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Introduction Ridge regression and shrinkage methods

Ridge Regression and Shrinkage Methods: Bias vs.
Precision

Consider the univariate classical linear model,

y = β01 + Xβ + ε,

where E (ε) = 0, Var(ε) = E (εεT) = σ2I,

Under moderate to severe collinearity— high R2(Xi | other Xs)—

Standard errors of β are inflated
OLS estimates of β tend to be too large on average

Ridge regression and related shrinkage methods

Desire: increase precision (decrease V̂ar(β̂))
OLS estimates β are constrained, shrinking them toward βTβ = 0
All methods use some tuning parameter (k) to quantify the tradeoff
How to choose? Numerical criteria, generalized cross-validation,
bootstrap, etc.
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Introduction Ridge regression and shrinkage methods

Bias vs. Precision

Particularly important when the goal is predictive accuracy
In-sample prediction error typically descreases with increased model
complexity
For new samples, prediction error typically suffers from the high
variance of complex models

But: how to visualize the tradeoff?

Fig. source: Hastie etal., Elements of Statistical LearningFriendly () GenRidge SCS 5 / 50



Introduction Ridge regression and shrinkage methods

Univariate ridge trace plots

Typical: univariate line plot of
βk vs. shrinkage, k

What can you see here regarding
bias vs. precision?

This is the wrong graphic form,
for a multivariate problem!

Goal: visualize β̂k vs. V̂ar(β̂k)
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Introduction Ridge regression and shrinkage methods

Caveats

Ridge regression is not a panacea for problems of collinearity

Collinearity is a data problem — no magic cure.
Ridge regression is often more like palliative care — make the data as
comfortable as possible with the disease.
Still, widely used in some contexts (small n, econometrics, chemistry &
physics applications)

Variable re-specification is often more effective

Normalize variables as ratios to adjust for GNP, population, etc.
Center variables in interactions and polynomial terms
Interpretable orthogonalization of related variables: as sums &
differences, contrasts, Gram-Schmidt, ...
PCA regression cures the problem, but makes interpretation more
difficult

Thoughtful model re-specification is often helpful

Nevertheless, the graphical ideas here are novel and extend to other
model selection methods.
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Introduction Motivating example: Longley data
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Introduction Motivating example: Longley data

Motivating example: Longley data

Longley (1965) data: economic time series (n = 16) of yearly data from
1947 – 1962, often used as an example of extreme collinearity.

> names(longley)

[1] "GNP.deflator" "GNP" "Unemployed" "Armed.Forces"
[5] "Population" "Year" "Employed"

We take number of people Employed as the response:
> lmod <- lm(Employed ~ GNP + Unemployed + Armed.Forces +

Population + Year + GNP.deflator, data = longley)
> vif(lmod)

GNP Unemployed Armed.Forces Population Year GNP.deflator
1788.513 33.619 3.589 399.151 758.981 135.532

As suspected, almost all VIFs are very large.

Friendly () GenRidge SCS 9 / 50



Introduction Motivating example: Longley data

> library(car)
> scatterplotMatrix(longley, smooth=FALSE, col="blue", gap=0.2,

cex.labels=1.2)
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Introduction Motivating example: Longley data

Historical sidebar on Longley’s data

Longley (1967) used used these data to demonstrate the effects of
numerical instability and round-off error in least squares computations
based on direct inversion of the crossproducts matrix, (XTX)−1.

It sparked the development of more numerically stable algorithms
(e.g., QR, modified Gram-Schmidt, etc.) now used is almost all
statistical software.

These data are perverse, in that there is clearly lack of independence
and structural collinearity – GNP, Year, GNP.deflator, Population.

Looking back, a scatterplot matrix would have revealed some of these
problems...

... and perhaps made the example less compelling

Friendly () GenRidge SCS 11 / 50



Some Theory Ridge regression: properties

Outline

1 Introduction
Ridge regression and shrinkage methods
Motivating example: Longley data

2 Some Theory
Ridge regression: properties
Ridge regression: geometry
The genridge package
Ridge regression: SVD

3 Generalized Ridge Trace Plots
Shrinkage vs. precision
Bivariate views
Reduced-rank views
Bootstrap methods

4 Conclusions

Friendly () GenRidge SCS 12 / 50



Some Theory Ridge regression: properties

Ridge Regression: Properties I

OLS estimates:

β̂OLS = (XTX)−1XTy ,

V̂ar(β̂OLS) = σ̂2(XTX)−1.

