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Fig. 1. Who survived on the Titanic? Common Angle plot of survival by class (left). Graphs showing survey results of answers (right).

Abstract—Visualizations are great tools of communications–they summarize findings and quickly convey main messages to our
audience. As designers of charts we have to make sure that information is shown with a minimum of distortion. We have to also
consider illusions and other perceptual limitations of our audience. In this paper we discuss the effect and strength of the line width
illusion, a Müller-Lyer type illusion, on designs related to displaying associations between categorical variables. Parallel sets and
hammock plots are both affected by line width illusions. We introduce the common-angle plot as an alternative method for displaying
categorical data in a manner that minimizes the effect from perceptual illusions. Results from user studies both highlight the need for
addressing line-width illusions in displays and provide evidence that common angle charts successfully resolve this issue.

Index Terms—Linewidth illusion, data visualization, high-dimensional displays, parallel sets, hammock plots, Müller-Lyer illusion

1 INTRODUCTION

A well-designed graph is a powerful tool that transcends barriers of
language to communicate complex concepts from author to audience.
Problems arise when readers are unable to easily extract a chart’s main
message or are led to wrong conclusions due to distortions. Distor-
tions endanger the trust between readers and creators of charts. This
trust is based on the premise that graphics have to be true to the data
[34, 35, 28]. There is a lot of discussion on keeping true to the data
in the framework of (ab)using three dimensional effects in graphics.
Tufte [34] goes as far as defining the lie-factor – the ratio of the size
of an effect in the data compared to the size of an effect shown in the
chart. Any large deviation of this factor from 1.0 indicates a misuse
of graphical techniques. Computational tools help us ensure technical
trueness – but this brings up the additional question of how we deal
with situations that involve innate inability or trigger learned misper-
ceptions. One example of distortions of this kind is the Müller-Lyer
family of illusions, which include contextual illusions, such as differ-
ently perceived lengths of line segments depending on the orientation
of arrow heads or the sine illusion as defined by Day and Stecher [10].

Regardless of the cause of distortion, it is the responsibility of the
author of a chart to create visualizations that allow readers to extract

• Heike Hofmann is Professor of Statistics and faculty member in the Human
Computer Interaction program at Iowa State University. E-mail:
hofmann@iastate.edu.

• Marie Vendettuoli is a graduate student at Iowa State University, with
majors in Human Computer Interaction and Bioinfomatics &
Computational Biology. She is a past IGERT Fellow and currently interns
with the Statistics section at USDA. E-mail: marie@mariev.net.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

an accurate interpretation of the underlying data. In order to gauge the
extent of distortion due to perceptual limitations, we can employ user
studies to provide empirical evidence supporting underlying cognitive
models or to reveal previously unknown or not anticipated illusions.

Parallel sets (parsets) as introduced by Kosara et al [23] are a graph-
ical method for visualizing multivariate categorical data. Since their
initial publication, parallel sets have spread to mass media outlets
[22, 6, 3], have been implemented in various languages [22, 4, 8]
and spurred further academic work [23, has 70 citations according
to Google scholar]. While retaining the ability of parallel coordi-
nates [19, 36] to visualize a large number of dimensions simulta-
neously, parallel sets incorporate a frequency scale that is a well-
known feature of other categorical displays such as barcharts or mosaic
plots [15, 12, 17, 33].

Parsets also allow the visualization of hierarchies [31, 32]. They
share this ability with mosaicplots and their more general relatives, the
treemaps, as introduced by Shneiderman [30], and treemap variants
[5, 21, 1].

All of these properties make parsets a powerful visualization in our
toolkit, but unfortunately, the parallel set plot is a victim of distortion
due to a contextual illusion: consider the parset plot of Figure 2.

