wang (1976). What can you see here to decide about the trade-off of bias against precision? The online version
of this figure is in color.

Because my focus is only on this graphical extension of ridge trace plots, this introduction
has been kept brief, mainly conceptual, and I have omitted all but a few key references.
In particular, sidestep critical discussion of deeper issues concerning the appropriate use
and interpretation of these shrinkage methods and take liberties with the term “bias,”
which strictly speaking requires consideration of the true but unknown parameters. In what
follows, I also restrict attention largely to the context of ridge regression. However, there
is no loss of generality here, because the graphical ideas apply to any method that yields a
set of estimates β∗(k) and their covariance matrices, var[β∗(k)], indexed by a set of tuning
constants, k.

1.1 PROPERTIES OF RIDGE REGRESSION

To provide context, notation, and some useful results, a capsule summary of ridge
regression here has been provided. So as to avoid unnecessary details related to the intercept,
assume that the predictors have been centered at their means and the unit vector is omitted
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GENERALIZED RIDGE TRACE PLOT 53

Figure 2. Bivariate ridge trace plots for the coefficients of four predictors against the coefficient for GNP in
Longley’s data, with k = 0, 0.005, 0.01, 0.02, 0.04, 0.08. (Corresponding values of dfk range from 6 to 4.09.)
In most cases, the coefficients are driven toward zero, but the bivariate plot also makes clear the reduction in
variance, as well as the bivariate path of shrinkage. To reduce overlap, all covariance ellipses are shown with 1/2
the standard unit radius. The online version of this figure is in color.

from X . Further, to avoid scaling issues, the columns of X to unit length are rescaled, so
that XT X is a correlation matrix. Then, the OLS estimates are given by

β̂
OLS = (XT X)−1 XT y, (1)

with v̂ar(β̂
OLS

) = σ̂ 2(XT X)−1. Ridge regression replaces the standard residual sum of
squares criterion with a penalized form,

RSS(k) = ( y − Xβ)T( y − Xβ) + kβTβ (k ≥ 0), (2)

whose solution is easily seen to be

β̂
RR
k = (XT X + k I)−1 XT y (3)

= Gk β̂
OLS

,
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54 M. FRIENDLY

where Gk = [I + k(XT X)−1]−1. Thus, as k increases, Gk decreases, driving β̂
RR
k toward

0 (Hoerl and Kennard 1970a, 1970b). The addition of a positive constant k to the diagonal
of XT X drives |XT X + k I | away from zero even if |XT X| ≈ 0. The estimated variance-

covariance of β̂
RR
k can then be expressed as

v̂ar
(
β̂

RR
k

) = σ̂ 2Gk(XT X)−1GT
k . (4)

Equation (3) is computationally expensive, potentially numerically unstable for small k,
and conceptually opaque, in that it sheds little light on the underlying geometry of the data
in the column space of X . An alternative formulation can be given in terms of the singular
value decomposition (SVD) of X ,

X = U DV T, (5)

where U and V are, respectively, n × p and p × p orthonormal matrices, so that UTU =
V TV = I , and D = diag (d1, d2, . . . dp) is the diagonal matrix of ordered singular values,
with entries d1 ≥ d2 ≥ · · · ≥ dp ≥ 0. Since XT X = V D2V T, the eigenvalues of XT X are
given by D2 and therefore the eigenvalues of Gk can be shown (Hoerl and Kennard 1970a)
to be the diagonal elements of

D(D2 + k I)−1 D = diag

(
d2

i

d2
i + k

)
. (6)

Noting that the eigenvectors, V , are the principal component vectors, and that XV =
U D, the ridge estimates can be calculated more simply in terms of U and D
as

β̂
RR
k = (D2 + k I)−1 DUT y =

(
di

d2
i + k

)
uT

i y, i = 1, . . . , p (7)

and the fitted values can be expressed as

ŷRR
k = X(XT X + k I)−1 DUT y

= U D(D2 + k I)−1 DUT y

=
p∑
i

ui

(
d2

i

d2
i + k

)
uT

i y.