Ridge regression: replaces XTX with XTX + kI

drives |XTX + kI| away from zero even if |XTX| ≈ 0.
drives ||β|| = (βTβ)1/2 toward zero— increasing “bias”

decreases the “size” of V̂ar(β̂)— increasing precision— in that

|V̂ar(β̂OLS)| ≥ |V̂ar(β̂RR
k )| decreases with k

Friendly () GenRidge SCS 13 / 50



Some Theory Ridge regression: properties

Ridge Regression: Properties II

Ridge estimates:

β̂RR
k = (XTX + kI)−1XTy (1)

= Gk β̂
OLS ,

V̂ar(β̂RR
k ) = σ̂2Gk(XTX)−1GT

k . (2)

where Gk =
[
I + k(XTX)−1

]−1
, the (p × p) “shrinkage” matrix.

Equivalent to penalized LS criterion,

RSS(k) = (y − Xβ)T(y − Xβ) + kβTβ (k ≥ 0) , (3)

Or, to a constrained LS minimization problem,

β̂RR = argmin
β

(y − Xβ)T(y − Xβ) subject to βTβ ≤ t(k) (4)

Friendly () GenRidge SCS 14 / 50



Some Theory Ridge regression: geometry
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Some Theory Ridge regression: geometry

Ridge Regression: Geometry

Ridge regression solution has a
simple geometric interpretation based
on ellipsoids of the RSS(k) function,

RSS(k) = (y−Xβ)T(y−Xβ)+kβTβ

OLS coefficients are shrunk toward 0
along the locus of osculation of

Covariance ellipsoid of βOLS

Unit sphere βTβ ≤ t(k)

●

●

●

●

 β1

 β2

 βOLS

0  t

 βRR

The matrix Gk =
[
I + k(XTX)−1

]−1
shrinks the covariance matrix of βk

in a similar way
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Some Theory The genridge package
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Some Theory The genridge package

The genridge package: overview

Computation:

ridge Calculates ridge regregression estimates; returns an
object of class "ridge"

pca.ridge Transform coefficients and covariance matrices to
PCA/SVD space; returns an object of class
c("pcaridge", "ridge")

vif.ridge Calculates VIFs for "ridge" objects
precision Calculates measures of precision and shrinkage

Plotting methods:

traceplot Univariate ridge trace plots
plot.ridge 2D ridge trace plots
pairs.ridge scatterplot matrix of ridge trace plots
plot3d.ridge 3D ridge trace plots
biplot.ridge ridge trace plots in PCA/SVD space

Friendly () GenRidge SCS 18 / 50



Some Theory The genridge package

The genridge package: ridge()

The function ridge() calculates ridge regression estimates
It also has a formula interface.
> library(genridge)
> longley.y <- longley[, "Employed"]
> longley.X <- model.matrix(lmod)[, -1]
> lambda <- c(0, 0.005, 0.01, 0.02, 0.04, 0.08)
> lridge <- ridge(longley.y, longley.X, lambda = lambda)
> coef(lridge)

GNP Unemployed Armed.Forces Population Year GNP.deflator
0.000 -3.4472 -1.828 -0.6962 -0.34420 8.432 0.15738
0.005 -1.0425 -1.491 -0.6235 -0.93558 6.567 -0.04175
0.010 -0.1798 -1.361 -0.5881 -1.00317 5.656 -0.02612
0.020 0.4995 -1.245 -0.5476 -0.86755 4.626 0.09766
0.040 0.9059 -1.155 -0.5039 -0.52347 3.577 0.32124
0.080 1.0907 -1.086 -0.4583 -0.08596 2.642 0.57025

It returns a "ridge" object containing coefficients, covariance matrices
and other quantities:
> names(lridge)

[1] "lambda" "df" "coef" "cov" "mse" "scales" "kHKB"
[8] "kLW" "svd.D" "svd.U" "svd.V"

Friendly () GenRidge SCS 19 / 50



Some Theory The genridge package

Univariate ridge trace plots: traceplot()

> traceplot(lridge, cex.lab=1.25, xlim=c(-.01, 0.08))
> traceplot(lridge, X="df", cex.lab=1.25, xlim=c(4,6.2))
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As will be explained, the ridge constant k can also be parameterized in
terms of effective degrees of freedom.
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Some Theory The genridge package

Variance Inflation Factors: vif() method

vif() for a "ridge" object calculates variance inflation factors for all
values of the ridge constant
> vridge <- vif(lridge)
> vridge

GNP Unemployed Armed.Forces Population Year GNP.deflator
0.000 1788.51 33.619 3.589 399.15 758.98 135.53
0.005 540.04 12.118 2.921 193.30 336.15 90.63
0.010 259.00 7.284 2.733 134.42 218.84 74.79
0.020 101.12 4.573 2.578 87.29 128.82 58.94
0.040 34.43 3.422 2.441 52.22 66.31 43.56
0.080 11.28 2.994 2.301 28.59 28.82 29.52

This gives some idea of the effect of shrinkage on variance inflation

Friendly () GenRidge SCS 21 / 50



Some Theory The genridge package

Variance Inflation Factors: Ridge VIF plots?