This plot shows the relationship between class status and survival
on board the HMS Titanic (data assembled by Dawson [9] from in-
surance and boarding documents ). The top bar in figure 2 shows the
variable Class, recorded as either crew member or passenger in first,
second, or third class. The bottom bar shows survival as yes and no.
Lines are drawn between top and bottom bar – the (horizontal) width
is proportional to the number of survivors and non-survivors they rep-
resent. A reasonable task based on this chart is to ask the reader to
order class levels according to their number of survivors. However,
when study participants were asked to perform this task, only 6.2%
of all respondents selected the correct order, see table 3. No less than
37.5% of all participants agreed on one specific, incorrect ordering.

This phenomenon can be explained by the line width illusion. The
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Fig. 2. Parallel sets plot showing the relationship between survival of
the sinking of the HMS Titanic and class membership. Class member-
ship and survival are clearly related, but which class had the largest
number of survivors?

Table 1. Survival status and class membership of all persons on board
the HMS Titanic. Most survivors were among crew members, followed
by first, third, and, lastly, second class passengers.

Crew 1st 2nd 3rd
Survivors 212 203 118 178

Non-Survivors 673 122 167 528

line-width illusion is a contextual illusion that leads to perceptual dis-
tortion in evaluating parallel sets plots. In this paper, we first describe
and then quantify this illusion. We also propose and test common angle
plots as an alternative method for visualizing multivariate categorical
data that helps the audience to avoid the distortional effects of the line
width illusion.

2 LINE WIDTH ILLUSIONS

The phenomenon of the line width illusion is known and widely dis-
cussed in statistical graphics literature [7, 34, 35, 28]. It is due to our
tendency to assess distance between curves as the minimal (orthogo-
nal) distance rather than the vertical distance – see sketch 5 for a visual
representation of both.

On of the earliest examples of the line width illusion is shown in
figure 3. This chart displays the balance of trade between England and
the East Indies as demonstrated by William Playfair in his Commercial
and Political Atlas, 1786 [25, 26]. One purpose of this chart is to
highlight the difference between imports and exports in a particular
year and the pattern of these differences over time. The difference in
exports and imports is encoded as the vertical difference between the
lines. When observers are asked to sketch out the difference between
exports and imports (Cleveland and McGill [7]), they very often miss
the steep rise in the difference between the lines in the years between

Fig. 3. Playfair’s chart from the Commercial and Political Atlas (1786)
showing the balance of trade between England and the East Indies. In
which years was the difference between imports and exports the high-
est?

Fig. 4. Difference between exports and imports from England to and
from the East Indies in the 18th century – the steep rise in the difference
around 1760 comes as a surprise to many viewers of the raw data in
figure 3.

about 1755 and 1765. Figure 4 shows the actual difference between
imports and exports.

In the perception literature, this phenomenon is known as part of
a group of geometrical optical misperceptions of a context-sensitive
nature classified as Müller-Lyer illusions [10, 13]. Interestingly, there
seems to be a general agreement that this illusion exists, but a quan-
tification of it is curiously absent from literature.

The type of chart as shown in figure 3 proposed by Playfair is a
quite common occurrence, particularly in election years – where these
kind of charts are used to enable comparisons of support for different
candidates. The recommendation from literature is to avoid charts in
which the audience is asked to do visual subtractions, and show these
differences directly [7, 35, 34].

2.1 Strength of the line width illusion
When visually evaluating lines of thickness greater than one, the line
width illusion applies. As above, there is a strong preference of evalu-
ating the width of lines orthogonal to their slopes as opposed to hori-
zontally (see figure 5), which would lead us to a correct evaluation of
parallel sets-style displays.

Orthogonal wo and horizontal wh line widths are related – the or-
thogonal line width depends on the angle (or, equivalently, the slope)
of the line:

wo = wh sinθ , (1)

where θ is the angle of the line with respect to the horizontal.

a

b

!

a

b

!

Fig. 5. Sketch of line width assessments: (a) is showing horizontal
width, (b) shows width orthogonal to the slope. Survey results in section
4.2 indicate that observers associate line width more with orthogonal
width wo (b) than horizontal width wh (a).

