
 SUGI 15, April, 1990
 SAS/GRAPH® SOFTWARE MEETS THE LOGO TURTLE

 Michael Friendly, York University

 Abstract What is Logo?

This talk describes a set of SAS macros which provide the ability to Logo is a computer language designed to make computing easily
draw with the SAS/GRAPH® ANNOTATE facility using the accessible to young children (Papert, 1980) in an educational
“turtle-relative” drawing commands of the Logo language, rather setting. Part of its appeal is an extremely simple yet flexible
than absolute X-Y coordinates. This makes drawing much easier graphics component, called “turtle graphics”. However, Logo is
for many types of figures. actually a descendent of Lisp, and was designed to provide

powerful programming features for experts as well as novices; see
 Another key feature of Logo is recursion, which also simplifies Friendly (1988).
many graphics procedures. Since the SAS data step has neither
local variables, nor recursion, it is hard to some things that are very Logo Turtle Graphics
easy in Logo. However, SAS macro variables are local variables,
and recursive macros which model Logo procedures can be Contrast the SAS/GRAPH annotate DATA step above with the
defined. A variety of Logo-like designs carried out with following command in the Logo language:
SAS/GRAPH are illustrated.

REPEAT 5 [FORWARD 50 RIGHT 72]

 Introduction This command, entered interactively to the Logo system, causes a
pentagon to be drawn on the screen. The Logo primitive FORWARD

The annotate facility of SAS/GRAPH is a powerful tool for 50 (or BACK 50) moves a graphic cursor, called “the turtle”
customizing graphs or for designing entirely new graphic displays. forward (or back) 50 “turtle steps” in whatever direction it is
A good deal of this power stems from the various data reference currently facing. (The Logo graphics area is approximately 280 by
systems, specified by the XSYS= and YSYS= annotate variables. 240 turtle steps. The coordinates range from -120 to +120 in the
The variables X and Y refer to coordinate locations in the display horizontal direction and to  140 in the vertical direction.) The
area, but the corresponding values of XSYS and YSYS determine primitive command RIGHT 72 (or LEFT 72) rotates the turtle 72
whether the X, Y coordinates are interpreted as, for example, data degrees in a clockwise (or counter-clockwise) direction from its
values, screen cells, or percentage values. present orientation, but does not change the turtle's position.

 On the other hand, some kinds of figures or shapes are Note that the Logo turtle doesn't have to know anything about
particularly difficult to draw with the annotate facility. For trigonometry or converting from angles to radians: The Logo
example, to draw a pentagon or other polygon you must calculate commands FORWARD, BACK, LEFT and RIGHT are all relative to the
the (x, y) coordinate of each point on the polygon using the SIN and turtle's current position and orientation, which are maintained
COS functions, whose arguments must be specified in radians: internally by the Logo system. (There is also a SETPOS command

to move the turtle to an absolute (x, y) screen position, and a
data pentagon; SETHEADING command to turn the turtle to a specified angular
 xsys='2'; ysys='2'; orientation.)
 do i = 1 to 5;
 angle = i/5 * (2*3.14159); The Logo turtle is considered to have a pen which can be
 x = 50 * cos (angle); lowered or raised. The primitive commands PENUP and PENDOWN
 y = 50 * sin (angle); control the turtle's pen position; the command SETPC controls the
 if i=1 then function = 'MOVE'; color of ink in the pen. If the pen is down, the turtle draws in the
 else function = 'DRAW'; current pen color when it moves; otherwise FORWARD and BACK
 output; cause the turtle to move without drawing a line.
 end;
proc ganno data=pentagon datasys; The REPEAT command is the Logo primitive for iteration. In

the command
 This paper describes an approach to make it easier to draw
these kinds of geometric figures in SAS/GRAPH by implementing REPEAT 5 [FORWARD 50 RIGHT 72]
the ideas of “turtle graphics” from the Logo language as SAS
macros. From another perspective, this can also be viewed as an the list of commands in square brackets is repeated 5 times.
example of how extensions to SAS/GRAPH may be explored by
incorporating ideas from other programming environments. Logo procedures. The commands to draw any figure can

be defined as a new procedure with the TO command. For example,
these statements define a procedure named PENTAGON.

