
The Language of Graphs: from
Bertin to GoG to ggplot2

Michael Friendly
Psych 6135

http://euclid.psych.yorku.ca/www/psy6135/

http://euclid.psych.yorku.ca/www/psy6135/

Topics
• Idea: Graphs as visual language
 Early attempts at standardization of graphs

• Jacques Bertin: Semiology of Graphics
 Mapping of visual properties to data relations

• Graphics programming languages:
 Goal: power & elegance

• Lee Wilkinson: Grammar of Graphics
• Hadlely Wickham: ggplot2

2

Metaphor: Graphs as visual language
• Playfair, Guerry, Minard and others described their

fundamental insight that graphical displays convey
quantitative data more directly than numbers.

• Playfair (1802)
 “Regarding numbers and proportions, the best way to catch the

imagination is to speak to the eyes”

• Minard (1861)
 “The aim of my carte figurative is … to convey promptly to the eye the

relation not given quickly by numbers requiring mental calculation.”

3

Metaphor: Graphs as visual language
• Émile Cheysson (1890) took this further:
 “When a law is contained in figures, it is buried like metal in an ore; it

is necessary to extract it. This is the work of graphical representation.
 It points out the coincidences, the relationships between phenomena,

their anomalies, and we have seen what a powerful means of control it
puts in the hands of the statistician to verify new data, discover and
correct errors with which they have been stained.”

4

Context: Statistical
albums, 1870-

1910

From ~ 1870—1910, statistical albums
of official statistics on topics of
population, trade, moral & political
issues became widespread throughout
Europe and the U.S.
• France: Album de Statistique

Graphique: 1879-1899 (trade,
commerce & other topics)

• USA: Census atlases: 1870/80/90--
• Switzerland: Atlas graphique de la

Suisse:1897, 1914

5

Need for standardization
• Beautiful graphics: Yes, but all separate designs
 Can anything be compared across countries?

• Émile Cheysson (1878)
 “The time will come when Science has to lay down general

principles and decide on well-defined standards. We can no
longer tolerate this sort of anarchy“

• International statistical meetings (ISI)
 1852 (Brussels), 1857 (Vienna), 1869 (The Hague), 1872 (St.

Petersburg), 1876 (Budapest) …
 Participants: Quetelet, Cheysson, Levasseur (France), Ernest Engel,

Gustav von Mayr, Hans Schwabe (Germany), Francis Walker (U.S.), …

6Cheysson Levasseur von Mayr Walker

No consensus
• St. Petersburg (1872) resolutions:
 “The Congress accepts that it is not worth going into details about the

choice of methods or facts for graphical representation”.
 “no strict rule can be imposed on authors, because the only real

problem is that of applying the graphical method to data that is
comparable”.

• Most of the debate had to do with thematic maps
 number of class intervals for a quantitative variable
 number and variety of shading colors

• Yet, the idea of a visual language had been accepted,
along with the need for some theory of graphs

7

Standardize the data before the graphs!

Bertin: Semiology of graphics (1967)
• Defines a system of “grammatical elements” of graphs and

relations among visual attributes that give meaning
(semantics) from perceptual features
 Planar variables: (x,y) coordinates
 Retinal variables: shape, size, color, …

8

Bertin: Semiology of graphics
• Defines a system of mapping of retinal variables to properties

of data variables for perception of relations
 Association (≡) – marks are perceived as similar
 Selection (≠) – marks are perceived as forming classes
 Order (O) – marks are perceived as showing order
 Quantity (Q) – marks are perceived as proportional

• This is the first theory of graphs relating visual attributes
(encoding) to perceptual characteristics (decoding).

• It comprises nearly all known graph and thematic map types
in a general system

9

10

The retinal variables and relationship types can be
implanted in various symbol types in the plane (X,Y)

Visual variables & data characteristics

11

Visual variables differ in the kinds of information they can convey

(≡) (≠) (O) (Q)

Some recommendations

12

Various authors have used Bertin’s system to make recommendations for the
best attributes to use with different symbol types

13

Retinal variables allow several variables to be encoded.
Bertin’s system provides a general framework for thematic mapping, allowing
multiple variables to shown simultaneously in a single map.

Legend:
GEO: (x,y)
T, V, OR: ordered

For Bertin, the
legend is a
symbolic
description of the
coordinate system
and the variables
displayed.

14

Various maps of France, encoding quantitative and categorical variables in a wide
number of different ways.

This semiology is
productive, as is
the semiology of
language.

