
 SUGI 20
 DESIGNER GRAPHICS - ANATOMY OF SOME SAS MACROS FOR STATISTICAL GRAPHICS

 Michael Friendly, York University

For statistical graphics—where the goal is to gain insight into the displays combining plots, charts, and explanatory text. You create
data—SAS/GRAPH procedures alone often do not go far enough in the individual panels in separate steps or jobs; when you replay
providing the tools for the most effective visual displays. In these them in a template the individual pieces are automatically rescaled
cases, other SAS facilities, including the macro language, to fit.
Annotate, PROC GREPLAY, and SAS/IML provide the basis for
constructing custom graphic displays.  DATA Step Graphics. A relatively new addition to

SAS/GRAPH, the DATA Step Graphics Interface (DSGI) enables
 This paper describes some useful graphic displays which you to create graphics output directly within a DATA step or from
cannot be produced by the basic SAS/GRAPH procedures, and within an SCL application. DSGI provides many of the same
shows how they can be constructed by general macro programs, features as the Annotate facility, but it has some advantages as
applicable to any dataset. Some examples are drawn from well, including support for clipping, viewports and windows, more
programs described in SAS System for Statistical Graphics, First flexible positioning of text, and programming access to
Edition. SAS/GRAPH catalogs (including most of the functions of

GREPLAY) and graphics options such as hsize and vsize.

 1. Introduction  SAS Macro Language. The organization of the SAS
System into DATA steps and PROC steps is convenient for data

The basic SAS/GRAPH procedures provide a wide range of analysis, but since you must refer to data sets and variables by
methods for graphical display of data—including charts (pie charts, name, you must repeat similar steps to do the same analysis on a
bar charts, 3-D block charts), scatterplots (with points, needles, new set of data. The SAS Macro Language allows you to package
bubbles, regression lines, etc), 3D plots (scatter, surface or any number of SAS program steps into a single named unit,
contour), as well as facilities to display geographical data on a somewhat like a subroutine in traditional programming languages.
variety of maps. Could one ask for anything more? This provides a way to extend and customize graphic displays,

creating general procedures which can be applied to any set of data.
 For statistical graphics—where the goal is to gain insight into
the data—SAS/GRAPH procedures alone often do not go far  Custom Tools. SAS macros can also be used to create
enough in providing the tools for the most effective visual displays. general-purpose, modular tools for graphic programming. Start
In these cases, other SAS facilities, including the macro language, with a simple version for some repetitive task, and add features as
Annotate, PROC GREPLAY, and SAS/IML provide the basis for the need arises. Store the macros in an autocall library or a
constructing custom graphic displays. compiled macro library, so they will be available for all your

applications.

 2. Custom Graphics Implementing a Custom Graphic Display

SAS Graphic Tools Often we want a graph which is like a standard SAS/GRAPH
display, but with some additional graphic information not available

The graphic artist needs to understand the available tools and through the procedure itself. In these cases, the steps I have used
techniques. So too, the artisan of statistical graphics needs to generally fall into a standard order:
understand the software tools and programming techniques at his or
her disposal. The SAS System provides a wide array: 1. Choose a basic graph format, for example, a chart,

 scatterplot, etc.
 Annotate Facility. The SAS DATA step provides 2. Calculate the necessary quantities, using SAS procedures, a
extensive tools for doing calculations one observation at a time.  DATA step or SAS/IML.
The Annotate facility makes it relatively easy to harness the power 3. Add the additional graphic information, which can be done
of the DATA step for custom additions to any graph.  using the Annotate facility or DSGI.

4. Generalize the process so it can be used with any data set,
 SAS/IML. SAS/IML is a full-featured language for statistical  using the Macro language.
computation and graphics on its own. It is particularly strong in
applications which require computation on a data set as a whole,
such as finding row and column means, or which are naturally  3. Labelling Points & Curves
expressed in matrix operations, such as calculating a data ellipse for
a bivariate scatterplot. In addition, SAS/IML contains a powerful When observations have individual identities, like makes of
and relatively complete set of high-level graphics functions which automobiles or nations of the world, our ability to understand
can be used to implement customized graphic displays. For patterns or suspicious cases is often helped by plotting an
example, a number of new methods for categorical data I developed identification label for each point. Similarly, when a graph consists
(Friendly, 1992b,c,d) were implemented entirely in IML. of a series of lines or curves, it is easier to comprehend the

relationships among the variables and the factors which define the
 PROC GREPLAY. PROC GREPLAY is the tool of choice curves when the curve labels appear on the graph itself, rather than
for graphs which are composed of separate panels, such as in a legend.
scatterplot matrices, plots of means for multi-way designs, or

