

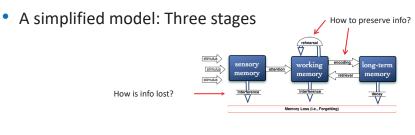
Graphical Perception

Michael Friendly Psych 6135 http://euclid.psych.yorku.ca/www/psy6135/

Graphical Perception

- In constructing a graph, quantitative and categorical information is encoded by visual attributes:
 - Length
 - Position along axis
 - Angle
 - Area
 - Color, shape, line style

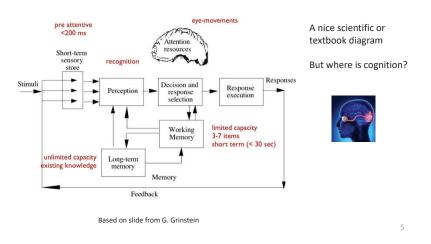
- What determines the ability of graph viewers to:
 - Make comparisons (which is larger?)
 - Estimate a magnitude?
 - See patterns, trends, unusual features?


Encoding & decoding

- When we construct a graph, we encode a numerical or categorical variable as a graphical attribute
- When we view a graph, the goal is to decode the graphical attributes and extract information about the data that was encoded

- Encoding should rely on features that can easily be decoded
- Often, easier said than done! The devil is in the details

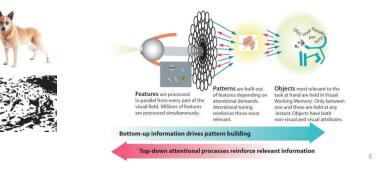
Visual & cognitive systems



- Sensory (iconic) memory
 - pre-attentive, automatic, feature detection
 - massively parallel, short duration, easily fooled ("thinking fast")
- Working memory
 - requires attention, limited capacity (~ 4-6 "chunks")
- Long-term memory
 - real-world knowledge, ~ unlimited capacity, inference ("thinking slow")

Perception vs. cognition

Another coarse distinction:


- Perception: Processing of the signals coming in: what you "see"
- Cognition: How you understand and interpret what you see

Perception: Bottom-up & Top-down

Bottom-up processing

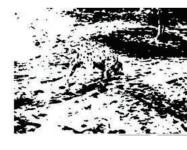
- Low level: features \rightarrow pattern \rightarrow object
- Detect edges, contours, color, motion
- Top-down processing
 - Driven by goals, expectations
 - Uses prior knowledge, experience, filters what we "see"

Perception: Bottom-up

How many 5s in this display?

1561321203658413076510374627 4173127527327592732990709742 1703707774179527931749270973 4019743217909370945179279417

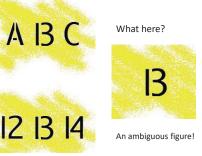
How many 5s in this display?


1561321203658413076510374627 4173127527327592732990709742 1703707774179527931749270973 4019743217909370945179279417

Numerals differ only in shape, and are high-level symbols You have to literally scan them all & count the 5s. The distinction of color is immediate & pre-attentive You only have to scan & count the 5s.

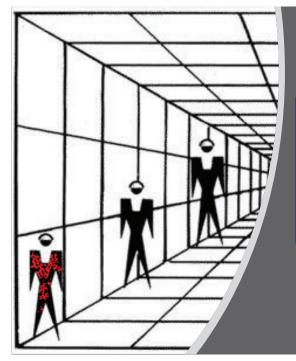
This is why color is an important visual attribute for a categorical variable in graphs

Perception: Top-down


What is in this scene?

What is the middle letter in each word?

TAE CAT


What is the middle character?

All of these are demonstrations of the role of expectations (top-down) in determining what we "see"

Empiricism

Epistemology

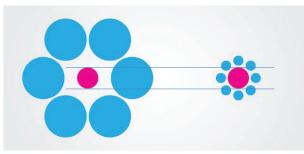
Illusions: The Eye-Brain Barrier

Perceptual illusions give some guidance on what **not to do** in data graphics

Illusions: Length

Surrounding context matters in judging the length of objects.

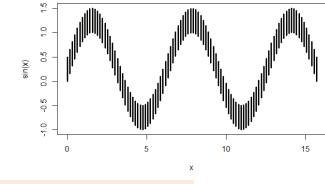
Which line is longer? Or are they the same?



Surrounding context pulls perception of length in its direction This is the famous **Müller-Lyre** illusion

Illusions: Area

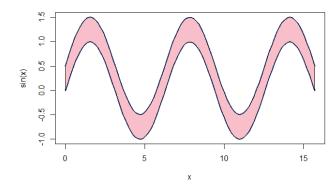
Surrounding context matters in judging the area of objects.


Which red circle is larger? Or are they the same?