The terms d2
i /(d2

i + k) ≤ 1 are thus the factors by which the coordinates of uT
i y are shrunk

with respect to the orthonormal basis for the column space of X . The small singular
values di correspond to the directions that ridge regression shrinks the most. These are the
directions that contribute most to collinearity, for which other visualization methods have
been proposed (Friendly and Kwan 2009).

This analysis also provides an alternative and more intuitive characterization of the
ridge tuning constant. By analogy with OLS, where the hat matrix, H = X(XT X)−1 XT,
reflects degrees of freedom df = tr(H) = p corresponding to the p parameters, the
effective degrees of freedom for ridge regression (Hastie, Tibshirani, and Friedman 2001)
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GENERALIZED RIDGE TRACE PLOT 55

is

dfk = tr[X(XT X + k I)−1 XT]

=
p∑
i

dfk(i) =
p∑
i

(
d2

i

d2
i + k

)
. (8)

Equation (8) is a monotone decreasing function of k, and hence any set of ridge constants
can be specified in terms of equivalent dfk .

Note here the close connection with principal components regression. Ridge regression
shrinks all dimensions in proportion to dfk(i), so the low variance dimensions are shrunk
more. Principal components regression discards the low variance dimensions and leaves
the high variance dimensions unchanged.

2. GENERALIZED RIDGE TRACE PLOTS:
THEORY AND METHODS

The essential idea is very simple. Rather than just plotting the univariate trajectories of
the estimated coefficients versus k, the covariance ellipsoids of the estimated parameters
are plotted over the same range of k.

The centers of these ellipsoids, for each predictor, provide the same information as in
the standard univariate trajectories. In addition, in bivariate and multivariate views, they
provide information about how the change in the ridge estimate for one parameter is related
to simultaneous changes in the estimates for other parameters as a result of the shrinkage
imposed by k (or dfk).

Moreover, the size and shape of the covariance ellipsoids show directly the effect on
precision of the estimates as a function of k. For example, in bivariate views, it can be seen
how the ridge constant affects the estimated standard errors for both variables, as well as
the covariance of those parameters.

2.1 DETAILS: “CONFIDENCE” ELLIPSOIDS

Specifically, assume that one has a series of estimates of the coefficients, β̂
∗
k , each with

an associated estimated covariance matrix, �̂
∗
k ≡ v̂ar(β̂

∗
k), for example, as in Equations (3)

and (4). Then the generalized ridge trace plot is a graphical representation of the set of the
covariance ellipsoids E(β̂

∗
k, �̂

∗
k), where the envelope of an ellipsoid of radius c is defined

by

E(μ,�) := {x : (x − μ)T�−1(x − μ) = c2}. (9)

In the context of hypothesis tests and confidence regions for parameters under classical,
normal theory, the radius c = √

dF1−α(d, dfe) will give confidence ellipsoids of coverage
1 − α for tests or regions of dimensionality d, with dfe degrees of freedom for �. This is
not used here and generally c is taken to be some convenient constant to give a reasonable
separation among the ellipsoids for varying values of k. All that matters for the present
purposes is that the same value of c is used for all ellipsoids in a given plot. Thus, the
covariance ellipsoids shown here are meant to be interpreted here only in terms of their
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56 M. FRIENDLY

relative sizes and shapes, over a range of k, but not as strict confidence ellipsoids with any
given coverage.

A computational definition of an ellipsoid that corresponds to the above in the case of
positive-definite matrices � is

E(μ,�) = μ ⊕ AS, (10)

where S is a unit sphere of conformable dimension and μ is the centroid of the ellipsoid
and where the ⊕ operator translates an ellipsoid to a given centroid. One convenient choice
of A is the Choleski square root, �1/2. Eliding the unit sphere, E(μ,�) = μ ⊕ �1/2 is
expressed. For details on the theory, computation, and applications of ellipsoids in statistical
practice, see Friendly, Monette, and Fox (2011).