Plots of VIF vs k for individual variables show the magnitude of problems,
but suffer from being swamped by the largest value.
> matplot(rownames(vridge), vridge, type = "b", xlab = "Ridge constant (k)",

ylab = "Variance Inflation", xlim = c(-0.01, 0.08),
col = clr, pch = pch, cex = 1.2, cex.lab = 1.25)
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Some Theory The genridge package

Variance Inflation Factors: Ridge VIF plots?

At the very least, plot
√
VIF , which is the multiplier for standard errors

> matplot(rownames(vridge), sqrt(vridge), type = "b", xlab = "Ridge constant (k)",
ylab = expression(sqrt(VIF)), xlim = c(-0.01, 0.08),
col = clr, pch = pch, cex = 1.2, cex.lab = 1.25)
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Some Theory Ridge regression: SVD
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Some Theory Ridge regression: SVD

Ridge Regression: SVD I

Naive formula for β̂RR
k , Eqn. (1), is computationally expensive, numerically

unstable and conceptually opaque

Alternative formulation in terms of the SVD of X:

X
(n×p)

= U
(n×p)

D
(p×p)

V
(p×p)

T (5)

where UTU = VTV = I, and D = diag (d1, d2, . . . dp) is the diagonal
matrix of ordered singular values.

Friendly () GenRidge SCS 25 / 50



Some Theory Ridge regression: SVD

Ridge Regression: SVD II

The ridge estimates can then be calculated efficiently as

β̂RR
k = (D2 + kI)−1DUTy =

(
di

d2
i + k

)
uTi y, i = 1, . . . p (6)

Fitted values can be expressed as

ŷRR
k = X(XTX + kI)−1DUTy =

p∑
i

ui

(
d2
i

d2
i + k

)
uTi y

The factors d2
i /(d2

i + k) ≤ 1 indicate the degree of shrinkage wrt the
orthonormal basis of the column space of X given by U.

The rows of VT give the linear combinations of the variables for each
dimension— we use this for biplot views.
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Some Theory Ridge regression: SVD

Ridge Regression: SVD III

Small singular values di correspond to directions (rows of VT) which
ridge regression shrinks the most.

These are the directions which contribute most to collinearity

Gives an alternative characterization of the ridge tuning parameter
(k) in terms of effective degrees of freedom

dfk = tr[X(XTX + kI)−1XT] =

p∑
i

(
d2
i

d2
i + k

)
≤ p (7)

Eqn. (7) follows from the fact that, for OLS, the hat matrix
H = X(XTX)−1XT has tr(H) = p, the number of parameters,
dimensions, or df.
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Generalized Ridge Trace Plots

Generalized Ridge Trace Plots: Main idea

Rather than plotting just the univariate trajectories of βk vs. k, plot the
covariance ellipsoids of Σ̂k ≡ V̂ar(β̂k) over same range of k

Centers of the ellipsoids are β̂k – same info as in univariate plot
Can see how change in one coefficient is related to changes in others
Relative size & shape of ellipsoids shows directly effect on precision
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Generalized Ridge Trace Plots

Generalized Ridge Trace Plots: Possible views

For a given data set, assume we have a set of K ellipsoids, E(β̂kj , Σ̂kj ),
j = 1, 2, . . . ,K , each of dimension p.

These can be viewed in a variety of ways:

Calculate summary measures of variance (size of Σk) and shrinkage
(size of βk) and plot directly or vs. k
2D views of the projections of the ellipsoids for pairs of predictors
Scatterplot matrix for all pairwise 2D views
3D views of projections for triples of predictors
Informative 2D/3D views projected into PCA/SVD space
Interactive, dynamic graphics for any of the above allowing choice of
shrinkage factors, etc. via software controls
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Generalized Ridge Trace Plots Shrinkage vs. precision

Outline

1 Introduction
Ridge regression and shrinkage methods
Motivating example: Longley data

2 Some Theory
Ridge regression: properties
Ridge regression: geometry
The genridge package
Ridge regression: SVD

3 Generalized Ridge Trace Plots
Shrinkage vs. precision
Bivariate views
Reduced-rank views
Bootstrap methods
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Generalized Ridge Trace Plots Shrinkage vs. precision

Measuring Precision and Shrinkage: precision()

Other benefits of this multivariate approach:

Shrinkage (“bias”) can be measured by the length of the coefficient
vector, ||β|| =

√
βTβ

Variance (inverse precision) can be measured by the “size” of the
covariance ellipsoid, as functions of its eigenvalues, λi , i = 1, . . . , p.

