History of Data Visualization

Michael Friendly
Psych 6135
http://euclid.psych.yorku.ca/www/psy6135

Outline

• Overview:
 ▪ Roles of graphics in scientific discovery
 ▪ The Milestones Project
• Milestones tour of the history of data vis
 ▪ Pre-history of visualization
 ▪ The first statistical graph
 ▪ The Big Bang: William Playfair
 ▪ Influence of data, technology & visual thinking
• Other topics (later):
 ▪ Moral statistics: the birth of social science
 ▪ Graphs in the public interest: Nightingale, Farr and Snow
 ▪ The Golden Age of statistical graphics

Orienting Q: Visualization-based discoveries ??

• When have graphics led to discoveries that might not have been achieved otherwise?
 ▪ Snow (1854): cholera as a water-borne disease
 ▪ Galton (1883): anti-cyclonic weather patterns
 ▪ E.W. Maunder (1904): 11-year sunspot cycle
 ▪ Hertzsprung/Russell (1911): spectral classes of stars

Orienting Q: Visualization-based discoveries ??

• In the history of graphs, what features and data led to such discoveries?
 ▪ What visual ideas/representations were available?
 ▪ What was needed to see/understand something new?
• As we go forward, are there any lessons?
 ▪ What are the Big Questions for today?
 ▪ How can data visualization help?
How to visualize travel? A route map!

In 1675, chartmaker John Ogilby told a graphic story of what you would see on a travel from London to Land's End.

Image: https://commons.wikimedia.org/wiki/File:Ogilby_-_The_Road_From_LONDON_to_the_LANDS_END_(1675).jpg

How to visualize history? A route map!

In 2017, graphic storyteller Raymond Andrews adopted Ogilby's form to show the history of data visualization.

The online version, http://infowetrust.com/scroll/ is fully interactive, with details about the images on this journey.

The Milestones Project

The web site: http://datavis.ca/milestones has an interactive timeline, allowing different kinds of search

Milestones: Content Overview

Every picture has a story – Rod Stewart

c. 550 BC: The first world map? (Anaximander of Miletus)

1669: First graph of a continuous distribution function (Gaunt’s life table) – Christiaan Huygens.

1701: First contour map – Edmund Halley

1801: Pie chart, circle graph – William Playfair

1896: Bivariate map – Jacques Bertillon

1914: Pictograms – Otto Neurath

1991-1996: Interactive data visualization systems (Xgobi, ViSta)
Milestones Tour

- New graphic forms
- Beginning of modern graphics
- Golden Age of data graphics
- Modern Dark Ages
- Re-birth
- High-D data vis

Early maps & diagrams
Measurement & Theory

Statistical historiography

Historical information, suitably organized can be treated as data, and analyzed. This plot shows a smoothed frequency distribution of 248 milestones items over time, in relation to the named time periods.

Prehistory of visualization

Lascaux Cave, ~ 15000 BCE, the “Sistine Chapel of pre-historic art”

Lascaux II, Main chamber

Lascaux: What were they thinking?

- Visual features:
 - show perspective, a sense of motion, rich use of color & texture
- What was the purpose?
 - Hunting success? NO (they hunted reindeer)
 - mostly symbolic – visual language, story of communal myths
- How to understand them?
 - A cognitive revolution: evidence for the modern human mind in Cro Magnon man
 - inner vision, visual thinking, mental imagery— a gleam in the mind’s eye
- Other cave art [20000BC – 10000BC]: Altamira (Spain); Chauvet (France), Cueva de las Manos (Argentina), ...
Prehistory: Diagrams, graphic stories

Early Egyptian animated graphic diagram
Wrestling scene on east wall, tomb of Baqt at Beni Hasan (ca. 2000 BCE).

A visual explanation of a wrestling match
Anticipates modern graphic novels

Why? Perhaps Baqt’s last lesson as a wrestler in his youth and later as a coach

Pre 17th C.: Early maps & diagrams

c. 550 BC: The first world map? (Anaximander of Miletus)

1305: Mechanical diagram of knowledge- Ramon Llull, Spain

Tree of porphyry: Aristotle’s categories of knowledge (center)
- Left: questions
- Right: rotating disks → answers

1375: Catalan Atlas, an exquisitely beautiful visual cosmography, perpetual calendar, and thematic representation of the known world- Abraham Cresques, Majorca, Spain [BNF: ESP 30]
1600-1699: Measurement and Theory

