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This article first illustrates the use of mosaic displays for the analysis of multiway 
contingency tables. We then introduce several extensions of mosaic displays designed 
to integrate graphical methods for categorical data with those used for quantitative data. 
The scatterplot matrix shows all painvise (bivariate marginal) views of a set of variables 
in a coherent display. One analog for categorical data is a matrix of mosaic displays 
showing some aspect of the bivariate relation between all pairs of variables. The sim- 
plest case shows the bivariate marginal relation for each pair of variables. Another case 
shows the conditional relation between each pair, with all other variables partialled out. 
For quantitative data this represents (a) a visualization of the conditional independence 
relations studied by graphical models, and (b) a generalization of partial residual plots. 
The conditioning plot, or coplot, shows a collection of partial views of several quantita- 
tive variables, conditioned by the values of one or more other variables. A direct analog 
of the coplot for categorical data is an array of mosaic plots of the dependence among 
two or more variables, stratified by the values of one or more given variables. Each such 
panel then shows the partial associations among the foreground variables; the collection 
of such plots shows how these associations change as the given variables vary. 

Key Words: Categorical data; Conditional independence; Coplots; Correspondence anal- 
ysis; Graphical models; Log-linear models; Mosaic matrix; Scatterplot matrix. 

1. INTRODUCTION 

Graphical methods for quantitative data and categorical data are often viewed as 
quite distinct, although the underlying linear models are close analogs. Here we develop 
some graphic connections and parallels between these methods, through extensions of 
the mosaic display, a general method for visualizing n-way contingency tables. 

We first describe the design goals and visualization principles for the mosaic display 
and illustrate its use for the analysis of several multiway contingency tables (Section 2). 
Second, we introduce several extensions of mosaic displays designed to integrate graphi- 
cal methods for categorical data with those used for quantitative data. The mosaic matrix 
(Section 3) is an analog of the scatterplot matrix, showing all painvise, bivariate views 
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of an n-way table. A conditional mosaic matrix (Section 4) and its analog for continu- 
ous data shows the conditional relation for each pair, with all other variables controlled. 
Partial views (Section 5) are provided by mosaic displays stratified by one or more given 
variables, and are categorical analogs of coplot displays (Cleveland 1993). 

One essential difference between quantitative data and categorical data lies in the 
nature of the natural visual representation (Friendly 1995, 1997). For quantitative data, 
magnitude can be represented by length (in a bar chart) or by position along a scale 
(dotplots, scatterplots). When the data are categorical, design principles of perception, 
detection, and comparison (Friendly 1999) suggest that frequencies are most usefully 
represented as areas. In spite of the fact that (in magnitude estimation tasks) judgments 
of area are known to be less accurate than those of length (e.g., Cleveland and McGill 
1984), there are two fundamental reasons why area is a preferred visual representation for 
count data: (a) multiplicative relations of probabilities and expected frequencies translate 
readily into height and width of rectangles, whose area then depicts a cell value; (b) a 
concrete, physical model for categorical data (Friendly 1995) based on count N area yields 
a surprising range of correct, but novel interpretations for statistical principles (maximum 
likelihood), estimation techniques (iterative proportional fitting, Newton-Raphson) and 
phenomena (power, why components of likelihood-ratio G2 can be negative). 

One final introductory point: the graphics shown here are, of necessity, static graphs, 
designed to show both the data and some model-based analysis. Their ultimate use will, 
I believe, be most productive as interactive graphics, tightly coupled with the model- 
building methods themselves. One needs to design good widgets first, however, before 
learning how to employ them most effectively. A simple interactive web applet may be 
found at http://www.math.yorku.ca~SCS/Online/mosaics/,which also contains pointers to 
other implementations, both static and dynamic. 

2. MOSAIC DISPLAYS 

The mosaic display (Friendly 1992a, 1994, 1997, 1999; Hartigan and Kleiner 1981, 
1984) is a graphical method for visualizing an n-way contingency table and for build- 
ing models to account for the associations among its variables. The frequencies in a 
contingency table are portrayed as a collection of rectangular "tiles" whose areas are 
proportional to the cell frequencies; the areas are colored and shaded to portray the 
residuals from a specified log-linear model. Whereas goodness-of-fit statistics provide an 
overall summary of how well a model fits the data, the mosaic display reveals the pattern 
of lack of fit, and helps suggest an alternative model that may fit better. 