 1



 To illustrate, consider a plot of Weight against Price for %macro label(data=_LAST_, x=, y=, text=, sys=2,
American-made automobiles produced with the GPLOT procedure,  pos=5, subset=1);
using the statements, data label;

 set &data;
proc gplot data=auto;  retain xsys ysys "&sys" position "&pos";
 where(origin='A');  if &subset;
 plot weight * price / frame;  x = &x;
 symbol v=+ i=none c=black;  y = &y;

 text = &text;
The plot reveals a curvilinear relationship, with a few points %mend;
straggling off in the upper left corner, corresponding to heavy,
expensive cars. To replot the data with labels for the points in the Note that the data, sys, pos, and subset parameters have been
upper left, we add a DATA step to produce an Annotate data set, given default values in the macro statement, so these need not be
LABEL. This data set is passed to GPLOT with the option specified if the defaults are sufficient. The subset parameter can
ANNOTATE=LABEL. The resulting plot is shown in Figure 1. be any SAS logical expression; the default value 1 selects all

observations. The DATA step in the program for Figure 1 can
data label; therefore be replaced by the line
 set auto;
 retain xsys ysys '2' position '1'; %label(data=auto, x=price, y=weight, pos=1,
 if price>10000; /* select points */  subset=price>10000, text=scan(model,1));
 x = price;
 y = weight; Note also that macro variable references which appear in quotes
 text=scan(model,1); /* first word as label */ must use double quote marks, since text inside single quotes is

ignored by the macro processor.
proc gplot data=auto;
 where(origin='A');  After using this macro for a while, I found that it would also be
 plot weight * price / anno=label frame; useful to be able to label G3D plots, and I sometimes wanted to
 symbol v=+ h=1.8 i=none c=black; specify the font, color, and size of the labels. These enhancements

were relatively simple to add, though some care was needed to
ensure that the additional parameters would not cause trouble if
they were not specified in the macro call.

 When many points in a plot are to be labelled, labels tend to
collide. You can reduce this effect somewhat by calculating an
offset for the x and/or y value of the label or by calculating the
Annotate position value based on the data values. The next step
in generalizing the label macro was to add offset parameters for
the label coordinates, in such a way that these could be specified as
constants (e.g., xoff=2 to move the data label 2 data units to the
right of the point), or as an expression based on values in the data
set (e.g., yoff=200*(sign(weight-3000)) to move the label up
or down 200 data units, depending on whether weight is more than
or less than 3000).

 Finally, for some plots I found it useful to be able to “out-
justify” the labels relative to the points, by choosing the position
value based on the signs of the deviations of the x and y coordinates
from their means. To do this, I added macro code to recognize the
special value pos=+ and find the means with PROC SUMMARY.
The final result was LABEL SAS shown in “Appendix A”.

 4. Adding Data Ellipses to a Scatterplot

BUICK

CAD

CAD

CAD

LINC
LINC

LINC

OLDS

W
E
I
G
H
T

1000

2000

3000

4000

5000

PRICE
0 5000 10000 15000 20000

 

When you have (x, y) data for several groups you may want to
Figure 1: Plot of automobile data with extreme points labelled

examine how the means, variances and correlations differ from
group to group, and how these relate to the data for the total

 After I have made such a plot several times I see that I am
sample. Adding a concentration ellipse for each group to the

repeating essentially the same step to produce the Annotate data
scatterplot helps to show these relations.

set. When that happens, I think of writing a macro.