TO PENTAGON
 REPEAT 5 [FORWARD 50 RIGHT 72]
 END

 1

Once a procedure has been defined, typing the name of the ?TRACE "POLYSPI
procedure causes the commands in the definition to be carried out. ?POLYSPI 4 45

-> Entering POLYSPI 4 45
 Logo procedures can also be defined to take variable inputs, -> Entering POLYSPI 3 45
just like the Logo primitives FORWARD and RIGHT. This PENTAGON -> Entering POLYSPI 2 45
procedure draws a pentagon of any size: -> Entering POLYSPI 1 45

 -> Entering POLYSPI 0 45
TO PENTAGON :SIZE -> Leaving POLYSPI
 REPEAT 5 [FORWARD :SIZE RIGHT 72] -> Leaving POLYSPI
 END -> Leaving POLYSPI

 -> Leaving POLYSPI
In Logo, a variable argument to a procedure is represented by a -> Leaving POLYSPI
variable name preceded by a colon, such as “:SIZE”, so if the
procedure PENTAGON 100 is invoked, the value 100 is substituted Each recursive call invokes a new copy of the POLYSPI procedure
wherever :SIZE occurs. with its own, private values of the inputs :SIZE and :ANGLE. The

previous copy is suspended, waiting for the new one to complete.
 Procedures can take any number of variable inputs. The When the value of :SIZE becomes zero, the STOP statement is
procedure POLY draws a regular polygon of any :SIZE with any executed, causing the inner-most version of POLYSPI to terminate.
number of :SIDES: That allows the previous copy to continue, where the values of

:SIZE and :ANGLE in that call are reinstated. But since POLYSPI
TO POLY :SIDES :SIZE is the last command in the procedure, that copy terminates too. The
 REPEAT :SIDES [FORWARD :SIZE RIGHT 360/:SIDES] stacked recursive calls continue to unwind, until the initial call
 END completes.

 One of the powerful features of Logo, which makes it As another recursive example, the procedure SHRINK.POLY
particularly easy for children to do interesting graphics, is this: draws one polygon by calling the POLY procedure. It then calls
Once a procedure has been defined, it can be used in other itself to draw another polygon, with the size of one side reduced by
procedures exactly like the built-in primitive commands. For the amount specified in the third input, :CHANGE. The process
example, the procedure SPIN.POLY draws a series of :NUMBER continues until the :SIZE of a side becomes less than zero.
polygons, rotating each one from the last.

TO SHRINK.POLY :SIDES :SIZE :CHANGE
TO SPIN.POLY :SIDES :SIZE :NUMBER IF :SIZE < 0 [STOP]
 REPEAT :NUMBER [POLY :SIDES :SIZE POLY :SIDES :SIZE
 FORWARD :SIZE/4 RIGHT 360/:NUMBER] SHRINK.POLY :SIDES (:SIZE-:CHANGE) :CHANGE
 END END

Recursion & local variables
 Implementing turtle graphics in

Another powerful feature of Logo is recursion: procedures can do SAS/GRAPH
part of a task, then call themselves to complete the job. To support
recursion, the variable inputs of a procedure are local variables: the In the Logo system, the turtle-relative drawing commands are
values assigned to those variables in one invocation of a procedure implemented in such a way that the system maintains the turtle's
have no effect on the values of those variables in any other current position and heading internally. When the command
procedure invocation. FORWARD 50 is executed, the system simply calculates the new

absolute (x, y) screen location using the standard trigonometric
 The procedure POLYSPI draws a “polyspiral”, a figure like a relations, and moves or draws to that position.
polygon, but with the length of each side decreasing until it
becomes zero. The recursive way to do this in Logo is to draw one The Logo graphics primitives can be modelled in SAS/GRAPH
side, then call the same procedure to continue the same process: with a set of SAS macros. The macros make use of two new data