The construction of the mosaic is easily understood as a straightforward application 
of conditional probabilities. For a two-way table, with cell frequencies nij, and cell 
probabilities pij = nij/n++, a unit square is first divided into rectangles whose width 
is proportional to the observed marginal frequencies ni+, and hence to the marginal 
probabilities pi = ni+/n++. Each such rectangle is then subdivided horizontally in 
proportion to the conditional probabilities of the second variable given the first, pjli = 

nij/ni+. Hence the area of each tile is proportional to the observed cell frequency and 
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Table 1. Hair-Color Eye-Color Data 

Hair Color 
Eve 

color Black Brown Red Blond Total 

Green 5 29 14 16 64 
Hazel 15 54 14 10 93 
Blue 20 84 17 94 215 
Brown 68 119 26 7 220 

Total 108 286 71 127 592 

probability, 

The order of conditioning matters, of course. In static graphs, placing explanatory vari-
able(~)first shows how the response(s) depend on them. In interactive, multi-windowed 
systems such as Vista (Young 1994) it is easy to provide both views of a two-way table 
or allow the order of variables to be chosen interactively. 

For example, Table 1 shows data on the relation between hair color and eye color 
among 592 subjects (students in a statistics course) collected by Snee (1974). The Pearson 
X 2  for these data is 138.3 with 9 df, indicating substantial departure from independence. 

The basic two-way mosaic for these data, shown in the left panel of Figure 1, is then 
similar to a divided bar chart. If hair color and eye color were independent,pij =pi x p j ,  

and then the tiles in each row would all align. This is shown in the right panel of Figure 1, 
which displays the expected frequencies, mij = ni+n+j /n++,  under independence. 

One important design goal for visualization methods for categorical data is to serve 
various needs in the analysis of contingency tables (Friendly 1999): 

Reconnaissance-a preliminary examination, or an overview of a possibly com-
plex terrain. 
Exploration-help detect patterns or unusual circumstances, or to suggest hy-
potheses. 
Model building and diagnosis--critique a fitted model as a reasonable statistical 
summary. 

Enhancements to the basic mosaic designed to meet these needs are described in the 
following. 

2.1.1 Enhanced Mosaics 

The enhanced mosaic display (Friendly 1992a, 1994) achieves greater visual impact 
by using color and shading to reflect the size of the residual from independence and 
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Figure 1.  Basic mosaic display for hair-color and eye color data. The area of each rectangle is proportional 
to the cell frequency. (a )  observed frequencies; (b)  expected frequencies under independence. 

by reordering rows and columns to make the pattern of association more coherent. The 
resulting display serves exploratory goals (by showing the pattern of observed frequencies 
in the full table, or any marginal subtable), and model building goals (by displaying the 
residuals from a given log-linear model). 

Figure 2 gives the extended mosaic plot, showing the standardized (Pearson) residual 
from independence, di j  = (nij-mij)/& by the color and shading of each rectangle: 
cells with positive residuals are outlined with solid lines and filled with shades of blue; 
negative residuals are outlined with broken lines and filled in red. The absolute value 
of the residual is portrayed by shading density: cells with absolute values less than 2 
are empty; cells with Idij] 2 2 are lightly filled; those with Idij/  > 4 are filled with 
a darker color. (In black and white, we use two different pattern fills with varying 
lightness to portray magnitude.) Under the assumption of independence, these values 
roughly correspond to two-tailed probabilities p < .05 and p < .0001 that a given value 
of /dij l  exceeds 2 or 4. For exploratory purposes, we do not usually make adjustments 
(e.g., Bonferroni) for multiple tests because the goal is to display the pattern of residuals 
in the table as a whole, 

When the row or column variables are unordered, we are also free to rearrange 
the corresponding categories in the plot to help show the nature of association. For 
example, in Figure 2, the eye color categories have been permuted so that the residuals 
from independence have an opposite-corner pattern, with positive values running from 
bottom-left to top-right comers, negative values along the opposite diagonal. 

Coupled with size and shading of the tiles, the excess in the black-brown and blond- 
blue cells, together with the under-representation of brown-eyed blonds and people with 
black hair and blue eyes is now quite apparent. Though the table was reordered based on 
the d i j  values, both dimensions in Figure 2 are ordered from dark to light, suggesting an 
explanation for the association. A general method (Friendly 1994) is to sort the categories 
by their scores on the largest dimension in a (correspondence analysis) singular value 
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Figure 2. Extended mosaic, reordered and shaded. The m o  levels of shading densiv correspond to standardized 
residuals greater than or equal to 2 and 4 in absolute value. 

decomposition of residuals. This reordering of categories illustrates the principle of effect- 
ordering for data displays (see Friendly 1999)-sort the data by the effects to be observed, 
here, the structure of association. We now observe that one cell (hazel-eyed redheads) 
departs from the opposite-comer pattern, suggesting that this combination differs in some 
way from the light-dark association. 