 The idea of a confidence interval for a single variable
 The initial step is simply to note which parts of the DATA step

generalizes to an elliptical joint confidence region for two
LABEL would change from one application to the next, and replace

variables. For observations, xi = (xi, yi) from a bivariate normal
that text with references to macro variables. The first version

distribution, the elliptical region, called the concentration ellipse orlooked like this, with the changes emphasized:
data ellipse, containing (1 − α) of the data is given by the values x 
satisfying

 2



proc iml;
start ellipse(c, x, y, np, pvalue);(x − x)′ S-1(x − x) ≤ 2 F 2, n-1(1−α) ,  (1)
 /*--------------------------------------------*
 | Elliptical contours for a scatterplot |where x = (x, y) are the sample means, S (2×2) is the covariance
 | C returns the ellipse coordinates |matrix of (x, y) , and F 2, n-1(1−α) is the (1 − α) percentage point of
 | X,Y coordinates of the points |

the F distribution with 2 and n − 1 degrees of freedom. The 50%  | NP number of points around ellipse |
data ellipse is analogous to the central box in the boxplot.  | PVALUE confidence coefficient (1-alpha) |

 *--------------------------------------------*/
 For example, the observations in the AUTO data are classified
by region of origin. To help see how the relationship between  xx = x||y;
Weight and Price of an automobile is moderated by region of  n = nrow(x);
origin, the data are plotted in Figure 2, with a 50% data ellipse for  mean = xx[+,]/n;
each region. The plot shows that the relationship has  xx = xx - mean @ j(n,1,1);
approximately the same slope for all three regions, while American
cars are substantially heavier and more variable.  *-- Find principal axes of ellipses --;

 xx = xx  * xx / (n-1);
 call eigen(V, E, xx);
 c = 2*finv(pvalues,2,n-1,0);

 *-- Form np points around a unit circle --;
 t = ((1:np) - 1) # atan(1)#8/(np-1) ;
 s = sin(t) * sqrt( c*V[1] );
 t = cos(t) * sqrt( c*V[2] );

 *-- Rotate and add mean--;
 c = ( ( E*(shape(s,1)//shape(t,1) )) +
 mean  @ j(1,np,1) )  ;
 c = shape( c, np);
finish;

Then, if the SAS/IML program produces an output data set,
contours, containing the variables x, y, and gp (group number),
the plot is easily drawn using the DATA step below to supply the
Annotate instructions.

/*-----------------------------------*
 | Plot the contours using Annotate |
 *-----------------------------------*/
data contours;
 set contours;

Amer

Europe
Japan

W
E

IG
H

T
 (

L
B

S
)

1000

2000

3000

4000

5000

PRICE
0 5000 10000 15000 20000

 
 by gp;
 retain xsys ysys '2';Figure 2: Weight vs. Price of automobiles with data ellipse for
 if first.gp then function='POLY '; each region of origin
 else function='POLYCONT';
 line = gp+1; Points on the boundary of the ellipse (where equality holds in
 color= scan('RED BLUE GREEN',gp);Equation (1)) can be calculated from the eigenvalues and

eigenvectors of S (see Johnson & Wichern, 1982, §5.5), which give
proc gplot data=auto;the squared lengths and directions of the major and minor axes of
 plot weight * price = origin / anno=contours;the ellipse. Eigenvalues and eigenvectors can be calculated using
 symbol1 v=+ c=red;the PRINCOMP procedure, however, the calculation of the ellipse
 symbol2 v=square c=blue;is most easily handled with SAS/IML. In fact, the entire graph
 symbol3 v=star c=green;could be constructed with SAS/IML, but this would make the

program less general. Instead, I chose to design the program to
 Again, the CONTOUR macro began as a program with limitedcalculate the (x, y) values on the ellipse with PROC IML, and
functions, specific to a given set of data. When I needed to make aoutput these to a data set, from which the contours could be drawn
similar plot for another data set, it was not difficult to turn thatwith the POLY and POLYCONT functions of the Annotate facility.
program into a macro. Now that this program is stored in my
autocall library, I can produce the plot shown in Figure 2 with the The program fragments described below are simplified portions
single statement,of the CONTOUR macro described in my book (Friendly, 1991,

1992a). Calculation of the points on the the boundary of the ellipse
%contour(data=auto, x=price, y=weight,is carried out in the IML module, ellipse. The essential idea is to
 group=origin);calculate np points around a unit circle, stretch the circle in

proportion to the eigenvalues V, and rotate the ellipse by the
However, to make a plot look just right I often need to specifyeigenvectors in the matrix E.
many details of the GPLOT step (fonts, colors, axes, legends, etc.).
Rather than create macro parameters for all the possible choices or