step variables, in addition to those used by the ANNOTATE
TO POLYSPI :SIDE :ANGLE facility:
 IF NOT :SIDE > 0 [STOP]
 FORWARD :SIDE RIGHT :ANGLE PEN {'UP','DOWN'} determines whether the turtle moves
 POLYSPI (:SIDE-1) :ANGLE or draws.
 END HEADING turtle's current heading, in degrees, where 0=NORTH

 and angles increase clockwise.
 The operation of recursion in Logo can be shown by tracing the
execution of the POLYSPI procedure, which causes the procedure The basic Logo macros are:
to print the values of its input variables on each invocation. The
“?” character is the Logo prompt. %penup Lift PEN up, so turtle will move

%pendown Put PEN down, so turtle will draw
%left(degrees) Turn left (counterclockwise)
%right(degrees) Turn right (clockwise)
%forward(dist) Move/draw forward in current HEADING
%back(dist) Move/draw back in current HEADING
%inilogo Initialize variables, move turtle home
%home Move/draw to (0,0)

 2

These macros are used in a DATA step to produce an %macro back(dist);
ANNOTATE= data set. %*--;

%* Move/Draw BACK in the current HEADING ;
 The macros %penup, %pendown, %left, and %right simply %*--;
set the values of the PEN and HEADING variables. Note that %forward (-1*(&dist));
%left and %right keep the HEADING variable in the range of 0 %mend back;
to 360 degrees.

 Two utility macros complete the basic set of Logo commands
%macro penup; for SAS/GRAPH. %home moves the turtle to the “home” position,
%*--; (0, 0). %inilogo initializes the PEN and HEADING variables and
%* Put PEN up, so turtle will move ; starts the turtle at (0, 0).
%*--;
 PEN='UP '; %macro home;
%mend penup; %*--;

%* Move/Draw to (0,0) ;
%macro pendown; %*--;
%*--; X=0; Y=0;
%* Put PEN down, so turtle will draw ; if PEN = 'UP' then FUNCTION = 'MOVE';
%*--; else FUNCTION = 'DRAW';
 PEN='DOWN'; output;
%mend pendown; %mend home;

%macro left(degrees); %macro inilogo;
%*--; %*---;
%* Turn LEFT by DEGREES (counterclockwise) ; %* Initialize logo variables & move turtle home;
%*--; %* - use at start of data step, like dclanno ;
 HEADING=mod(HEADING-(°rees),360); %*---;
%mend left; LENGTH PEN $ 4;

 %penup; %home; %pendown;
%macro right(degrees); HEADING=0;
%*--; %mend inilogo;
%* Turn RIGHT by DEGREES (clockwise) ;
%*--; Using the Logo macros
 HEADING=mod(HEADING+(°rees),360);
%mend right; The Logo macros are invoked in a DATA step to produce an

ANNOTATE= data set. The figure can then be drawn with PROC
 All the work is done in the %forward macro. For efficiency the GANNO or PROC GSLIDE.
macro recognizes the special cases of HEADING = 0, 90, 180, or
270 degrees. The %back macro is implemented in terms of The example below draws a set of 12 stars equally spaced
%forward. around a circle, giving the result shown in Figure 1. This example

