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Abstract

This note extends the construction of the design matrix used for estimating cell probabilities
with ignorable missing data described by Lipsitz et al. (1998). A reformulation for the general case
of ann-way table is described, and implemented in a SAS macro program. The macro constructs
this design matrix and offset variable, estimates the cell probabilities, and returns a table with the
estimates, their standard errors, and fitted cell frequencies.
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1 Introduction

Lipsitz, Parzen and Molenberghs (1998, henceforth, LPM) describe a simple method for obtaining
estimates of cell frequencies in a two-way contingency table with ignorable missing data (missing
completely at random, or missing at random) on the row and column variables. They show that the
cell probabilities may be estimated as a Poisson generalized linear model (GLM), with a structured
design matrix and an offset containing various marginal totals. This approach may be carried out using
standard statistical software for GLMs, suchRROC GENMQOD SAS, orgim in S-Plus, rather

than requiring special purpose software (e.g., Duffy (1994), Espeland and Odoroff (1985), Vermunt
(1997)).

The use of standard software relies on an equivalence between the multinomial, missing data like-
lihood and the Poisson likelihood of a GLM using a specially constructed design matrix, an offset
variable, and identity link. Although the construction of these model matrices is conceptually simple,
carrying out the construction is tedious and error-prone, particularly for larger tables tharxtbe
and3 x 3 examples presented by LPMt would be useful, therefore, to have software to perform
this construction automatically. Moreover, while LPM illustrate how their method can be extended to
multiway tables with  x 2 x 2 example, they do not present the extension in general terms.

Here, we present a general representation for the structure of the required design matrix for max-
imum likelihood estimation of cell probabilities in multiway tables with ignorable missing data. This
representation allows the construction for the general case to be programmed in SAS/IML (or any
other matrix language). We describe a general-purpose SAS macro prdgi@8RC which takes
only the contingency table as input, constructs the design matrix and offset variable, and estimates the
cell probabilities usinfPROC GENMOQIDreturns an output table with the estimates, their standard
errors, and fitted cell frequencies. Similar programming could be used with other statistical packages
capable of matrix operations.

!For example, LPM’s equation (5.1) for theiix 2 x 2 example contains an extraneous row of zeros in the design matrix.



0 Z+1 242 243
1 wiy wn wie uig
2wy wugy  uzy U3
3 w3y U3l Uy U3z

Table 1: A3 x 3 table with missing data

2 Design matrix for the Poisson linear model

2.1 Notation

For brevity, we introduce only the minimum context and notation (telegraphically, and slightly modi-
fied) from LPM to proceed to a general reformulation for thevay case. We use : ¢ as shorthand
for the sequence, 2,...,t, andzy : z; for z1, 20,..., 2. LetYy; @ Y, refer ton discrete variables
observed on subje¢t: = 1 : N, where thej-th variable,Y;;, can take on valuek: J;, or be missing,
which we represent by the valug = 0. Indicator variablesR;; : R;,, are defined a®,;; = Y;; > 0,
so thatR;; = 1if Y;; is observed and is O If;; is missing. In the absence of missing data, the contin-
gency table would be an array of dimensifnx J, x - - - x J,,. Allowing missing data on all variables
data, the contingency table is of sizf + 1) x (Jo +1) x --- x (J,, + 1), except that the cell where
all variables are missing cannot occur, because such subjects would not be observed at all in the study.

In application, the data is summarized by its contingency table, shown using LPM'’s notation for
the3 x 3 case in Table 1, where the counts of the complete cases are denptéite counts of cases
observed only ofy; are denotedv; ., and the counts of cases observed onlypare denoted. ;.

For a two-way table, lep = {p;;} be the(J;J, — 1) x 1 vector of non-redundant multinomial
cell probabilities (excluding;, ;,), and letu = {u;} be a(J;J, x 1) vector of non-missing counts.
Similarly, letw = {w; } andz = {z;} be the(J; x 1) and(J, x 1) vectors of counts observed on
only Y7 andY, respectively. Finally, stack the vectors of counts to fdre [u / w / z], where the/
operator means vertical concatenation.