2.2 BOOTSTRAP METHODS

If normal theory on which these classical ellipsoids is deemed too restrictive, or if
there is no closed-form expression for the variance-covariance matrix for some other
shrinkage method, simple nonparametric versions can be calculated via bootstrap methods

as follows. Generate B bootstrap estimates β̃
b

k, b = 1, 2, . . . , B by resampling from the
rows of available data, ( y, X). For given k, the bootstrap estimate β̃k is then the average
over bootstrap samples and the bootstrap estimate �̃k of the covariance matrix of parameters

can then be computed as the empirical covariance matrix of β̃
b

k across the bootstrap samples,

�̃k = B−1
B∑

b=1

(
β̃

b

k − β̃k

)(
β̃

b

k − β̃k

)T
. (11)

Graphically, this corresponds to a data (or concentration) ellipsoid (Friendly, Monette, and
Fox 2011) of the bootstrap sample estimates, given by β̃k ⊕ �̃

1/2
k S. Alternatively, robust

versions of the empirical estimator in Equation (11) may easily be substituted, for example,
those based on the high-breakdown bound Minimum Volume Ellipsoid and Minimum
Covariance Determinant methods developed by Rousseeuw and others (Rousseeuw and
Leroy 1987; Rousseeuw and Van Driessen 1999).

For the present purposes, where the goal is simply to gauge the trade-off of shrinkage
versus precision graphically, and where the concern is with the relative sizes of the ellipsoids
over choices of k (or df) rather than precise coverage, this naive bootstrap approach is usually
sufficient. See Hall (1997, section 4.2) for discussion of a wider range of alternatives for
multivariate bootstrap regions.

Of course, the use of ellipsoids as a visual summary of the bootstrap estimates in this
approach does not entirely remove the assumption of multivariate normality of the ridge
estimates; it simply moves that assumption to that of the distribution of the bootstrap

estimates β̃
b

k . If desired, this restriction can be removed by the use of nonparametric
density estimation to construct smoothed approximations to the joint distribution of the

β̃
b

k following methods described, for example, by Hall (1987). In practical implementation,
this idea is limited largely to two-dimensional (2D) representations.
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GENERALIZED RIDGE TRACE PLOT 57

2.3 DETAILS: VIEWS

For a given dataset, one thus has a set of K ellipsoids, E(β̂
∗
kj

, �̂
∗
kj

), j = 1, 2, . . . , K ,
each of dimension p. These can be displayed in a variety of ways. For example, in static
displays, bivariate views of the 2D projections of these ellipsoids can be shown for given
pairs of predictors superposing the ellipses for all values of k in each plot (as was done in
Figure 2).

Alternatively, all superposed pairwise 2D views can be shown in a scatterplot matrix
format (as in Figure 4). With suitable three-dimensional (3D) software (e.g., the rgl package
for R, Adler and Murdoch 2011), similar overlaid plots for sets of three predictors can be
obtained.

Finally, modern dynamic and interactive software provides other possibilities, including
animating any of the above mentioned display formats over K, or providing interactive
choices of views and/or the shrinkage or tuning factor via sliders or other software controls.
I believe that such interactive implementations, which couple computation and display
with interactive control, are potentially quite useful. However, the present article stands as
a proof of concept using static displays, leaving dynamic and interactive versions for future
development.

2.4 DETAILS: REDUCED-RANK VIEWS

As described above, the ellipsoidsE(β̂
∗
kj

, �̂
∗
kj

) may be viewed in the space of the predictor
variables (β space) in several ways, but all of these are methods for showing p-dimensional
effects in 2D (or 3D) views that can be seen on a screen or on article. Unfortunately, these
methods begin to suffer the curse of dimensionality as p grows large. For example, the
p = 8 plot (Figure 8) discussed in Section 3.2 approaches the limits of graphical resolution
for the scatterplot matrix format.