uses the data percentage coordinate system (XSYS='1'; YSYS='1';),
%macro forward(dist); so the plot is centered at (50, 50). The Logo macros can use any of
%*--; the absolute coordinate systems.
%* Move/Draw FORWARD in the current HEADING ;
%* - X & Y are in whatever XSYS, YSYS system ; %include LOGO ; /*
%* is being used, but MUST be absolute. ; ge/*LOnoMVS,ruse*%include ddname(file);*/
%* - In turtle coordinates, HEADINGs go clock-; data example1;
%* wise from North. In SAS geometry, angles ; xsys='1'; ysys='1'; /* data % system */
%* go counterclockwise from East, so ; %inilogo;
%* HEADING = 90-angle ; x = 50; y=50;
%* - PEN determines whether to MOVE or DRAW ; function='MOVE '; output;
%*--; %pendown;
 select (HEADING) ; do i=1 to 12;
 when (0) Y = Y + &dist; %forward(15);
 when (90) X = X + &dist; do j=1 to 5;
 when (180) Y = Y - &dist; %forward(20);
 when (270) X = X - &dist; %right(144);
 otherwise do; /* general case */ end;
 X=X+(&dist)*cos((90-HEADING)*atan(1)/45); %back(15); %right(30);
 Y=Y+(&dist)*sin((90-HEADING)*atan(1)/45); end;
 end; proc ganno anno=example1;
 end;
 if PEN = 'UP' then FUNCTION = 'MOVE'; The data set EXAMPLE1 contains the usual annotate variables,
 else FUNCTION = 'DRAW'; XSYS, YSYS, X, Y, FUNCTION, and so forth, plus the Logo
 output; variables, PEN and HEADING. The observations to draw the first
%mend forward; two stars are shown in Figure 2.

 3

%* Draw a polyspiral, decreasing side while >0;
%*--;
 len = &length;
 do while (_len_ > 0);
 %forward(_len_);
 %right(&angle);
 len = _len_ - &decrease;
 end;
%mend polyspi;

 Figure 3 shows a series of six polygons drawn with %polys.
The DATA step which draws this figure is shown below: The
program uses the SAS/GRAPH annotate macros, %system,
%frame, %label, etc. in addition to the Logo macros.

data poly1;
 %dclanno;

 %system(2,2,4); /* data system */
 %inilogo;

Figure 1: Logo stars
 do i=4 to 9;
 %polys(i, 15); %right(60);
 end;
 %label(8,30,'Logo polys',RED,0,0,2.5,DUPLEX,5);

 I J PEN HEADING FUNCTION X Y
proc ganno datasys anno=poly1;

 . . UP . MOVE 0.0 0.0
 . . DOWN 0 MOVE 50.0 50.0
 1 . DOWN 0 DRAW 50.0 65.0
 1 1 DOWN 0 DRAW 50.0 85.0
 1 2 DOWN 144 DRAW 61.8 68.8
 1 3 DOWN 288 DRAW 42.7 75.0
 1 4 DOWN 72 DRAW 61.8 81.2
 1 5 DOWN 216 DRAW 50.0 65.0
 1 6 DOWN 0 DRAW 50.0 50.0
 2 6 DOWN 30 DRAW 57.5 63.0
 2 1 DOWN 30 DRAW 67.5 80.3
 2 2 DOWN 174 DRAW 69.6 60.4
 2 3 DOWN 318 DRAW 56.2 75.3
 2 4 DOWN 102 DRAW 75.8 71.1
 2 5 DOWN 246 DRAW 57.5 63.0
 2 6 DOWN 30 DRAW 50.0 50.0

 Figure 2: Data set EXAMPLE1

Some sample SAS/GRAPH - Logo designs

As in Logo, the basic Logo macros can be used to define new
procedures as macros. The possibilities are limited only by your
imagination. For simplicity, I'll illustrate some variations and
combinations of polygon designs. Figure 3: Logo polys

 Here are SAS/GRAPH versions of the Logo POLY and Figure 4 is drawn with %polyspi with this DATA step:
POLYSPI procedures:

data poly2;
%macro polys(sides,length); %dclanno; %system(2,2,4);
%*--; %frame(BLACK,1,1,EMPTY);
%* Move/Draw a polygon, the Logo way ; %inilogo;
%*--; do i=1 to 5;
 do _i_ = 1 to &sides; %penup; %home; %pendown;
 %forward(&length); %forward(25);
 %right(360/(&sides)); %polyspi(72,75,.5);
 end; %right(72);
%mend polys; end;