 3



rely on the choices made in the CONTOUR macro, a macro
parameter, plot=NO will suppress the plot and simply return the
Annotate data set for the ellipses. This also allows the data ellipse
to be combined with other custom enhancements. For example, to
combine the point labels from Figure 1 with the ellipses in Figure
2, simply concatenate the two Annotate data sets:

data both;
 set contour label;
proc gplot data=auto;
 plot weight * price / anno=both;
 ...

 5. Combining Panels

Graphs which display the relationships among three or more
variables are particularly challenging, since they require expanding
the familiar visual metaphors we use for two variables. A number
of useful techniques solve this problem by slicing the data into
separate portions, plotting each portion separately, and arranging
the plots in a way which helps you to view the relations within and
between the portions.

price

3.291

15.906

weight

1.76

  4.84

repair

2

    10

mpg

12

    41

 
 One example is the scatterplot matrix (Chambers, et al, 1983),
a plot of all pairs of variables in a single display. For multi-factor

Figure 3: Scatterplot matrix for AUTO data. US models: circles,
experimental designs, one idea is to plot the means for the levels of

 European: squares, Japanese: stars.
two factors in a series of panels according to the levels of the
remaining factors; another idea is an interaction plot matrix used

 size = 2 * &nvar;
in JMP/Design which plots means for all main effects and first-

 function = 'LABEL'; output;
order interactions in a single organized display. These and related

 proc gplot data = &data;
graphs can be constructed in the SAS System by (a) plotting all the

 plot &vi * &vi / frame
pieces separately, saving the graphic output to a graphic catalog,

 anno=title vaxis=axis1 haxis=axis1;
and (b) combining the panels with PROC GREPLAY or DSGI.

 axis1 label=none value=none major=none
 minor=none offset=(2);

 Here I'll describe the basic ideas behind the SCATMAT macro,
 symbol v=none i=none;

which constructs a scatterplot matrix for any number of variables.
 %end;

Figure 3 illustrates this display, showing the relations among the
variables Price, Weight, MPG, and Repair (repair records) in the

 %else %do; /* off-diag panel */
auto data, with the region of origin determining the plotting

 proc gplot data = &data;
symbol.

 plot &vi * &vj / frame
 nolegend vaxis=axis1 haxis=axis1;SCATMAT macro
 axis1 label=none value=none major=none
 minor=none offset=(2);

For p variables, x1, ... , xp , the scatterplot matrix is a p × p array in
 symbol v=+ i=none h=&nvar;

which the cell in row i , column j contains the plot of xi against xj .  %end;
The diagonal cells are used for the variable names and scale  %end; /* cols */
markings. In the SAS macro language, the plots can be done with %end; /* rows */
two nested %do loops containing PROC GPLOT steps. In the code
fragment below, &var is the list of variables to be plotted (e.g., X1 Note that the height of text in the plots is made proportional to the
X2 X3) from the data set &data, and &nvar is the number of number of variables, because the panels shrink by this factor when
variables. the plots are replayed together.

%let plotnum=0; * number of plots made;  The set of p×p plots is then displayed with a PROC GREPLAY
%let replay = ; * replay list; step, which is also constructed by the SCATMAT macro. PROC
%do i = 1 %to &nvar; /* rows */ GREPLAY requires a template which specifies the relative
 %let vi = %scan(&var , &i ); coordinates of each panel in the composed figure. The template for
 %do j = 1 %to &nvar; /* cols */ a scatterplot matrix must specify the corners of each of the &nvar × 
 %let plotnum = %eval(&plotnum+1); &nvar cells in a TDEF statement. The macro TDEF is used in
 %let replay = &replay &plotnum:&plotnum ; SCATMAT to generate this statement. It does so by specifying the
 %let vj = %scan(&var , &j ); corners of the (1, 1) panel in the upper left, and translating this
 %if &i = &j %then %do; /* diag panel */ panel across and down using nested %do loops. (These
 data title; computations would be somewhat simpler using DSGI to compose
 length text $8; the panels.)
 xsys = '1'; ysys = '1';
 x = 50; y = 50;
 text = "&vi";