Allows one to think
of new graphic
encodings.

Decoding: Reading a graphic

How successful is a graph for transmitting information?
Bertin defines three stages for reading a graphic:
• External: What is the overall context?
 Graph title, axis labels

• Internal: What visual variables are used to represent the
components in the graphic?
 points, lines, …
 size, shape, color:hue, color:intensity, texture, …

• Relationships:
 How are these components related?
 What questions can I ask of this graphic?
 What can I learn?

Research topic: Have there been any studies of this ordering in
graph perception?

15

Reading levels
Questions a graph should answer:
• Elementary: find some specific value
• Intermediate: make comparisons, see a trend
• Overall: what is the general message or overall trend?

16

These ideas provided the beginnings of a theory of graphs
related to graph perception.

Reading levels: Example

17

Reading tasks:
• Elementary: “How many guns were sold in January of 2013?”
• Intermediate: “What’s the trend in gun sales since President Obama was

elected?”
• Overall: “What’s the overall trend in gun sales in America since the year

2000?”

Graph from the NY Times,
Feb. 3, 2016

From: https://medium.com/@karlsluis/before-tufte-there-was-bertin-63af71ceaa62

External: “Gun sales”,
time, Obama, text
labels

Internal: lines, points for
labeled events
Relationships: what is the
message?

https://medium.com/@karlsluis/before-tufte-there-was-bertin-63af71ceaa62

Bertin: The reorderable matrix

18

A data table: objects by characteristics

Encode each value by visual attributes

Both rows and columns are
reorderable (≠≠)
Overall relation can be
discovered by permuting
rows, cols

The reorderable matrix

19

Permute rows and columns to put like with like

Interpret row/col order & clusters

This is an early example of
what I called “effect
ordering” for data display

20

This was used by Bertin and
others in a large number of
applied projects

Bertin was to visual data
analysis in France what Tukey
was to EDA in N. America

A physical device
implementing matrix
reordering

Bertifier

21

Bertifier: A web app implementing Bertin’s idea of the reorderable matrix
See: http://www.aviz.fr/bertifier

table: Attitudes and attributes by country
Values encoded by size and shape
Sorted and grouped by themes and country regions

Watch: Youtube video of Bertifier, http://youtu.be/tJxAF_a_yBQ

http://www.aviz.fr/bertifier
http://youtu.be/tJxAF_a_yBQ

Heatmaps

22

Heatmaps are a re-invention of
Bertin’s ideas:
• Cluster analysis to reorder rows/cols
• Shading cells to show some variable

This example shows a microarray
analysis of 128 leukemia patients
using 12625 genes.
• The goal is to distinguish two types

of leukemia
• The shading variable is a z-score

for how well a given gene
distinguishes the two types.

• Several clusters of high association
are discovered!

Image source: https://warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/heatmap/
See also: Wilkinson & Friendly, The History of the Cluster Heat Map, The American Statistician, 2009, 63, 179-184

Patients

Ge
ne

s

https://warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/heatmap/
http://www.datavis.ca/papers/HeatmapHistory-tas.2009.pdf

Heatmaps: the devil is in the details

23From: http://www.sthda.com/english/articles/28-hierarchical-clustering-essentials/93-heatmap-static-and-interactive-absolute-
guide/

There are many implementations of “heatmaps”
They differ importantly in the details of: clustering, shading scheme

This example shows a data
set of 11 measures on 32
cars from the 1974 Motor
Tends magazine
• Each variable was converted

to z-scores
• The value was shaded using

a bipolar color scheme
• Clusters of cars are slightly

separated
• The very high and low values

stand out

variables

ca
r m

od
el

s

http://www.sthda.com/english/articles/28-hierarchical-clustering-essentials/93-heatmap-static-and-interactive-absolute-guide/

Making graphs: menus vs. syntax

24

Menu-driven graphics provide a wide range of graph types, with options
What’s wrong with that?