 %label(8,12,'POLYSPI',BLACK,0,0,1.5,DUPLEX,5);
%macro polyspi(length,angle,decrease); proc ganno datasys anno=poly2;
%*--;

 4

 A design created with %spingon is shown in Figure 5. This
figure is drawn with the following statements:

data spin2;
 %dclanno; %system(2,2,4);
 %frame(BLACK,1,1,EMPTY);
 %inilogo;
 do H = 0, 100;
 do V = 0, 100;
 %move(H,V);
 %spingon(4, 50,2,25,4);
 end; end;
 %move(50,50);
 %spingon(4, 50,2,25,-4);
proc ganno datasys anno=spin2;

Figure 4: %polyspi design

 The polygons drawn by %polys start and end at the turtle's
current position. For use as a building block in larger designs, it is
more useful to be able to draw a figure centered at the current
position, and to be able to control the radius of a circumscribing
circle, rather than the size of one side. The macro %cpoly provides
these additional controls. The macro %spingon uses %cpoly to
draw a series of rotated, centered polygons of decreasing radius.

%macro cpoly(sides,radius);
%*--;
%* Draw a centered polygon inscribed in a ;
%* circle of given radius. ;
%*--;
 %* move out to circumscribed circle;
 %penup; Figure 5: %spingon design
 %forward(&radius);
 %* turn to face along one edge of polygon; Turtle Text
 %right(180 - (90*(&sides-2)/&sides));
 %pendown; The Logo macros can also be used to construct interesting graphic
 %* polygon, side as function of radius; designs with text. The example below repeats a character string in
 %polys(&sides,(2*(&radius)*sin(&pi/&sides))); a square spiral pattern, shown in Figure 6.
 %* turn & move back to starting point;
 %left(180 - (90*(&sides-2)/&sides)); %annocms;
 %penup; data text1;
 %back(&radius); %dclanno; %system(2,2,4);
 %pendown; %inilogo;
%mend cpoly; str='TURTLES DO IT RECURSIVELY.';

 %penup; %right(90);
%macro spingon(sides,rad,decrease,times,turn); color = 'BLACK';
%*--; style = 'DUPLEX'; size=2.5;
%* Centered polygons, of decreasing radius ; do s=1 to 20;
%*--; do i = 1 to 20-s;
 len=&rad; text = substr(str,1,1);
 do _j_=1 to × str = substr(str,2)||substr(str,1,1);
 %cpoly(&sides,_len_); angle= 90 - HEADING ; rot=angle ;
 %right(&turn); %forward(1);
 len=_len_ - &decrease; function='LABEL'; output;
 end; end;
 %left(&turn*×); %right(90);
%mend spingon; end;

proc ganno datasys anno=text1;

 5

 The outer loop constructs 20 sides of the spiral, and the inner %right(360/(&sides));
loop draws the letters along one side. After drawing a letter, the %end;
turtle goes %forward(1); after drawing a side, it turns %left(180 - (90*(&sides-2)/&sides));
%right(90). The string STR of letters is rotated cyclically, so the %penup; %back(&size); %pendown;
letter to be drawn is always the first character of the string. %end;

%mend repoly;

Figure 6: Turtle Text design
Figure 7: %repoly(6, 50, .5, 30, 3);

Recursive SAS/GRAPH macros

Recursion is possible in almost any programming language in
which parameters to procedures or subroutines are local variables.
In the SAS DATA step, all variables are global, and subroutines,
called by the LINK statement do not allow parameters. However, in
the SAS macro facility, macro parameters are local variables and
other macro variables can be declared local to a macro with the
%LOCAL statement. This makes it possible to define recursive SAS
macros which mirror Logo procedures.

 The macro %repoly draws a set of recursive polygons. The
“outer-level” of the procedure draws a centered polygon, like
%cpoly. However, at each vertex of this polygon, it calls itself to
draw a new polygon centered at that vertex. The number of levels
of recursion is specified by the depth parameter, and the macro
keeps recursing until depth becomes zero. At each level, the size
of the polygon is multiplied by the scale factor factor. Figure 7
shows a sample design drawn with %repoly. Figure 8 shows
another.