Surrounding context pulls perception of area against the background This is often called the **Ebbinghaus** illusion or the **Tichener** illusion

Illusions: Length

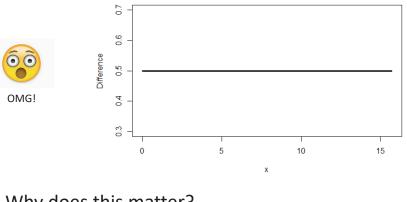
Which of the bars are longer? Or, are they all the same length?



x <- seq(0, 5 * pi, length.out = 100) w <- 0.5 plot(x, sin(x), ylim = c(-1, 1 + w), type = "n") segments(x0 = x, y0 = sin(x), y1 = sin(x) + w, lwd = 3)

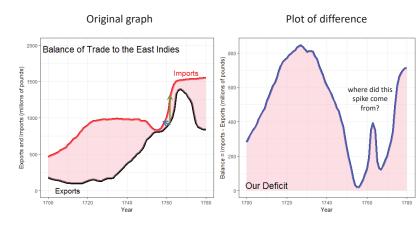
R code:

Illusions: Difference


Where are differences between curves are larger? Or, are they all the same?

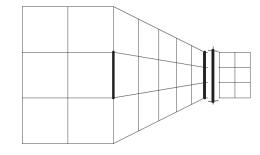
This is sometimes called the "sine illusion"

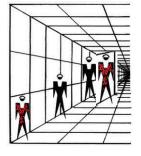
Illusions: Difference


Plotting the difference directly gives the answer.

Why does this matter?

Distances between curves

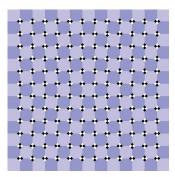

Playfair didn't know that judgments of distance between curves are **biased** We tend to see the perpendicular distance rather than the vertical distance



Illusions: Perspective

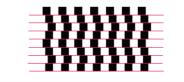
Which thick line is longer? Or, both the same?

Which figure is tallest? Or, all the same?


This is often called the **Ponzo** illusion: We judge the size of real-world objects relative to their background and perspective.

13

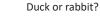
Context illusions

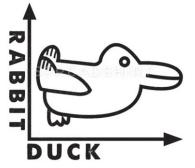

Perception of elements of a scene is affected by context, background, etc.

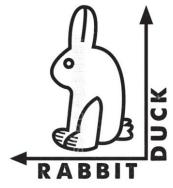
Are the squares straight or tilted?

It is hard not to be fooled by these!

Are the pink lines straight or curved?


Does the rectangle change in darkness?




Illusions: Semantic/cognitive

Perception of object figures often shows a preference for orientation in nature

Is this image a duck, or a rabbit?

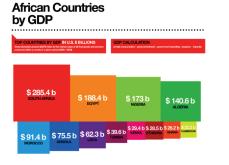
Selective attention

https://www.youtube.com/watch?v=vJG698U2Mvo

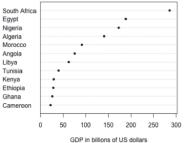
Attention strongly focused on some feature(s) steals attention from others

Magnitude estimation

How large are transport accidents? How much bigger than non-transport accidents?



Estimation of length or ratios of length are more accurate than the same judgments of area.


17

Area vs. length judgments

Easy: Which is larger– South Africa or Egypt? Harder: How much larger is South Africa than Egypt? (% or ratio)

African	Countries	bv	GDP
/	0000000	~,	

Judgments here based on area

	0	50	100	150	200	250	300	
		G	DP in bi	llions of	US dolla	rs		
Judgm	nent	here	base	d on	posit	tion a	along	
					•		0	
a scale	2						21	
							21	

Stevens' Power Law

- ٠ How does perceived magnitude of a sensation relate to stimulus intensity?
- S. S. Stevens (1957) showed that, for many domains

Sensation ∞ Intensity^{*p*}

- ٠ These provide ways to assess the accuracy of magnitude estimation for visual encodings
 - length judgments most accurate
- ٠ But: graph perception is not always a matter of estimating magnitudes.

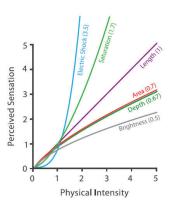


Fig. 5.7 from: Munzner, Visualization Analysis & Design

Scale of accuracy

The commonly used "scale" of accuracy of magnitude judgments of relative size

How much smaller/larger is A compared to B?

Accuracy Of Visual Cues î↓

Not necessarily the same for other tasks (Part-whole: What % is A of total?)

Accuracy: Experimental evidence

Cleveland & McGill (1984) and later Heer & Bostock (2010) carried out experiments to assess the relative accuracy of magnitude judgments for different visual encodings

The task here is to estimate the %age of the smaller highlighted portion.

