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Pottery data: Al and Fe
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Introduction: The LM family and friends

Models, graphical methods and opportunities

Classical linear models

Generalized linear models

1 LM family: E(y)=XB, V(y|X)=0l
ANOVA, regression, ...

Many graphical methods: effect
plots, spread-leverage, influence, ...

GLM: E(y)=g™(XB), V=V[g"(XB)]
poisson, logistic, loglinear, ...

Some graphical methods: mosaic plots,

4fold plots, diagnostic plots, ...

MLM: E(Y)=XB, V(Y|X)=I®Z
MANOVA, MMReg, ...
Graphical methods: 777

# of response variables

MGLM: ?7?7?

Graphical methods: ?77?
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Visual overview: Multivariate data, Y .,

What we know how to do well (almost)
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@ 2 vars: Scatterplot + annotations (data ellipses, smooths, ...)
@ p vars: Scatterplot matrix (all pairs)

@ p vars: Reduced-rank display— show max. total variation — biplot
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Visual overview: Multivariate linear model, Y = XB + U

What is new here?

Sepal length in mm

2 vars:
p vars:

p vars:
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HE plot— data ellipses of H (fitted) and E (residual) SSP matrices
HE plot matrix (all pairs)
Reduced-rank display— show max. H wrt. E — Canonical HE plot

Visual overview: Recent extensions

Extending univariate methods to MLMs:
@ Robust estimation for MLMs
@ Influence measures and diagnostic plots for MLMs

e Visualizing canonical correlation analysis
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Data Ellipses: Galton's data
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Galton’s data on Parent & Child height: 40%, 68% and 95% data ellipses
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The Data Ellipse: Details

o Visual summary for bivariate relations

e Shows: means, standard deviations, correlation, regression line(s)
o Defined: set of points whose squared Mahalanobis distance < c?,

Dy)=(y—-¥y)'S™

S = sample variance-covariance matrix
o Radius: when y is ~ bivariate normal, D?*(y) has a large-sample x3
distribution with 2 degrees of freedom.
° c = x3(0.40) =~ 1: 1 std. dev univariate ellipse— 1D shadows: y & 1s
° c = x5(0.68) = 2.28: 1 std. dev bivariate ellipse
o 2= X%(O 95) ~ 6: 95% data ellipse, 1D shadows: Scheffé intervals

o Construction: Transform the unit circle, U = (sin 8, cos 8),

'y-y)<c

Ec=y+ cSYU

S'/2 = any “square root” of S (e.g., Cholesky)
o Robustify: Use robust estimate of S, e.g., MVE (mimimum volume ellipsoid)

@ p variables: Extends naturally to p-dimensional ellipsoids




The univariate linear model The multivariate linear model
® Model: y,,; = X;xqBqx1 + €nx1, with € ~ N(0,5°1,) e Model: Yy, = X,xqBgxp + U, for p responses, Y = (y;,¥,, ... ,yp)
o LS estimates: = (XTX)fley e General Linear Test: Hy : CpxqBgxp = Onxp

@ Analogs of sums of squares, SSy and SSg are (p x p) matrices, H and E ,

General Linear Test: Hy : Cpxq Bgx1 = 0, where C = matrix of constants;
rows specify h linear combinations or contrasts of parameters.

@ eg., Testof Hy: 31 = B> = 0 in model y; = By + Bix1j + Boxoj + €;

Bo
010 0
o=[o01](2)=(5)

o All — F-test: How big is S5y relative to SSg7

H = (CB)T [c(X"X)~C"]"! (CB) ,

E=U'U=Y"[I-H]Y .

Analog of univariate F is

det(H — \E) =0,

How big is H relative to E 7

S5Sy/df MS, A . )
F— H/dfp _ H 5 (MSy — F MSg) = 0 ° Latent. roots A1, Az, ... As measure the “size” of H relative to E in
555/dfe MSe s = min(p, df,) orthogonal directions.
o Test statistics (Wilks' A, Pillai trace criterion, Hotelling-Lawley trace criterion,
Roy's maximum root) all combine info across these dimensions
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Motivating Example: Romano-British Pottery Motivating Example: Romano-British Pottery

Tubb, Parker & Nicholson analyzed the chemical composition of 26 samples of

. o o uestions:
Romano-British pottery found at four kiln sites in Britain. Q

@ Can the content of Al, Fe, Mg, Ca and Na differentiate the sites?
@ How to understand the contributions of chemical elements to
discrimination?