WYSIAYG: What you see is all you get. No way to do something different
Not reproducible: Change the data → Re-do manually from scratch
Often designed by programmers with little sense of data vis

Programming languages: Power & elegance

• CS view: All programming languages can be proved
to be equivalent (to a Turing machine)

• Cognitive view: Languages differ in:
 expressive power: ease of translating what you want to do

into the results you want
 elegance: how well does the code provide a human-

readable description of what is done?
 extensibility: ease of generalizing a method to wider scope
 learn-ability: your learning curve (rate, asymptote)

+ →

Programming languages: Power & elegance

Language Features:Tools for thinking?
FORTRAN Subroutines – reusable code

Subroutine libraries (e.g., BLAS)

APL,
APL2STAT

N-way arrays, nested arrays
Generalized reduction, outer product
Function operators

Logo Turtle graphics
Recursion, list processing

Lisp, LispStat,
ViSta

Object-oriented computing
Functional programming

Perl Regular expressions
Search, match, transform, apply

SAS Data steps, PROC steps, BY processing
SAS macros, Output Delivery system

R Object-oriented methods, tidyverse: dplyr,
ggplot2, …

Programming languages: Elegance - Logo

Features:
• Based on Lisp, but tuned to young minds
 Papert: Mindstorms: Children, Computers, and Powerful Ideas (1980)

• Turtle graphics: draw by directing a turtle, not by (x,y) coordinates
 Analytic geometry rests on a coordinate system.
 Turtle geometry is "body syntonic“: Tell turtle what to do.

• Data types:
• words, lists, arrays, property lists

• Lists & list processing: inherited from Lisp, but with gentler syntax.
• Lists are infinitely expandable & nestable.

• Recursion rather than iteration is the natural method to process
lists

• Extensions:
• multiple, animated turtles (sprites);
• object-oriented programming (message passing) -> SmallTalk

Logo : Turtle graphics

Turtle primitives: forward, back, left, right,
penup, pendown, ...

> to spiral :size :angle
if :size > 100 [stop]
forward :size
right :angle
spiral (:size + 2) :angle
end > spiral 0 90 > spiral 0 91

Recursive procedures:

> to square :side
repeat 4 [fd :side rt 90]
end

> square 100

Logo procedures: teach the turtle a new word

Logo : Hilbert curves

to Hilbert0 :turn :size
right :turn
forward :size
left :turn
forward :size
left :turn
forward :size
right :turn

end

Start with some basic shape
What happens if you replace each line with a smaller copy
of the basic shape?

What happens if you continue this process?

What happens if you choose a different basic shape?

Logo was more than just pretty pictures

It was graphics & mathematics for young
minds: A language for learning

Logo : Hilbert curves

to Hilbert :depth :turn :size
if :depth = 0 [stop]
right :turn
Hilbert (:depth-1) -:turn :size
forward :size
left :turn
Hilbert (:depth-1) :turn :size
forward :size
Hilbert (:depth-1) :turn :size
left :turn
forward :size
Hilbert (:depth-1) -:turn :size
right :turn

end

Hilbert curve: A continuous, space-filling fractal,
of Hausdorff dimension 2

Theorem (Hilbert, 1891): The euclidean length of the n-th depth
Hilbert curve, Hn is

Proof (by enumeration): Redefine forward to calculate total
turtle path length

to forward.length :size
make "total.length :total.length + :size
forward :size
end

depth: 1 depth: 2 depth: 3 depth: 4 depth: 5

Logo: Tower of Hanoi

31

to Hanoi :n :start :goal :spare # move disks 1:n from START to GOAL
if :n=0 [stop] # are we done?
Hanoi :n-1 :start :spare :goal # move disks 1:n-1 from START to SPARE
move :n :start :goal # move disk n from START to GOAL
Hanoi :n-1 :spare :goal :start # move disks 1:n-1 from SPARE to GOAL
end

The Tower of Hanoi problem has an elegant solution in Logo
Change the ‘move’ instruction to render on screen or by a
robot!

A direct translation
of an algorithm into
code

Move N disks from one pole to another, with no disk ever resting on a disk smaller than itself.

Graphics programming languages: SAS
• SAS: procedures + annotate facility + macros
 PROC GPLOT (x,y plots), PROC GCHART, PROC GMAP, …
 Annotate: data set with instructions (move, draw, text,

fonts, colors)
 Macros: Create a new, generic plot type, combining PROC

steps and DATA steps.

32

data class;
input age sex ht wt;
datalines;
20 M 75 152
22 F 69 132

proc glm data=class;
class sex;
model wt = ht sex;
output out=results
p=predict r=resid;

results
proc gplot data=results;

plot wt * ht = sex;
symbol1 ...
symbol2 ...

Why I gave up SAS: This works well, and is
very powerful, but lacks elegance

SAS thinking : many languages

Output delivery system (ODS)

ODS graphics
• template language

Base SAS, SAS/STAT
• data step, proc steps

• procs, Annotate language
SAS/Graph:

proc iml
• matrix language, graphics

%macro language

Wilkinson: Grammar of Graphics
• Natural language:
 Grammar/syntax: What are the minimal, complete

set of rules to describe all well-formed sentences?
• John ate the big red apple
• John big apple red apple ate the

 Semantics: How to distinguish meaning, nonsense,
poetry in well-formed sentences?