As in other multivariate visualization problems, informative low-rank projections pro-
vide one antidote to the curse of dimensionality. In particular, Section 1.1 shows that the
SVD transformation from the column space of X to the orthonormal column space of U ,
simplifies both computation and interpretation. Similarly, the same transformation can be
applied to the ellipsoids E(β̂

∗
kj

, �̂
∗
kj

), yielding a rotated, p-dimensional space, whose 2D
projections in reduced-rank space can be particularly useful. The trick is to identify such
informative 2D projections and be able to interpret them in terms of the original data.

Specifically, under a linear transformation by a conformable matrix L, the image of the
general ellipsoid E(μ,�) is

L(E(μ,�)) = E(Lμ, L�LT) = Lμ ⊕ (L�LT)
1/2 = Lμ ⊕ L�1/2. (12)

Thus, taking L = V gives views of the covariance ellipsoids V β̂
∗
kj

⊕ V�∗
kj

1/2 of the ridge
estimates in the space of the principal components of X . Note that these ellipsoids will
necessarily have their major/minor axes aligned with the coordinate axes in such plots,
because the space of V is orthogonal and V is the matrix of eigenvectors of both XT X and
(XT X)−1.

The 2D plots with coordinate axes corresponding to the largest two singular values then
show the effects of shrinkage in the subspace of maximum variance in X . In general, this
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58 M. FRIENDLY

is usually a good idea for multivariate visualization, but it turns out here to be uninforma-
tive or misleading, as illustrated in Section 3.2. Instead, analogous plots in the subspace
corresponding to the two smallest singular values give a view of ridge regression in the
space where shrinkage is greatest, in a way similar to the collinearity biplot proposed by
Friendly and Kwan (2009). For the ease of interpretation, these plots may be supplemented
with variable vectors defined by the rows of V showing the relations of the predictors to the
reduced-rank space, as in a biplot (Gabriel 1971). In the article, the use of the term “biplot”
here only connotes that such plots can show data summaries in one space (transformed
β space) while simultaneously showing the projections of variable vectors into this space.
Figure 3 shows an example of such a plot, whose interpretation is discussed in Section 3.1.

2.5 MEASURING PRECISION AND SHRINKAGE

The multivariate extension of the ridge trace plot described above has another benefit
in that it suggests simple ways to calculate summary measures of shrinkage and precision
and thus provide other visualizations of the trade-off, albeit with less detail.

Figure 3. Ridge trace plots for the coefficients of predictors in Longley’s data shown in the orthogonal space
of the smallest two principal component vectors of X , which contribute most to shrinkage. The variable vectors,
positioned at an arbitrary origin and scaled to fill the available space, show the contributions of each variable to
these dimensions. The plot uses an aspect ratio of 1.0 to allow correct interpretation of lengths and angles. The
online version of this figure is in color.
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GENERALIZED RIDGE TRACE PLOT 59

From the theory above, shrinkage (“bias”) can be measured by the length of the coef-
ficient vector, ||βk|| = (βT

k βk)1/2. A normed version, ||βk||/ maxk ||βk||, will then give a
relative measure with a maximum of 1 for k = 0.

As illustrated in the generalized ridge trace plots in the article, variance (inverse preci-
sion) is equated with the “size” of the covariance ellipsoid of �̂k , and this can be quantified
in several ways in terms of its eigenvalues λk = d2/(d2 + k), a p × 1 vector:

�iλk,i = |�̂k| measures the volume of ellipsoids, and corresponds conceptually to Wilks’
� criterion in multivariate analysis of variance (MANOVA). A linearized version is
preferred, log(|�̂k|) or |�̂k|1/p = p

√∏
λi , the geometric mean.∑

i λk,i = tr(�̂k) measures the average size over p dimensions and corresponds conceptu-
ally to the Pillai and Hotelling-Lawley trace criteria.