@ Sites: Ashley Rails, Caldicot, Isle of Thorns, Llanedryn
@ Variables: aluminum (Al), iron (Fe), magnesium (Mg), calcium (Ca) and

sodium (Na)
@ — One-way MANOVA design, 4 groups, b responses Numerical answers:
R> library(heplots) R> pottery.mod <- lm(cbind(Al, Fe, Mg, Ca, Na) ~ Site)
R> Pottery R> Manova(pottery.mod)
Site Al Fe Mg Ca Na Type II MANOVA Tests: Pillai test statistic
1 Llanedyrn 14.4 7.00 4.30 0.15 0.51 Df test stat approx F num Df den Df Pr(>F)
2 Llanedyrn 13.8 7.08 3.43 0.12 0.17 Site 3 1.55 4.30 15 60 2.4e-05 **x

3 Llanedyrn 14.6 7.09 3.88 0.13 0.20 T
Signif. codes: O ’*xx’ 0.001 ’*x’ 0.01 ’%’ 0.05 .7 0.1’ ’ 1

25 AshleyRails 14.8 2.74 0.67 0.03 0.05
26 AshleyRails 19.1 1.64 0.60 0.10 0.03

What have we learned?

e Can: YES! We can discriminate sites.
e But: How to understand the pattern(s) of group differences: 777




Motivating Example: Romano-British Pottery

Univariate plots are limited

@ Do not show the relations of variables to each other
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@ Shows variation of means (H)
relative to residual (E) variation

@ Size and orientation of H wrt E:

how much and how variables
contribute to discrimination

@ Evidence scaling: H is scaled so
that it projects outside E iff null
hypothesis is rejected.

Visual answer: HE plot

Motivating Example: Romano-British Pottery
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R> heplot3d(pottery.mod)

HE plots: Visualizing H and E (co) variation
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(a) Individual group scatter

(b) Between and Within Scatter
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Ideas behind multivariate tests: (a) Data ellipses; (b) H and E matrices

o H ellipse: data ellipse for fitted values, §; =y;.
o E ellipse: data ellipse of residuals, §; — ;.

(c) H Matrix standardized by E matrix, giving HE -1

HE plots: Visualizing multivariate hypothesis tests

(d) Principal axes of HE*

6

The E matrix is orthogonalized
by its principal components.

*
H The same transformation is

Second Canonical dimension

67

applied to the H matrix.

(©)

Second Canonical dimension

The size of HE-1 is now shown
directly by the size of its
latent roots.

(d)
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Ideas behind multivariate tests: latent roots & vectors of HE ™!

e \;,i =1,...dfy show size(s) of H relative to E.
@ latent vectors show canonical directions of maximal difference.




HE plot details: H and E matri
HE plot for iris data plot details: 1 an matrices

Recall the data on 5 chemical elements in samples of Romano-British pottery
from 4 kiln sites:

80
80 R
PR R> summary (Manova(pottery.mod)) o E matrix: Within-group
o ,/'/"o“//‘ 7 Sum of squares and products for error: (CO)Va”atlon of residuals
20 A0, Al Fe Mg Ca ~ Na diag: SSE for each variable
€ 56 Y/ darginfica g Al 48.29 7.080 0.608 0.106 0.589 e d g'. 55 . van
E St ey E Fe 7.08 10.951 0.527 -0.155 0.067 o off-diag: ~ partial
: A Yot A g Mg 0.61 0.527 15.430 0.435 0.028 correlations
g0 /E S 60 Ca 0.11 -0.155 0.435 0.051 0.010 .
3 of wm gl = Na 0.59 0.067 0.028 0.010 0.199 @ H matrix: Between-group
) oo A I3 - - - - . .
3 s 3 (co)variation of means
50 oo . o Term: Site o diag: SSH for each variable
Sum of squares and products for hypothesis: ° off—diag: ~ correlations of
A Fe Mg Ca Na means
" Mok —— riypotess - p— Al 175.6 -149.3 -130.8 -5.89 -5.37 L .
40 Fe -149.3 134.2 117.7 4.82 5.33 @ How big is H relative to E?
10 20 30 40 50 60 70 10 20 30 40 50 60 70 Mg -130.8 117.7 103.4 4.21 4.71
Petallength in mm. Petal lengih in mm. Ca -5.9 4.8 4.2 0.20 0.15 e Ellipsoids: dim(H) = rank(H)
Na -5.4 5.3 4.7 0.15 0.26

(a) Data ellipses and (b) H and E matrices (scaled by 1/df.: effect size)

@ H ellipse: data ellipse for fitted values, §; =y;.

o E ellipse: data ellipse of residuals, §; —y;.