Linearized volume: log |Σk | or |Σk |1/p = p
√∏

λi ∼ Wilks Λ
Average measure of size: tr(Σk) =

∑
λi ∼ Pillai trace

Maximum dimension: λi ∼ Roy’s max root

> (pdat <- precision(lridge))

lambda df det trace max.eig norm.beta
0.000 0.000 6.000 -12.93 18.1190 15.4191 3.807
0.005 0.005 5.415 -14.41 6.8209 4.6065 2.819
0.010 0.010 5.135 -15.41 4.0423 2.1807 2.423
0.020 0.020 4.818 -16.83 2.2180 1.0255 2.011
0.040 0.040 4.478 -18.70 1.1647 0.5808 1.611
0.080 0.080 4.128 -21.05 0.5873 0.2599 1.284
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Generalized Ridge Trace Plots Shrinkage vs. precision

Visualizing Precision vs. Shrinkage

> with(pdat, {
plot(norm.beta, det, type = "b", cex.lab = 1.25,

pch = 16, cex = 1.5, col = clr, xlab = "shrinkage: ||b||",
ylab = "variance: log |(Var(b)|)")

text(norm.beta, det, lambdaf, cex = 1.25, pos = 2)})
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Generalized Ridge Trace Plots Bivariate views

Outline

1 Introduction
Ridge regression and shrinkage methods
Motivating example: Longley data
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Generalized Ridge Trace Plots Bivariate views

Bivariate ridge trace plots: plot() method

> clr <- c("black", rainbow(5, start=.6, end=.1))
> plot(lridge, var=c(1,2), radius=0.5, col=clr, cex.lab=1.25, fill=TRUE)
> plot(lridge, var=c(1,4), radius=0.5, col=clr, cex.lab=1.25, fill=TRUE)
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Generalized Ridge Trace Plots Bivariate views

Scatterplot matrix of ridge trace plots: pairs() method

> pairs(lridge, radius=0.5, diag.cex=1.75, col=clr, fill=TRUE)
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Generalized Ridge Trace Plots Bivariate views

Bivariate ridge trace plots: Observations

Bivariate ridge trace plots show a variety of things that cannot be
observed in the univariate version:

For the Longely data, even small values of k have substantial impact
on ||βk ||
Even more dramatic is the effect on the size of the confidence
ellipsoids

Shrinkage in variance (e.g., |Σk |1/p) tends to be in the same direction
as shrinkage in coefficients
The bivariate path of shrinkage in βk is often, but not always
monotonic

e.g., βGNP vs. βPop
All bivariate paths for Population and GNP.deflator

The covariance between pairs of coefficients (orientation of ellipses)
also tends to change systematically, but not always.

The scatterplot matrix format makes it particularly easy to see the effects
on bias and variance for a given variable.
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Generalized Ridge Trace Plots Bivariate views

3D ridge trace plots: plot3d() method

> plot3d(lridge, radius=0.5)
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Generalized Ridge Trace Plots Reduced-rank views

Outline

1 Introduction
Ridge regression and shrinkage methods
Motivating example: Longley data

2 Some Theory
Ridge regression: properties
Ridge regression: geometry
The genridge package
Ridge regression: SVD

3 Generalized Ridge Trace Plots
Shrinkage vs. precision
Bivariate views
Reduced-rank views
Bootstrap methods
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Friendly () GenRidge SCS 39 / 50



Generalized Ridge Trace Plots Reduced-rank views

Ridge trace plots in PCA / SVD space: pca method()

> plridge <- pca.ridge(lridge)
> pairs(plridge, col=clr, radius=0.5, diag.cex=3)
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SVD of X = UDVT implies:
E(β,Σ) 7→ E(Vβ,VTΣV)
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coordinate axes.

It is easy to see that shrinkage
occurs only in the space of the
smallest eigenvalues
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Generalized Ridge Trace Plots Reduced-rank views

Ridge trace plots in PCA / SVD space: pca method()

We can also see this in the univariate trace plot in the transformed
PCA/SVD space
> traceplot(plridge)
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Generalized Ridge Trace Plots Reduced-rank views

View in PCA space of smallest dimensions: biplot() method

> biplot(plridge, col=clr, radius=.5, cex.lab=1.25, prefix="Dimension ")

●

●

●

●

●

●
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Dimension 5 (0.043%)

D
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 (
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00
6%

)

GNP

Unemployed

Armed.Forces

Population

Year

GNP.deflator

0

.005

.01

.02

.04
.08

View the variance ellipsoids in
the space of the smallest
dimensions

This is where the greatest
shrinkage takes place!