%macro repoly(sides,size,factor,rot,depth);
%*--;
%* Recursive polygons ;
%*--; Figure 8: %repoly(4, 50, .5, 45, 3)
%local s; %* MUST be local;
 %if %eval((&depth))=0 %then ; %* stop rule; Limitations. While recursive macros can be written as
 %else %do; illustrated, the SAS macro facility was never designed for this
 %penup; %forward(&size); %pendown; purpose. In languages that explicitly support recursion, the
 %right(180 - (90*(&sides-2)/&sides)); execution path of a recursive procedure is maintained in a “stack
 %do s=1 %to &sides; frame”, an internal data structure that records the state of each
 %forward(2* &size * sin(&pi/&sides)); currently-running invocation and the values of local variables.
 %left(&rot); SAS macros, on the other hand simply generate program text.
 %repoly(&sides,(&factor*&size),&factor,
&rot,(&depth-1)); As a result, a macro like %repoly can easily cause the SAS
 %right(&rot); supervisor to run out of memory or symbol table space. The macro

 6

call,

%repoly(6, 50, .5, 30, 3);

for example, specifies a set of recursive hexagons to a depth of 3.
At each of the six sides of the outer hexagon the macro calls itself
with depth=2: %repoly(6, 25, .5, 30, 2); and each of
those calls results in a further recursive call with depth=1. That is
about all the SAS supervisor can manage.

Logo Thinking

The foregoing examples were designed, in part, to demonstrate
some of the power of “Logo thinking”, and how it is possible to
apply Logo ideas to SAS/GRAPH. Logo was designed to support
cognitive efficiency—conceptual clarity, understandability, and
generalizability—perhaps at the expense of machine efficiency.
Some Logo principles reflected implicitly in the macro programs
are:

modular procedures: Logo programming is based on the idea of
 writing small, modular procedures which can then be used as if
 they were primitives in higher-level procedures. This allows
 the user to adopt a tool-kit approach, building up complex Figure 9: %tpgon tiling design
 programs from standardized components, or a top-down
 approach, breaking up a large problem into manageable sub- and the sum of the angles turned is 360. The %tpgon macro uses
 problems. %teepee as a building block, and the same idea as %cpoly to draw

the teepee figures around a central point.
state independence: In order to use one procedure as a building
 block in a larger design, it is necessary for that procedure to
 leave the turtle's state—the PEN, HEADING, and (x, y)
 position—the same at the end as it was at the beginning. The
 %cpoly macro, for example, uses

 %forward(&radius);
 %right(...);

 to move the turtle out into position to draw a polygon, and then
 reverses those steps with

 %left(...);
 %back(&radius);

 to restore the turtle to it's original position.

recursion: Solving a problem by recursion often leads to a much
 simpler and more elegant solution than solving the same
 problem by iteration. The key idea of recursion is to think of
 breaking down a problem into an “easy step”, which can be
 solved directly, and a “hard step”, which is just a smaller
 version of the original problem. This was illustrated in the

 Logo version of the POLYSPI procedure. However, when the
 recursive call is the last statement in the procedure (called tail

Figure 10: %tpgon shape recursion) as it is in POLYSPI, an equivalent iterative version
 of the procedure can be more efficient, especially in the SAS

%macro teepee(d); macro facility. The SAS/GRAPH %polyspi macro uses
 %forward(2*(&d)); %left(120); iteration for efficiency, but I think of it as essentially recursive.
 %forward(&d); %left(60);
 %forward(&d); %right(120);I'll illustrate these ideas in the following problem: to design a
 %forward(&d); %left(60);SAS/GRAPH program to produce a tessellation, or tiling design
 %forward(&d); %left(120);with an arbitrary motif as the unit. Figure 9 shows an example of
 %forward(3*(&d)); %left(120);such a design.
 %forward(&d);
%mend teepee; The basic unit in Figure 9 is a “tpgon” (Figure 10), a hexagonal

figure, each of whose sides is a “teepee” shape. The teepee shape
%macro tpgon(size);is drawn by the macro %teepee below. %teepee is state
%local s;transparent since the initial and final (x, y) positions are the same
 %left(30);