λk,1 = max λk corresponds to Roy’s maximum root criterion.

Thus, a simple line plot of one of these measures of �̂k (or �̂−1
k ) versus

||βk||/ maxk ||βk|| will show directly the trade-off of variance (or precision) against shrink-
age, summarized across all predictors. See the example in Figure 6.

3. EXAMPLES

Two well-known, real-data examples of these methods are described below. For brevity,
only the details of the data and statistical analysis and interpretation that are relevant to
graphical methods in the article are discussed.

3.1 LONGLEY DATA

Figure 2 uses the classic Longley (1967) data to illustrate bivariate ridge trace plots.
The data consist of an economic time series (n = 16) observed yearly from 1947 to 1962,
with the number of people Employed as the response and the following predictors: GNP,
Unemployed, Armed.Forces, Population, Year, and GNP.deflator (using 1954 as 100). These
data are often used as an example of extreme collinearity.

For each value of k, the plot shows the estimate β̂, together with the covariance ellipse.
For the sake of this example, I assume that GNP is a primary predictor of Employment,
and wish to know how other predictors modify the regression estimates and their variance
when ridge regression is used.

For these data, it can be seen that even small values of k have substantial impact on
the estimates β̂. What is perhaps more dramatic (and unseen in univariate trace plots)
is the impact on the size of the confidence ellipse. Moreover, shrinkage in variance is
generally in a similar direction to the shrinkage in the coefficients. These effects provide a
visual interpretation of Equation (4) as seen in bivariate views: the matrix Gk shrinks the
covariance matrix of the OLS estimates in a similar way to the shrinkage of the estimates
themselves by Gk in Equation (3).

Several other features, which cannot be seen in univariate ridge trace plots, are apparent
in these plots. Most obvious is the fact that, for each pair of predictors, shrinkage of the
coefficients follows a particular path through parameter (β) space. It can be shown (Friendly,
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60 M. FRIENDLY

Monette, and Fox 2011) that the shrinkage path has a simple geometric interpretation as
the locus of osculation (the locus of osculation is the path of points along which two sets
of curves just make contact (“kiss” or osculate), as some parameter varies.) between two
families of concentric ellipsoids: the elliptical contours of the covariance ellipsoid of the
RSS function for OLS, and the spherical contours of the constraint term kβTβ in Equation
(2). This path is the set of points where the normals to the two ellipsoids are parallel, and
in the general case, is given by a bi-quadratic form that plots as a conic section.

First, in Figure 4, it can be seen that the shrinkage paths are sometimes monotone in
both parameters, but not always, as for the coefficients of Population and GNP. This occurs
here because small values of the ridge constant initially drive the coefficient of Population
away from zero while that of GNP goes toward zero, while larger values of k drive the

Figure 4. Scatterplot matrix of ridge trace plots for the coefficients of all predictors in Longley’s data, with
k = 0, 0.005, 0.01, 0.02, 0.04, 0.08. The same color coding as in Figure 2 is used here, with black showing the
OLS estimates for k = 0. The online version of this figure is in color.
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GENERALIZED RIDGE TRACE PLOT 61

coefficient of population back toward zero. See Jensen and Ramirez (2008) for discussion
of this and other anomalies in ridge regression.

Second, it can be seen that the covariance between the estimated ridge coefficients
changes systematically along the ridge trace path. In all cases shown in Figure 2, the
covariance decreases in absolute value with increasing k, though this is not a necessary
feature. However, the essential feature to be seen here is that all covariance ellipsoids
become smaller with increasing k, reflecting reduced variance or increased precision.

