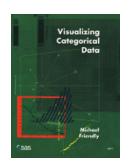


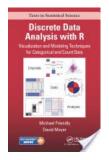
Psychology of Data Visualization: <u>Course Overview</u>

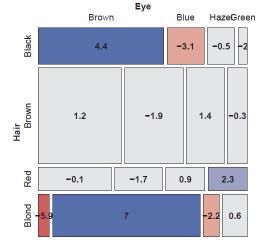
Michael Friendly
Psych 6135

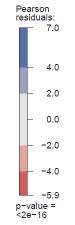
http://euclid.psych.yorku.ca/www/psy6135/ @datavisFriendly

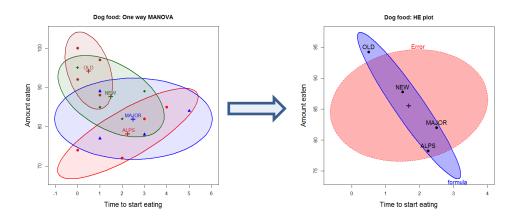
Introducing: me

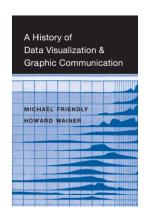

I wear two hats, both reflected on my license plate:

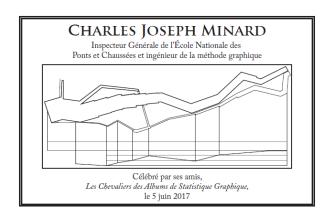

Yours to discover!

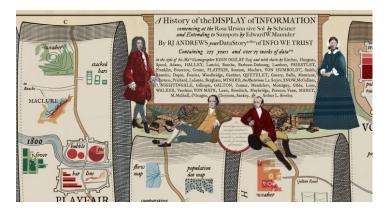




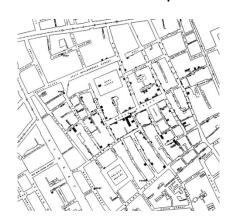


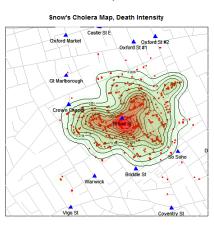



mosaic plots for frequency tables

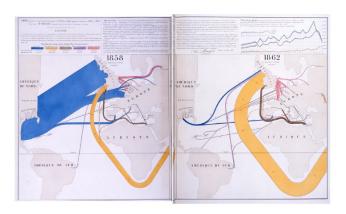

HE plots for MANOVA

Introducing: me


History of data visualization: Les Chevaliers; Friendly & Wainer (2021)



John Snow's map of cholera in London, 1854



original

modern enhancement

C. J. Minard: Flow maps of cotton trade

Visual explanation: What happened in the US Civil War?

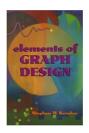
Course Topics

- Varieties of information visualization
 - Goals of visualization
 - Survey of graphic forms
- History of information visualization
- Psychological models, theories and results
 - What can people see, understand and remember from data displays?
 - Perceptual aspects, cognitive aspects
- Software tools for information visualization
- Visualization in statistics: case studies
 - Categorical data; High-D data; Dynamic and interactive methods
- Human factors research: how to tell what works

Your role

- Weekly readings see the course web site for updates
- Discussion no formal grade, but please contribute
- Discussion leader (20%)
 - Each week 1-2 of you will lead a brief discussion on one of the readings or sub-topics (~ 5 min.)
- Class presentation (40%)
 - In the last week, each person will give a ~ 20 min presentation on a topic of research, application or software related to data visualization
- Research proposal (40%)
 - Prepare a brief research proposal on a data visualization topic

Books & Readings


Colin Ware, Information Visualization, 3rd Ed.

What perceptual science has to say about data visualization, from a bottom-up perspective Course notes at: http://ccom.unh.edu/vislab/VisCourse/index.html

Alberto Cairo, The Truthful Art

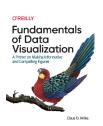
Information graphics from a communication perspective Blog: http://www.thefunctionalart.com/

Steven Kosslyn, Elements of Graph Design

A cognitive psychologist looks at graphs and presents some do's and don'ts. There are better books like this today.

Hadley Wickham, ggplot2: Elegant graphics for data analysis, 2nd Ed.

1st Ed: Online, http://ggplot2.org/book/


ggplot2 Quick Reference: http://sape.inf.usi.ch/quick-reference/ggplot2/ Complete ggplot2 documentation: http://docs.ggplot2.org/current/

More books I like

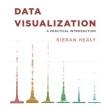
Tamara Munzner (2014), Visualization Analysis & Design

An attractive new book combining computer science and design perspectives
Web page: http://www.cs.ubc.ca/~tmm/vadbook/ with lots of illustrations & lectures

Claus Wilke(2019), Fundamentals of Data Visualization

A detailed, practically oriented book on data visualization methods

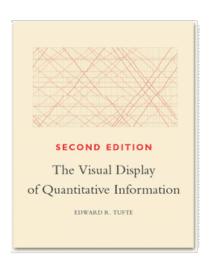
Online: https://clauswilke.com/dataviz/

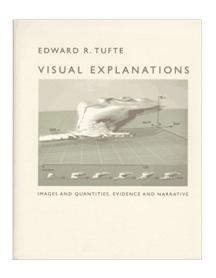

Course notes: https://wilkelab.org/SDS375/

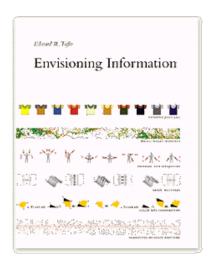
Manuel Lima, The Book of Trees: Visualizing branches of knowledge

A visual delight; an entire history of tree-type diagrams

Blog: http://www.visualcomplexity.com/vc/blog/


Keiran Healy, Data Visualization: A Practical Introduction


An accessible primer on how to create effective graphics from data using ggplot2


Online: http://socvis.co

Tufte Stufte

Four books by Edward Tufte largely defined the landscape for data visualization and information design

Concepts introduced:

- chart junk,
- data-ink ratio,
- small multiples,
- substance takes precedence over visual design

Web site: https://www.edwardtufte.com

Blogs & Web resources

My web site, http://datavis.ca. Contains the Milestone Project on the history of data vis, Data Visualization gallery, links to books, papers and courses.