• Large green trucks carry garbage
• Colorless green ideas sleep furiously

• How to apply these ideas to graphics?
 Grammar: Algebra, scales, statistics, geometry, …
 Semantics: Space, time, uncertainty, …
 Needed: a complete formal theory of graphs &

computational graphics language

34

??

Wilkinson: Grammar of Graphics
• A complete system, describing the components of graphs and

how they combine to produce a finished graphic
 “The grammar of graphics takes us beyond a limited set of charts

(words) to an almost unlimited world of graphical forms (statements)”
(Wilkinson, 2005, p. 1).

 “... describes the meaning of what we do when we construct statistical
graphics … more than a taxonomy”

 “This system is capable of producing some hideous graphics … This
system cannot produce a meaningless graphic, however.”

• This is a general theory for producing graphs.
 the foundation of most modern software systems;
 not connected with a theory for reading graphs à la Bertin.

35

Wilkinson: Grammar of Graphics
• Components:
 specification: a formal language for composing graphs
 assembly: coordination of attributes

• internal: a data structure for a graphical “object”

 rendering: producing a graphic on a display system
• low level: device drivers for screen, PDF, PNG, SVG, …

36

code data structure graphical output

Grammar of Graphics: Specification
• Algebra: combine variables into a data set to be plotted
 cross (A*B), nest (A/B), blend (A+B), filter, subset, …

• Scales: how variables are represented
 categorical, linear, log, power, logit, …

• Statistics: computations on the data
 binning, summary (mean, median, sd), region (CI), smoothing

37

Grammar of Graphics: Specification
• Geometry: Creation of geometric objects from variables
 Functions: point, line, area, interval, path, …
 Partitions: polygon, contour,
 Networks: edge
 Collision modifiers: stack, dodge, jitter

• Coordinates: Coordinate system for plotting
 transformations: translation, rotation, dilation, shear, projection
 mappings: Cartesian, polar, map projections, warping, Barycentric
 3D+: spherical, cylindrical, dimension reduction (MDS, SVD, PCA)

38

Grammar of Graphics: Specification
• Aesthetics: mapping of qualitative and quantitative scales to

sensory attributes (extends Bertin)
 Form: position, size, shape (polygon, glyph, image), rotation, …
 Surface: color (hue, saturation, brightness), texture (pattern,

orientation), blur, transparency
 Motion: direction, speed, acceleration
 Sound: tone, volume, rhythm, voice, …
 Text: label, font, size, …

• Facets: Construct multiplots (“small multiples”) by
partitioning, blending or nesting

• Guides: Allow for reading the encodings of variables mapped
to aesthetics
 scales: axes, legend (labels: size, shape, color, …)
 annotations (title, footnote, line, arrow, ellipse, text, …)

39

Grammar of Graphics: Implementation
• Wilkinson illustrates the GoG with a programming language

(GPL: the Graphics Production Language)
• GPL statements
 DATA: expressions that create variables to display from data sets
 TRANS: variable transformations prior to plotting (e.g., ranking the

data points)
 ELEMENT: define graphical elements (e.g., points, lines, …) and their

aesthetic attributes (e.g., shape, color, …) to use in the display
 SCALE: apply scale transformations to the plot (e.g., square root or

log)
 COORD: select the coordinate system for use in the graphic (e.g.,

Cartesian, polar)
 GUIDE: guides to aid interpretation (axes, legends)

40

GPL example: scatterplot

41

DATA: x = "SepalLength"
DATA: y = "SepalWidth"
DATA: z = “Species"
TRANS: x = x
TRANS: y = y
ELEMENT: point(position(x*y), color(z))
COORD: rect(dim(1,2))
SCALE: linear(dim(1))
SCALE: linear(dim(2))
GUIDE: axis(dim(1), label("Sepal Length"))
GUIDE: axis(dim(2), label("Sepal Width"))

A simple scatterplot of the Iris data, points colored by species
TRANS, SCALE, COORD and GUIDE all
show the defaults & aren’t necessary
here.
The key one is ELEMENT, specifying
points, positioned by (x*y) and colored
by z