The details of these studies are interesting & important - more next week

The graph of these results is a great model for data display

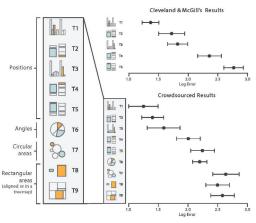
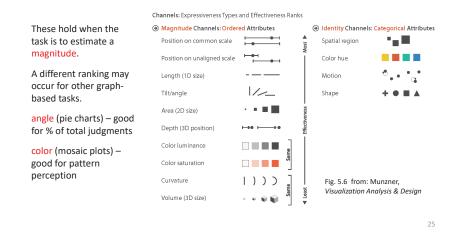
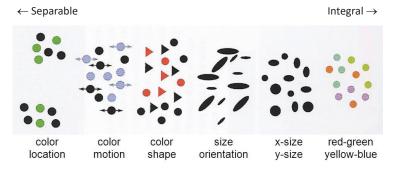
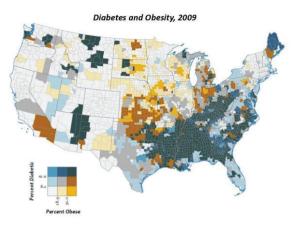



Fig. 5.8 from: Munzner, Visualization Analysis & Design


Encodings: Types & ranks

Based on this, Munzner (2015) proposes a ranking of visual attributes for ordered & categorical variables in data displays

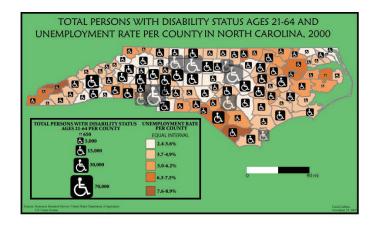
Integral & separable encodings


- Some encodings can be viewed independently
 - two different variables can be decoded separately
- Some combine with each other to some degree.
 - different variables cannot be easily decoded separately

From: Ware, Information visualization: Perception for Design

Integral dimensions

A bivariate U.S. county-level map showing: % diabetic (saturation) and % obese (hue)


It is difficult to see variations in diabetes separately from obesity

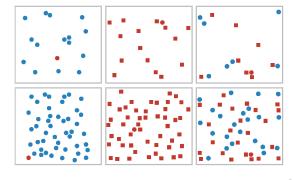
The eye is attracted to the positive correlation between these dark (blue, red) vs. light color

Separable dimensions

Bivariate map of N. C.: disability (size) and unemployment rate (saturation)

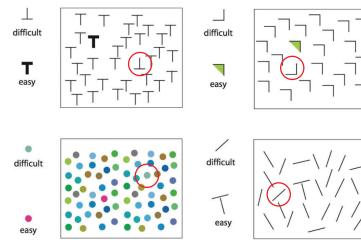
- These an be seen separately
- (However, TOTAL disability is confounded with population density)

Anomaly detection


Find the red dot

in each of the following displays

- This task is easiest when all the rest are blue dots
- Next easiest when only shape distinguishes the red dot
- Hardest when both color and shape vary


Sometimes called "popout" effect. Not a good term.

This is important in designing graphs to highlight some points.

Anomaly detection

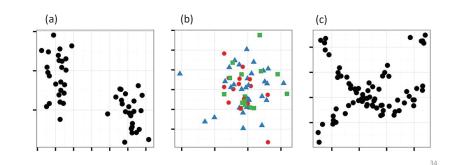
For each display, find the anomaly shown at the left Color and shape: What is easy or hard depends on the background

Encodings: Lessons

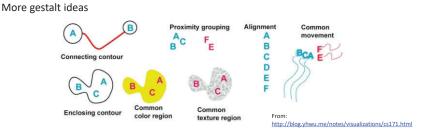
- Ordered variables
 - Prefer encodings at the top of the hierarchy (position along a scale) to those at the bottom (color saturation, curvature)
- Favor separable encodings
 - Use color and another attribute--- shape, size, orientation
 - Don't overload symbols--- probably two at most
 - Avoid mixing two aspects of color or two aspects of shape
- Small multiples
 - Reduces the need for multiple encodings within a panel
 - But, makes direct comparison more difficult
- Highlighting: to draw attention to one group, use a preattentive attribute

Encodings: Lessons

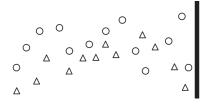
- Best to show quantitative variables with position or length
- Bar charts:
 - Best encoding via length \rightarrow start at 0
 - Avoid stacked bars (not aligned), where possible
- Dot charts:
 - Best encoding via position along a scale \rightarrow start at 0
- Frequency data:
 - area/color encoding to show patterns
 - sqrt or log scale often useful to show magnitude
- Color: choose sensibly ordered hues or saturation
- Arrangement
 - make comparisons easier by placing things to be compared nearby


31

Gestalt principles


- Perception as top-down process governed by holistic principles. "Gestalt" = "form"
 - proximity: elements close together likely to belong to the same unit
 - similarity: more common visual elements increases belonging together
 - good continuation: elements that blend together are likely in the same unit
 - common region: elements in the same region likely belong together

Gestalt principles


- (a) proximity creates impression of 2 groups
- (b) similarity: 3 groups via color & shape
- (c) good continuation gives impression of 2 groups

Gestalt principles

Why lines are good in time series graphs

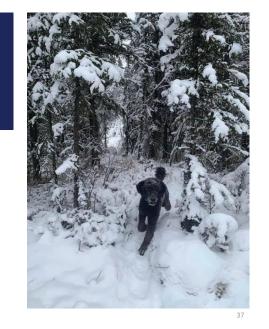
Figure - Ground

What is the figure? What is the background?