Kaiser Fung, http://junkcharts.typepad.com/. Fung discusses a variety of data displays and discusses how they can be improved.

Nathan Yau's blog, http://flowingdata.com. A large number of blog posts illustrating data visualization methods with tutorials on how to do these with R and other software.

http://visiphilia.org/. Statisticians Di Cook and Heike Hofmann from Iowa State University blog about data visualization topics, using R

visual complexity Manuel Lima's blog, http://www.visualcomplexity.com/vc/blog/, with hundreds of projects on all types of visualizations

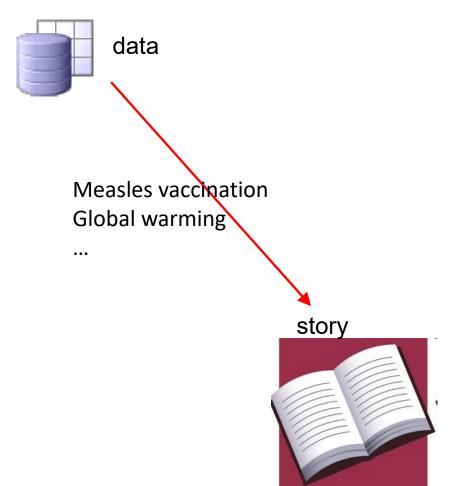
Blogs & Web resources

DATA STORIES

http://datastori.es/. A podcast on data visualization with Enrico Bertini and Moritz Stefaner; interviews with over 100 graphic designers & developers.

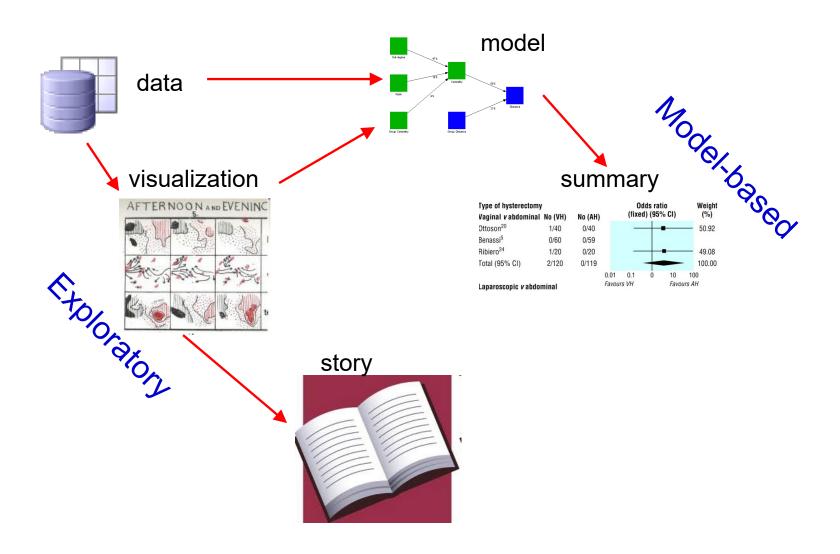
Annual awards celebrate excellence and beauty in data visualizations, infographics, interactives & information art. https://www.informationisbeautifulawards.com

https://www.r-bloggers.com/. A large collection of posts on R news and tutorials by over 750 R bloggers.

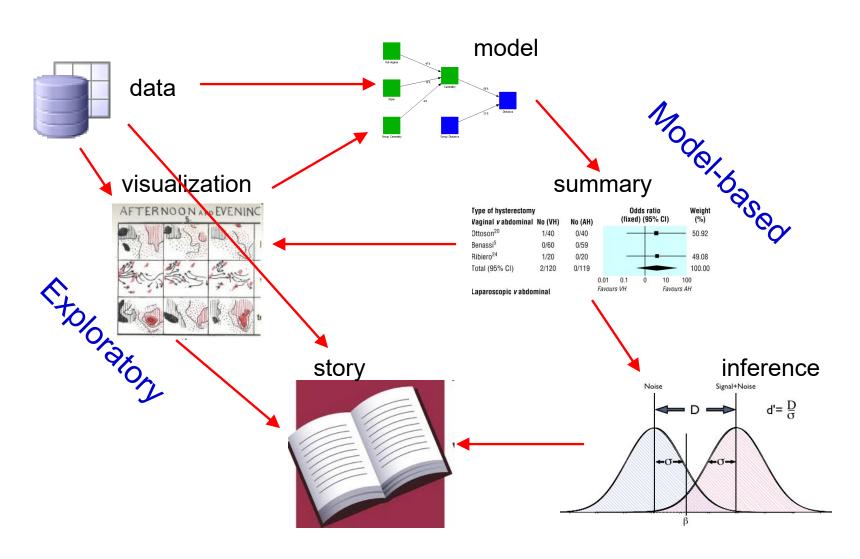

Raymond Andrews, http://infowetrust.com/. A visual storyteller delights with graphic stories from the history of data visualization

Psychology facts: Why visualization?