 4



%macro TDEF(nv, size, shift );
%* -----------------------------------------------;
%* Generate TDEF statement for scatterplot matrix ;
%* -----------------------------------------------;
%local i j panl panl1 lx ly;
 TDEF scat&nv DES="scatterplot matrix &nv x &nv"
 %let panl=0;
 %let lx = &size;
 %let ly = %eval(100-&size);
 %do i = 1 %to &nv;
 %do j = 1 %to &nv;
 %let panl = %eval(&panl + 1);
 %if &j=1 %then
 %do;
 %if &i=1 %then %do; %* (1,1) panel;
 &panl/
 ULX=0 ULY=100 URX=&lx URY=100
 LLX=0 LLY=&ly LRX=&lx LRY=&ly
 %end;
 %else %do; %* (i,1) panel;
 %let panl1 = %eval(&panl - &nv );
 &panl/ copy= &panl1 xlatey= -&shift
 %end;
 %end;

Origin

RepairGp

PriceGp

12

16

20

24

28

32

12

16

20

24

28

32

12

16

20

24

28

32

American Foreign Low High Low High 
 %else %do;
 %let panl1 = %eval(&panl - 1);

Figure 4: Interaction plot of gas mileage classified by Region,
 &panl/ copy= &panl1 xlatex= &shift

 Price and Repair
 %end;
 %end;  6. IML Graphics
 %end;
 %str(;); %* end the TDEF statement;

For some graphics applications, such as the data ellipses, difficult
%mend TDEF;

calculations were performed easily using PROC IML, leaving the
actual plotting to SAS/GRAPH procedures. In other cases, it was

The PROC GREPLAY step then invokes the TDEF macro for the
far easier to construct the entire plot with SAS/IML software than

appropriate number of variables and replays plots in the &replay
to pass all the necessary information in a data set. Graphical

list which was accumulated as the plots were generated.
methods for categorical data (Friendly, 1992b), for example,
typically represent the frequency in each cell of a multiway

proc greplay igout=gseg nofs
contingency table by the area of a region in the graph. SAS/IML

 template=scat&nv tc=templt ;
software provides a self-contained environment for constructing

 %if &nvar = 2 %then %TDEF(&nvar,50,50);
these novel displays. In fact, although I use SAS/GRAPH

 %if &nvar = 3 %then %TDEF(&nvar,34,33);
procedures whenever I can, PROC IML has become my favorite

 %if &nvar = 4 %then %TDEF(&nvar,25,25);
programming environment for developing new graphical methods.

 ...
 %if &nvar =10 %then %TDEF(&nvar,10,10);

 To illustrate, I'll describe a program for producing a four-fold
 treplay &replay;

display for frequencies in a 2 × 2 × k table. For a single 2 × 2 table
with frequencies fij , the departure from independence can be

 These and other programming techniques in the SCATMAT
measured by the sample odds ratio, θ = (f11 / f12) / (f21 / f22) . Themacro can be adapted to similar situations. For example, in the
four-fold display shows the frequencies in a 2 × 2 table in a wayinteraction plot, the diagonal cells display least squares means and
that depicts the odds ratio. In this display the frequency in eachstandard errors (calculated with LSMEANS statement of the GLM
cell is shown by a quarter circle, whose radius is proportional toprocedure) for the main effects in a factorial design. The off-

diagonal cells plot the two-factor interaction means for these √ fij , so the area is proportional to the cell count. An association
factors in all pairs. between the variables (odds ratio ≠ 1 ) is shown by the tendency of

diagonally opposite cells in one direction to differ in size from
 An example is shown in Figure 4, which shows the estimated those in the opposite direction, and we use color and shading to
mean gas mileage (MPG) on the ordinate of each panel, when the show this direction. To make appearances more precise, circular
automobiles are classified by region of Origin (American vs. arcs showing 95% confidence rings for the hypothesis of no
Foreign), Price group and Repair group, the last two variables association (odds ratio = 1) can be added to the display; these will
having been divided at their medians. overlap across quadrants when that hypothesis cannot be rejected.