SPSS graphics now use GPL as
the backend (syntax) for their
graphics engine

GPL example: contour plot

42

ELEMENT: point(position(birth*death), label(country))
ELEMENT: contour(position(smooth.kernel.density(birth*death)), color.hue())
GUIDE: form.line(position((0,0), (30,30)), label(“Zero population growth”))
GUIDE: axis(dim(1), label(“Birth rate"))
GUIDE: axis(dim(2), label(“Death rate"))

A smoothed contour plot of birth rate vs. death rate for selected countries

Wilkinson, Grammar of Graphics, Fig 1.1

GPL syntax

43

The essential features of a graph are described by ELEMENT
• The geometrical objects (point, line, interval, …) are specified within this
• Their visual properties (position, color) and statistical summaries are given as well

Some typical graph types:

From: Pere Milán, Imagining data with ggplot2, QM Forum presentation, Nov. 23, 2015

Facets & frames
Tables of graphs:
• Facets: → graphs of subset
• Frames: → separate graphs

Linked micromap:
• Population density of US,

divided in octiles
• States in each octile shown

separately

44

GoG was a coherent language for
specifying and producing nearly all
known graphic forms.

Colorless green graphs sleep furiously
• JSM 2017: Dinner with Lee Wilkinson, Howard

Wainer, Paul Vellman, & others
• The great debate:
 LW: The GoG is a complete theory, a formal mathematical

model comprehending all graphs.
"Beauty is truth, truth beauty,"--that is all Ye know on earth, and all ye need to know.

 MF: There is more--
• Implementation matters: translating a graphic idea into a finished

graph should be facilitated by the language of graphic code.
• A productive language for graphs should encompass the steps of

data analysis
 Pere Milán: A truly expressive graphic language should

recommend the right graphic(s) to “get the message
home”

45

Wickham: ggplot2
• ggplot2: Elegant graphics for data

analysis
 a computational language for thinking

about & constructing graphs
 sensible, aesthetically pleasing defaults

• + themes: default, bw, journal, tufte, …

 infinitely extendable
• ggplot extensions:

https://exts.ggplot2.tidyverse.org/

46

https://exts.ggplot2.tidyverse.org/

Wickham: ggplot2
• Implementation of GoG in R as

layers of a graphic
 Basic layers:

• Data,
• Aesthetics (data → plot mapping)
• Geoms (points, lines, bars, …),

 Statistics: summaries & models
 Coordinates: plotting space
 Facets: partition into sub-plots
 Themes: define the general features

of all graphical elements

47

ggplot2: data + geom = graph
• Every graph can be described as a combination of

independent building blocks, connected by “+” (read: “and”)
 data: a data frame: quantitative, categorical; local or data base query
 aesthetic mapping of variables into visual properties: size, color, x, y
 geometric objects (“geom”): points, lines, areas, arrows, …
 coordinate system (“coord”): Cartesian, log, polar, map,

48

ggplot(FMA,
aes(x=F, y=A, color=F, size=A) +

geom_point()

ggplot2: data + geom = graph

49

ggplot(data=mtcars,
aes(x=hp, y=mpg,

color=cyl, shape=cyl)) +
geom_point(size=3)

In this call:
• data=mtcars: data frame
• aes(x=, y=): plot X,Y variables
• aes(color=, shape=): attributes
• + geom_point(): what to plot
• the coordinate system is taken to

be the standard Cartesian (x,y)
• a corresponding legend is

automatically generated

ggplot2: geoms

50

Wow! I can really see something there.

How can I enhance this visualization?

Easy: add a geom_smooth() to fit linear
regressions for each level of cyl

ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
geom_point(size=3) +
geom_smooth(method="lm", aes(fill=cyl))

ggplot2: GoG -> graphic language
• The implementation of GoG ideas in ggplot2 for R

created a more expressive language for data graphs
 layers: graph elements combined with “+” (read: “and”)

 themes: change graphic elements consistently

51

ggplot(mtcars, aes(x=hp, y=mpg)) +
geom_point(aes(color = cyl)) +
geom_smooth(method ="lm") +

ggplot2: more geoms

52

ggplot2 facilitates graphical
thinking by making a clear
separation among:
• mapping data variables to plot

features (aes());
• geometric objects (geom_())
• statistical summaries (stat_())

ggplot2: layers & aes()

53

ggplot(mtcars, aes(x=hp, y=mpg)) +
geom_point(size=3, aes(color=cyl, shape=cyl)) +
geom_smooth(method="lm", aes(color=cyl, fill=cyl)) +
geom_smooth(method="loess", color="black", se=FALSE)