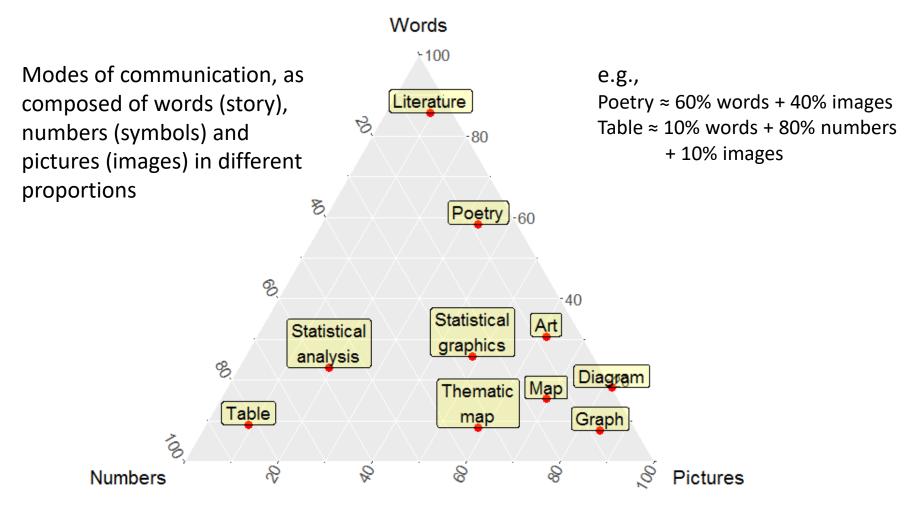
- ~90% of information about the environment is received by a person through the eyes.
- ~50% of our brain neurons are constantly involved in the processing of visual information.
- The presence of pictures increases desire to read the text by ~80%.
- A person remembers 10% of what he/she heard, 20% of what's read, and 80% of what's seen!
- People perceive 70% of the information if there are no illustrations. Add pictures there — the figure will increase up to 95%.


Data, pictures, models & stories

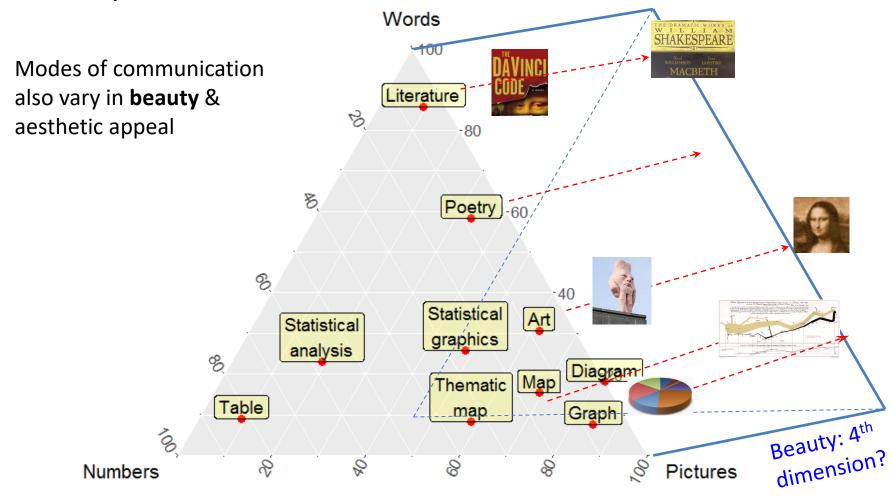
Goal: Tell a credible story about some real data problem


Data, pictures, models & stories

Two paths to enlightenment


Data, pictures, models & stories

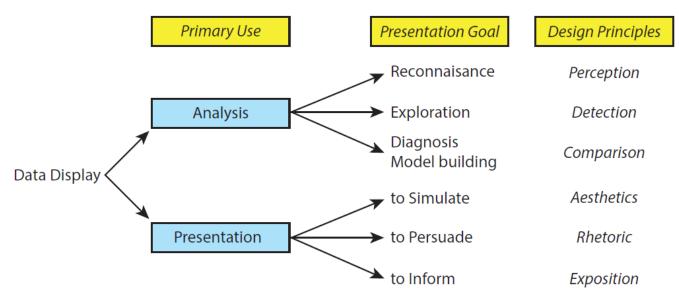
Now, tell the story!


Words, numbers and pictures

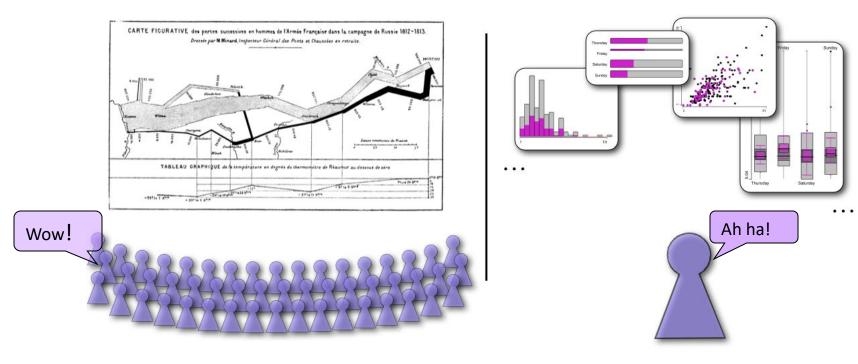
Pictures and images in a wider context

Words, numbers and pictures

Beauty: The 4th dimension


Roles of graphics in communication

- Graphs (& tables) are forms of communication:
 - What is the audience?
 - What is the message?