 5



 FOURFOLD SAS

FOURFOLD SAS is a collection of SAS/IML modules which can be
used with any 2 × 2 × k frequency table. One four-fold display is
constructed for each 2 × 2 layer, and the collection of displays for
the whole table can be arranged flexibly in any number of rows and
columns, on one or more pages. The program illustrates several
programming techniques available with SAS/IML software,
including:

• Using global variables for options
• Assigning default values to parameters
• Using multiple viewports in a plot
• Generating multiple plots within a PROC IML step

 Figure 5 illustrates this display for a 2 × 2 × 2 table of
frequencies of the automobiles classified by Origin, Repair group,
and Price group (the same classification used in Figure 4). Within
each 2 × 2 table, the frequencies have been standardized so that all
table margins are equal, while preserving the odds ratio. This
makes it easier to compare the panels. The figure shows that there
is a positive association between price and reliability (= higher
values of Repair record) for both American and Foreign
automobiles, and that the association is significant for American-

 
made cars.

Figure 5: Fourfold display of automobiles data
 Figure 5 is produced by the following statements, which also
illustrate the style of programming used with IML modules such as

module.
fourfold.

start fourfold(dim, table, vnames, lnames)
proc iml;

 global (std, down, across, name, sangle );
 %include fourfold;

 if type(std ) ¬='C' then std='MARG';
 dim = {2 2 2};

 if type(down) ¬='N' then down=2;
 /* Price: Lo Hi Repair Origin */

 if type(across) ¬='N' then across=1;
 table = { 21 11, /* Lo American */

 if type(name) ¬='C' then name='FFOLD';
 4 12, /* Hi */

 if type(sangle) ¬='N' then sangle=0;
 2 1, /* Lo Foreign */
 7 11}; /* Hi */

The IML type function returns the type of a variable, C, N, or U for
character, numeric, or undefined, respectively.

 /*-- variable labels --*/
 vnames = {'PriceGp' 'RepairGp' 'Origin'};

 The program next calculates locations of the viewports for a
 lnames = {'Low' 'High',

page from the down and across values. In order to keep the
 'Low' 'High',

panels square, the maximum of down and across determines the
 'American' 'Foreign'};

size of each panel.

 /*-- assign global options --*/
 /*-- Establish viewports --*/

 std='MARG';
 np = max(down,across);

 sangle=90;
 pd = np - (across||down);

 run fourfold(dim, table, vnames, lnames);
 size = int(100 / np);

quit;
 do i = 1 to across;
 px = size # ((i-1) // i) + (pd[1] # size/2);

The arguments to fourfold consist of the vector dim of table
 do j = 1 to down;

dimensions, the matrix table of cell frequencies, the character
 py = 100 - (size#(j//(j-1))+(pd[2]#size/2));

vector vnames of variable names, and the character matrix lnames
 ports = ports // shape( (px||py), 1);

of names for the levels of the variables. These variables are all
 end;

required; fourfold also provides several options, which are given
 end;

default values if not specified. For example, the arrangement of the
 nport=nrow(ports);

panels on the page is controlled by the variables down and across,
with default values of 2 and 1 respectively. std determines how

ports is a 4-column matrix, with one row for each panel. For the
standardization is to be done, and sangle specifies the angle for

display in Figure 5, the two viewports in ports are:
text labels on the sides of each panel.

 xmin ymin xmax ymax
 This scheme using arguments for required information and

 25 50 75 100
global variables for options is convenient in IML programming,

 25 0 75 50
because options need not be specified when the defaults suffice.
This is implemented by declaring the option variables as global

