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Figure 1: A visualization of a CRM data set which contains 93.872 data records; three categorical dimensions are displayed as Parallel Sets.
Complex relations within the data can be revealed using interactive dimension composition, interactive subset highlighting, and the integration
of histograms.

ABSTRACT

The discrete nature of categorical data makes it a particular chal-
lenge for visualization. Methods that work very well for continuous
data are often hardly usable with categorical dimensions. Only few
methods deal properly with such data, mostly because of the dis-
crete nature of categorical data, which does not translate well into
the continuous domains of space and color.

Parallel Sets is a new visualization method that adopts the layout
of parallel coordinates, but substitutes the individual data points by
a frequency-based representation. This abstracted view, combined
with a set of carefully designed interactions, supports visual data
analysis of large and complex data sets. The technique allows ef-
ficient work with meta data, which is particularly important when
dealing with categorical datasets. By creating new dimensions from
existing ones, for example, the user can filter the data according to
his or her current needs.

We also present the results from an interactive analysis of CRM
data using Parallel Sets. We demonstrate how the flexible lay-
out eases the process of knowledge crystallization, especially when
combined with a sophisticated interaction scheme.
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1 INTRODUCTION

In the last decades, the technological evolution has led to a con-
stantly increasing amount of digital information being stored. Also,
the awareness has grown that the data potentially contains useful
and valuable information.

As a consequence, the research field of knowledge discovery in
databases (KDD), that started in the late 1980s, has gained much
interest. The computer-aided analysis of data can be roughly di-
vided into: (1) data mining that provides an automated approach
to gain insight into the data [8] and (2) interactive visual analysis
(or information visualization), in which the exploration of the data
is user-driven, i.e., the user’s domain knowledge is involved in the
process of gaining new information.

Information visualization (InfoVis) techniques can be classified
according to the data they are capable of displaying. One interesting
data domain is the domain of heterogeneous and high-dimensional
data that can be found in market research, customer relationship
management (CRM), surveys, census, etc.

Usually, there are many dimensions, which all have different
qualities. The distinction between different data types, for exam-
ple, plays an important role in visualization (e.g., the distinction
between ratio, interval, ordinal, and nominal data [2]). Especially
challenging for visualization is the class of categorical data.

A categorical variable is characterized by the facts that (1) it
is discrete, (2) there is a usually small number of different values
(classes) that define the variable, and (3) there is often no implicit
relation among these classes (whereas it is for numerical variables
in terms of ordering and distances among values).

Traditional InfoVis techniques, like scatterplots and parallel co-
ordinates (Figure 2a,b), best work for continuous data variables,
because (1) there is a natural one-to-one mapping of data values
to visualization parameters like positions and colors and (2) these
continuous parameters better match the continuous characteristics
of the screen (in the spatial, temporal, and chromatic dimensions).
In this paper we present a new approach to information visualiza-
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(a) (b)

(c) (d)

Figure 2: Top: the viewer has no idea how many data records are
visualized; the illustration shows the problem that can arise if two
categorical variables (three categories each) are displayed by a tra-
ditional scatterplot (a), or by parallel coordinates (b). Bottom: a
Venn diagram provides a better way of displaying categorical values
(c) and (d).

tion, called Parallel Sets, which is optimized for categorical data.
The main contribution of our work is a new technique for in-

teractive visual analysis that combines the advantages of two well-
proven InfoVis techniques. Parallel Sets combine the flexible layout
of parallel coordinates, i.e., treating all displayed dimensions visu-
ally independent from each other (in contrast to recursive space-
subdivision approaches like the Mosaic Display), with the idea of
displaying frequencies as representatives for the categories (in con-
trast to the one-by-one items-based visualization of data).

With Parallel Sets, the dimensions are displayed side by side, the
frequency-based representation of categories and relations reveals
even complex information about the data, and meta information
is provided (that is used to store additional information about the
data [7]).