Variable vectors show how these
dimensions relate to the original
variables [“biplot”]

GNP, Year & Pop contribute
most to Dim 6
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Generalized Ridge Trace Plots Reduced-rank views

3D views in PCA space

> plot3d.ridge(plridge, variables=4:6, radius=.5)
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Generalized Ridge Trace Plots Reduced-rank views

VIFs in PCA/SVD space

Finally, note that the transformation to PCA space makes all transformed
predictors orthogonal, so the VIFs are all 1.0
> vif(plridge)

dim1 dim2 dim3 dim4 dim5 dim6
0.000 1 1 1 1 1 1
0.005 1 1 1 1 1 1
0.010 1 1 1 1 1 1
0.020 1 1 1 1 1 1
0.040 1 1 1 1 1 1
0.080 1 1 1 1 1 1

Added benefit: biplot views help to make the results of PCA regression
more interpretable
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Generalized Ridge Trace Plots Bootstrap methods

Outline

1 Introduction
Ridge regression and shrinkage methods
Motivating example: Longley data

2 Some Theory
Ridge regression: properties
Ridge regression: geometry
The genridge package
Ridge regression: SVD

3 Generalized Ridge Trace Plots
Shrinkage vs. precision
Bivariate views
Reduced-rank views
Bootstrap methods

4 Conclusions
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Generalized Ridge Trace Plots Bootstrap methods

Multivariate bootstrap methods

If normal theory too restrictive, or if there is no closed-form expression for
Σ̂ simple non-parametric versions can be calculated via bootstrap methods
as follows:

Generate B bootstrap estimates β̃b
k , b = 1, 2, . . . ,B, each p × 1, by

resampling from the rows of available data, (y,X).

For given k, the bootstrap estimate β̃k = Ave(β̃b
k ) = B−1Σbβ̃

b
k .

Bootstrap estimate of Σ̃k can be computed as the empirical covariance
matrix of β̃b

k ,

Σ̃k = B−1
B∑

b=1

(β̃b
k − β̃k)(β̃b

k − β̃k)T . (8)

Simple display: data ellipsoids of the bootstrap sample estimates,

β̃k ⊕ Σ̃
1/2
k S. [Still assumes normality of bootstrap estimates.]

Alternatively, use non-parametric density estimation → smoothed
approximations to the joint distribution of the β̃b

k (only in 2D)
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Generalized Ridge Trace Plots Bootstrap methods

Multivariate bootstrap methods

Results for B = 800 bootstrap samples of the ridge regression estimates
for GNP and Unemployed in Longley’s data.
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Bootstrap RR: data ellipses
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Conjecture: RR shrinkage, in addition to increasing precision, also
improves the normal approximation on which these graphical methods rely.
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Conclusions

Summary and conclusions I

Shrinkage in ridge regression & related methods is a multivariate
problem

requires simultaneous visualization of “bias” (||βk ||) and precision
(|Σk |−1/p)
this is achieved by 2D and 3D plotting methods displaying the
covariance ellipsoids of the ridge estimates, E(β̂k , Σ̂k)

Even static, 2D views, e.g., pairs() plots, can be far more revealing
than univariate ridge trace plots

Ellipsoid centers (β̂k) show how parameter estimates shrink jointly

Ellipsoid size and shape (Σ̂k) show how parameter variances and
covariances shrink jointly
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Conclusions

Summary and conclusions II

Higher-p problems are more easily visualized by transforming the

ellipsoids E(β̂k , Σ̂k) to PCA/SVD space, E(Vβ̂k ,V
TΣ̂kV)

The dimensions corresponding to the smallest singular values provide
the most informative views of shrinkage
Interpretation in terms of the original variables is facilitated by plotting
projections of variable vectors in this space [“biplot”]

Extensions:

The same graphical ideas apply to any shrinkage/selection method that

provides estimates β̂k (a coef() method) and variance-covariance

estimates Σ̂k (a vcov() method).
When variance-covariance estimates are unavailable analytically, they
can be approximated by bootstrap methods.
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Conclusions

Summary and conclusions III

Graphical inspiration:

This paper arose as one example of the idea that multivariate views of
data are illuminated by the geometry of ellipsoids

“Once you tune in to ellipses you will begin to see them everywhere.”

– FIN –
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