Face or vase?

Black or white soldiers?

Face or park?


These examples all use different techniques to create ambiguous figures

Ambiguous figures: Priming

Can you see the poodle in this scene?

What about the man?

Semantic priming: Suggestion increases likelihood of perception

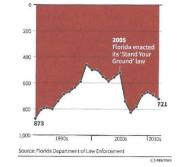
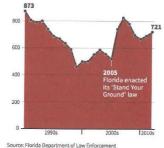


Figure - Ground

This graph inverts the y-axis, and shades the area above the curve

Gun deaths in Florida


Number of murders committed using firearms

We tend to see 1999 & 2005 as high points From: Andy Kirk, Data Visualization: A Handbook for Data Driven Design A more conventional version of the same graph

Gun deaths in Florida

Number of murders committed using firearms

Gun deaths increased after the 'Stand your ground' law

38

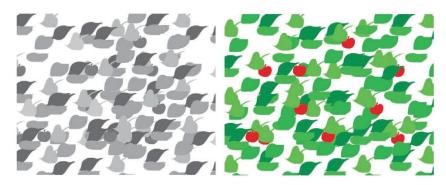
Discussion

What perceptual features or principles are involved in your reading or understanding of these figures? or this?

What about this?

Top-down? Bottom-up? Gestalt?

or this?

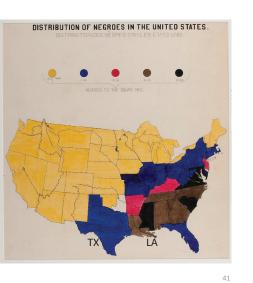


Color: Functions in data graphics

Color serves to: highlight, identify, and group elements in a visual display

Find the cherries in this display:

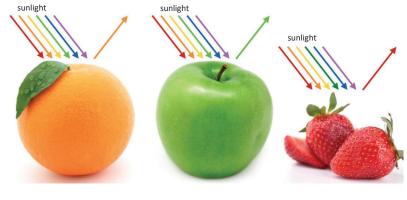
Color acts as a preattentive attribute here


From: Colin Ware, Information Visualization: Perception for Design

Nice graphic, naïve about color

W.E.B. Du Bois presented this as part of an exhibition on The American Negro at the 1900 Paris Exposition.

It is a landmark graphic, but shows no understanding of the use of color for a quantitative variable.


Q: Are there more Negroes per sq. mile in Texas (TX) or Louisiana (LA)?

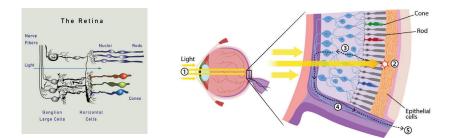
Object color

What makes an orange look orange, a green apple look green, or a strawberry red?

Objects absorb colors from the rainbow, but reflect their own

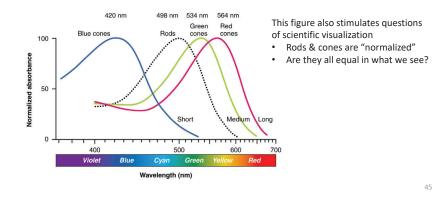
From: Miriah Meyer, lecture notes, cs6330

Color: Aspects in data graphics


- Perception: trichromatic theory
 - How the eye sees color
- Color spaces:
 - RGB (additive), CMYK (subtractive)
 - HSV, HCL: perceptually based
- Color palettes for computer graphics
 - ColorBrewer: sequential, diverging, qualitative
 - Color-blind safe ?
 - Photocopy safe ?
- Transparency

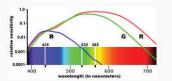
Perception: The human eye

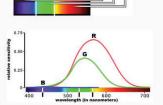
- Retina:
 - rods (monochromatic),
 - cones (R, G, B)


It is of interest to see the wide variety of ways this is conveyed in scientific diagrams:

43

Perception: color sensitivity

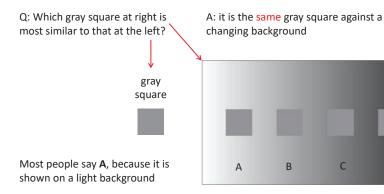

- Cells in the retina are differentially sensitive to colors of different wavelength
 - Each have a distribution of sensitivity for short, medium & long
 - Their peaks are used to name them as Blue, Green, Red or Rods