The following sections present the related work and the idea of
Parallel Sets in terms of the visual metaphor and of the inherent
interaction schemes. The workflow is explained to gain interactive
visual analysis of heterogeneous and high-dimensional data. It is
important to stress the fact that this interaction scheme is an inte-
gral part of Parallel Sets which is necessary to make use of this
approach. Finally, we demonstrate the use of Parallel Sets to reveal
interesting information in a CRM dataset.

2 RELATED WORK

Parallel coordinates [12] are a visualization technique, in which the
axes are not arranged orthogonally, but they are placed side by side.
An n-dimensional data point is represented by a polyline, which
intersects the parallel axes at points which represent the values of
the individual data dimensions. This view is capable of displaying
high-dimensional data, because the axes are visually independent
from each other (compare Figures 3a and c).

Initially, parallel coordinates were designed to display continu-
ous variables [14], but recent approaches have tried to integrate cat-
egorical variables into this visualization as well. Rosario et al. [17]
suggest transforming categories to numbers by techniques similar
to Multiple Correspondence Analysis (MCA). By this, the space
on each axis is used more efficiently, because the spacing becomes
meaningful (similar categories are positioned close to each other).

(a) (b) (c)

Figure 3: Three different visualization techniques displaying the same
data: (a) the categories are represented by points on continuous axes
in parallel coordinates, (b) Parallel Sets show the frequencies of cate-
gories and relations, and (c) a Mosaic Display provides a compressed
view of the data (the hatched parts represent the same subset).

A simpler approach is proposed by Soon et al. [21]: for each cat-
egory, an interval is constructed on the continuous axes to make
more polylines visible. By this, the space is used to give the user
an impression of how many data items are visualized. One problem
remains for all parallel coordinates techniques: the visualization
implements a continuous design model, which does not match the
discrete user model of the data. This discrepancy of user imagi-
nation and presented image is eliminated by the use of frequency-
based techniques: categories are represented by visual entities that
are scaled according to their corresponding frequency.

There are several techniques that follow this approach: the Mo-
saic Display [11, 9] is a recursive space-subdivision technique (sim-
ilar to Dimensional Stacking [16]), in which the frequency values
of categories are represented by particular areas (“tiles”) on the
screen – interactive mosaic plots [22, 13] provide an even better ap-
proach for visual exploration, because they make use of the user’s
domain knowledge; Bargrams [23] and InfoZoom [20] are tech-
niques that display the dimensions row by row and the categories
are mapped to boxes, whose widths are scaled according to their
frequency. The drawbacks of these frequency-based techniques are:
(1) space-subdivision methods introduce a ranking of the displayed
dimensions and are limited in the amount of dimensions that can be
displayed, and (2) for the latter kind of visualizations, the relation-
ships between dimensions are not shown explicitly, but the vertical
alignment encodes the relation of different dimensions’s categories,
which sometimes makes the view difficult to understand when in-
vestigating multi-dimensional relations within the data.

The Parallel Sets technique combines the advantages of
frequency-based techniques (implementing a discrete design model
and displaying the frequencies of categories) and parallel coordi-
nates (treating dimensions independently).

3 PARALLEL SETS

This section presents our approach to serve the purpose of interac-
tive visual analysis: (1) Parallel Sets is both a new visual metaphor
and an interaction framework, (2) the visual metaphor serves as
a natural way of mapping categorical variables to visual entities,
(3) interaction options are a key issue to make exploration possible,
and finally, (4) some additional features are introduced.

3.1 Basic Idea

The basic idea of Parallel Sets consists of two parts: (1) the visual
metaphor that properly deals with categorical dimensions and (2) an
interaction concept that facilitates the exploration of the data as well
as the creation of new information about the data.