The perceived slope of a line depends on the aspect ratio of the
corresponding plot – changing the height to width ratio of a display
will change our perception of the corresponding line widths, if they
are not adjusted for the slope [7]. This finding is not new, but its
strength on our perception is surprising, as can be seen in the example
of figure 6. Again, survival and class membership on the Titanic is
shown; the same parallel sets plot is shown twice in this figure, but
with very different aspect ratios: in the plot on the left the number
of surviving 3rd class passengers seems to be about twice as big as
the number of survivors among crew members, whereas in the plot on
the right the lines have about equal (orthogonal) width. The numbers
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Fig. 6. Parallel sets plots of survival on the Titanic by class. Different aspect ratios seemingly change the thickness of line segments, compare e.g.
number of survivors in 3rd class and in the crew.

underlying the figures are identical. Any perceived change is purely
due to the different aspect ratios.

For parallel sets-style displays, the audience has the area of the line
segment as an alternate visual cue when evaluating frequencies. Be-
cause height (or width for a rotated display) of line segments is con-
stant across the display, the width of a particular segment is propor-
tional to its area. We could therefore employ area comparisons as a
proxy or to augment line width evaluations. However, existing litera-
ture suggests that this method of comparison is particularly prone to
errors in two scenarios commonly seen in parallel sets: (1) for extreme
aspect ratios of the rectangular shape (Heer et al [16]) and (2) when
comparing rectangles rotated relative to each other (Kong et al [21]).
This incorrect perception and comparison of areas distorts the message
readers discern from the graph.

2.2 Hammock Plots
Hammock plots, introduced by Schonlau [29], provide an alternative
to parallel sets that is adjusted for the line width illusion. This is done
by adjusting the horizontal line width by a factor of sinθ , as discussed
in equation (1). This adjustment makes the perceived orthogonal line
width proportional to the number of observations it represents. Figure
7 shows an example of a hammock plot of the Titanic data. From
top to bottom Class, Gender, Survival, and, again, Class are shown,
capturing all two-way relationships of these variables.

The structure of a hammock plot is the same as that of a parallel
sets plot; bars are divided according to class membership numbers,
and lines connect categories between neighboring variables. Now or-
thogonal line widths represent the number of individuals in each com-
bination. Additionally, the lines start from the middle of the bin and
connect to the middle of the other variable’s bins. This convention
is in part due to the fact that the sum of horizontal widths (wh) after
adjustment is greater than the width of marginal bars.

The graph of figure 7 shows that barely any women were in the
crew, while male crew members make up the second largest contingent
overall (only male non-survivors are more frequent). One problem
that arises when dealing with hammock plots, is that the adjustment of
lines depends on the knowledge of the angle θ under which each line
is drawn. This depends on the aspect ratio of the plot. Any changes to
the aspect ratio, such as a non-proportional resizing of a figure results
in a change of the angle and results in a re-introduction of the linewidth
illusion.

2.3 Reverse linewidth illusion
A problem that arises in evaluating hammock plots is that if an ob-
server focuses on horizontal line width the plots suffer from a reverse
of the line width illusion: judging the number of survivors by class in
figures 7 and 8 based on horizontal line width results in an ordering of
(largest to smallest) Crew, 3rd, 1st, and 2nd – which is not the correct
ordering: there were actually more survivors in the 1st class than in
the 3rd class. Unfortunately, the problem of the reverse linewidth il-
lusion is exacerbated in hammock plots due to their construction: the
centering of lines around the middle of each level introduces a con-
textual coordinate system that encourages comparisons of horizontal
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Fig. 7. Hammock plot of the relationship between Class and Survival
on the Titanic.

line widths, which are due to the adjustment no longer proportional
to the number of records they represent. The amount of the perceived
distortion can be quantified by rearranging equation 1 as:

wh = wo cscθ , (2)

where wo is proportional to observations and θ is again the angle of
the line with respect to the horizontal.