Perception: color sensitivity

This slide, from http://slideplayer.com/slide/6329532/, shows color sensitivity on three different scales

 Cone receptors least sensitive to (least output for) to blue



 Relative sensitivity curves for the three types of cones, log vertical scale, cone spectral curves from Vos & Walraven, 1974
 Relative type

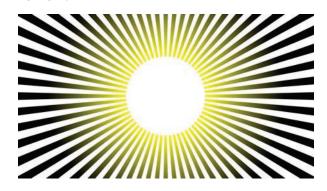
Relative sensitivity curves for the three types of cones, the Vos & Walraven curves on a normal vertical scale

Perception: Contrast

Color perception, even of gray, is influenced by contrast against a background

Luminance contrast

Showing blue text on a black background doesn't work very well There is insufficient luminance contrast. Showing blue text on a white background works better. There is sufficient luminance contrast.


Showing yellow text on a white background doesn't work very well. There is insufficient luminance contrast. Showing yellow text on a black background works better. There is sufficient luminance contrast.

TIP: For presentations, light text on a dark background is often preferred. I don't do this, because I'm also concerned with printing slides. (With LaTeX Beamer, it is easy to have separate setups for presentation & print)

Brightness illusion

Is the white at the center the same brightness as the white at the edges? Or, is it brighter?

They are the same. We interpret the center as a source of light relative to the surrounding bright yellow.

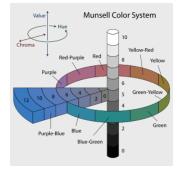
The illusion also affects pupil size! https://www.pnas.org/content/109/6/2162

Early color theory

Tobias Mayer (1755) – color theory composed of (blue, red, yellow) as basic colors Johannes Lambert (1772) – A color pyramid, composed of 7 layers

Introduces the idea of color "primaries"

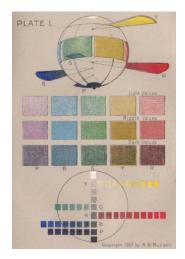
Introduces the idea of color saturation

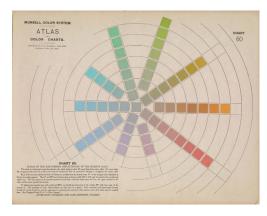

50

Color space: Munsell colors

Color space is 3D

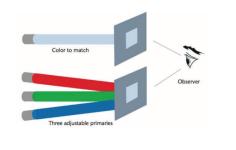
How to specify a given color in perceptual terms?


- Albert Munsell (~1930): hue, chroma, lightness (HCL)
- These form perceptually uniform & independent dimensions

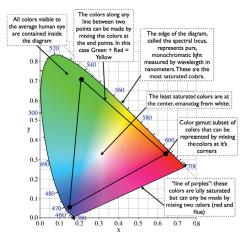


49

By SharkD - CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8401562 Munsell's color scheme was highly influential in Psychology research Nearly every lab investigating color used standard sets of Munsell color chips



CIE color space


 How do we know about the perceptual properties of colors, taking spectral sensitivity into account?

Experiments used a color-matching task:

- Adjust the intensity of pure R, G, B lights to match a given color
 This defines a new select the end
- This defines a new color theory connecting physical properties and human perception (spectral sensitivity).
- The CIE (International Commission on Illumination) becomes the standard to calibrate color in scientific instruments and human experiments

CIE color space

Anatomy of a CIE Chromaticity Diagram

The International Commission on Illumination (CIE) in 1931 defines a color space of (x,y,z) coordinates based on color-matching experiments combining R, G, B light sources in additive mixtures, and a "standard colorimetric observer"

This defines a new color theory connecting physical properties and human perception (spectral sensitivity). There are eventually a variety of CIE color spaces (CIElab, CIEluv, ...) and lots of formulas for converting among them.

Color space: RGB & CMYK

Enter technology: how to produce color?

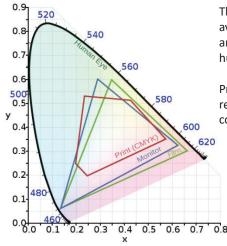
- RGB:
 - Combine light: R + G + B = white
 - Used in computer monitors, TV, film
- CMYK:
 - Combine ink: Cyan + Magenta + Yellow = Black
 - Used in color laser printers, the print industry

Additive colour system

Mixture of primary light colours-White

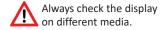
Mixture of primary pigment colours Black

53


default

TIP: for publishing, you may need to prepare or convert graphics from RGB to CMYK.

Some software offer useful tools for this:


- Adobe Acrobat Pro
- ImageMagik

Color space: RGB & CMYK

The standard gamut of colors available for different display media are a restricted subset of what the human eye can see.