Analysis graphs: design to see patterns, trends, aid the process of data description, interpretation

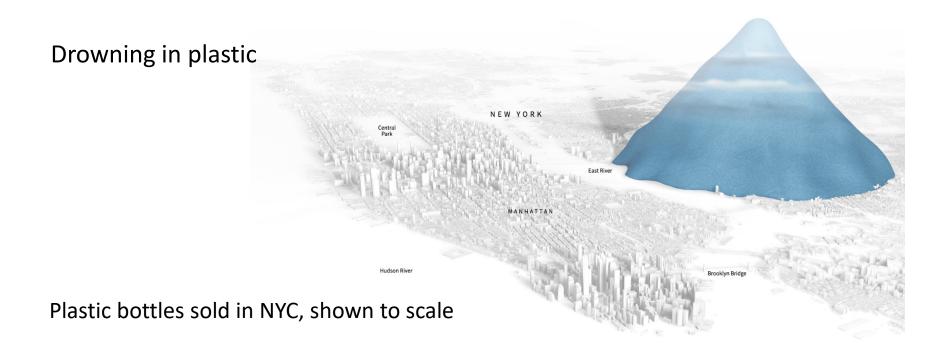
Presentation graphs: design to attract attention, make a point, illustrate a conclusion

Basic functions of data display

Different graphs for different purposes

Presentation

Goal: the Wow! experience Single image for a large audience Tells a clear story!


Exploration

Goal: the Ah ha! Experience

Many images, for a narrow audience (you!), linked to analysis

Infographics

The best infographics tell a story, using numbers, but shown visually

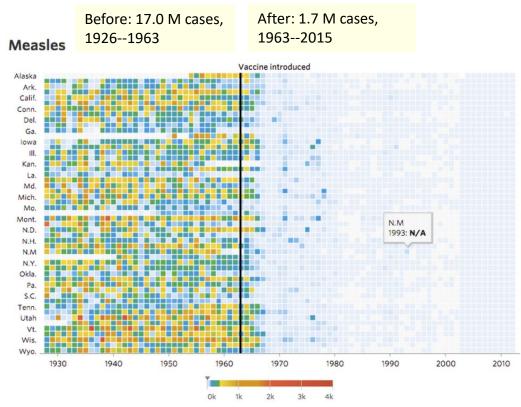
From: https://graphics.reuters.com/ENVIRONMENT-PLASTIC/0100B275155/index.html

Powerful graphs: Measels and vaccines

Visualizing the impact of health policy interventions

In 2015 Tynan DeBold & Dov Friedman in the Wall Street Journal show the effect of the introduction of vaccination programs in the US states on disease incidence, using color-coded heat maps for a variety of

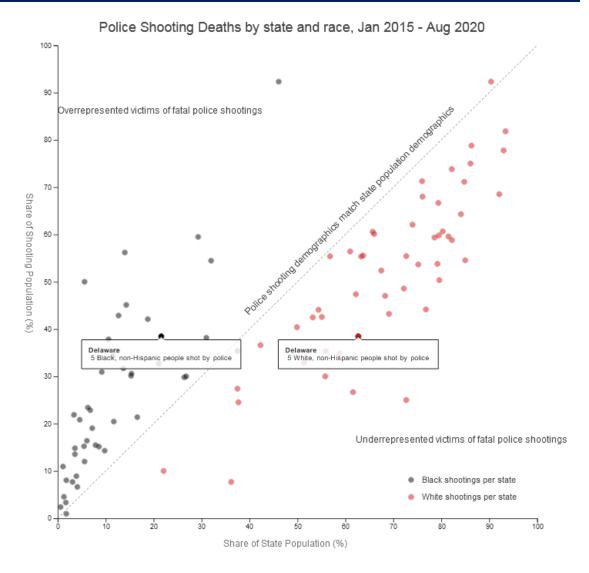
diseases


Measles was decimated!

The message hits you between the eyes!

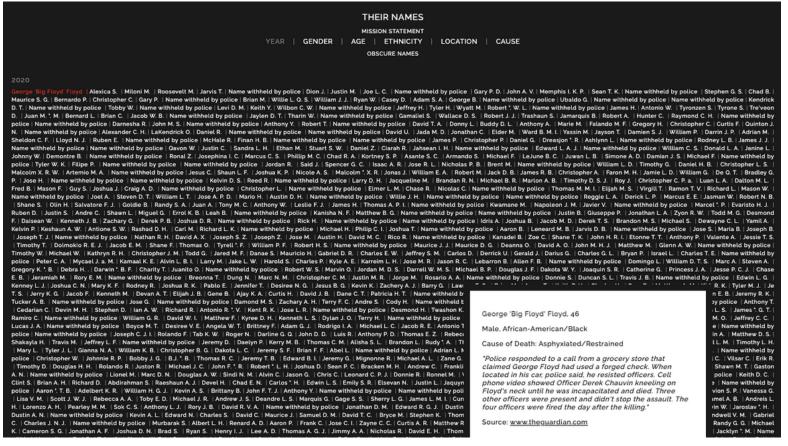
Powerful graphs make comparison easy

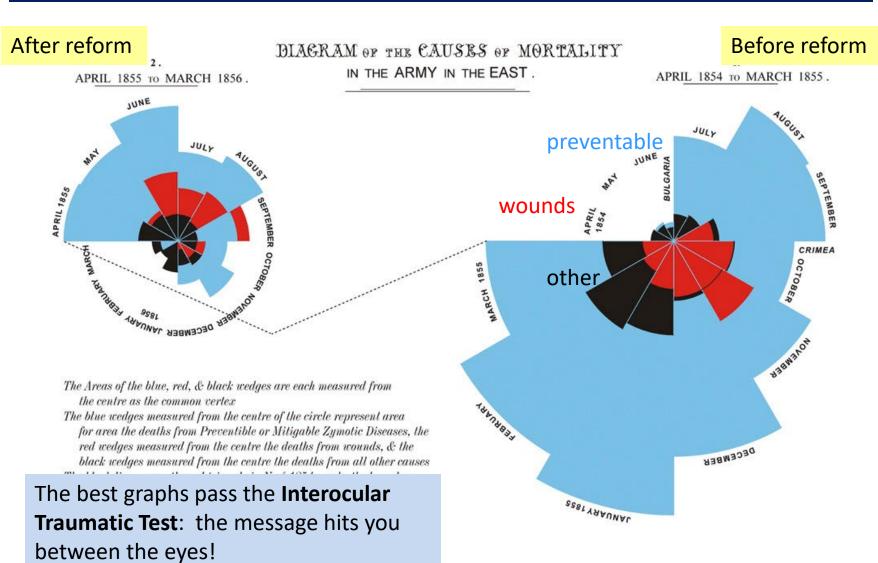
In 2014, vaccination rates declined and measles re-emerged in those areas


Effective graphs can cure ignorance, but not stupidity.