1st 2nd 3rd Crew

Yes

Fig. 8. Lines in hammock plot of Titanic data for survival variable, level
yes. Comparing horizontal widths suggests that a greater number of
survivors were from third class instead of first, which is inconsistent with
underlying data.
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3 COMMON ANGLE PLOTS

The idea behind the common angle plot is to construct a plot that is
safe from both the line width illusion and its reverse, while keeping
the basic structure of parallel sets plots and hammock plots. The line
width illusion is triggered by differences in angles under which lines
are drawn, so the basic idea is to draw all lines in a plot under the
same angle. As this is not generally possible, a solution is to give up
on the idea of straight lines between variable bars and think of rib-
bons instead, that are constructed from connecting line segments. We
can then ensure that all of these ribbons have at least one line segment
that is drawn under the same angle. Assuming horizontal bars for the
variables, connecting bands between categories are drawn as a combi-
nation of a vertical segment, a segment under a pre-specified angle θ ,
followed by another vertical segment as sketched out in figure 9

A A A A

B B B B

! ! 15°! ! 45°! ! 55°!= 65°

Fig. 9. Sketch of ribbons under three different angles (from left to right).
All ribbons form a connection between points A and B.
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Fig. 10. Common angle plot of the Titanic data.

The pre-specified angle θ (between the line and the horizontal band)
is given as –at most– the angle of the longest connecting line between
two categories of neighboring variables. This makes the width of rib-
bons comparable without being affected by the distortion, as all rib-
bons are sharing at least one segment under the same angle.

Figure 10 shows a common angle plot of the same data as the ham-
mock plot. Now, tasks such as ordering levels according to the num-
bers they represent are not affected by either line width illusion and
13 out of 18 participants in the survey gave a correct assessment of
the number of survivors by class (more details to follow in the next
section). We also see that a few more men survived than women, but
proportionally the situation is very different – a much higher percent-
age of women survived than men. While more first class passengers
survived than not, the survival chances of second class passengers tilt

towards doom. More members of the third class and the crew perished
than survived.

Common angle plots, as well as all of the related methods of
hammock plots and parallel sets are implemented in the package
ggparallel based on the ggplot2 (Wickham [37]) plotting
framework in the software R 2.15.1 [27]. The ggparallel package is
freely available from CRAN (http://www.r-project.org/).
The colors for the plots have been chosen using color schemes sug-
gested by the ColorBrewer project (Harrower et al [14]), as imple-
mented in the R package RColorBrewer (Neuwirth [24]).

4 USABILITY TESTING

4.1 Study Design
To determine the effectiveness of the common angle plot, we con-
ducted a user study in the form of a survey asking participants to pro-
vide responses regarding the structure in two data sets with predomi-
nantly categorical variables. The Titanic data includes class, sex, age,
and survival status for each person on board of the Titanic [9]. The
gene data was retrieved from the UCSC Genome Browser (Kent et al
[20]) and includes chromosome location for genes involved in one of
three metabolism pathways: steroid biosynthesis, caffeine metabolism
and drug metabolism. For each data set, participants were asked to
provide responses for three tasks that analysts routinely perform as
part of exploratory data analysis:

Task I: simple comparison task, chosen to be unaffected by any il-
lusion. Performance on this task should be comparable across
designs.

Task II: simple ordering, involving three pairwise comparisons,
some of which are affected by the line width illusion or its re-
verse.

Task III: more complex ordering task with at least six pairwise com-
parisons, some of which are affected by either illusion.

The study was conducted in form of a crossover design (see Ta-
ble 2): each participant was presented with two out of the three dis-
play types, where the first display showed the Titanic data, and the
second display showed the gene data set. All participants were asked
to answer the same set of questions (see Appendix A) covering tasks
I through III for each data set. This design allows for comparisons of
display types and tasks while it is possible to simultaneously adjust for
individuals’ different skill sets and learning effects.

At the start of the survey, participants were given a link to a brief tu-
torial regarding the different plot types. Not all of the participants fol-
lowed this link. The decision to not require participants to go through
a thorough training beforehand was conscious. The main goal of our
study was to assess performance of the plots based on intuitive eval-
uation. We therefore refrained from any coaching on how to evaluate
plots in the training material and restricted ourselves to an explanation
of the construction.