Rather than showing selected bivariate plots as in Figure 2, some or all pairwise 2D views
can be shown in a scatterplot matrix format as in Figure 4. Most details of the interpretation
in the article are similar to those above from Figure 2, except that it is now plainly seen
that all predictors except for Population and GNP.deflator have a monotone pattern in their
bivariate ridge paths. This nicely illustrates that it is the norm ||βk|| that tends toward zero,
not necessarily each coefficient, and that individual coefficients have different sensitivities
over the range of k.

Moreover, in this format, it is easy to see the effect of the ridge constant on both bias and
variance jointly for a given variable, by scanning a given row or column in this pairwise
display.

For comparison, Figure 5 shows the scatterplot matrix of all pairwise plots of the
covariance ellipsoids transformed to the principal component space as in Equation (12). It
is immediately clear that the shrinkage imposed by ridge regression takes place only in the
last (smallest) two dimensions, a direct consequence of the shrinkage factors in Equation
(6).

For interpretation of shrinkage in relation to the original variables, the most useful plot
is the panel for the two smallest dimensions (dimensions 5 and 6 here), but annotated to
show the variable vectors, as showed in Figure 3. It is easily seen there that GNP, Year, and
Population contribute most to shrinkage along dimension 6 and that the greatest shrinkage
occurs along this dimension. This is not surprising, given that the data are a time series over
years. The reader may wish to compare this figure with the univariate ridge trace plot in
Figure 1. I hope you will agree that Figure 3 does provide direct visual evidence to decide
about the trade-off of shrinkage against precision.

Finally, for this example, Figure 6 illustrates two of the possible summary plots described
in Section 2.5. In this plot, each ellipsoid has been summarized by the normed length of the
coefficient vector, representing shrinkage relative to ||βOLS|| = 1 and either log(|�̂k|) or
tr(�̂k), representing variance of the estimates. While lacking the rich detail of plots of the
ellipsoids themselves, these plots shows how commonly used numerical criteria balance
shrinkage against variance in this example. Hoerl, Kennard, and Baldwin (1975) (HKB)
criterion favors relatively modest shrinkage, but achieves little in terms of reduced variance;
Lawless and Wang (1976) (LW) favors much greater shrinkage and gains considerably in
reducing variance. However, the plots make clear that the trade-off depends on the measure
of “size” used to index variance.

3.2 PROSTATE CANCER DATA

A second example uses data on prediction of the amount of the prostate-specific antigen,
used in diagnostic tests for prostate cancer, in a sample of 97 men about to undergo radical
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62 M. FRIENDLY

Figure 5. Scatterplot matrix of ridge trace plots for the coefficients of all predictors in Longley’s data shown in
the orthogonal space of the principal component vectors of X . The plot makes clear that shrinkage occurs only in
the space of the dimensions with the smallest eigenvalues (dim5 and dim6). The online version of this figure is in
color.

prostate surgery. The data come from a study by Stamey et al. (1989) and have been used
extensively in the regression shrinkage and model selection literature following Tibshirani
(1996) and Hastie, Tibshirani, and Friedman (2001). The response is preoperative lpsa:
log(prostate-specific antigen), and the predictors are the following histological and mor-
phometric measures: lcavol: log(cancer volume), lweight: log(prostate weight), age: patient
age, lbph: log(benign prostatic hyperplasia), svi: seminal vesicle invasion, lcp: log(capsular
penetration), gleason: Gleason grade of the prostate cancer, and pgg45: percentage of
Gleason scores of 4 or 5.

Univariate trace plots for ridge regression applied to these data are shown in Figure 7.
The left panel is the more traditional form, plotting coefficients versus k. The right panel
parameterizes shrinkage in terms of df(k), and the nonlinear relation between the two tuning
factors makes this plot more appealing and interpretable. But in either form, they fail the
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GENERALIZED RIDGE TRACE PLOT 63

Figure 6. Variance versus shrinkage summary plots for Longley’s data. Points along the curve show the “size” of
the covariance matrix of parameters against the normed length of the coefficient vector, indexed by the shrinkage
constant k. Left: using log(|�̂k |) as the measure of size; right: using tr(�̂k). Interpolated on the curves are the
HKB and LW estimates of k as in Figure 1. The online version of this figure is in color.

interocular traumatic test: the purported message of a trade-off between bias and variance
is absent. Only the effects of bias are shown directly.