Print (CMYK) is most restricted, and requires a more careful choice of color in graphics

Software: Color specification

- Color is often hard to use effectively in software, because the ways to specify it are so varied:
 - Color names: "black", "red", "green3", "skyblue", "cyan"
 - RGB: black=(0,0,0); green3=(0, 205, 0), cyan=(0, 255, 255)
 - Hex: black="#000000"; cyan="#00FFFF"

18	beige	#F5F5DC	245	245	220	80	cyan	#00FFFF	0	255	2
_	-	-				_					_
19	bisque	#FFE4C4	255	228	196		cyan1	#00FFFF	0	255	2
20	bisque1	#FFE4C4	255	228	196	70	cyan2	#00EEEE	0	238	2
21	bisque2	#EED5B7	238	213	183	71	cyan3	#00CDCD	0	205	2
22	bisque3	#CDB79E	205	193	159	72	cyan4	#008B9B		139	
	bisque4	#8B7D6B			107	73	darkblue	#00008B			
24	black	#000000	0	0	0	74	darkcyan	#008B9B		139	1
25	blanchedalmond	#FFEBCD	255	235	205	75	darkgoldenrod	#B8860B	184	134	
						_					
	blue	#0000FF			255	76	darkgoldenrod1	#FFB90F	255	195	
	blue1				255	77	darkgoldenrod2	#EEADOE	238	173	
	blue2	#0000EE			238	78	darkgoldenrod3	#CD950C	205	149	
	blue3	#0000CD			205	79	darkgoldenrod4	#8B6508	139	101	
	blue4	#00008B			139	80	darkgray	#A9A9A9	169	169	
	blueviolet.	BBA2BE2	138	43	226	81	darkgreen	#006400		100	

See: http://research.stowers.org/mcm/efg/R/Color/Chart/ for R color charts

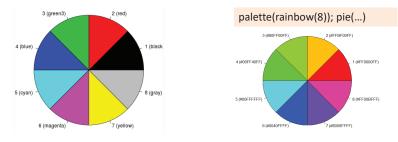
Software: Color specification

WTF! Give me a break, please:

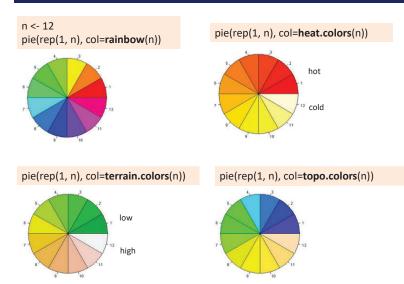
- Make it easier to compute with colors: define blends of colors or a color ramp
- Make it easier to specify color schemes with decent perceptual properties
- Make it easier to map colors to data features I want to show

Every time you are forced to say "#008B8B" or "cyan4" a puppy dies somewhere -- MF, 2018

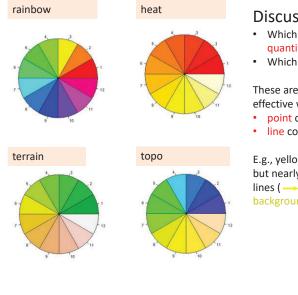
58


Software: palettes

57


- R (and other software) provide palettes of colors used for defaults in graphs
 - Not all are nice- depends on your purpose
 - But, there are lot of choices
 - You can change them once for all graphs in a session or paper

> (pal <-palette())


[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray" > pie(rep(1, length(pal)), labels = sprintf("%d (%s)", seq_along(pal), pal), col = pal)

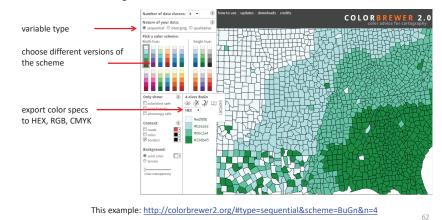
R: basic palettes

R: basic palettes

Discussion Q:

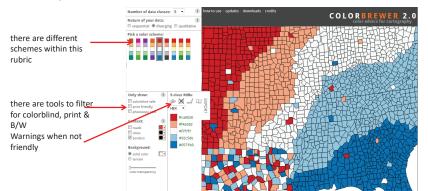
- Which of these are better for quantitative variables?
- Which for categorical?