The choice to show only two of the three possible types of dis-
plays to a participant was made to encourage participation by reduc-
ing the amount of time needed for its completion. On average, partic-
ipants needed 18 minutes to complete the survey. We did not find any
significant differences between the amount of time needed between
the first and the second block of questions (F1,95 = 0.0556 for a p-
value of 0.8142), nor were there significant differences in the length of
time taken between the three designs (F2,94 = 0.1909 for a p-value of
0.8265).

No personally identifiable information was collected, nor did we
offer any compensation for participation in the survey.

4.2 Results
We are investigating four aspects of the experiment in this section:
(i) participants’ performance on each task according to the percentage
of correct responses, (ii) extent of variability due to subject-specific
abilities, (iii) space of answers for the more complex ordering task
III, and (iv) participants’ preferences after completing tasks on two
designs.
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Table 2. Overview of study design and participation numbers. The
number in parenthesis indicates the number of participants completing
the first block, but not the second.

Titanic Data PS CA H PS CA H
Genes Data CA PS PS H H CA
#responses 8 (9) 6 (7) 8 (9) 6 (7) 10 (11) 8 (8)

Correctness of Answers
Answers for each survey question were recoded in binary form ac-
cording to correctness (with 1 for correct answers, and 0 otherwise).
This forms the basis for the evaluation of performance of the different
designs.

Table 3 shows percentages of correct answers for each question un-
der each design. Bold numbers indicate significantly different (worse)
performance of a design compared to the common angle plot based on
a generalized linear model with random effects to adjust for individu-
als’ abilities. The model explains 77.4% of the total variability, corre-
sponding to a highly significant statistic of 452.7 (p-value << 0.0001).

The observed results match our expectations: task I does not show
any significant differences between the designs and has overall the
highest percentage of correctness reflecting its low difficulty level.
Generally, the percentage of correct responses for a task decreases with
an increase of its complexity.

Parallel sets were affected the most by the line width illusion and
show significantly worse performance for tasks II and III in both the
Titanic and the genes data.

Hammock plots led to significantly worse performance than com-
mon angle plots in the two questions that were affected by the reverse
line width illusion, while they show equal performance as common
angle plots for the other questions. For task II in the genes data, ham-
mock plots have the overall best performance across designs– but this
does not constitute a significant improvement over the performance
of the common angle plot. Only for a sample size of over 150 partici-
pants would this difference be significant (for a power of 50% to detect
this difference). The pathway-chromosome relationship is shown in a
common angle plot in figure 12. The top bar identifies chromosome
location, the bottom pathways. Ribbon widths visualize the number of
genes on a chromosome that are active in a particular pathway. Task III
for the genes data asked for an ordering of the chromosomes involved
in the pathway of steroid steroid.

Figure 11 gives an overview of the performance of each design on
all tasks.

Table 3. Percentages (standard deviation) of correct responses for
each task and design. Bold numbers indicate significant difference from
common angle plot performance.

Task Data Design
CA H PS

I Titanic 85.2 (0.66) 76.5 (0.84) 68.8 (0.98)
Genes 93.8 (0.51) 83.3 (0.78) 83.3 (0.90)

II Titanic 72.2 (2.56) 17.6 (2.31) 25.0 (2.80)
Genes 75.0 (2.80) 87.5 (2.13) 57.1 (3.67)

III Titanic 66.7 (2.69) 41.2 (2.98) 6.2 (1.56)
Genes 68.8 (2.99) 68.8 (2.99) 7.1 (1.91)

Individuals’ skill levels
Figure 13 shows an overview of the predicted skill for each partic-
ipant under the model. Skills are quite varied between -1.52 and
1.34, but a Kolmogorov-Smirnov test does not show significant de-
viation from a normal assumption (p-value 0.089). On the scale of
the dependent variable the range in individuals’ skills translates to a
17.5 = e1.34−(−1.52) fold increase in the probability of answering a
question on the survey correctly between participants with the best
skill set and the worst.