Police shooting deaths

Analysis of Washington Post database on 5500 police shooting deaths for Blacks vs. Whites

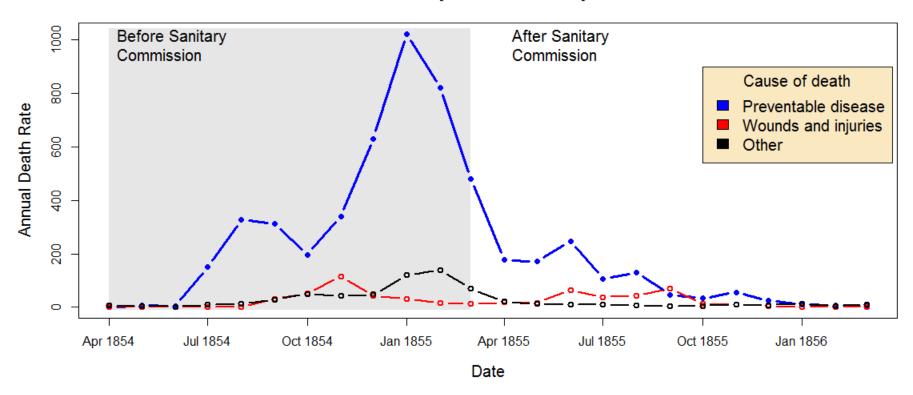

Plotting % of shooting vs. % of pop shows a clear & disturbing pattern


Their names: Interactive graphic

As powerful as Yad Vashem & the Washington D.C. Vietnam memorial, this list of 28,000 US fatal encounters with police commands attention.

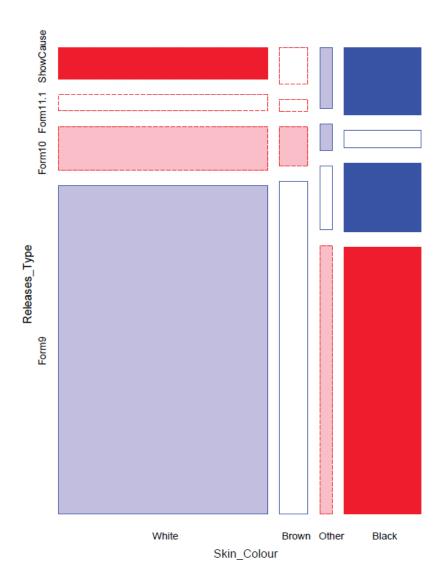
Each one is linked to a story or description. Classified by {Gender, Age, Cause}

Presentation graph: Nightingale (1857)


Data graph: Nightingale (1857)

The same, as a data graph, using time-series line plots

Many statisticians might prefer this today, but it doesn't draw attention or interest as


Flo's original did.

Causes of Mortality of the British Army in the East

Racial profiling: Analysis graph

- Toronto Star (2002) study of police actions on a charge of simple possession of marijuana
 - release with a summons (Form9) vs. hold for bail (Show cause)
 - Evidence for racial bias?
- First graph: mosaic display
 - area ~ frequency
 - shading: ~ residual
 - Obs > Expected in blue
 - Obs < Expected in red

Racial profiling: The process

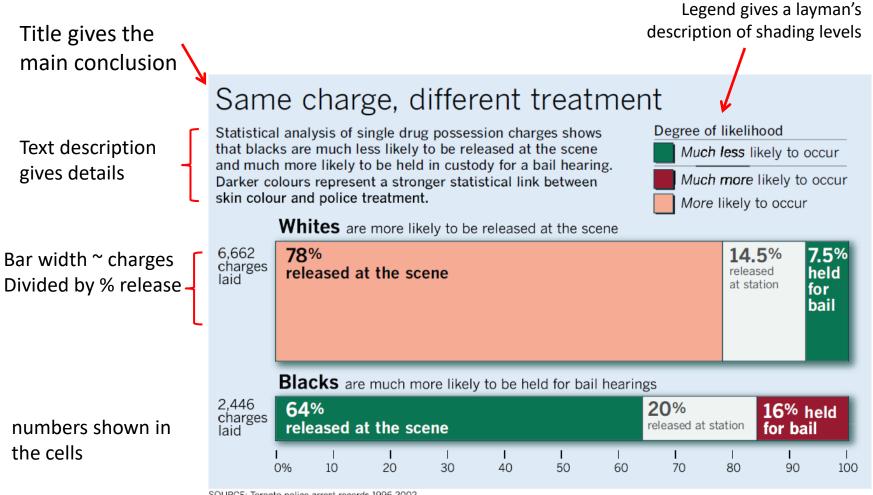
How to communicate these results most effectively?

What is the message? What features are directly comprehensible to the audience?