These are shown for area fill. How effective would they be for:

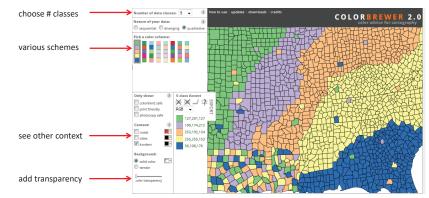

- point colors
- line colors

E.g., yellow is bright as an area, but nearly invisible as points (•) or lines (\rightarrow) or text on a white background

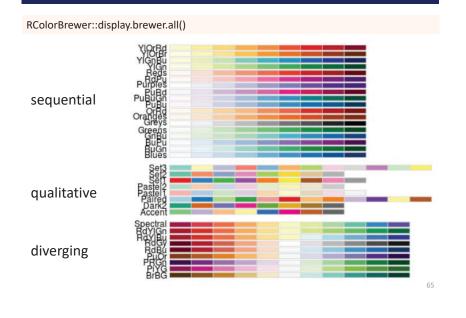
palettes: ColorBrewer


ColorBrewer, by Cynthia Brewer provides an interactive application for choosing color pallets, http://colorbrewer2.org

This is one example of a multi-hue scheme for a quantitative, sequential variable, shown from low to high with 4 color classes


palettes: ColorBrewer

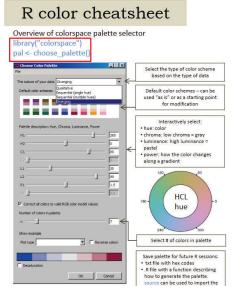
Diverging schemes are designed to show a quantitative variable, where we want to see what is low vs. what is high, leaving the middle of less visual impact - difference from average, residuals, ...


palettes: ColorBrewer

Qualitative schemes are designed to show a categorical variable, where we want to see differences among unordered categories

These are all available in the RColorBrewer package

palettes: RColorBrewer



R: choose_palette()

The colorspace package in R has an interactive palette widget.

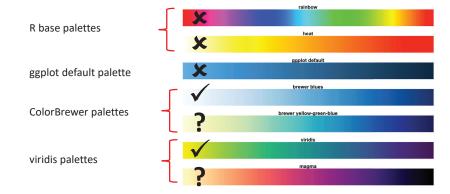
It also provides functions for many kinds of color manipulations.

The R Color cheatsheet, by Malcolm Fraser is a goto source for all aspects of color in R: <u>https://www.nceas.ucsb.edu/~frazier/RSpa</u> tialGuides/colorPaletteCheatsheet.pdf

66

Viridis palettes

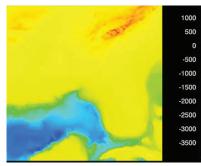
Designed by Stéfan van der Walt and Nathaniel Smith for Python; ported to R in the <u>viridis</u> package.


Goals:

- **Colorful**, spanning as wide a palette as possible so as to make differences easy to see
- Perceptually uniform: values close to each other have similar-appearing colors and values far away from each other have more different-appearing colors
- Robust to colorblindness: these properties hold true for people with common forms of colorblindness, as well as in grey scale printing
- Pretty: much nicer as a defaults in software

These assertions are largely untested. Perhaps a good research topic!

Comparing palettes

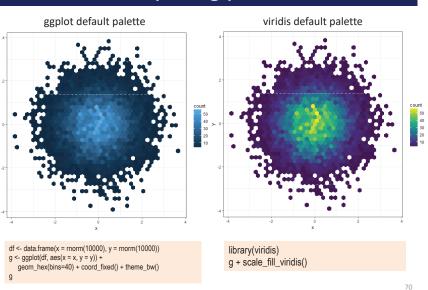

For a quantitative variable and a continuous color scale, there are many choices. How well do they work?

This is a bit tricky: ideally, we want a wide range of color

Comparing palettes

What is shown in this map?

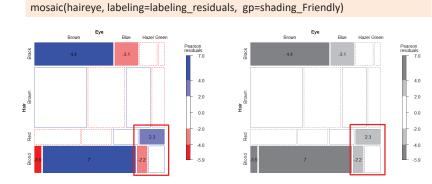
The rainbow color scale obscures the main features


Now we can see it-elevation in the

Florida coast: above or below 0

This color scheme was designed to reveal the essential topography of the map & to have perceptually equal elevation steps

From: http://www.research.ibm.com/people/l/lloydt/color/color.HTM


Comparing palettes

Color \rightarrow B/W ?

Graphics designed in color often have to consider what happens when graphs are reproduced in B/W: grayscale

- This is particularly hard for a diverging color scale
- My original design for mosaic plots used solid vs. dashed lines to distinguish + vs. -

Color \rightarrow B/W ?

The design of this graphic table was crafted to preserve readability if printed in B/W. NB: text for numbers changes from black to white depending on background color.

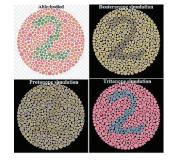


Figure 9: Section 37 benefits by type (1998-2015) 2010-2013 16 3 6 7 8

Background shading works equally well in color or B/W A+ for visual design!