134



(a)

(b)

(c)

Figure 4: (a): our Parallel Sets prototype (with the titanic data set [3] loaded) consists of four panels (from left to right): the user panel
(showing the dimensions the user has created), the exclusion panel (for filtering), the visualization panel, and the data panel (showing the source
data); (b): the crosstabulation for the displayed dimensions, which builds the basis for the visual mapping transformation; (c): histograms show
the deviation of marginal frequencies to relative frequencies, visualizing the degree of independence of the category to all neighboring categories.

Concerning the visual metaphor, Figure 3 relates our approach
to parallel coordinates and to the Mosaic Display. As mentioned in
Section 2, these approaches do not optimally deal with categorical
data: either the frequency information is not visible or a ranking is
imposed on the visual mapping transformation [6], influencing the
human perception.

Parallel Sets share the layout with parallel coordinates, but the
continuous axes are replaced with sets of boxes that represent the
categories. These boxes are scaled according to the frequency of the
corresponding category (see Section 3.2) and are initially ordered
according to the meta information (see Section 3.3). Using the fre-
quency information means to utilize an aggregation [15] of a large
categorical data set, reducing the amount of data to be displayed
without information loss.

Because these sets of categories are placed independently side
by side, the connections between categories (representing the as-
sociated attribute combinations) are also scaled according to their
frequency values. Two features characterize Parallel Sets especially
well. Firstly, the visualization is not restricted to categorical vari-
ables. By means of binning or clustering, a continuous variable can
be easily transformed to fit into this kind of visualization. So, the
display is not limited by the amount of data records (as for instance
parallel coordinates are), but by the amount of categories of the dis-
played dimensions (usually a small or at least smaller number).

The second speciality of Parallel Sets is its support of interactive
visual analysis. As already mentioned, a categorical dimension is
a classification of the data. However, it also is only one possible
classification out of many. Hence, it is useful to give the user the
possibility to create a new classification which implies that he or
she can build new meta information for the data. The key word
here is user-driven: the user utilizes his or her domain knowledge
to enrich the meta information about the data; this new information
can consequently be used for further exploration.

Since exploration is a cyclic process (knowledge crystalliza-
tion [6]), it is useful to store user-defined dimensions together with
other meta information. As shown in Figure 4a, a tree view (on
the right) provides access to the data itself: the dimension names,
the associated category names, and hierarchy information (among
the dimensions and categories); another tree view (on the left) rep-
resents the user-created dimensions, which are built from logical
combinations of user selections (see Section 3.3).

3.2 Visual Metaphor

The information that is provided by the visualization is obtained by
a crosstabulation [2]. Statistical examinations deal with categorical
data quite frequently and usually there is a look at frequency (con-
tingency) tables first to get a quick overview. Figure 4b shows an
example of a two-way table: what is displayed by the visualization
is the information obtained by multi-way tables.

In each cell of the crosstabulation, the top left values show the
occurrences fi j, the bottom right numbers show the absolute fre-
quencies pi j = fi j/ f++ (where f++ = ∑∑ fi j), and the remaining
two show the individual row frequencies ri j = fi j/ fi+ and column
frequencies ci j = fi j/ f+ j (where fi+ and f+ j are the marginal row
and column frequencies, respectively). Figure 4a shows our Paral-
lel Sets prototype visualizing this data. The crosstabulation, which
is calculated for each attribute combination of the displayed dimen-
sions, builds the basis for the visual metaphor: each category is
scaled according to the corresponding marginal frequency pi+ and
p+ j respectively, and the connection between each two categories
is scaled according to the absolute frequency pi j. The visualization
of actual data records is exchanged with that of frequency informa-
tion, which still gives the user insight into the distribution of the
data records.

The screenshot in Figure 4a shows the visual mapping of such a
crosstabulation. The visualization for two dimensions is illustrated
in a comprehensible way and color is used to distinguish between
different relations. At any point in time, there is one selected di-
mension, the active dimension, which defines the color-coding of
the connections. Each category of the active dimension gets one
color (predefined, well-spread, iso-luminant colors are used to dif-
ferentiate the connections [1]) and all connections obtain the color
of the respective active category. Then a visual ordering of the dis-
played dimension is introduced: starting at the active dimension,
neighboring dimensions split the connections into sub-connections
according to their number of categories. This is analogous to imag-
ining a subset with a particular attribute (e.g., first-class passengers)
and subdividing it according to a second feature (e.g., gender), then
a third feature, and so on.