R SECTION > TORONTO STAR (WEDNESDAY, DECEMBER 11, 2002 ★ thestar.com

Race and Crime

Graphic designer's early attempts

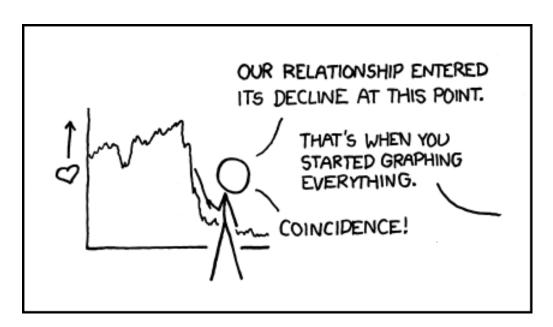


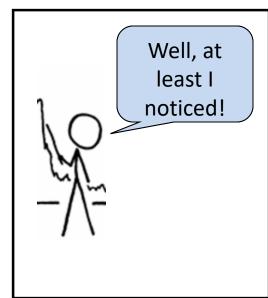
My early attempts

Man behind the numbers

Racial profiling: Presentation graphic

Together, we created this self-explaining infographic

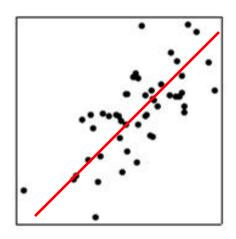



Why plot your data?

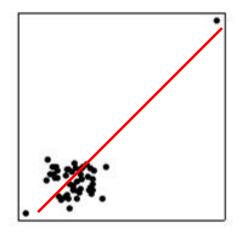
Graphs help us to see

patterns, trends, anomalies and other features

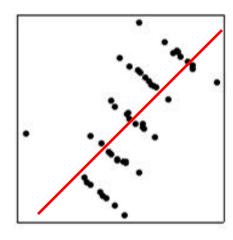
not otherwise easily apparent from numerical summaries.



Source: http://xkcd.com/523/


Why plot your data?

Three data sets with exactly the same bivariate summary statistics:


- Same correlations, linear regression lines, etc
- Indistinguishable from standard printed output
- Totally different interpretations!

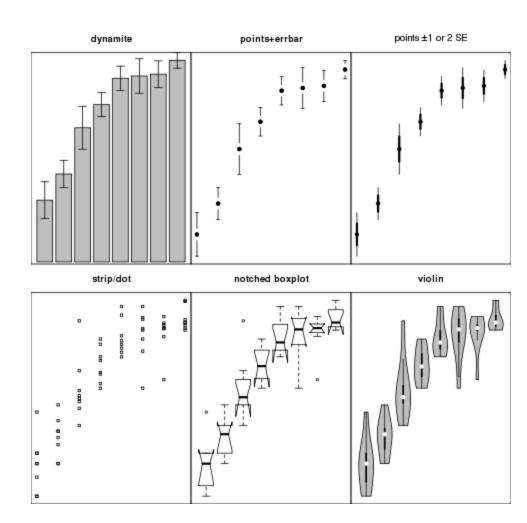
Standard data

r=0 but + 2 outliers

Lurking variable?

Comparing groups: Analysis vs. Presentation graphs

Six different graphs for comparing groups in a one-way design

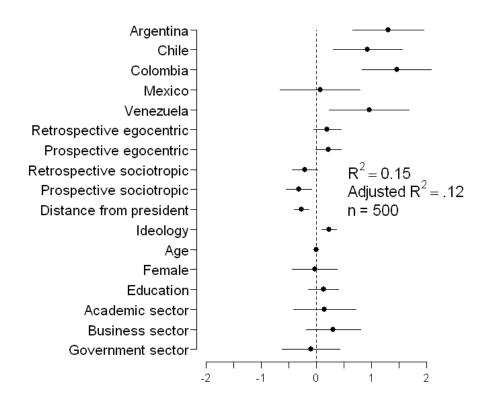

- which group means differ?
- equal variability?
- distribution shape?
- what do error bars mean?
- unusual observations?

Never use dynamite plots

Always explain what error bars mean

Consider tradeoff between

summarization & exposure



Presentation: Turning tables into graphs

Table 2 from Stevens (2006): Determinants of Authoritarian Aggression

Variable	Coefficient (Standard Error)
Constant	.41 (.93)
Countries	
Argentina	1.31 (.33)### B,M
Chile	.93 (.32)### B,M
Colombia	1.46 (.32) ### B,M
Mexico	.07 (.32) ^{A,CH,CO,V}
Venezuela	.96 (.37)## B,M
Threat	
Retrospective egocentric economic perceptions	.20 (.13)
Prospective egocentric economic perceptions	.22 (.12)#
Retrospective sociotropic economic perceptions	21 (.12)#
Prospective sociotropic economic perceptions	32 (.12)##
Ideological Distance from president	
Ideology	
Ideology	.23 (.07) ###
Individual Differences	
Age	.00 (.01)
Female	03 (.21)
Education	.13 (.14)
Academic Sector	.15 (.29)
Business Sector	.31 (.25)
Government Sector	10 (.27)
R ²	.15
Adjusted R ²	.12
n	500
###p < .01, ##p < .05, #p < .10 (two-tailed)	
A Coefficient is significantly different from Arger	ntina's at p < .05;
^B Coefficient is significantly different from Brazil	l's at p < .05;
^{CH} Coefficient is significantly different from Chil	e's at p < .05;
CO Coefficient is significantly different from Col	ombia's at p < .05;
M Coefficient is significantly different from Mexico's at p < .05;	
V Coefficient is significantly different from Venzeluela's at p < .05	

Graphs of model coefficients are often clearer than tables

Source: <u>tables2graphs.com</u>

Graphs & Information design

- Graphs & info displays should be viewed in relation to communication goals & audience
- Some criteria for assessing:
 - comprehensibility: does it make information as easy to understand as possible?
 - attention: does the audience take notice?
 - aesthetics: is it visually appealing?
 - memorability: will they remember it?
 - behavior: does it result in some desired action?