 The rest of the fourfold module consists of a loop over the
variables on the start statement when defining the fourfold

levels of variable 3, which plots the k (dim[3]) panels of the

 6



display. The rows for the current panel (level i) are extracted from colors and shading for the four quadrants are determined by the
table, and standardized by the module stdize. A new plot sign of the log odds ratio, represented by the argument d.
(“page”) is started whenever mod(i,nport) is 1. The viewport on

start gpie2x2(tab,freq,lnames,vnames,title,np,d)the current page is then set with the IML gport call, and the
 global(sangle);current panel is drawn using the module gpie2x2, which draws the
 t = shape(tab,1,4);fourfold display for one 2 × 2 table.
 r = 5 * sqrt(t); * radii;
 call gwindow({-16 -16 120 120}); run odds(dim, table, lnames, odds);
 ht = 2.0 # max(np,2); if ncol(dim)<3 then k=1; * number of panels;
 call gset('HEIGHT',ht); else k = dim[3];
 /* [1,1] [1,2] [2,1] [2,2] */ page = 0;
 angle1 = { 90 0 180 270 }; do i=1 to k;
 angle2 = {180 90 270 0 }; r = 2#i; * row index;
 shade = {'L1' 'X1' 'X1' 'L1', t=table[((r-1):r),]; * current 2x2 table;
 'X1' 'L1' 'L1' 'X1'}[1+(d>0),];
 do i = 1 to 4; /* construct top label for this panel */
 pat = shade[,i]; title='';
 if pat='X1' then color='BLUE'; if k > 1 then do;
 else color='RED'; if vnames[,3] = " " then title=lnames[3,i];
 call gpie(50,50, r[i], angle1[i], angle2[i], else title=trim(vnames[,3])+': '+lnames[3,i];
 color, 3, pat); end;
 end;
 call gxaxis({0 50},100,11,1,1); /* standardize table to fit 100x100 square */
 call gyaxis({50 0},100,11,1,1); run stdize(fit, t, table);
 call ggrid({0 100}, {0 100}); if mod(i,nport)=1 then do; * new page? ;

 call gstart;
 *-- labels for variables 1 & 2; page = page+1; * count pages;
 lx = { 50, -.5, 50, 101}; gname =trim(name)+char(page,1,0);
 ly = { 99, 50, -1, 50}; call gopen(gname);
 ang= { 0, 0, 0, 0}; end;
 if sangle=90 then ang[{2 4}] = sangle;
 vl1= trim(vnames[,1])+': '; /*-- set viewport --*/
 vl2= trim(vnames[,2])+': '; ip = 1 + mod(i-1,nport); * viewport #;
 labels = (vl1 + lnames[1,1])// port = ports[ip,]; * coordinates;
 (vl2 + lnames[2,1])// call gport(port);
 (vl1 + lnames[1,2])//
 (vl2 + lnames[2,2]); /*-- draw panel, display if end-of page --*/
 do i=1 to 4; call gpie2x2(fit, t, lnames, vnames, title,
 call gscript(lx[i], ly[i], labels[i],ang[i]); np, odds[i]);
 end; if mod(i,nport)=0 | i=k then call gshow;
 *-- write cell frequency in corners; end;
 cells = char(shape(freq,4,1),4,0); call gclose;
 lx = { 5, 95, 5, 95};finish;
 ly = { 94, 94, 4, 4};
 ang= { 0, 0, 0, 0};

 The stdize module uses iterative proportional fitting to  do i=1 to 4;
standardize a table to equal marginal totals when the option  call gscript(lx[i], ly[i], cells[i],ang[i]);
std='MARG' is in effect. The built-in ipf routine makes PROC  end;
IML particularly convenient for analysis of categorical data. The

 if length(title)>1 then do;config variable specifies the marginal totals which are to be fit; in
 ht=1.25#ht;this case, we specify the one-way marginals for variables 1 and 2.
 call gstrlen(len,title,ht);The desired marginal frequencies are given in the newtab variable.
 call gscript((50-len/2),112,title,,,ht);Code for the other std options is elided here, but shown
 end;completely in Friendly (1994b).
finish;

start stdize(fit, t, table) global(std);  The fourfold program also includes the module odds, which
 /*-- standardize table to equal margins --*/ calculates log odds ratios for each 2 × 2 table, and a general module
 if std='MARG' then do; for justifying text in IML graphics, which are not shown here due
 config = {1 2}; to lack of space. The complete program os described in more detail
 newtab = {50 50 , 50 50 }; in Friendly (1994b) and may be obtained by anonymous ftp from
 call ipf(fit,status,{2 2},newtab,config,t);

ftp.sas.com in the directory observations/v3n4/friendly.
 end;
 ...
finish;  Author's Address. For further information, contact:

 gpie2x2 plots the frequency in each cell of a 2 × 2 table as a  Michael Friendly
quarter-circle with a radius proportional to the square root of the  Psychology Department, York University
cell frequency. The quadrants are centered at the point {50, 50}  Downsview, ONT, Canada M3J 1P3
and gpie2x2 assumes the frequencies have been standardized so  email: <friendly@VM1.YorkU.CA>
that the maximum cell value is no greater than 100. The code  WWW: http://www.math.yorku.ca/SCS/friendly.html
below reshapes the table into a 1 × 4 vector and uses vectors to
select appropriate angles and shading for the quarter circles. The