2.1.2 n-way tables 

Another design goal is that graphical methods extend naturally to three-way and 
higher-way tables, in much the same way that graphical methods for quantitative data do. 
For an n-way table, with variables A, B ,  C ,  . . ., the construction of the mosaic generalizes 
recursively to 

The braces in Equation (2.2) are meant to suggest that the first two terms provide a 
mosaic for the marginal frequencies of variables A and B, the first three terms give a 
mosaic for the { A B C )  marginal table, and so forth, up to the display of the full n-way 
table. 
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Figure 3. Three-way mosaic display for hair color, eye color, and sex. The categories of sex are crossed with 
those of hair color, but only the 3rst occurrence is labeled. Residuals from the model of joint independence, 
[ H E ]  [S]  are shown by shading. The only lack 0f3t  is an overabundance of females among blue-eyed blonds. 

For example, imagine that each cell of the two-way table for hair and eye color is 
further classified by one or more additional variables-sex and ethnicity, for example. 
Then each rectangle can be subdivided horizontally to show the proportion of males and 
females in that cell, and each of those horizontal portions can be subdivided vertically 
to show the proportions of people of each ethnicity in the hair-eye-sex group. 

Figure 3 shows the mosaic for the three-way table, with hair and eye color groups 
divided according to the proportions of males and females: We see that there is no 
systematic association between sex and the combinations of hair and eye color--except 
among blue-eyed blonds, where there are an overabundance of females. (Do they have 
more fun?) 

When three or more variables are represented in the mosaic, we can fit different 
models and display the residuals from each. We treat these as null or baseline models, 
which may not fit the data particularly well. The deviations of observed frequencies 
from expected ones, displayed by shading, will often suggest terms to be added to an 
explanatory model that achieves a better fit. 

For a three-way table, with variables A, B, and C, some of the possible model types 
are described in the following and summarized in Table 2; permutation of the variable 



Table 2. Fitted Margins, Model Symbols and Interpretations for Some Hypotheses for a Three-Way 
Table 

Fitted Model Independence Assodation 
Hypothesis margins symbol Interpretation graph 

letters give other model instances. We use [ I  notation to list the high-order terms in a 
hierarchical log-linear model; these correspond to the margins of the table which are 
fitted exactly. Any other associations present in the data will appear in the pattern of 
residuals. Here, A iB is read, "A is independent of B", and .rrijr, refers to theoretical 
probabilities. Table 2 also depicts the relations among variables as an association graph, 
where associated variables are connected by an edge. 
H I :  Mutual independence. The model of mutual independence, A I B I C ,  asserts 

that all joint probabilities .rrijk are products of the one-way marginal probabilities: 
.rr,j,+ = .rri++ .rr+j+ .rr++k. This corresponds to the log-linear model [A] [B][C]. 
Fitting this model leaves all higher terms, and hence all association among the 
variables, in the residuals, which are displayed by shading in the mosaic. 

Hz: Joint independence. The model in which variable C is jointly independent of vari- 
ables A and B, (A, B i C), has x i j k  = .rrij+ x++k,  and corresponds to the 
log-linear model [AB] [C].Residuals from this model show the extent to which 
variable C is related to the combinations of variables A and B ,  but they do not 
show any association between A and B ,  since that association is fitted exactly. 

H3: Conditional independence. Two variables, say A and B, are conditionally indepen- 
dent given the third (C) if A and B are independent when we control for C ,  
symbolized as A iB / C.  This means that conditional probabilities, . rr i jk ,  obey 
.rrijjk = ~ + ~ k ..rri+k The corresponding log-linear models is denoted [AC] [BC].  
When this model is fit, the mosaic shows the conditional associations between 
variables A and B ,  controlling for C ,  but does not show the associations between 
A and C ,  or B and C .  

H4: No three-way interaction. For this model, no pair is marginally or conditionally in- 
dependent, so there is no independence interpretation. However, the partial asso- 
ciation between any two variables is the same at each level of the third variable. 



The corresponding log-linear model formula is [AB] [AC] [BC], indicating that 
all two-way margins are fit exactly and so are not shown in the residuals. Only a 
possible three-way association appears in the mosaic. 

For example, with the data from Table 1 broken down by sex, fitting the joint- 
independence model [HairEye][Sex] allows us to see the extent to which the joint distri- 
bution of hair-color and eye-color is associated with sex. For this model, the likelihood- 
ratio G2 is 19.86 on 15 df O, = .178), indicating an acceptable overall fit. The three-way 
mosaic for this model was shown in Figure 3. Any other model fit to this table will 
have the same tiles in the mosaic since the areas depend on the observed frequencies; 
the residuals, and hence the shading of the tiles will differ. 

The mosaic display is constructed in stages, with the variables listed in a given 
order. At each stage, the procedure fits a (sub)model to the marginal subtable defined by 
summing over all variables not yet entered. For example, for a three-way table, {ABC), 
the marginal subtables {A) and {AB) are calculated in the process of constructing the 
three-way mosaic. The {A) marginal table can be fit to a model where the categories 
of variable A are equiprobable (or some other discrete distribution); the independence 
model can be fit to the {AB) subtable; and so forth. The series of plots can give greater 
insight into the relationships among all the variables than a single plot alone. 