 7

 %penup; %forward(&size); %pendown; offset as they are in Figure 9. The macro %tiles uses %row as a
 %right(120); building block:
 %do s=1 %to 6;
 %teepee(&size/2); %macro tiles(rows,cols,rspace,cspace,offset);
 %forward(&size); %*--------------------------------------;
 %right(60); %* Tile a display of rows x cols images ;
 %end; %*--------------------------------------;
 %left(120); %local r;
 %penup; %back(&size); %pendown; %do r = 1 %to &rows;
 %right(30); xsave = x; ysave = y;
%mend tpgon; %row(&cspace, &cols);

 %penup;
 Now that we can draw one %tpgon figure, how can we produce %let offset=%eval(-1 * &offset);
a space-filling tiling design? The Logo solution is to solve a x = xsave + &offset; y=ysave;
simpler problem first: given an arbitrary motif, draw a row made %right(180); %forward(&rspace);
up of n repetitions of the motif: %left(180);

 %pendown;
TO ROW :SPACE :N %end;
 IF :N < 1 [STOP] %mend tiles;
 RUN :MOTIF
 PENUP RIGHT 90 Finally, a little trigonometry is necessary here to determine the
 FORWARD :SPACE proper row and column spacing in terms of the size of the basic
 LEFT 90 PENDOWN %tpgon, so that successive shapes join appropriately to produce a
 ROW :SPACE (:N-1) tessellation. Here is the data step that draws Figure 9:
 END

data tptile;
The Logo RUN command executes whatever commands are stored %dclanno;
in the (global) variable :MOTIF. For example, the following lines xsys='2'; ysys='2';
assigns a TPGON command to MOTIF and draws a row of 5 of them %inilogo;
spaced 32 turtle steps from center to center. %let motif=%nrstr(%tpgon(16));

 /* a=16; cs=3*a; rs=cs*cos(30); */
?MAKE "MOTIF [TPGON 16] %tiles(3,3, 41.56922, 48, 24);
?ROW 32 5 proc ganno datasys anno=tptile;

Since ROW is tail-recursive, it can be translated into this SAS macro: Author's Address. For further information, contact:

%global motif; Michael Friendly
%macro row(space,n); Psychology Department, Rm 210 BSB
%*----------------------------------; York University
%* Paint a row of n images of motif ; Downsview, ONT, Canada M3J 1P3
%*----------------------------------; Internet: <Friendly@VM1.YorkU.CA>
%local c;
 %do c = 1 %to &n;
 %unquote(&motif); References
 %penup; %right(90);
 %forward(&space); Clayson, J. (1988). Visual Modeling with Logo Cambridge, MA:
 %left(90); %pendown; MIT Press.
 %end; Friendly, M. (1988). Advanced Logo: A Language for Learning.
%mend row; Hillsdale, NJ: Lawrence Erlbaum Associates.

Papert, S. (1980). Mindstorms. New York: Basic Books.
To draw the same row of 5 tpgon's, we use the following lines in a
data step:

%let motif=%nrstr(%tpgon(16));
data rowdemo;
 %inilogo;
 %row(32,5);

Note that %nrstr quotes the command to be assigned to motif,
and %unquote(&motif); in the %row macro is the SAS
equivalent of the Logo RUN command.

 We have now reduced the problem to one of drawing several
rows, each consisting of several repetitions of the motif. This
problem is similar to the one we just solved in %row. An additional
complication is performing a “carriage return”, to move the turtle
back to the beginning of the next row, yet allow the rows to be

 8