 7



%else %let pos = "5"; Trademarks. SAS, SAS/GRAPH, and SAS/IML are
trademarks or registered trademarks of SAS Institute Inc. in the

data &out;
USA and other countries.  set &data;

 keep x y xsys ysys position function size
 color text;
 length function $8 text $ &len position $1; References
 retain xsys ysys "&sys" function 'LABEL';
 if &subset ;

Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A.  x = &x + &xoff ;
 y = &y + &yoff ; (1983). Graphical Methods for Data Analysis. Belmont,
 %if &z ¬= %str() %then %do; CA: Wadsworth.
 retain zsys "&sys"; keep z zsys;

Friendly, M. (1991). SAS System for Statistical Graphics, First  z = &z + &zoff;
 Edition. Cary, NC: SAS Institute Inc.  %end;

 text=&text; /* set label attributes */Friendly, M. (1992a), SAS macro programs for statistical graphics,
 size=&size; Psychometrika, 57, 313-317.
 color=&color;

Friendly, M. (1992b), Graphical methods for categorical data,  %if &font ¬= %str() %then %do;
 Proceedings of the SAS User's Group International  keep style;

 style = "&font"; Conference, 17, 1367-1373.
 %end;Friendly, M. (1992c), User's guide for MOSAICS. York Univ.:
 %if "&pos" = "+" %then Dept. of Psychology Reports, 1992, No. 206.  %do;

Friendly, M. (1992d), Mosaic Displays for Loglinear Models.  retain mx my;
 if _n_=1 then set &out; American Statistical Association, Proceedings of the
 if x > mx then Statistical Graphics Section, 61-68.
 if y > my then position = '3';Friendly, M. (1994a). Mosaic displays for multi-way contingency  else position = '9';

 tables. Journal of the American Statistical Association, 89,  else
 if y > my then position = '1'; 190-200.
 else position = '7';Friendly, M. (1994b). SAS/IML graphics for fourfold displays.
 %end; Observations, 1994, 3(4), 47-56.  %else %str(position=&pos;);

Johnson, R. A., and Wichern, D. W. (1982). Applied Multivariate %mend label;
 Statistical Analysis. Englewood Cliffs, NJ: Prentice Hall.

 Appendix A

 LABEL SAS

/*-----------------------------------------------*
 * LABEL SAS - Create an Annotate dataset to *
 * label observations in a scatterplot *
 *-----------------------------------------------*/
%macro label(data=_LAST_,
 x=, /* X variable for scatterplot */
 y=, /* Y variable for scatterplot */
 z=, /* Z variable for G3D (optional) */
 xoff=0, /* X-offset for label (constant */
 yoff=0, /* Y-offset for label or */
 zoff=0, /* Z-offset for label variable) */
 text=, /* text variable or expression */
 len=8, /* length of text variable */
 pos=, /* position of label (+=out-just)*/
 sys=2, /* XSYS & YSYS value */
 color='BLACK', /* label color (quote if const)*/
 size=1, /* size of label */
 font=, /* font for label */
 subset=1, /* expression to select points */
 out=_label_ /* annotate data set produced */
 );

%* -- pos can be a constant, an expression, or +;
%* if a character constant, put "" around it;
%if "&pos" ¬= "" %then %do;
 %if %length(&pos)=1 &
 %index(123456789ABCDEF,&pos) > 0
 %then %let pos="&pos" ;
 %end;
%if "&pos" = "+" %then
 %do; %*-- Out-justify wrt means of x,y;
 proc summary data=&data;
 var &x &y;
 output out=&out mean=mx my;
 %end;

 8