Moreover, the series of mosaic plots fitting submodels of joint independence to the 
marginal subtables have the special property that they can be viewed as partitioning the 
hypothesis of mutual independence in the full table (Friendly 1994; Goodman 1970). 
For example, for the hair-eye data, the mosaic displays for the [Hair Eye] marginal table 
(Figure 2) and the [HairEye] [Sex] (Figure 3) table can be viewed as representing the 
partition 

Model df G2 
[Hair] [Eye] 
[Hair], [Eye] [Sex] 
[Hair] [Eye] [Sex] 

9 
15 
24 

146.44 
19.86 

155.20 

This partitioning scheme for sequential models of joint independence extends directly 
to higher-way tables. The MOSAICS program Friendly (1992b) implements a variety of 
schemes for fitting a sequential series of submodels, including mutual independence, 
joint independence, conditional independence, partial independence, and Markov chain 
models. Two examples illustrate the visual comparison of models and sequential displays. 

Bickel, Hammel, and O'Connell (1975) analyzed data (Freedman, Pisani, and Purves 
1978, p. 14) on applicants to graduate school at Berkeley for the six largest departments 
in 1973 classified by admission and gender. At issue was whether the data show evidence 
of sex bias in admission practices. The aggregate data, across departments, are shown 
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Figure 4. Mosaic display for Berkeley admissions: Evidence for sex bias? 

in Figure 4. Of the 4,526 applicants, 2,691 (59.5%) were male; among males, 1,198 
(44.5%) were admitted, while among females 557 (30.4%) were admitted. The residuals 
show a strong association between gender and admission (G2(1) = 93.45); the sample 
odds ratio, Odds (AdmitlMale)/(AdmitIFemale) is 1.84, indicating that males were almost 
twice as likely to be admitted. Is this evidence for gender bias? 

To collapse over departments, we must assume that men and women apply in roughly 
the same proportions to all departments. Figure 5 shows three-way mosaics for two 
models. Treating gender and department as explanatory variables and admission as the 
response, the model [Dept Gender] [Admit] asserts that admission is independent of 
department and gender. This baseline model fits poorly (G2(1 1) = 877.06) as shown 
in Figure 5(a). The residuals suggest that more men are accepted in departments A and 
B, while more women are accepted in departments E and F than would be the case if 
admission depended on neither department nor gender. 

Figure 5(b) shows the same observed frequencies, but fits the model of conditional 
independence, [Admit Dept] [Gender Dept], for which admission is independent of gen- 
der, given department. This model also fits poorly (G2(6) = 21.74), but the residuals in 
the mosaic suggest that the lack of fit is due primarily to department A, where a greater 
proportion of women are admitted than men. We return to these paradoxical findings- 
strong evidence of gender bias in favor of men in the marginal view (Figure 4), but none 
(except for department A) in the conditional view-in Section 3.3. 
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Figure 5. Three-way mosaic plots for Berkeley data. (a )  Joint independence; (b) Conditional independence 

There have been few marine disasters that have caused the staggering loss of life 
as the sinking of the Titanic on April 15, 1912, and (perhaps as a result) few that are 
so widely known by the public. It is surprising, therefore, that neither the exact death 
toll from this disaster nor the distributions of death among the passengers and crew are 
universally agreed upon. Dawson (1995, tab. 2) presented the cross-classification of 2,201 
passengers and crew on the Titanic by Age, Gender, Class (first, second, third, crew) 
shown in Table 3 and described his efforts to reconcile various historical sources. Let us 
see what we can learn from this dataset. 

Examining the series of mosaics for the variables ordered Class, Gender, Age, Sur- 
vival will show the relationships among the background variables and how these are 
related to survival. The letters C, G, A, S, respectively, are used to refer to these vari- 
ables in the following. 

Figure 6 shows the two-way and three-way plots among the background variables. 

Table 3. Survival on the Titanic 

Class 
Gender Age Survived First Second Third Crew 

Male Adult Died 118 154 387 670 
Female 4 13 89 3 

Male Child 0 0 35 0 
Female 0 0 17 0 

Male Adult Survived 57 14 75 192 
Female 140 80 76 20 

Male Child 5 11 13 0 
Female 1 13 14 0 



Figure 6. Titanic data, explanatory variables. (a )  Class and Gender; (b )  Class, Gender, Age. The levels of Age 
(Adult, Child) repeat for each Class. 

The two-way mosaic shows that the proportion of males decreases with increasing eco- 
nomic class, and that the crew was almost entirely male. The three-way plot shows the 
distribution of adults and children among the Class-Gender groups. The residuals display 
the fit of a model in which Age is jointly independent of the Class-Gender categories. 
Note that there were no children among the crew, and the overall proportion of chil- 
dren was quite small (about 5%). Among the passengers, the proportion of children is 
smallest in first class, largest in third class. The only large positive residuals correspond 
to a greater number of children among the third class passengers, perhaps representing 
families traveling or emmigrating together. 