Figure 8 shows the bivariate, scatterplot matrix version of the ridge trace plot for all
predictors in the linear model. Again, it is easy to see the joint effects on bias, variance, and
covariance of the estimated parameters by following a given variable in its row or column
in the display.

Among other things, two variables stand out here, which are not apparent in the univariate
views of Figure 7. The Gleason score (gleason) and percentage of Gleason scores of 4 or

Figure 7. Univariate ridge trace plots for the coefficients of predictors predicting lpsa in the prostate cancer data.
Left: traditional form, plotting coefficients versus k; right: the same coefficients versus df(k). The same graphic
parameters (color, shape, line style) are used for the predictors in both plots, labeled in the right panel. The online
version of this figure is in color.
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64 M. FRIENDLY

Figure 8. Scatterplot matrix of bivariate ridge trace plots for the coefficients of predictors in the prostate cancer
data. The online version of this figure is in color.

5 (pgg45) both have nonmonotonic bivariate traces with all other variables. As well, these
are the variables with the largest relative variances, only reduced with large shrinkage. This
is understandable, since the Gleason score is an ordered discrete variable with a range of
6–9, but only a few observations are outside 6–7; pgg45 is based on the Gleason score and
also exhibits large variance until the most extreme levels of shrinkage are approached.

As noted in Section 2.4, these multivariate ridge trace plots can often be simplified by
projection into subspaces of the principal components of the predictors. Figure 9 shows
two such views for the current example. The left panel is a ridge trace analog of a biplot
(Gabriel 1971), showing the covariance ellipsoids projected into the space of the first two
principal components. The covariance ellipsoids are all aligned with the coordinate axes,
allowing an easier interpretation of reduction in variance along these dimensions.

Overlaid on this plot are the variable vectors representing the columns of V in this space,
positioned at an arbitrary origin. One interpretation is that the shrinkage of the coefficients
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GENERALIZED RIDGE TRACE PLOT 65

Figure 9. Reduced-rank ridge trace biplots for the prostate data. Left: dimensions 1 and 2; right: dimensions 7 and
8. Each plot has been scaled to an approximate aspect ratio of 1.0. The variable vectors show the relative projections
of the original variables into this space from the corresponding columns of V , positioned at a convenient arbitrary
origin and scaled in length to fill the available space. The online version of this figure is in color.

in Dimension 2 is most related to the variables lbph, lweight, and age, with other variables
more related to Dimension 1.

However, the right panel, showing the ridge trace biplot in the space of the smallest two
principal components, is more relevant to shrinkage and selection problems, since it shows
the relations of the variables to the directions of the greatest shrinkage. It can be seen that
the variables ppg45, gleason and lcp are most related to Dimension 8, while svi is also
implicated in Dimension 7. The remaining variables, clustered at the origin of the variable
vectors, have little relation to collinearity and shrinkage in this view.

3.3 EXTENSIONS: BOOTSTRAP METHODS

I return to the Longley (1967) data to illustrate the application of multivariate bootstrap
methods for cases where analytic expressions for the covariance matrix �k are unavailable
and/or it is desired to avoid normality assumptions by replacing ellipsoids by nonparametric
density estimates. As noted in Section 2.2, the latter is only computationally practical for 2D
versions. Nevertheless, the examples below serve to provide some additional illumination
for this process.

Figure 10 shows the results from an ordinary bootstrap resampling of the rows
of the Longley data, generating B = 800 bootstrap samples and calculating the ridge
regression estimates for the same values of k as in the previous examples (k =
{0, 0.005, 0.01, 0.02, 0.04, 0.08}). With p = 6 predictors, and six values of k, each boot-
strap sample gave a 6 × 6 matrix of ridge estimates, βk, k ∈ K . For simplicity in presen-
tation, the bivariate relations among two predictors are only considered here: GNP and
Unemployed, corresponding to the upper left panel in Figure 2.