In this flexible display only the absolute frequencies are visual-
ized. Hence, there is room to offer more information: the user can
vertically resize the boxes (representing the categories) and inside
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Because there need not to be a natural order among cat-
egorical values, each dimension’s categories can be reorder interac-
tively (a,b); selected categories can be grouped to facilitate a hierar-
chical organization (c,d); filtering is implemented by hiding particular
categories (e,f); highlighting can be used to emphasize certain con-
nections visually, if the user moves the mouse over a category (g,h).

(a)

(b)

Figure 6: An example of dimension composition: the user is inter-
ested in a classification into the following four categories: Ca1 ∧Cb1,
Ca2 ∧Cb1, Ca3 ∧Cb1, and remaining. The displayed interaction path
in (a) illustrates the sequence of selections (the dotted lines indicate
that the user finishes the current brush and starts a new category);
the resulting user-defined classification is displayed in (b).

this additional space histograms can provide a more detailed view
of the data. Aside from the absolute frequencies, the individual row
and column frequencies of the contingency table (Figure 4b) can
be integrated into the visualization by the use of histograms [12]
for the selected dimensions. In statistical terms, these relative fre-
quencies are conditional probabilities. Because comparing condi-
tional probabilities can be misleading (similar to Simpson’s para-
dox [4]), the relative frequencies have to be standardized. One way
is displaying the deviations of conditional probabilities and the a-
posteriori probabilities (∆Pi = P(Ai | B j)−P(Ai)). If the deviation
is zero, then the particular category (with associated probability B j)
is independent to all categories of the neighboring dimension. Fig-
ure 4c shows an example of dependent relations: one can see the
absolute distribution of the upper dimension and additionally, how
the particular frequencies change if only data records of the lower
left categorical attribute are considered. For instance, the positive
difference (9%) means that data records of the associated category
are more frequent in the considered category (49%) than in the ab-
solute distribution (40%).

3.3 Interaction and Workflow

There seem to be quite different opinions of what interactivity
means [13] (e.g., concerning the temporality of change). A com-
pact definition is given by Becker et al. [5]: direct manipulation
and instantaneous change. Thus, in this section, features of Par-
allel Sets are presented that are triggered by human-computer in-
teraction and result in immediate visual feedback: the use of se-
lection and highlighting, interactive querying, filtering and reorder-
ing of dimensions as well as categories. The interaction scheme
also implements Shneiderman’s visual information seeking mantra
overview first, zoom and filter, then details-on-demand [19] (Fig-
ure 5).

The interactive data exploration starts with an undirected investi-
gation of the available data variables. The user chooses interesting
data variables, adds them to the visualization panel, and explores
their relationships. During this step, it is necessary that the user can
factor more practical views, because the visualization can easily be-
come very complex if the number of displayed categories increases
to more than just a few. New classifications for data variables of-
ten help to structure the data. Later, the user wants more detailed
information about the relation between two or multiple dimensions.

This high-level view of interactive visual analysis is imple-
mented by Parallel Sets. The investigation starts with choosing in-
teresting data variables: the data panel offers the data dimensions
and the user panel offers the user-defined dimensions. The user can
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drag dimensions from both panels, drop them in the visualization
panel, and create his or her own view of the data. The dynamic
layout permits the reordering of dimensions with immediate visual
feedback which is useful to look at the relationship of different di-
mensions more closely. Also, the categories can be reordered along
the respective axis, as there not necessarily is a natural ordering
among categorical values (Figure 5a,b). Having added interesting
dimensions to the visualization (overview), the user can group se-
lected categories together (zoom and filter: Figure 5c,d), by which
he or she can organize categories hierarchically. The user can also
drag uninteresting categories into the exclusion panel to filter the
data (Figure 5e,f). Thereby, the entire screen space can be used by
the remaining categories more effectively.