LPM demonstrate that the MLEs of the cell probabilities may be estimated from a Poisson linear
model forf of the form

E(f) =Xp+vy @

whereX is the specially constructed design matrix grid an offset containing the totals, ., w44, z4 4,
required to impose the multinomial restrictions on the estimated cell probabilities. In their Appendix,
LPM give, for two-way tables, the general form of the terms in (1) in partitioned form, with explicit
formulas for the submatrices shown below,

f, Xy Yu
&l fu =| Xy [P+ | Yo 2
f, X, Yz

Those expressions, however, do not shed any light on the structure of the problem, nor do they permit
easy generalization to three-way and larger tables. We show below that the struXusndfy may
be derived by analogy with design matrices for factorial linear models.
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Table 2: A3 x 3 table in profile form

2.2 Reformulation

To facilitate exposition, restructure the contingency table in profile form with the vari&bles. , Y,
given explicitly, as shown in Table 2. For anway table there ar@” — 1 distinct typesof counts,
corresponding to the the possible patterns of the missingness indi¢atArs - - R,,. If all n table
variables are observed for a subject, thenfgll= 1. We write the counts for the subjects observed
on all n variables as thé.J, J, - - - J,, x 1) vectorfi;..;, with elements corresponding to the usual
contingency table (with no missing data) fdf;, Y5, ...,Y},). For the3 x 3 example shown in Table
2,

fi; = (UuaU12,U13,U21,U22,U23,U31,U32,U33)'
In general, we can write the counts associated with pattgw - - r,, asf; ,,....,,, where, ifR; = 0,

we replace the subscript faf; in the counts with a+'. For example, ifJ; = Jo, = 3 andR, = 0,
then

fio = (wiy, woy, w3, )
For computational purposes, the — 1 types of counts may be indexed by the decimal equivalent of
r179 - - - Ty ; fOr exampletype(fi1) = 3.
These types have an obvious analogous relation to the terms in a complete factorial design with no
intercept whose model formula (gim notation) is:

YI*YQ*---*Yn—l = Y1+Y2+"'Yn+Y12+Y13+"'+Yv(nfl)n
+Yis + Y+ Yo o)y + - + Yi2.n

where terms with one subscript represent variables observed only once, and correspond to main efects
in a factorial design, terms with two subscripts represent non-missing on two variables, and correspond



to two-way terms in a factorial design, and so forth, up to the last term which represents the totally
complete cases, and is analogous tartheay interaction in the factorial design.
As shown in the Appendix, in the general case, we can write the (less-than-full-rank) model for
E(frryer,) @S
Efriryry) = XpyrgernP s

where
Xy = A1 QA2 ®--- @ Ay 3

A [ L =1
7 lljj otherwise

and

An equivalent full-rank model is obtained by substituting for the identity matrix any choice of
contrast matrixC, such thatC’ 1 = 0; but the parameter estimates depend on that choice. In the
incomplete contingency table problem, LPM construct the design matrix so that the model (1) will
have a Poisson likelihood equivalent to the multinomial likelihood. To achieve this, they force the total
of the expected counts under the model in each block to equal the corresponding total of the observed
CouNtS,gr,:r, = >y, =1 frirs-r,, in that block, for which a necessary conditiompis,....,. = 1.

For each block, leX ., denoteX,,,..,, dropping the last row and column (removipg, .,
from the parameter vectgy), and add an equation to equate the expected total count in that block to
the observed total. The final model, equivalent to (1), may be expressed in terms of a block for each

type of the form
0
+ ; 4
p ( grl:rn > ( )

whereh (X .. ) evaluates to a row vector with a 1 in each column whrehas a 1 in any row and
0 otherwise, and the last term is the offset. For example 2irx& x 2 table, consider frequencies of
type3 = 011, corresponding to non-missing observationsYgerandYs. Application of (3) and (4)
give

EEiryrn) = Gruirn [ R

T1:n

1 1. 0 0 0 00 0
0o 0 1 1 0 00 0
E@)=gon| o o o o 1 10]|PH| o
-1 -1 -1 -1 -1 -1 0 go11

3 TheMISSRCMacro

The above scheme for generating the design matrix and offset vector is easily programmed in any
matrix-oriented language. The SAS/IML product is a fully programmable matrix language, which,
combined with the SAS macro facility, allows flexible, general procedures to be written.