Aesthetic attributes in the ggplot()
call are passed to geom_() layers

Other attributes can be passed as
constants (size=3, color=“black”) or
with aes(color=, …) in different layers

This plot adds an overall loess smooth to
the previous plot

ggplot2: themes

54

All the graphical attributes of ggplot2 are
governed by themes – settings for all
aspects of a plot

A given plot can be rendered quite
differently just by changing the theme

If you haven’t saved the ggplot object,
last_plot() gives you something to work
with further

last_plot() + theme_bw()

ggplot2: themes

55

Built-in ggplot themes provide a wide variety of basic graph styles

Other packages provide custom themes, or you can easily define your own

theme_economist() theme_bluewhite() theme_hc()

ggplot2: facets

56

plt <-
ggplot(mtcars, aes(x=hp, y=mpg, color=cyl, shape=cyl)) +

geom_point(size=3) +
geom_smooth(method="lm", aes(fill=cyl))

plt + facet_wrap(~gear)

Facets divide a plot into separate subplots based on one or more discrete variables

Syntax:
facet_wrap(rowvar ~ colvar)

ggplot2: extensions

57

ggplot2 provides a prototype system for implementing new geoms, stats, themes, …
Many of these are listed at https://exts.ggplot2.tidyverse.org/

https://exts.ggplot2.tidyverse.org/

ggplot2: extensions

58

ggplot2 provides a prototype system for implementing new geoms, stats, themes, …
Many of these are listed at https://exts.ggplot2.tidyverse.org/

https://exts.ggplot2.tidyverse.org/

ggplot2: extensions

59

ggwordcloud

ggridges ggstatsplot The wide range of
extensions indicates
the power of ggplot2
as a general framework
for data graphics

A larger view: Data science
• Data science treats statistics & data visualization as parts of a larger

process
 Data import: text files, data bases, web scraping, …
 Data cleaning → “tidy data”
 Model building & visualization
 Reproducible report writing

60

The tidyverse of R packages

61

These ideas inspire a larger view of data analysis and graphics based on tidy principles.

Summary
• Graphical developers in the Golden Age recognized the idea of

“graphic language,” but could not define it.
• Bertin first formalized the relations between graphical

features (“retinal variables”), data attributes (O, Q, ≠, ≡), and
“reading levels”

• Wilkinson, in GoG, created a comprehensive syntax and
algebra to define any graph

• Wickham, in ggplot2, created an expressive language to ease
the translation of graphic ideas into plots.

• Tidyverse ideas place data analysis & graphics within a
communication-oriented, reproducible research framework.

62

	The Language of Graphs: from Bertin to GoG to ggplot2
	Topics
	Metaphor: Graphs as visual language
	Metaphor: Graphs as visual language
	Context: Statistical albums, 1870-1910
	Need for standardization
	No consensus
	Bertin: Semiology of graphics (1967)
	Bertin: Semiology of graphics
	Slide Number 10
	Visual variables & data characteristics
	Some recommendations
	Slide Number 13
	Slide Number 14
	Decoding: Reading a graphic
	Reading levels
	Reading levels: Example
	Bertin: The reorderable matrix
	The reorderable matrix
	Slide Number 20
	Bertifier
	Heatmaps
	Heatmaps: the devil is in the details
	Making graphs: menus vs. syntax
	Programming languages: Power & elegance
	Programming languages: Power & elegance
	Programming languages: Elegance - Logo
	Logo : Turtle graphics
	Logo : Hilbert curves
	Logo : Hilbert curves
	Logo: Tower of Hanoi
	Graphics programming languages: SAS
	SAS thinking : many languages
	Wilkinson: Grammar of Graphics
	Wilkinson: Grammar of Graphics
	Wilkinson: Grammar of Graphics
	Grammar of Graphics: Specification
	Grammar of Graphics: Specification
	Grammar of Graphics: Specification
	Grammar of Graphics: Implementation
	GPL example: scatterplot
	GPL example: contour plot
	GPL syntax
	Facets & frames
	Colorless green graphs sleep furiously
	Wickham: ggplot2
	Wickham: ggplot2
	ggplot2: data + geom = graph
	ggplot2: data + geom = graph
	ggplot2: geoms
	ggplot2: GoG -> graphic language
	ggplot2: more geoms
	ggplot2: layers & aes()
	ggplot2: themes
	ggplot2: themes
	ggplot2: facets
	ggplot2: extensions
	ggplot2: extensions
	ggplot2: extensions
	A larger view: Data science
	The tidyverse of R packages
	Summary