= min(p, dfy)

HE plot details: Scaling H and E

@ The E ellipse is divided by df. = (n — p) —
data ellipse of residuals
o Centered at grand means — show factor
means in same plot.

o “Effect size” scaling— H/df. — data ellipse
of fitted values.

@ “Significance” scaling— H ellipse protrudes
beyond E ellipse iff Hy can be rejected by
Roy maximum root test

o H/(Aadf.) where )\, is critical value of
Roy’s statistic at level a.

e direction of H wrt E + linear
combinations that depart from Hp.

R> heplot(pottery.mod, size="effect")
size="evidence")

Pottery data: Al and Fe

R> heplot(pottery.mod,

Fe

HE plot details: Contrasts and linear hypotheses

@ An overall effect +— an H ellipsoid of
s = min(p, df,) dimensions

@ Linear hypotheses, of the form
Ho : ChxqBgxp = Onxp + sub-ellipsoid of
dimension h, e.g., 2 df test:

0100
CZ[OOlO]

@ 1D tests and contrasts — degenerate 1D
ellipses (lines)
o Geometry:
o Sub-hypotheses are tangent to enclosing

hypotheses
o Orthogonal contrasts form conjugate axes

Pottery data: Al and Fe

Site: 3df H

Fe




HE plot matrices: All bivariate views

AL stands out —

opposite pattern
r(Fe,Mg) ~ 1

R> pairs(pottery.mod)

HE plots for Multivariate Multiple Regression

e Model: Y = XB + U, where cols of X are quantitative.

Overall test: Hy : B = 0 (all coefficients for all responses are zero)
o 5C=1inGLT = H=B (XX)"'B=Y' ¥

Individual predictors: Hy: 3; =0
e - C=(0,0,...,1,0,...,0) = H; = BT (X"X)"13;

HE plot

e Overall H ellipse: how predictors relate collectively to responses

o Individual H ellipses (rank(H )=1 — vectors):

e orientation — relation of x; to y;,y,

o length — strength of relation

o collection of individual H vectors — how predictors contribute to overall test.

HE plots for MMRA: Example
@ Rohwer data on n = 37 low SES children, for 5 PA tasks (N, S, NS, NA,

predicting intelligence/achievement (PPVT, SAT, Raven)

@ Only NA is individually
significant (in this view)

@ ... but overall test highly
significant

o NA & S contribute to
predicting PPVT

@ NS & SS contribute to
predicting SAT

Peabody Picture Vocabulary Test
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HE plots for MMRA: MANCOVA
@ Rohwer data on n; = 37 low SES, and n, = 32 high SES children

o Fit separate regressions for
each group

@ Are regressions parallel?

@ Are they coincident?
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HE plots for MMRA: MANCOVA

@ Rohwer data on n; = 37 low SES, and n, = 32 high SES children

e Fit MANCOVA model
(assuming equal slopes)
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Low-D displays of high-D data
@ High-D data often shown in 2D (or 3D) views— orthogonal projections in
variable space— scatterplot

@ Dimension-reduction techniques: project the data into subspace that has the
largest shadow— e.g., accounts for largest variance.

@ — low-D approximation to high-D data

A:

A: minimum-variance projection; B: maximum variance projection

Canonical discriminant HE plots

@ As with biplot, we can visualize MLM hypothesis variation for all responses

by projecting H and E into low-rank space.

e Canonical projection: Y ,xp = Zyxs = YE™ 1/2V where V = eigenvectors of

HE .
@ This is the view that maximally discriminates among groups, ie max. H wrt
E!
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Canonical discriminant HE plots

@ Canonical HE plot is just the HE plot of canonical scores, (z;1,2;) in 2D,

@ or, z1,25,23, in 3D.

@ As in biplot, we add vectors to show relations of the y; response variables to
the canonical variates.

@ variable vectors here are structure coefficients = correlations of variables with
canonical scores.
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Canonical discriminant HE plots: Properties

Canonical discriminant HE plots: Pottery data

@ Canonical variates are uncorrelated: E ellipse is spherical @ Canonical HE plots provide 2D (3D) visual summary of H vs. E variation

@ Pottery data: p =5 variables, 4 groups — dfy =3

@ Variable vectors: Fe, Mg and Al contribute to distingiushing (Caldicot,
Llandryn) from (Isle Thorns, Ashley Rails): 96.4% of mean variation

@ Na and Ca contribute an additional 3.5%. End of story!