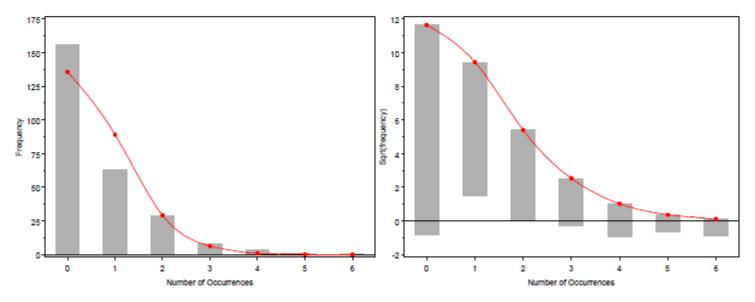
From: Ben Jones, To Optimize or to Satisfice in Data Visualization? https://dataremixed.com/2016/01/optimize-or-satisfice-in-dataviz/

Effective data display

Make the data stand out

- Fill the data region (axes, ranges)
- Use visually distinct symbols (shape, color) for different groups
- Avoid chart junk, heavy grid lines that detract from the data

Facilitate comparison

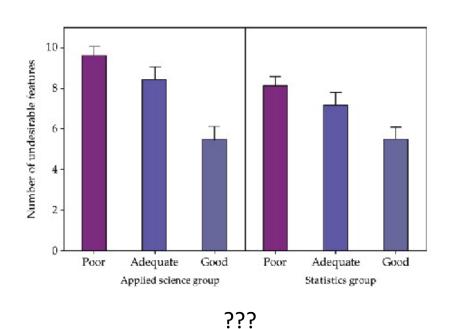

- Emphasize the important comparisons visually
- Side-by-side easier than in separate panels
- "data" vs. a "standard" easier against a horizontal line
- Show uncertainty where possible

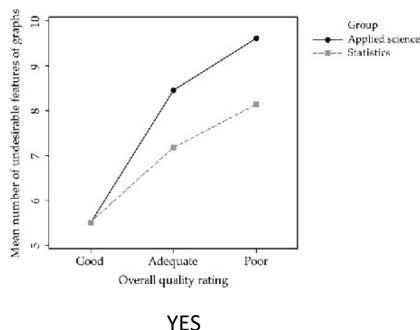
Effect ordering

 For variables and unordered factors, arrange them according to the effects to be seen

Comparisons— Make visual comparisons easy

- Visual grouping— connect with lines, make key comparisons contiguous
- Baselines— compare data to model against a line, preferably horizontal
- Frequencies often better plotted on a square-root scale

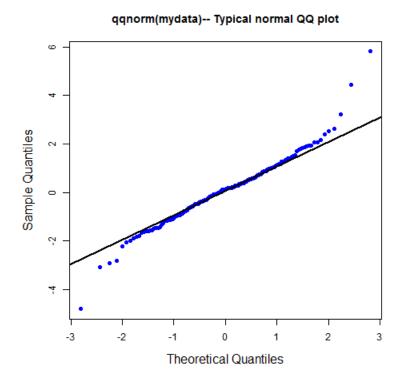

Standard histogram with fit

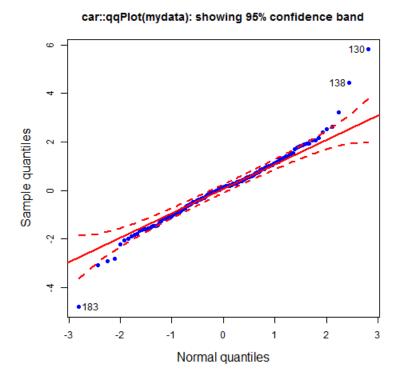

Suspended rootogram

Make comparisons direct

- Use points not bars
- Connect similar by lines
- Same panel rather than different panels

Is there evidence of an interaction here?





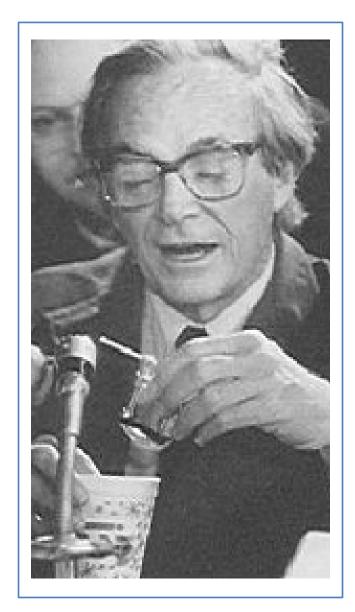
Showing uncertainty

- Standard plots of observed vs. predicted lack a basis for assessment of uncertainty
- Confidence envelopes indicate extent of deviation
- Identify "noteworthy" observations to track them down

Example: Normal QQ plots used to assess normality of data

Effect ordering

- Information presentation is always ordered
 - in time or sequence (a talk or written paper)
 - in space (table or graph)
 - Constraints of time & space are dominant— can conceal or reveal the important message
- Effect ordering for data display
 - Sort the data by the effects to be seen
 - Order the data to facilitate the task at hand
 - lookup find a value
 - comparison which is greater?
 - detection find patterns, trends, anomalies

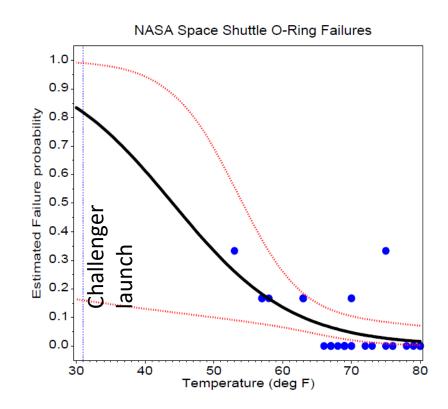

Effect order failure: the *Challenger* disaster

- Few events in history provide as compelling illustration of importance of appropriate ordering and display of information
 - On January 28, 1968, the space shuttle Challenger exploded on take-off.
 - The cause was later determined to be that rubber O-rings failed due to cold weather
- Tables and charts presented to NASA by Thiokol engineers showed data from prior launches ordered by time (launch number), rather than by temperature—the crucial factor.
- The engineers' charts were also remarkable for information obfuscation:
 "erosion depth" (O-ring damage), "blow-by" (soot on O-rings), ...