- The 17th century saw growth in theory and the dawn of attempts at visualization.
- Featured in this were:
 - the rise of analytic geometry: (x, y) coordinates (Descartes),
 - theories of errors of measurement: astronomical observations (Laplace)
 - the birth of probability theory—games of chance, annuities (Fermat, DeMoivre, ...),
 - automatic graphic recording (Scheiner)
 - the first graphical representations of statistical data (van Langren)

Sunspots: Galileo

- 1611: Galileo records movement of sunspots over time (*Three letters on sunspots*, 1613)

Visual ideas:
- Animated graphic
- “Small multiples”
- Allows comparison
- Self-explaining diagram

Scheiner: systematic recording

- 1626: Christoph Scheiner invents helioscope & camera obscura to record sunspots (*Rosa Ursina sive Sol*, 1626-1630)
Sunspots: Great graph, wrong theory

1626: Christopher Scheiner’s graph of changes in sunspots over time.
- “small multiples”
- allows comparison
- multiple legends
- A+ for info design!

He argued (incorrectly) that these were evidence for solar satellites.

The idea of graphs for visualizing phenomena had arrived.

Why the 1st statistical graph got it right

1644: First visual representation of statistical data: determination of longitude between Toledo and Rome- Michael Florent van Langren, Spain

Actual distance=16°30’

What else could he have done?

- What would occur to men of his time to convey a message to the king?
- ... he could have sorted by name, to show authority.

... he could have sorted by longitude to show the range.

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Longitude</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>Ptolomeus, C.</td>
<td>27.7</td>
<td>Egypt</td>
</tr>
<tr>
<td>1471</td>
<td>Regiomontanus, I.</td>
<td>25.4</td>
<td>Germany</td>
</tr>
<tr>
<td>1501</td>
<td>Ianhonius, G.</td>
<td>17.7</td>
<td></td>
</tr>
<tr>
<td>1530</td>
<td>Lantsbergius, P.</td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>1536</td>
<td>Schonerus, I.</td>
<td>20.8</td>
<td>Germany</td>
</tr>
<tr>
<td>1541</td>
<td>Argelius, A.</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>1542</td>
<td>Ortonius</td>
<td>26.0</td>
<td>France</td>
</tr>
<tr>
<td>1567</td>
<td>Mercator, G.</td>
<td>19.6</td>
<td>Flanders</td>
</tr>
<tr>
<td>1567</td>
<td>Clavius, C.</td>
<td>26.5</td>
<td>Germany</td>
</tr>
<tr>
<td>1578</td>
<td>Brahe, T.</td>
<td>21.5</td>
<td>Denmark</td>
</tr>
<tr>
<td>1582</td>
<td>Magninus, A.</td>
<td>29.8</td>
<td>Italy</td>
</tr>
<tr>
<td>1601</td>
<td>Organus, D.</td>
<td>30.1</td>
<td></td>
</tr>
</tbody>
</table>

Sorted by Authority

<table>
<thead>
<tr>
<th>Name</th>
<th>Longitude</th>
<th>Year</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argelius, A.</td>
<td>29.0</td>
<td>1541</td>
<td></td>
</tr>
<tr>
<td>Brahe, T.</td>
<td>21.5</td>
<td>1578</td>
<td>Denmark</td>
</tr>
<tr>
<td>Clavius, C.</td>
<td>26.5</td>
<td>1567</td>
<td>Germany</td>
</tr>
<tr>
<td>Ianhonius, G.</td>
<td>17.7</td>
<td>1501</td>
<td></td>
</tr>
<tr>
<td>Lantsbergius, P.</td>
<td>21.1</td>
<td>1530</td>
<td></td>
</tr>
<tr>
<td>Magninus, A.</td>
<td>29.8</td>
<td>1582</td>
<td>Italy</td>
</tr>
<tr>
<td>Mercator, G.</td>
<td>19.6</td>
<td>1567</td>
<td>Flanders</td>
</tr>
<tr>
<td>Organus, D.</td>
<td>30.1</td>
<td>1601</td>
<td></td>
</tr>
<tr>
<td>Ortonius</td>
<td>26.0</td>
<td>1542</td>
<td>France</td>
</tr>
<tr>
<td>Ptolomeus, C.</td>
<td>27.7</td>
<td>150</td>
<td>Alexandria</td>
</tr>
<tr>
<td>Regiomontanus, I.</td>
<td>25.4</td>
<td>1471</td>
<td>Germany</td>
</tr>
<tr>
<td>Schonerus, I.</td>
<td>20.8</td>
<td>1536</td>
<td>Germany</td>
</tr>
</tbody>
</table>