One fundamental idea behind the design of Parallel Sets is di-
mension composition. The use of this feature is (1) reduce the di-
mensionality of the visualization – both screen space and human
perception limit the maximal dimensionality of the visualization –
and (2) to build more practical categorizations (Figure 7a). In con-
trast to data-driven approaches (like PCA [10] or VHDR [24]), di-
mension composition enables the integration of the user’s domain
knowledge. A categorical dimension is a classification of all data
records according to a particular data attribute (e.g., regarding the
attribute age, a binning could classify the data into ten years inter-
vals). In general, the data can be classified according to multiple
aspects of the data. Hence, during the exploration process, it is use-
ful to enable the user to build his or her own classifications of the
data and to also reuse this information during further exploration
and analysis. Figure 6 gives an example of the process: a new clas-
sification is created by selection activities. The path illustrates the
sequence of selections; firstly, the category Ca1 is selected, then
the category Cb1, and so on. These selections are recorded by the
user panel: for the first selection, a new dimension, an active cate-
gory (equal to the selected category), and a default category (which
contains all the remaining data items) are created. All successive
selections are added to the current active category (by default, all
selected categories are combined by a conjunction). In the exam-
ple, after every two successive selections, the user indicates to start
a new category (not visible). The result of the process is a new cate-
gorical dimension with four categories that represents a new classi-
fication of the data. This dimension (the user’s domain knowledge)
can be dragged into the visualization again and the user can con-
tinue working with just this one dimension, because it contains all
the information the user considers to be relevant. Generally, two
concepts are utilized: the new categorization can either contain all
possible attribute combinations (specialization), or contain a subset
of these combinations (generalization).

The final step is to have a closer look at interesting relationships
and to get detailed information. Details actually are filtered data
records that are the output of the visual analysis. Usually, once the
user has found out some interesting relations within the data, he or
she wants to get back to the original data items and to see all the
details, e.g., in a standard table view. Concerning the investigation
of relationships, Parallel Sets offers two schemes: histograms and
highlighting. Histograms show statistical parameters to analyze re-
lations in detail, highlighting is realized as mouse-over effect, i.e.,
all connections that pass through the box under the cursor (i.e., rela-
tions that feature the corresponding data attribute) are emphasized
by drawing them more colorful and in front of all other connec-
tions. By this, the dimension can be applied to all other displayed
dimensions, multi-dimensional relationships become visible, and
interactive multi-dimensional exploration is enabled.

3.4 Additional Optimizations

This section summarizes further features of Parallel Sets that are
implemented in addition to the base features as presented in the
previous section to improve and to reflect different aspects.

One important feature of Parallel Sets is the treatment of contin-
uous data dimensions since usually not all of the data dimensions
are categorical. Continuous variables are binned to fit into the vi-
sualization scheme of Parallel Sets and the number of bins can be
adjusted individually for each binned dimension. For the visualiza-
tion of the relations, triangles are used instead of parallelograms to
indicate the different nature of the data.

During a typical data exploration, multiple dimensions are visu-
alized concurrently. With an increasing number of displayed cate-
gories, the view becomes very complex. Thus, a secondary mode
for drawing connections is provided (Figure 8): all connections be-
tween each two categories are displayed in parallel, which results
in a tidier visualization. The number of intersections remains the
same, but the connections are bundled and the relations become
clearer for better perception. The tidier visualization is achieved
at the price of losing the nexus of the connections between more
than two dimensions, because the horizontal alignment is lost in
this mode.