Fig. 12. Common angle plot of the genes data. The top bar shows
chromosome, the bottom the pathway. Width of lines corresponds to
the number of genes pathways and chromosomes have in common.
Both drug metabolism (hsa00982) and caffeine metabolism (hsa00232)
make use of genes on chromosome 2. Task III of the survey asked
for the order of the chromosomes involved in the steroid biosynthesis
pathway from fewest number of genes to highest.

0

3

6

9

−2 −1 0 1
Individuals' skills

co
un

t

Fig. 13. Histogram of the predictions of subject-specific skills.

Evidence for line width illusions
Task III for the Titanic data required participants to order class levels
according to the number of survivors, fewest to highest.

There are 4! = 24 distinct orderings of the levels, corresponding to
all permutations of length four. Some orderings are closer to one an-
other than other orderings. The Cayley distance allows us to quantify
this distance; the Cayley distance between two orderings is defined as
the smallest number of switches necessary to get from one ordering to
the other. Visually, this corresponds to a graph; each node represents
one ordering, and two nodes are connected by an edge, if only a single
switch is necessary to move from one ordering to the other, i.e. if the
Cayley distance between these nodes is one. This results in a regular
graph of degree six, where each node is connected to six other nodes.
Between any two nodes, the Cayley distance on the graph is equivalent
to the length of the shortest connecting path between the two nodes.
Figure 14 shows an overview of the permutation space together with
an overview of the survey results.

The colored dots on top of the graph correspond to the responses
from the survey. The size of these dots is proportional to the num-
ber of observers choosing this particular ordering. It becomes obvious
from the three graphs in figure 14 that the answers to different designs
occupy quite different regions, while answers based on the same de-
sign are quite close and usually separated by only one edge.

The correct ordering, as well as the orderings assuming the line
width illusion and its reverse are marked by symbols. Answers for
the common angle plot are centered around the correct answer, while
responses to parallel sets cluster around the response corresponding
to the line width illusion. Answers based on the hammock design are
split evenly between the correct answer and the answer corresponding
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to the inverse line width illusion. Table 4 gives an overview of all
responses to task III for the Titanic data.

Table 4. Responses to task III in the Titanic data: order levels of Class
by the number of survivors (smallest to largest).

Order CA H PS
Crew, 1st, 3rd, 2nd 2
2nd, 1st, 3rd, Crew 6 reverse line width illusion
Crew, 3rd, 1st, 2nd 1 1
2nd, 3rd, 1st, Crew 12 7 1 correct
2nd, 3rd, Crew, 1st 1 1 2
Crew, 3rd, 2nd, 1st 2
3rd, 2nd, Crew, 1st 1
1st, 2nd, 3rd, Crew 1 1
1st, 3rd, Crew, 2nd 1 2
Crew, 2nd, 3rd, 1st 6 line width illusion
2nd, Crew, 3rd, 1st 3

Total 18 17 16

Common angle plots show the best performance in terms of cor-
rectness (66.7% on 18 responses), compared to a correctness of 6.2%
for the parallel sets plot on 16 responses, constituting a significantly
better performance of the common angle plot at a level of < 0.0001,
based on a Mantel-Haenszel test (the difference in performance to the
hammock plot is not significant with p-value of 0.1359, but the ham-
mock plot performs also significantly better than parallel sets plot with
a p-value of 0.0016 ). While the intuitive assessment of lines by their
width orthogonal to their direction is well known, it is surprising to see
its strength: in this particular setting, it is strong enough to ‘shrink’ the
horizontally widest line for six out of 16 participants by at least 44%,
from 212 to below 118, and a further three participants perceived a
shrinkage to below 178, a distortion factor of at least 16%.