Sorted by Longitude

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Name</th>
<th>Year</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.7</td>
<td>G. Ianhonius</td>
<td>1501</td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td>G. Mercator</td>
<td>1567</td>
<td>Flanders</td>
</tr>
<tr>
<td>20.8</td>
<td>I. Schonerus</td>
<td>1536</td>
<td>Germany</td>
</tr>
<tr>
<td>21.1</td>
<td>P. Lantsbergius</td>
<td>1530</td>
<td></td>
</tr>
<tr>
<td>21.5</td>
<td>T. Brahe</td>
<td>1578</td>
<td>Denmark</td>
</tr>
<tr>
<td>25.4</td>
<td>I. Regiomontanus</td>
<td>1471</td>
<td>Germany</td>
</tr>
<tr>
<td>26.0</td>
<td>Oronius</td>
<td>1542</td>
<td>France</td>
</tr>
<tr>
<td>26.5</td>
<td>C. Clavius</td>
<td>1567</td>
<td>Germany</td>
</tr>
<tr>
<td>27.7</td>
<td>C. Ptolomeus</td>
<td>150</td>
<td>Egypt</td>
</tr>
<tr>
<td>28.0</td>
<td>A. Argelius</td>
<td>1541</td>
<td></td>
</tr>
<tr>
<td>29.8</td>
<td>A. Magninus</td>
<td>1582</td>
<td>Italy</td>
</tr>
<tr>
<td>30.1</td>
<td>D. Organus</td>
<td>1601</td>
<td></td>
</tr>
</tbody>
</table>
Only a graph shows...

- central location
- wide variability
- bias
- clustering, detached observations
- name labels—avoiding overplotting

![Graph showing central location and bias](image)

Actual distance = 16°30'

Estimated distance = x°y'

Friendly et al. (2010), The First (Known) Statistical Graph: Michael Florent van Langren and the “Secret” of Longitude The American Statistician, 64, 185-191

1700-1799: New graphic forms

- The 18th century witnessed the germination of the seeds of visualization & visual thinking, planted earlier.
- Map-makers began to try to show more than just geographical position—the beginnings of thematic mapping of physical quantities
 - topographical maps
 - iso- contour maps
- New graphic forms were invented:
 - bar chart,
 - line chart,
 - timelines

The Big Bang

1786: Bar chart and line graph showing three time series: Price of wheat, weekly wages and reigning monarch over a 250+ year span- William Playfair

<table>
<thead>
<tr>
<th>BC</th>
<th>AD</th>
<th>17th C</th>
<th>18th C</th>
<th>19th Century</th>
<th>20th Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1600</td>
<td>1700</td>
<td>1800</td>
<td>1900</td>
<td>2000</td>
</tr>
</tbody>
</table>

George IV

Elizabeth

Monarch

Price of wheat

Wages

1565 1820

1701: Isobar map, lines of equal magnetic declination—Edmund Halley

1705: Historical time line (life spans of famous people) Joseph Priestley

1782: First topographical map- Marcellin du Carla-Boniface

1786: Bar chart, line graphs of economic data- William Playfair

1786: Bar chart and line graph showing three time series: Price of wheat, weekly wages and reigning monarch over a 250+ year span- William Playfair
1800-1849: Beginning of modern data graphics

- The first half of the 19th century witnessed an explosive growth in statistical graphics and thematic mapping
 - Polar coordinates, log axes
 - Shaded (choropleth) maps of social data (literacy, crime)
- The birth of data: widespread national collection of data on social and medical issues
 - France: data on crime, literacy, prostitution, … collected centrally
 - England: Births, deaths, disease mortality collected by Registrar General

1801: Pie chart, circle graph invented- William Playfair

1819: First modern statistical map (illiteracy in France)- Charles Dupin

1843: Wind-rose (polar coordinates)- L. Lalanne

1844: Tableau-graphique: variable-width, divided bars, area ~ cost of transport- Charles Joseph Minard
1850-1900: Golden Age

- By the last half of the 19th century the conditions for rapid growth of visualization had been established:
 - widespread data collection for planning, commerce, social theory
 - the beginnings of statistical theory and visual thinking
 - a wide range of graphic forms, reasonably well understood
 - technology:
 - lithography and color printing
 - automatic recording devices
 - calculation: machines & graphical calculators
- The result was a perfect storm-- among the most exquisite graphics ever produced.

E.-J. Marey: La Méthode Graphique

- How to make human and animal motion subject to precise scientific study?
- e.g., aerial locomotion of flying insects & birds
 - What is the frequency of wings of different species?
 - What are the mechanisms of wings to produce lift and forward motion?