@ —> axes must be equated to preserve geometry
@ Variable vectors show how variables discriminate among groups

@ Lengths of variable vectors ~ contribution to discrimination
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Visualizing Canonical Correlation Analysis

CCA Example: Rohwer data, Ability and PA tests

@ plot() method shows canonical variates for X and Y on one dimension
@ Smoother shows possible non-linearity
@ Point identification highlights unusual observations

@ Basic idea: another instance of low-rank approximation

CCA is to MMReg as CDA is to MANOVA

R> library(candisc)

@ — For quantitative predictors, provides an alternative view of Y ~ XB in
space of maximal (canonical) correlations.

R> cc <- cancor(cbind(SAT, PPVT, Raven)

+ data=Rohwer, set.names=c("PA",

“n+ s + ns + na + ss,

"Ability"))

@ The candisc package implements two new views for CCA:
e plot() method to show canonical (X, Y) variates as data

e heplot () method to show (X, Y) relations as heplots for Y in CAN space.

] 1st Canonical dimension: 3

CanR=0.67 (77.3%)

Ability dimension 1
o
Y canonical dimension2 (16.4%)

T T T T T -15 -1.0 -05 0.0

PA dimension 1

Y canonical dimension1 (77.3%)

R> plot(cc,

smooth=TRUE,

R> plot(cc, smooth=TRUE,

Ability dimension 1

id.n=3)
id.n=3, which=2)

] 1st Canonical dimension:
CanR=0.67 (77.3%)

3,

PA dimension 1

Ability dimension 2

2nd Canonical dimension:
CanR=0.38 (16.3%)

PA dimension 2




Robust MLMs

@ R has a large collection of packages dealing with robust estimation:
e robust::1lmrob(), MASS: :r1m(), for univariate LMs
e robust::glmrob() for univariate generalized LMs
e High breakdown-bound methods for robust PCA and robust covariance

@ The

estimation
However, none of these handle the fully general MLM

heplots package now provides robmlm() for robust MLMs:

e Uses a simple M-estimtor via iteratively re-weighted LS.
o Weights: calculated from Mahalanobis squared distances, using a simple robust

covariance estimator, MASS: :cov.trob() and a weight function, '(/}(D2).

D* = (Y = Y)"Son(Y = Y) ~ x; (1)

e This fully extends the "mlm" class
o Compatible with other mlm extensions: car:::Anova and heplots: :heplot.
e Downside: Does not incorporate modern consistency factors or other niceties.

Robust MLMs: Example

For the Pottery data:

Observation weight
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Some observations are given weights ~ 0
The E ellipse is considerably reduced, enhancing apparent significance

Influence diagnostics for MLMs

@ Influence measures and diagnostic plots are well-developed for univariate LMs

@ The

Influence measures: Cook's D, DFFITS, dfbetas, etc.
Diagnostic plots: Index plots, car:::influencePlot () for LMs
However, these are have been unavailable for MLMs

mvinfluence package now provides:
Calculation for multivariate analogs of univariate influence measures (following

Barrett & Ling, 1992), e.g., Hat values & Cook’s D:

Hy = X (XTX) "X/ (2)

Dy = [vec(B — B())]"[S™" @ (X"X)][vec(B — By))] (3)

Provides deletion diagnostics for subsets (/) of size m > 1.
e.g., m = 2 can reveal cases of masking or joint influence.

Extension of influencePlot () to the multivariate case.
A new plot format: leverage-residual (LR) plots (McCulloch & Meeter, 1983)

Influence diagnostics for MLMs: Example
For the Rohwer data:
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Cook's D vs. generalized Hat value

Leverage - Residual (LR) plot
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Influence diagnostics for MLMs

@ Main idea: Influence ~ Leverage
(L) x Residual (R)

o — log(Infl) = log(L) + log(R)

@ — contours of constant influence lie
on lines with slope = -1.

@ Bubble size ~ influence (Cook’s D)

@ This simplifies interpretation of
influence measures
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Conclusions: Graphical methods for MLMs

Summary & Opportunities

e Data ellipse: visual summary of bivariate relations
o Useful for multiple-group, MANOVA data
o Embed in scatterplot matrix: pairwise, bivariate relations
o Easily extend to show partial relations, robust estimators, etc.
e HE plots: visual summary of multivariate tests for MANOVA and MMRA
o Group means (MANOVA) or 1-df H vectors (MMRA) aid interpretation
o Embed in HE plot matrix: all pairwise, bivariate relations
o Extend to show partial relations: HE plot of “adjusted responses”
e Dimension-reduction techniques: low-rank (2D) visual summaries
o Biplot: Observations, group means, biplot data ellipses, variable vectors
e Canonical HE plots: Similar, but for dimensions of maximal discrimination
@ Beautiful and useful geometries:
o Ellipses everywhere; eigenvector—ellipse geometries!
o Visual representation of significance in MLM
o Opportunities for other extensions

— FIN —