Opinion on common angle plots
Answers to the question of ‘which chart did you like better?’ are
shown in table 5. There is a clear endorsement in favor of common
angle plots versus the other two types of displays. The most com-
mon reason cited for the choice was a facilitated comparison of width,
area or “size”, The only consistent complaint against common angle
was a preference for straight lines. This purely aesthetic preference
is deeply rooted and in our opinion the biggest challenge for common

angle plots.

Table 5. Preferences for first or second chart across all six combina-
tions of questions and chart types.

Which chart did you like better?
Chart 1 Chart 2

PS vs CA 2 6
CA vs PS 4 2
H vs CA 3 5

CA vs H 8 2
H vs PS 3 5
PS vs H 1 5

4.3 Methods
The survey was created using the Qualtrics Labs, Inc software
(www.qualtrics.com). For survey contents, see Appendix A. The study
design is presented in section 4.1. All models are fit in the lme4
package (Bates et al [2]) within the software framework of R 2.15.1.
Comparisons are adjusted for multiple testing using the multcomp
package (Hothorn et al [18] )and evaluated for pairwise significances
using the effects package (Fox [11]).

5 DISCUSSION

There is strong support from the user study that common angle plots
help the reader to overcome issues arising from the line-width illusion
and its reverse. This might come as a surprise, in particular, as com-
mon angle plots break one of the nice mathematical properties that
parallel sets have: the area of a connecting line in parallel sets has a
constant overall area independent of the angle under which it is drawn.
Both hammock plots and common angle plots break this property. It
does not seem, however, that the audience picks up on area as the main
property of the displays.

There are several other issues that common angle plots do not ad-
dress in the visualization of categorical data, that should be noted at
this point:

• Large number of levels in a variable introduces a lot of line cross-
ings, which affects the overall effectiveness of the display. The
number of line crossings is the same in parallel sets plots, but
hammock plots reduce the number of crossings by centering all
lines.
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Fig. 14. Answers to task III in the Titanic data – each node corresponds to a single ordering of the levels in variable ’Class’. Lines are drawn
between orderings that are only one swap of levels apart. The colored dots show responses from the survey, their sizes depend on the number of
responses for each ordering.

• The use of color to separate levels is also problematic for large
number of categories in a variable, as it leads to palettes with
very similar colors.

Apart from these problems that will have to be solved in a different
framework of plots, there are several opportunities for extending com-
mon angle plots. One opportunity for extension lies in the algorithm
to determine the thickness of the connecting line. In the tested ver-
sion of common angle plots, the line width was not explicitly defined
- the line width is a byproduct of specified θ for a band that connects
marginal bars. Using an additional hammock adjustment as given in
equation 1 in the slanted section of the line segment, we can keep the
bandwidth constant, resulting in a common angle-hammock plot hy-
brid that bears further investigation. A drawback of this approach is
that the sum of the bandwidths wh will no longer match the widths of
the marginal bars, which might create an additional processing burden
for the audience in mapping the relationship between band width and
the width of marginal bars. Both hammock plots and this modification
of common angle plots face the issue of band area as context to sup-
port reader interpretation of wo. Since the band area is now related to
the incident angle θ , changes in the display aspect ratio may have a
distortion effect. In the study described in this paper, this effect was
not evaluated and aspect ratios were kept constant.

In the original paper (Kosara et al [23]), parallel sets were intro-
duced to reflect a hierarchy of variables. Prior examples in this paper
show sets of two-dimensional plots to focus on the association between
pairs of variables. With color coding, it is possible to show hierarchies
in all of the types of displays. Figure 16 shows a common angle plot
with a hierarchy: survivors of the disaster are marked in blue, non-
survivors by orange. From top to bottom of the plot a hierarchy is
drawn, considering first survival, then gender, followed by age and fi-
nally class membership. The coloring tracks survival status throughout
the hierarchy, the layout in a common angle plot makes comparisons
valid across all levels. This is of particular importance in hierarchical
displays, which by definition have a larger number of smaller groups
than displays without a hierarchy exacerbating problems induced by
the line width illusion.