A harness, designed to register the trajectory, force and speed of a bird’s wing in flight

Marey (1870) Animal Mechanism

E.-J. Marey: Chronophotography

Visual analysis of the start of a sprint

The runner takes about ½ second (7 frames) to make it to an upright position
Successive frames alternate between power push from the hind leg to landing on the opposite leg

Rather than separate frames, this technique allowed one to see motion continuously in a single static image.

Source: https://lightsmellsloud.wordpress.com/tag/etienne-jules-marey/
1896: Area rectangles on a map to display two variables and their product - Jacques Bertillon

1900-1949: The Modern Dark Ages

- By the 1930s, the growth of statistical methods supplanted enthusiasm for graphics
 - There were few graphic innovations
 - In statistics: numbers were precise; graphs were just pretty pictures
- But graphical methods had entered the mainstream & were popularized
 - Text books, college courses
- There were several graphic-based scientific discoveries
- Electronic computers were born

1905: Lorenz curve (cumulative distribution by rank order) - M.O. Lorenz

1924: ISOTYPE method of pictorial graphics - Otto Neurath

1913: Discovery of atomic number, based on graphical analysis - H. Mosely

1911-1913: The Hertzsprung-Russell diagram & evolution of stars

1944: Harvard's Mark I, the first digital computer - Howard Aiken, Grace Hopper

1904: E.W. Maunder plots distribution of sunspots in sun's latitude by time
- Discovery of 11-year sunspot cycles (& 22-yr: reversal of sun’s magnetic field)

Maunder: Butterfly diagram

latitude

area
1904: E.W. Maunder plots distribution of sunspots in sun’s latitude by time
• Discovery of “Maunder minimum” (1645-1715): “Little Ice Age”
• Smoothing reveals other extrema

1950-1974: Re-birth of graphics

• Visualization began to rise from dormancy in the mid 1960s, spurred largely by:
 ▪ J. W. Tukey’s *Exploratory Data Analysis*: The power of graphics to show the unexpected in data analysis
 ▪ Jacques Bertin’s *Semiologie Graphique*: A general theory of composing graphs and maps
 ▪ computer hardware for computation and display
 ▪ the advent of statistical and graphics software

1950-1974: Re-birth of graphics

1969: Graphical innovations for EDA (stem-and-leaf, box-plots, etc.)- J.W. Tukey

1967: Comprehensive theory of graphical symbols and modes of graphics representation- Jacques Bertin

1967: Reorderable matrix- Jacques Bertin

Multivariate glyphs

1971: Star plots- J. H. Siegel etal

1973: Face plots- Herman Chernoff

Digital display devices

The biggest limitation in the early development of dynamic and interactive graphics was in graphics display devices.

Only B/W, but for the first time, dynamic displays became possible.

By the late 1950s, pen-like input devices allowed rudimentary direct interaction
1975-present

Technology:
- Progressively more powerful computation & graphics
 - Mainframes → PCs → workstations → servers → cloud computing
 - pen plotters → CRTs → graphics hardware & firmware
 - stand-alone → client-server architecture
- Internet
 - email → file sharing (FTP) → www (HTML) → Java → javascript
 - data: open data initiatives with APIs
 - ecommerce: Amazon, Netflix, ... → BIG data
- Software
 - Statistical packages: SAS, SPSS
 - Statistical programming environments: R, matlab, Stata
 - Contributed package archives: CTAN (latex), CPAN (perl), CRAN (R)
 - Collaborative development sites: github, bitbucket, ...

Themes in data visualization:
- high-D problems of progressively higher dimensions
 - grand tour: n-D → 2D projections
 - Dimension reduction methods (PCA, MDS, biplots)
- new data types:
 - categorical data,
 - networks, trees, ...
- interactive data vis
 - linked views
 - direct manipulation: select, zoom, filter
 - dynamic graphics & animation

Next steps: Hardware
- Dynamic 3D graphics was painfully slow for larger data sets.
- Specialized 3D graphics hardware:
 - Early 1970s: Simple LSI graphics chips for video games
 - 70s—80s: Graphics co-processors (GPUs) with increasing graphics capabilities
 - 80s—90s: Silicon Graphics develops high-performance 3D graphics workstations
Next steps: Software

Conclusions

- Data Visualization has deep & wide roots:
 - Cartography: map-making, geo-measurement, thematic cartography, GIS, geo-visualization
 - Statistics: probability theory, distributions, estimation, models, stat-graphics, stat-visualization
 - Data: population, economic, social, moral, medical, …
 - Visual thinking: geometry, functions, mechanical diagrams, EDA, …
 - Technology: printing, lithography, computing…
- Problem driven: developments often driven by practical and theoretical problems of the day
- Communication driven: developments often arose from a desire to communicate better