Two four-way mosaics are shown in Figure 7. The first fits the model [CGA][S] 
which asserts that survival is independent of Class, Gender, and Age jointly. This is the 
minimal null model when the first three variables are explanatory. It is clear that greater 
proportions of women survived than men in all classes, but with greater proportions of 
women surviving in the upper two classes. Among males, the proportion who survived 
also increases with economic class. However, this model fits very poorly (G2(15) = 

671.96), and we may try to fit a more adequate model by adding associations between 
survival and the explanatory variables. 

Adding a main effect of each of Class, Gender, and Age on Survival amounts to 
fitting the model [CGA] [CS] [GS] [AS]. That is, each of the three variables is associated 
with survival, but have independent, additive effects. The mosaic for this model is shown 
in Figure 7(b). The fit of this model is much improved (AG2(5) = 559.4), but still does 
not represent an adequate fit (G2(10) = 112.56). There are obviously interactions among 
Class, Gender, and Age on their impact on survival, some of which we have already 
noted. 

Noting the rubric of "women and children first," we next fit the model [CGA][CS] 
[GAS] in which Age and Gender interact in their influence on survival (Figure 8(a)). 
Adding the association of Age and Gender with survival has improved the model slightly, 



Figure 7. Titanic data, Class, Gender, Age, and Survival: (a)  joint independence; (b)  main effects of Age, 
Gender, and Class on Survival. 

however' the fit is still not good (G2(9) = 94.54). If we add the interaction of Class and 
Gender to this (the model [CGA] [CGS] [GAS]), the likelihood-ratio chi-square is reduced 
substantially (G2(6) = 37.26), but the lack of fit is still significant. 

Finally, we try a model in which Class interacts with both Age and Gender to 
give the model [CGA][CGS][CAS], whose residuals are shown in Figure 8(b). The 
likelihood-ratio chi-square is now 1.69 with 4 df-a very good fit, indeed. 

The import of these figures is clear. Regardless of Age and Gender, lower economic 
status was associated with increased mortality; the differences due to Class were mod- 

Figure 8. Titanic data, interaction models. (a )  Model [ C G A ]  [ C S ]  [ G A S ] :  Age*Gender on Survival; (b)  Model 
[ C G A ]  [ C G S ]  [ C A S ] :  Age*Gender + Class*Gender on Survival 



erated, however, by both Age and Gender. Although women on the Titanic were more 
likely overall to survive than men, the interaction of Class and Gender shows that women 
in third class did not have a significant advantage, while men in first class did compared 
to men in other classes. The interaction of Class and Age is explained by the observation 
that while no children in first or second class died, nearly two-thirds in third class died; 
for adults, mortality increases progressively as economic class declines. Hence, although 
the phrase "women and children first" is mellifluous and appeals to a sense of Edwardian 
chivalry a more adequate description might be "women and children (according to class), 
then first-class men." 

3. MOSAIC MATRICES FOR CATEGORICAL DATA 

One reason for the wide usefulness of graphs of quantitative data has been the 
development of effective, general techniques for dealing with high-dimensional datasets. 
The scatterplot matrix shows all painvise (marginal) views of a set of variables in a 
coherent display, whose design goal is to show the interdependence among the collection 
of variables as a whole, and which allows detection of patterns which could not readily 
be discerned from a series of separate graphs. In effect, a multivariate dataset in p 
dimensions (variables) is shown as a collection of p(p  - 1) two-dimensional scatterplots, 
each of which is the projection of the cloud of points on two of the variable axes. For 
multivariate normal data, this gives a visualization of the covariance matrix. These ideas 
can be readily extended to categorical data. 

A multiway contingency table of p categorical variables, A, B ,  C, . . ., also contains 
the interdependence among the collection of variables as a whole. The saturated log- 
linear model, [ABC. ..] fits this interdependence perfectly, but is often too complex 
to describe or understand. By summing the table over all variables except two, A and 
B, say, we obtain a two-variable (marginal) table, showing the bivariate relationship 
between A and B, which is also a projection of the p-variable relation into the space of 
two (categorical) variables. If we do this for all p(p - 1) unordered pairs of categorical 
variables and display each two-variable table as a mosaic, we have a categorical analog 
of the scatterplot matrix, called a mosaic matrix. Like the scatterplot matrix, the mosaic 
matrix can accommodate any number of variables in principle, but in practice is limited 
by the resolution of our display to three or four variables. 