Also, it can happen that the connections between categories be-
come so oblique that it is difficult to visually compare the repre-
sented frequencies. If this is the case, histograms can help, because
they provide a very comprehensible visualization for frequency data
that facilitates better comparison. In addition to the mode explained
in Section 3.2, relative frequencies can be displayed by this auxil-
iary plot: like in traditional histograms, the bars directly represent
the frequency information.

4 CASE STUDY

In collaboration with our CRM partner, we have analyzed a ques-
tionnaire data set consisting of 99 dimensions and containing infor-
mation about 93.872 households under investigation. The follow-
ing portrays how Parallel Sets support the user in gaining important
insight into the data.

The data contains information about people’s living standards,
shopping habits, pet care, and so on. It is a data set, which exhibits
some of the challenging features of categorical values: (1) many
data dimensions are given in binary form (e.g., yes or no, true or
false), (2) the data has a hierarchical structure – that means, ques-
tions are grouped together according to particular topics, and (3) it
is quite frequent that the questions are not answered, so most data
variables have one category called unknown (or similar) – it could
be interesting to analyze the data records in such categories, to find
out whether there is a special reason why this information is not
given (e.g., is it possible to specify a particular group of people that
all have kept back their real data). The interactive visual analysis
deals with the following tasks (questions):

• Extracting information about the households and bringing the
data in a form the user can best work with: is it possible to
categorize the households meaningfully?

• Are there meaningful relationships among the household
types and other data dimensions that could give a clearer view
of the households?

• Is it possible to make statements about people who buy a par-
ticular washing agent?

• Can we draw conclusions from the customer behavior to con-
crete attributes of these customers.

• Is it possible to make statements about people who buy a par-
ticular cat food brand?

There are two basic tasks that the user performs: undirected ex-
ploration and directed visual analysis. The first task is to bring the
available data into a form so that the user can best work with it. In
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(a) (b)

Figure 7: (a): the meta information for the user-defined dimension household type; the categories are build out of available dimensions (e.g.,
working childless adults is a logical combination of the categories two (number of adults) and unknown or none (number of children); because
the meta information is processed top-down, all unemployed persons are already classified by the above category. (b) the type of household is
shown in relation with the income and the user-defined favorite supermarket dimension: concerning income, the classes representing households
with two adults (A2C and A2) are more likely to have a higher income than the corresponding classes with one adult; concerning favorite
markets, the behavior depends on whether there are children living in the household or not (HH Kinder is the identifier of the dimension that
offers the number of children, and HH Erwachsene provides the number of adults in a household).

this phase, interactive assembling of the visualization is an impor-
tant tool for the user to get an overview of the available variables
and of the relationships between the dimensions. The dimensions
and categories can be reordered and as a final step, dimension com-
position can be used to process the dimensions to reflect the needed
information. For instance, the data set contains information about
the number of adults in the household (unknown, one, and two), the
number of children (unknown or none, one, two, three, and more),
and employment (unknown, unemployed, half-day, and full-time).
This information characterizes the household and it is preferable
for the user to have one dimension (e.g., called household type) that
classifies the data records in the needed classes (instead of working
with three dimensions). With the use of dimension composition,
the user can define these categories successively. Figure 7a shows
the meta information (displayed in the user panel) for the new clas-
sification: because the data records are classified top-down, the two
expanded categories need not contain a logical combination con-
cerning employment. For the subsequent analysis, it is sufficient to
deal with these categories in terms of household types.

The goal of the user is to collect information about the house-
holds. Figure 7b shows one relation during this exploration. The
relationship between household types, people’s income and peo-
ple’s favorite supermarkets. The histograms visualize the frequency
distribution of the market and income classes relative to the house-
hold types. Because similar histograms mean similar dependen-
cies between the particular household types and the neighboring
dimension, the top histograms show that households with children
are equally distributed compared to the types without children con-
cerning their favorite supermarkets (similar top histograms for the
categories labeled A1C and A2C). The histogram distribution re-
veals that people living in children households are more likely to
buy their goods in low and middle class supermarkets in contrast to
non-children households. It turned out that this affinity is not only
true for favorite supermarkets, but also concerning the living place:

children households can be found more frequent in the countryside,
non-children households are more frequent in larger cities. Thus,
such a relation would look quite similar to the distribution of the
top histograms of Figure 7b. The children households are equally
distributed no matter it is a single household or a family household.
The relation to the income is inverse: the histograms show that if
two adults are living in a household the income is higher (related
to single households) regardless of the number of children (similar
histograms for the categories A2C an A2). It should be mentioned
that the market classification is also a user-created dimension, be-
cause originally the data contains only the information whether a
particular supermarket is the favorite market. The dataset contains
sixteen dimensions – one for each supermarket with two categories
each: yes or no. This kind of data variables is typical for CRM
datasets: such questions (data variables) are optimized for the peo-
ple who answer the questions, and not for those who analyze them.
In this case, these sixteen questions are reduced into one dimension
with five categories, because this generalization is sufficient for the
user. The user can apply his or her own (or a well-known) classifi-
cation of what market belongs to which class.

The user’s goal is to link this knowledge about the households
with concrete statements. With respect to customer relationships
management (CRM), it would be interesting if there is a relation
between household types and types of washing agents people buy-
ing preferentially. The different washing agents are again given in
binary form (if people’s favorite washing agent is of powdery, liq-
uid, compact or normal type). Figure 8 shows the relations between
household types, washing agent types, living place, and income.
The absolute frequencies are represented by the connections that
are displayed using the bundled mode (Section 3.4). Concerning
the washing agent types, the histograms for the categories tabs and
liquid are very similar and state: both types are more frequently
bought by non-children households and by people that live in larger
cities (similar distributions of the top and bottom histogram for the
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left and right type of washing agent). Also, the latter discovery is
correlated with the fact of having a higher income. For the right in-
come classes, the histograms are monotonically increasing, which
means that the frequencies for right categories of the population
dimension are higher than the displayed proportions. To summa-
rize, one can state that the overall number of people that buy liquid
washing agents, or tabs respectively, are more likely to live in ur-
ban regions and have a higher income compare to others living in
the countryside. This statement holds because of the degree of in-
dependence; the deviation of conditional probability and marginal
probability is 12% for the income-to-population relation and 11%
for the population-to-washing agent relation.

We have found several relationships such as this, all making the
group of customers clearer, because with each new relation, new
attributes are found. One goal of the visual exploration could be to
find concrete characteristics of people who buy a particular wash-
ing agent. As already mentioned, Figure 8 shows one characteristic:
although the connections from household types to types of washing
agents do not reveal any associations, the histograms for the latter
dimension really show a clear correlation between these two di-
mensions. The user has reordered the top dimension to introduce
a monotonic distribution of the histograms – to see the descending
probability that the washing agent is bought by the household types
on the right side. Concluding, the target group for liquid wash-
ing agents in terms of marketing and advertising are people who
are employed, do not have children, live in larger cities, and have
above average school qualifications (not presented here, but also
found during the analysis). The information agrees with common
knowledge in customer relationships, because for instance liquid
washing agents are generally more expensive (therefore, it is surely
not the favorite washing agent of people who do not have much
money) and they are available in smaller sizes (the preference for
town population).

Even though we only can describe a limited subset of our
analysis here, we are able to demonstrate the workflow when
visualizing with Parallel Sets: firstly, the user’s domain knowledge
is integrated by structuring the data and creating more feasible
classifications of the data, then the user explores the data by
relating interesting dimensions with each other and finally,
histograms offer a powerful technique to identify relationships
in detail. This workflow enables the user to accomplish several
tasks: (1) identifying hot spots and major trends (they can be found
easily, because of the visualization of frequency information),
and (2) finding relations between dimensions and correlations
between categories (histograms provide a handy tool to explore
distributions – Parallel Sets support the comparison of relative
frequency distributions and of deviations of marginal from relative
frequencies).