Source: Friendly, A. R. (2017). Land Value Capture and Social Benefits: Toronto and São Paulo Compared. IMFG Papers on Municipal Finance and Governance, No 33, University of Toronto, https://munkschool.utoronto.ca/imfg/

Colorblindness

Most common forms are genetic, and involve a deficiency in one of the cone type sensitivities

- Protanopia (red deficient: L cone absent)
- Deuteranopia (green deficient: M cone absent)
- Tritanopia (blue deficient: S cone absent)

Some form of red-green insensitivity is most common

- about 6-8% of population
- more common in males

TIP: Avoid color scales with main variation between red & green

Colorblindness

What an image looks like with various forms of color deficiency

Red-green colorblindness:

myfig

6 Sepal.Length

library(colorblindr)

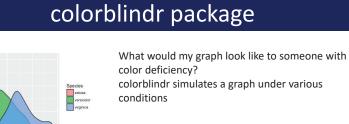
cvd_grid(myfig)

74

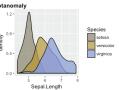
Goal: Show employment growth, 2013—2015

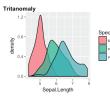
73

- Original design, using
- green: above average
- red: below average


How this looks to someone with red-green colorblindness

red & green become indistinguishable

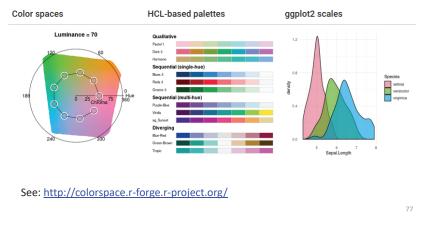

From: http://www.menaforum.com/category/u-s-a/


75

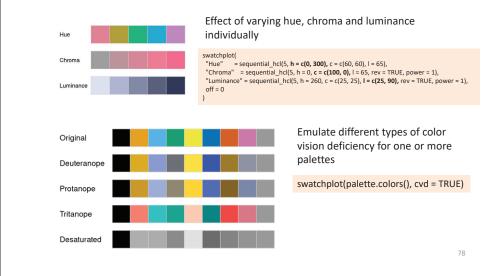
colorblindr simulates a graph under various

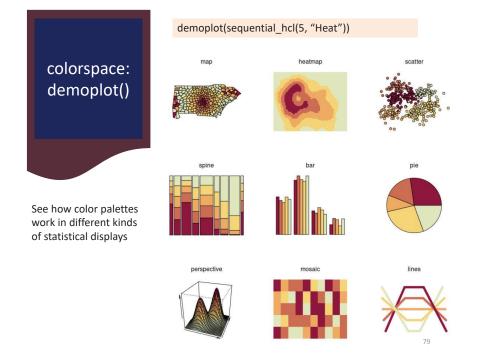
Desaturated

5 6 7 Sepal.Length


Sepal.Length

colorspace 2.0-0




A Toolbox for Manipulating and Assessing Colors and Palettes

colorspace: palette visualization

swatchplot(): display collections of palettes in flexible ways

Color: Lessons

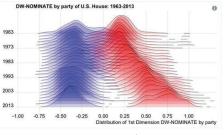
- Use colors to represent differences in meaning
 - Avoid gratuitous use of multiple colors
 - Use consistent color scheme across multiple graphs of the same data
- Consider presentation goal:
 - Highlight one subset against the rest
 - Group a categorical variable
 - Encode a quantitative variable
- Consider differences in color perception, B/W printing

Color: Lessons

- Consider encoding scheme:
 - <u>Categorical</u>: Use a wide range of hues, of ~ same saturation

Sequential: use a small range of hues of varying intensity

 <u>Diverging</u>: Use two sequential schemes, decreasing toward the middle


Images from: Stephen Few, http://www.perceptualedge.com/articles/visual business intelligence/rules for using color.pdf

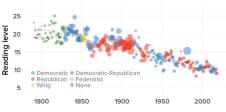
Transparency

Colors can be made partially transparent, by adding an "alpha" channel,

 $0 \le \alpha \le 1$ (opaque)

Filled areas combine to look more saturated What do you see here?

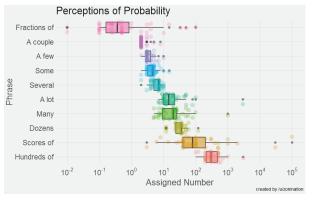
Increasing polarization of votes in the US House


 This also works well with filled
 25

 point symbols, which would
 20

 otherwise be obscured when they
 20

 overlap
 15


Different colors "blend" What do you see here?

Reading level of US State of the Union Addresses 82

Transparency: Adding another layer

Transparency also works well to combine different graphical features in a plot Here, a filled boxplot and dots representing individual observations

What number would you assign to the following phrases?

Summary

- In designing data graphics, consider the viewer
 - Info \rightarrow encoding \rightarrow image \rightarrow decoding \rightarrow understanding
- Perception: much is known, with ~ links to graphics
 - Bottom up: perceptual features, what grabs attention
 - Top down: expectations provide a context
 - Encoding attributes must consider what is to be seen
- Color: What is the presentation goal?
 - Color palettes for different purposes
 - Transparency increases the effective use of color