The MISSRCmacro takes as input a multiway contingency table in the profile form of Table 2
(only theY and count variables are required). From this, it constructs the design matrix and offset
variable, estimates the cell probabilities usPBOC GENMOQOdNhd returns a table with the estimates,
their standard errors, and fitted cell frequencies. The program documentation and source code is avail-
able at the web addresstp://www.math.yorku.ca/SCS/sasmac/missrc.html . Two
examples illustrate its use.



3.1 Example 1

Consider the x 2 example from Little and Rubin (1987, p. 183) presented in LPM’s Table 3. The
lines below create a SAS data set WRlandC as the table variables and frequency variable is named
COUNTMIissing values foRandC appear as.'’. The data set is in exactly the same format as shown
in LPM’s Table 6, or our Table 2 (withs forY; andY5 replaced by . ).

data little;

input R C count @@;

cards;

11 100 1250 1.30
21 75 2275 2 .60
.1 28 . 2 60

The MISSRCmacro is called with keyword arguments, with default values for all exv&dR
which specifies the table variables.

%missrc(data=little, var=R C);

The macro call creates tH2ESIGNdata set containing the design matrix, offset and frequency
variables, as follows. Parameter names are constructed automatically from the lévelsdiE.

OBS COUNT P11 P12 P21 OFFSET

1 100 300 0 0 0

2 50 0 300 0 0

3 75 0 0 300 0

4 75 -300 -300 -300 300

5 30 90 90 0 0

6 60 -90 -90 0 90

7 28 88 0 88 0

8 60 -88 0 -88 88

The following output data set is produced after the model (1) is fit BBR@C GENMOYzri-
ableP is the observed cell probability for the complete-case dag[IMATEis the MLE,p;;, and
FITTED is the estimated cell frequency.

R C  COUNT P PARM ESTIMATE STDERR FITTED
1 28

. 2 60

1 30 . . . .

1 1 100 0.33333 P11 0.27947 0.022310 133.589

1 2 50 0.16667 P12 0.17402 0.020978 83.184

2 . 60 . . . .

2 1 75 0.25000 P21 0.23872 0.022660 114.108

2 2 75 0.25000 p22* 0.30778 0.025298 147.120

. . = 1/2
The* -ed parameter is found @gx = 13, .k Djk- Its standard error is found 43’ V 1} / ,
whereV is the estimated variance-covariance matrix of the non-redundant parameters.
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3.2 Example 2

The three-way data used by LPM (Table 6) concern a longitudinal study of coronary risk factors in
4,858 school children, in which the binary response, obesity, was assessed in three years. As LPM
note, the cases with complete data comprise only 1,770 (36.3%) of the sample, so the gain in estimation
of the joint probabilities using the partial cases may be considerable.

data obese;
input 077 079 081 count @@;
label 077='"Obese in 77" 079='Obese in 79° 081="Obese in 81’;

cards;

0 0 0 1209 001 91 010 66 011 78
100 64 101 31 110 62 111 169
00 . 426 01. 54 10. 33 11 118
0.0 125 0.1 27 1.0 5 1.1 27
.00 463 .01 63 .10 37 .11 62
0O.. 583 1..173

. 0. 293 1. 77

. 0 381 .. 1 119

%missrc(data=obese, var=077 079 081);

The output fromMISSRCincludes theePROC GENMOe&xsults and other information not shown
here. The final table of parameter estimates is shown below. We see that there were 169 children in the

complete-data sample who were assessed as obese on all three occasions, likely the group of highest
risk. The estimate for the total sample is over 3 times as great.