In this regard, one of the weaknesses of Parallel Sets, which
also is subject to further improvements, is that outliers cannot
be seen in the visualization. Because frequency information is
visualized, those categories, that feature few data records only,
vanish. For the visualization, these categories pose the same
challenge as hidden (filtered) categories (Section 3.3). It could
be a good idea to integrate some special icon or glyph for these
categories; but on the other hand, the visualization of these values
could make the view more complex, than they are interesting for
the user. In comparison to InfoZoom (similar idea of displaying
categorical data), one drawback is that Parallel Sets are not capable
of displaying n : n relationships (in contrast to InfoZoom), only
because InfoZoom is basically a hierarchical space-subdivision
technique that facilitates these features, whereas Parallel Sets
is based on parallel coordinates that only support the display of
n×m data tables.

Figure 8: Four dimensions of the CRM dataset are visualized: the
upper two dimensions are user-defined, and the lower two are data
variables. The connections are drawn in bundled mode – i.e., the
connections between each two categories are parallel (tidier display).
The histograms for the selected dimensions show, for instance, that
there is a correlation between non-children households and liquid
washing agents, and this kind of washing agents is most frequently
bought by people living in larger cities (the biggest portion of the
rightmost category of the Population dimension).

It also should be pointed out that performance is a key issue
in interactive visual data analysis, because the user has to be able to
explore and change the view quickly. The analysis that is presented
here was executed on standard consumer hardware (2GHz CPU,
500MB RAM, GeForce4 graphics chip) and worked interactively.
The construction of the view is accomplished immediately, as long
as the number of displayed categories is limited to approximately
twenty to thirty categories (the delay is directly proportional to
the number of categories that have to be aggregated). It should
be noted that this hardly is any limitation as too many categories
would overload a visualization anyway. After the categorical data
is transformed to the frequency information, the reordering of
dimensions and categories, the highlighting, the animation between
rendering modes (Section 3.4), and the changing of the active
dimension is well below one second.

A second key issue is the learning curve of the user. The anal-
ysis of our CRM partner has shown that there is some work left
that should be addressed. People that already have worked with
some other visualization frameworks quickly feel familiar with Par-
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allel Sets, because the integrated interaction concepts are common
and state-of-the-art (drag-and-drop, filtering, highlighting, tooltips,
brushing, etc.). For newcomers, the interaction interface is easy to
learn, but the visual metaphor is harder to understand, especially
dimension composition is a quite complex task. Explaining the
necessary steps for dimension composition is best done by the use
of Venn diagrams (Figure 2c). This implies that space-subdivision
techniques (such as Venn diagrams and Treemaps [18]) are more
comprehensible, but they are less powerful and less flexible when
the composition task deals with more than two dimensions at the
same time.

5 SUMMARY AND CONCLUSION

Interactive visual analysis implies two requirements for a visual-
ization technique: (1) an adequate visual metaphor that offers the
user a comprehensible mental vision of the abstract data, and (2) a
powerful, user-friendly, and user-driven interaction scheme. Paral-
lel Sets fulfills both requirements. It adopts the layout from parallel
coordinates (that makes the displayed dimensions visually indepen-
dent from each other), but uses a frequency-based representation for
categorical data variables, since frequency data is best represented
by areas and not by individual data points (thus, the visualization
becomes independent to the number of displayed data records). For
data exploration, the dynamic layout and our sophisticated interac-
tion scheme are important: adding dimensions to the view by drag-
and-drop, reordering dimensions and categories, dimension com-
position, highlighting, and so on.

To conclude, it remains to be mentioned that the presented tech-
nique is an innovative idea in coping with categorical data in terms
of knowledge extraction that should influence future approaches as
preceding approaches have influenced this work. InfoVis is only
one part of data analysis; thus, it is necessary that techniques in-
clude InfoVis ideas, as well as statistical, or data mining concepts.
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