3.1 MCA AND THE BURTMATRIX 

The mosaic matrix has another interpretation as a direct visualization of the so-called 
"Burt matrix" which forms the basis of multiple correspondence analysis (MCA). A p- 
way, J1 x J2 x . . . x Jp contingency table of K = n Ji cells can be represented in a 
vector of frequencies n = (n l ,. . . ,nK)Tand a K x p matrix X whose ith column gives 
the factor levels for variable i in each cell of the table. Let Zi be the K x Ji indicator 
(design) matrix corresponding to xi,so that Zi(k,e) = 1 e xki = e, and let Z be the 
K x CPJi partitioned matrix [ Z I/ Z2 I . . . I Z p ] .  



Then the Burt matrix is the symmetric partitioned matrix 

where each diagonal block, N l i l ,  is a diagonal matrix of the one-way marginal frequencies 
of variable i and each off-diagonal block N[ijl= .Z;diag(n).Zj is the two-way marginal 
contingency table for variables i and j ,  with its transpose in Nlji1.  Classical MCA (see, 
e.g., Greenacre 1984) can be defined as an ordinary correspondence analysis (a singular 
value decomposition) of the matrix B which produces scores for the categories of all 
variables so that the greatest proportion of the painvise associations in all off-diagonal 
blocks is accounted for in a small number of dimensions. The mosaic matrix of these 
two-way margins thus provides a visual representation of the Burt matrix, and the total 
amount of shading in all the individual mosaics portrays the total painvise associations 
decomposed by MCA. (The representation would be complete if the one-way margins 
where drawn in the diagonal cells.) 

To what extent do these displays portray the total association between variables? 
That question is easy to answer for the mosaic matrix: For an n-way contingency ta- 
ble, the total association among all variables is just the lack-of-fit statistic (Pearson x' or 
likelihood-ratio G2)Xfll for the model of mutual independence, [A][B][C]. . .. The bivari- 
ate, marginal mosaic matrix shows (by residual shading) all painvise associations, corre- 
sponding to the all-two-way loglinear model [AB][AC][AD] . . . [CD]. . . [BC][BD] . . ., 
and so, the association not displayed is just the lack-of-fit statistic, xi2l, for this model. A 

pseudo R2 measure of the extent to which the bivariate mosaic captures all associations 
is then 1 - x2[I]  /xf2]. 

For MCA, the answer is more complicated, because the eigenvalues of the Burt 
matrix depend on the one-way marginal frequencies (which are not relevant to questions 
of association) as well as the two-way cross-tables. We simply note here that (a) classical 
MCA underestimates the degree of association captured in a given number of dimensions, 
and (b) the method of joint correspondence analysis (Greenacre 1988, 1997) provides a 
X2-decomposition commensurable with that of the mosaic matrix. 

Figure 9 shows the mosaic matrix for the bivariate relations in the Titanic data. 
The bottom row and the rightmost column show the associations between each of the 
background variables and Survival collapsing over other variables. There are strong 
associations of all three variables, but particularly for Gender (females more likely to have 
survived overall) and for Class (first-class most likely to have survived overall). Other 
off-diagonal panels show the pairwise associations among the background variables. The 
panel in row 3, column 1 (numbered from the upper left corner, as in a table) is the 
bivariate relation between Class and Gender, shown earlier in Figure 6. The panels in 
row 2 show that very few children sailed on the Titanic, and that most were in third 
class, and female. 



Figure 9. Mosaic matrix of Titanic data. Each panel shows the marginal relation, jitting an independence model 
between the row and column variable, collapsed over other variable(s). 

The mosaic matrix in Figure 9 may be compared with the the results of an MCA 
analysis of the Titanic data. Figure 10 shows the two-dimensional solution (using the 
typical chi-squared distance scaling). The positions of the category points for all factors 
account for 50% of the total association (X2(81) = 15533.4), representing all pairwise 
interactions among the four factors. The points for each factor have the property that the 
sum of coordinates on each dimension, weighted inversely by the marginal proportions, 
equals zero, so that high-frequency categories (e.g., Adult) are close to the origin. The 
first dimension is perfectly aligned with the Gender factor, and also strongly aligned with 
Survival. The second dimension pertains mainly to Class and Age effects. Considering 
those points which differ from the origin most similarly (in distance and direction) to 
the point for Survived, gives the interpretation that survival was associated with being 
female or upper class or (to a lesser degree) being a child. 

The mosaic matrix, although more complex, captures all of the pairwise associations; 
the all two-way model in turn reflects 91% of all association (Table 4). The MCA plot, 
however, shows only 50% in two dimensions. (A third dimension would account for an 
additional 17% here.) Most importantly, the pairwise associations are shown explicitly 
in the mosaic matrix, while they must be inferred from the positions of category points 
in the MCA plot. 