The left panel of Figure 10 contains the data ellipses of the bootstrap estimates with the
same radii (c = 1/2 ≈ √

2F.12(2, 800) as in the earlier figure. By and large, the size and
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66 M. FRIENDLY

Figure 10. Results for B = 800 bootstrap samples of the ridge regression estimates for GNP and Unemployed
in Longley’s data. For simplicity, only the results corresponding to k = 0, 0.01, 0.08 are shown. Left: individual
bootstrap estimates are shown as points only for k = 0 (OLS), together with data ellipses of radius c = 0.5 com-
puted using Equation (11) for all three shrinkage constants. Right: contour plots of the 2D kernel density estimates
computed with bandwidth 0.4 in each coordinate, using bkde2D in the KernSmooth R package. The online version
of this figure is in color.

orientation of the covariance ellipsoids from the bootstrap are consistent with those from
the classical analytic estimates based on Equation (4). However, the individual bootstrap
estimates for the OLS case (k = 0) are widely scattered, and give reason to worry about the
adequacy of ellipsoids to capture the first and second moments of the multivariate bootstrap
distribution for this problem.

The right panel of Figure 10 shows contours of the nonparametric 2D kernel density
estimates for the bootstrap distribution, along the lines suggested by Hall (1987). It may be
seen that the bootstrap distribution of the OLS estimates differs markedly from elliptical and
that the mode is rather far from the bootstrap estimate. However, in this and other examples
that are tried, the contours of the shrunken estimates are more nearly elliptical. This suggests
the conjecture that shrinkage, in addition to increasing precision, also improves the normal
approximation on which these graphical methods rely.

4. DISCUSSION

This article makes two contributions to the literature on graphics for shrinkage methods,
typified by ridge regression: (a) the development of a multivariate extension of the standard
univariate ridge trace plot using ellipsoids to show both bias and precision and (b) the
use of low-rank, 2D biplot projections to show informative views for higher-dimensional
problems. With additional computational complexity, these ideas extend readily to other
shrinkage methods for regression and under wider assumptions.

It arose as one example of the general idea that bivariate and multivariate views of data
and statistical effects could in many cases be illuminated by the geometry of ellipses and
ellipsoids under standard normal theory (Friendly, Monette, and Fox 2011). Once this view
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GENERALIZED RIDGE TRACE PLOT 67

was taken, it became clear why the widely used univariate ridge trace plot was a failure
for its intended goal of showing the trade-off of bias versus precision: the univariate plot
of trace lines shows only the centers of the covariance ellipsoids (β̂

∗
k), while information

about precision is contained in the size and shape of �∗
k .

Displaying both together in generalized ridge trace plots gives what should be the
canonical view. As shown, the mathematics and underlying p-dimensional geometry provide
greater insight into the nature of shrinkage problems in regression. Moreover, as illustrated,
even the bivariate versions of these plots show interesting features (nonmonotonic bivariate
trends, changes in the covariance as well as standard errors of estimated coefficients) not
revealed in the univariate version. The reduced-rank, biplot views described in the article
provide one way to allow these graphical methods to extend easily to higher-dimensional
problems.

SUPPLEMENTARY MATERIALS

All figures in this article were constructed with R software (R Development
Core Team 2011). Functions implementing the graphical methods described here are
included in the R package genridge, available on the CRAN site at http://cran.
r-project.org/package=genridge. 2D and 3D plotting methods are provided, both in the
space of the predictors and in transformed SVD/PCA (principal component analysis) space.
Documentation examples for the principal functions in the package reproduce some of the
figures shown here and include other dataset examples as well. R code for all of the figures
is included in the supplementary materials.
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