Another opportunity for extending common angle plots is to add
interactivity. It is important to note that any additions of function-
ality via interactivity should not come at the expense of developing
distortion-free displays. In particular, a display with visual cues in
conflict with (textual) interactive feedback introduces a higher cogni-
tive load by asking the audience to make a decision between one of the
sources of information (and disregard the other one as incorrect).

1st 2nd 3rd Crew

Yes No

Female Male

1st 2nd 3rd Crew

1st 2nd 3rd Crew

Yes No

Female Male

1st 2nd 3rd Crew

Class

Survived

Sex

Class.1

Fig. 15. Common angle plot of Titanic data using hammock correction.

6 CONCLUSION

We have proposed a new chart type for visualizing multivariate cat-
egorical data, common angle plots, and tested its usability compared
to existing charts that perform a similar function. Results from user
testing indicate that common angle plots effectively communicate un-
derlying data without being affected by perceptual distortions due to
the line width illusion or its reverse.

Two other chart types which address visualization of multivariate
categorical data: parallel sets and hammock plots, are subject to the
line width illusions. Audiences perceive parallel sets with distortion
due to a natural tendency to evaluate line width in the orthogonal direc-
tion while data is mapped to the horizontal width. For hammock plots
a correction is made to map data to the orthogonal width, however the
centering of the lines creates a strong contextual cue that encourages
an evaluation of line widths using the horizontal measure, leading to a
reverse line width illusion. Common angle plots avoid the perceptual
distortion associated with either version of the illusion regardless of
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Fig. 16. Common angle plot of the Titanic data using a hierarchical
structure in the variable (cf. to parallel sets chart in [8]).

the underlying data set.
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A SURVEY QUESTIONS

The tutorial shown to participants at the start of the survey can be
found at http://mariev.net/tutorial.html.
The questions pertaining to the Titanic data were:

Task 1: Agree, Disagree or Don’t Know/Can’t Determine with the
following statements:

• There were an approximately equal number of Male and
Female Survivors

• The group with largest number of travelers was Female
Survivors

• There were more Male Non-Survivors than number of
males in First and Second Class Combined

Task 2: Order the following groups by number, fewest to most

• 1st Class female passengers
• Male Survivors
• Crew Survivors

Task 3: Order the categories of Class by number Survived, fewest
to most.

• 1st
• 2nd
• 3rd

• Crew

The questions pertaining to the gene data were:

Task I: Agree, Disagree or Don’t Know/Can’t Determine with the
following statements:

• There are about the same number of genes in the group
”steroid biosynthesis:chromosome 1” as in the group ”caf-
feine metabolism: chromosome 8”

• The group with the greatest number of genes is ”drug
metabolism:chromosome 4”

• there are more genes involved in the group ”drug
metabolism: chromosome 1” than all genes involved in the
caffeine metabolism pathway

Task 2: Order the following chromosomes by number of genes in-
volved, fewest to most.

• steroid biosynthesis :: chromosome X

• steroid biosynthesis :: chromosome 4

• drug metabolism :: chromosome X

Task 3: Order the following chromosomes by number of genes in-
volved in steroid biosynthesis pathway, fewest to most.

• chromosome 1

• chromosome 4

• chromosome 8

• chromosome X

B PARTICIPANTS’ DEMOGRAPHICS

All students, staff and faculty from Iowa State University programs
in Statistics, Bioinformatics and Computational Biology and Human
Computer Interaction were invited to participate by email. 93 indi-
viduals accessed the survey; 86 participants gave consent, 15 of those
dropped out right after, 20 went to the training site and did not re-
turn. Out of the remaining 51 participants, 46 individuals submitted
responses for all questions and five gave responses to the first block of
questions.

Participants used their own personal computing devices to access
the survey, a majority of participants used Intel Mac OS X (versions
ranging from 10.6.8 to 10.8.2), while Windows was the next most
common operating system. The preferred choice of browser was Fire-
fox, followed by Chrome. For two participants, the Qualtrics survey
software was unable to capture operating system or browser informa-
tion.
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