Figure 10. Titanic data: MCA analysis 

Figure 11 shows the pairwise marginal relations among the variables Admit, Gender, 
and Department in the Berkeley data that were examined earlier (Figure 4 and Figure 5). 
The panel in row 2, column 1 shows that Admission and Gender are strongly associated 
marginally, as we saw in Figure 4, and overall, males are more often admitted. The 
diagonally opposite panel (row 1, column 2) shows the same relation, splitting first by 
gender. (Note that this is different than just the transpose or interchange of horizontal 
and vertical dimensions as in the scatterplot matrix, because the mosaic display splits the 
total frequency first by the horizontal variable and then (conditionally) by the vertical 
variable. The areas of all corresponding tiles are the same in each diagonally opposite 
pair, however, as are the residuals shown by color and shading.) 

The panels in the third column (and third row) illuminate the explanation for the 
paradoxical result (see Figure 5) that, within all but department A, the likelihood of 
admission is nearly equal for men and women, yet, overall, there appears to be a bias in 
favor of admitting men (see Figure 4). The (1,3) and (3, 1) panels show the marginal rela- 
tion between Admission and Department; departments A and B have the greatest overall 
admission rate, departments E and F the least. The (2, 3) panel shows that men apply in 
much greater numbers to departments A and B, while women apply in greater numbers 
to the departments with the lowest overall rate of admission. (This explanation ignores 
the possibility of structural bias, that is, differential resources allocated to departments 

Table 4. Lack-of-Fit Statistics for Some Models for the Titanic Data 

Model Terms df G2 I# 

Mutual independence [CI[GI[AI[SI 25 1243.663 
Sunrival I Class, Gender, Age [CGA][S] 15 671.962 .460 
All two-way [CG][CA][CS][GA][GS][AS] 13 11 6.588 .906 
All thre-way [CGA][CGS][CAS][GAS] 3 .001 .999 



Figure 11.  Mosaic matrix of Berkeley admissions. Each panel shows the marginal relation, Jitting an indepen- 
dence model. 

to which women predominantly apply.) 

4. CONDITIONAL VIEWS OF CATEGORICAL AND 
QUANTITATIVE DATA 

Several further extensions are now possible. First, we need not show the marginal 
relation between each pair of variables in the mosaic matrix. For example, Figure 12 
shows the pairwise conditional relations among these variables. All panels show the 
same observed frequencies by the areas of the tiles, but each fits a model of condi- 
tional independence between the row and column variable, with the remaining variable 
controlled. Thus, the shading in the (1,2) and (2,l) panels show the fit of the model 
[Admit,Dept] [Gender, Dept], which asserts that Admission and Gender are independent, 
given (controlling for) department. Except for Department A, this model fits quite well, 
again indicating lack of gender bias. The (1,3) and (3,l) panels show the relation between 
admission and department controlling for gender, highlighting the differential admission 
rates across departments. 

Second, the analogous conditional matrix plot for quantitative variables is of some 
A 

interest itself. For each pair of variables, Xi, Xj, we plot = Xi - Xilothers against 
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Figure 12. Conditional mosaic matrix of Berkeley admissions. Each panel shows the conditional relation, fitting 
a model of conditional independence between the row and column variable, controlling for other variable(s). 

= Xj - %lothers, where "others" is the complementary set excluding Xi, Xj; that 
is, each plot shows the residuals from regressions of Xi and Xj on all other variables. 
For multivariate normal data, Whittaker (1990) showed that Xi, Xj are conditionally in- 
dependent of the others if and only if the corresponding element of the inverse covariance 
matrix C-I = {aij) is zero, 

. . 
Pijl = 0 * 0%' = 0 

u Xi I Xj 1 others. 

Zero partial correlation plays the same role in (undirected) graphical models for quanti- 
tative variables as two-way terms in graphical log-linear models. Hence, the conditional 
scatterplot matrix for quantitative variables provides a visualization of the pairwise par- 
tial correlations (or inverse covariance matrix) among all variables and of the conditional 
independence relations studied in Gaussian graphical models. Moreover, when one vari- 
able, Y, is a response, the panels in the row for Y are just the partial regression (added 
variable) plots. The other rows treat each variable in turn as a response, giving a multiway 
generalization of partial regression plots. 

For example, Figure 13 shows a conditional scatterplot matrix of the well-known 
Iris data (Anderson 1935), wherein each panel depicts the partial correlation between 



Figure 13. Conditional scatterplot matrix for Iris data. Plot symbols indicate species: Setosa (A), Versicolor 
(+), Wrginica (0). 

row and column variable given the remaining two variables. In the analogous scatterplot 
matrix of marginal relations (too familiar to most readers to show here) all pairs of 
variables are positively correlated and the three iris species are widely separated. The 
conditional plot tells a different and simpler story, however. When other variables are 
controlled, pairs consisting of the same flower component (petal or sepal) or the same 
measurement (length or width) are positively correlated, while cross component-measure 
pairs (e.g., petal width, sepal length) are negatively associated. There are also no apparent 
differences in means among species, although more detailed modeling (Whittaker 1990, 
example 11.5.1) suggests that more complex models may be appropriate. 