O77 0O79 081 COUNT P PARM ESTIMATE STDERR FITTED
0 381

. 1 119

0 . 293

0 0 463

0 1 63

1 . 77

1 0 37
. 1 1 82
0 . 583
0 0 125
0 1 27
0 0 . 426 . . . .
0 0 0 1209  0.68305 P0O00O 0.66332 .0078223 3221.07
0 0 1 91 0.05141 POO1 0.05778 .0048275 280.58
0 1 . 54 . . . .
0 1 0 66  0.03729 PO10 0.03480 .0037399 168.99
0 1 1 78  0.04407 PO11 0.04394 .0041767 213.37
1 . 173
1 0 5



1 1 27

1 0 . 33 . . . .
1 0 0 64  0.03616 P100 0.03555 .0038920 172.65
1 0 1 31 0.01751 P101 0.02068 .0032591 100.40
1 1 . 118 . . . .
1 1 0 62  0.03503 P110 0.03571 .0039286 173.43
1 1 1 169  0.09548 P111* 0.10822 .0055613 525.51

A final advantage of this general formulation is that it does not requireathfdctorial combina-
tions of missing and non-missing data actually occur. In the limiting case, when all data is complete,
the estimates are just the observed sample proportions, as they should be. For example, we can restrict
analysis to the complete-case data as follows:

data complete;
set obese;
where (077°=. & 079'=. & 081°=));

%missrc(data=complete, var=077 079 081);

This gives the output below. Comparing the standard errogs9f we see that the relative effi-
ciency of the missing data approach is 126% compared to the restricted complete-case sample. This is
equivalent to the gain of an additional 460 subjects for the estimation of this probability.

Oo77 0O79 081 COUNT P PARM ESTIMATE STDERR FITTED

0O 0 0 1209 0.68305 PO0O 0.68305 0.011059 1209

0 0 1 91 0.05141 PO0O1 0.05141 0.005249 91

0 1 0 66 0.03729 PO10 0.03729 0.004503 66

0 1 1 78 0.04407 PO11 0.04407 0.004879 78

1 0 o0 64 003616 P100 0.03616  0.004437 64

1 0 1 31 0.01751 P101 0.01751 0.003118 31

1 1 o0 62 003503 P110 0.03503  0.004370 62

1 1 1 169 0.09548 P111* 0.09548 0.006985 169
Appendix

Itis well-known (e.g., Bock (1975, Section 5.3.2),Kurkjianand Zelen (1962)) that the model matrix for any fully-
crossed factorial design may be generated as-fioéd Kronecker product of the one-way design matrices. Thus,
for a linear modef (y) = X3, with n crossed factordiy, F», .. ., F,,, the less-than-full-rank model matrix may

be constructed column-wise as

Xrrer, =[1n|1n]® 1, |1,] @@ [1,,|1,], (5)

and the model is made estimable by placing restricitions on the unknown parameters, either by adding additional
equations (rows cK andy) or by reparameterization so that estimability is ensured (repldgibg aJ x (J—1)
conrast matriXC such thatC’ 1 = 0). The expansion of (5) gives, for a three-way design,

XF1F2F3 = [1J1 ® ]-Jz ® 1J3 | IJ1 ® ]-Jz ® 1J3 | 1J1 & IJ2 ® 1J3 | 1J1 ® ]-Jz & IJa |
I, ®1;,® 1, | I, ®1;, ® IJ3 | 15, ®1y, ® IJ3 | I, ®1;, ® IJ3 ]
= [Xyoo | Xioo | Xoio | Xoo1 | X110 | Xio1 | Xo1r | Xi11]
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where, in the last line the subscripts are symbolic basis indicators, with 1 and 0 representing the presence and
absence, respectively, of the corresponding factor in each effect.

The present problem is analogous to the transpose of this situation, wheoavihef the design matrix
reflect the factorial structure of missing and non-missing observationi§ on., Y,,, which play the role of
“factors”. For example, in a 3-way table the design matrix, ignoring estimability constraints for the moment,
arises from vertically stacking the design blocks corresponding to the 7 combinations of missing/non-missing
onY;, Y5, Y3

X =[X;; / X110 / X101 / Xioo / Xoi1 / Xowo / Xoot] - (6)

In the general case, this gives a mofl@éf) = Xp, where each block iX is a matrix of]'[;.‘:1 J; columns
of the form

Xirgorn =A1 QA ®---® A,

AL =1
7= li]j otherwise

composed as
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