Hence, for the Iris data, no pair of variables is conditionally independent. Figure 14 
shows a form of the independence graph (with line thickness proportional to the mag- 
nitude of partial correlation and line style indicating direction), summarizing the partial 
correlations shown explicitly in Figure 13. In the marginal plots, the large differences 
among species means imply that the 0-order correlations are poor summaries of the 
bivariate relations. The conditional plots in Figure 13 indicate that the species effects 
have been removed by partialling other variables, so that the partial correlations are not 
confounded by species differences. 



Figure 14. Independence graph for iris data. Numbers along each edge give the partial correlation, controlling 
for other variables. 

Third, the framework of the scatterplot matrix can now be used as a general method 
for displaying marginal or conditional relations among a mixture of quantitative and 
categorical variables. For marginal plots, pairs of quantitative variables are shown as 
a scatterplot, while pairs of categorical variables are shown as a mosaic display. Pairs 
consisting of one quantitative and one categorical variable can be shown as a set of 
boxplots for each level of the categorical variable. For conditional plots, we can fit a pair 
of generalized linear models, predicting the row and column variables from the others, 

with an identity link for quantitative variables, and log link for discrete variables. The 
mixed conditional plot then shows the residuals as in the marginal views. The details of 
this extension are a topic for future research. 

5. PARTIAL VIEWS: COPLOTS FOR CATEGORICAL DATA 

Conditional relations among variables may also be visualized by stratifying the data 
on the given variables, rather than by partialling out. For quantitative variables, a visually 
effective device is the coplot (or Trellis) display (Cleveland 1993). 

One analog of the coplot for categorical data is an array of plots of the dependence 
among two or more variables, stratified by the values of one or more given variables. 
Each such panel then shows the partial associations among the foreground variables; the 
collection of such plots show how these change as the given variables vary. 

For categorical data, models of independence fit to the strata separately have the 
useful property that they decompose a model of conditional independence fit to the whole 
table. Consider, for example, the model of conditional independence, A iB / C for a 
three-way table. This model asserts that A and B are independent within each level of 



Table 5. Partial Tests of Independence of Gender and Admission, by Department 

Dept df G2 p 

A 1 19.054 .000 
B 1 .259 .611 
C 1 .751 .386 
D 1 ,298 ,585 
E 1 .990 ,320 
F 1 .384 .536 

Total 6 21.735 .001 

C. Denote the hypothesis that A and B are independent at level C(k) by A I B I C(k). 
Then one can show (Anderson 1991) that 

That is, the overall G2 for the conditional independence model with ( I  - 1 ) ( J  - l ) K  
degrees of freedom is the sum of the values for the ordinary association between A and 
B over the levels of C (each with (I - 1 ) ( J  - 1) degrees of freedom). Thus, (a) the 
overall G2 may be decomposed into portions attributable to the A B  association in the 
layers of C, and (b) the collection of mosaic displays for the dependence of A and B 
for each of the levels of C provides a natural visualization of this decomposition. 

These partial mosaics have the additional useful property that they adjust automati- 
cally for differing marginal frequencies across the strata, because the area of each partial 
mosaic is the same. This facilitates controlled comparison, allowing us to focus attention 
on the association of the foreground variables. 

Figure 15 and Figure 16 show two further examples, using the mosaic display to 

Gender- h A - 1 9  Gender: Femals 

Figure 15. Mosaic coplot of Berkeley admissions, given Gender. Each panel shows the partial relation, fitting 
a model of independence behveen Admission and Department. 
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Figure 16. Mosaic coplot of Berkeley admissions, given Department. Each panel shows the partial relation, 
jitting a model of independence model between Admission and Gender. 

show the partial relations [Admit][Dept] given Gender, and [Admit][Gender] given Dept, 
respectively. Figure 16 shows the same results displayed in Figure 5: no association be- 
tween Admission and Gender, except in Dept. A, where females are relatively more likely 
to gain admission. But one can also see how the proportion admitted decreases regularly 
from Dept. A to F and how the proportion of females changes across departments. The 
breakdown of the overall G2 from Eqn. (5.1) is given in Table 5. 

Figure 15 shows that there is a very strong association between Admission and 
Departmentdifferent rates of admission, but also shows two things not seen in other 
displays: First, the pattern of association is qualitatively similar for both men and women; 
second the association is quantitatively stronger for men than women-larger differences 
in admission rates across departments. 

6. SUMMARY 

Taken together, mosaic matrices and mosaic coplots extend the use of the mosaic 
display in simple, but powerful ways, and provide useful techniques for the graphical 
display of categorical and quantitative data within a common framework. 
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