1		Cn	oss Sectional	View	Too	View				
A HET	SAN Ma.	Erosion Depth (in.)	Partmater Affected (deg)	Hondral Ois. (in.)	Langth Of Max Erosion (in.)	Total Heat Affected Leagth (in.)	Clecking Location (deg)			
SIC RN Center Field** Sic N Forward Field** Sic N Center Field (prim)*** Sic RN Center Field (prim)***	27A 222A 15A 15B 15B	Hone HORE 0.010 0.038 Hane	Hone NONE 154.0 130.0 45.0	0.280 0.280 0.280 0.280 0.280	None NONE 4.25 12.50 None	Aone HONE 5-25 58.75 29.50	338 -18 163 344 364			
415 RM Forward Field 41C LM Aft Field* 418 LM Forward Field	138 11A 10A	0.026 Mane 0.040	110.0 Mone 217.0	0.280 0.280 0.280	3.00 None 3.00	Hone Mone 14.50	275 351			
STS-2 8H Aft Field	28	0.053	116.0	0.200			10			

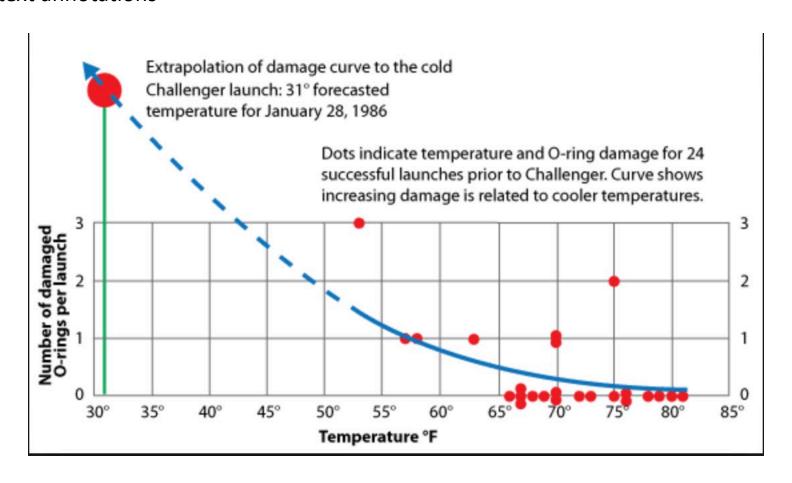
Visual explanation: Physics

- NASA appointed members of the Rogers Commission to investigate the cause of the disaster
- the noted physicist Richard Feynman discovered the cause: at low temperature, O-rings became brittle and were subject to failure
- in his testimony, he demonstrated the effect by plunging a rubber Oring into a cup of ice water

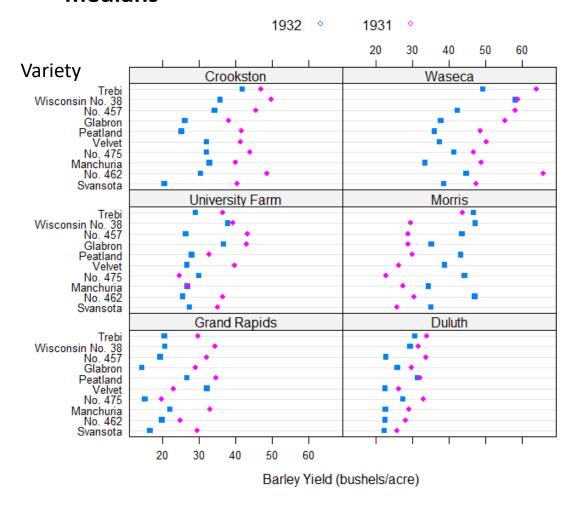


Visual explanation: Graphics

- Subsequent statistical analysis showed the relationship between launch temperature and O-ring failures
- As Tufte (1997) notes: the fatal flaw was in the ordering of the data.


The graph shown here is the result of a statistical model fit to the data

- The thick line shows the predicted value of failure vs. temperature
- The red dotted lines show uncertainty of the predicted values


Presentation graphic

A presentation version of the previous graph alters the scales and describes the story in text annotations

Graphic displays: Main effect ordering

 To see trends, patterns, anomalies: Sort unordered factors by means or medians

Data on barley yields 10 varieties x 6 sites x 2 years

3 way dot plot, sorted by main effect means

- Which site has the highest yield?
- Which variety is highest on average?
- Which site stands out in pattern over year?

Tabular displays: Main effect ordering

- Tables are often presented with rows/cols ordered alphabetically
 - good for lookup
 - bad for seeing patterns, trends, anomalies

Table 1: Average Barley Yields (rounded), Means by Site and Variety

		Site								
Variety	Crookston	Duluth	Grand Rapids	Morris	University Farm	Waseca	Mean			
Glabron	32	28	22	32	40	46	33.3			
Manchuria	36	26	28	31	27	41	31.5			
No. 457	40	28	26	36	35	50	35.8			
No. 462	40	25	22	39	31	55	35.4			
No. 475	38	30	17	33	27	44	31.8			
Peatland	33	32	31	37	30	42	34.2			
Svansota	31	24	23	30	31	43	30.4			
Trebi	44	32	25	45	33	57	39.4			
Velvet	37	24	28	32	33	44	33.1			
Wisconsin No. 38	43	30	28	38	39	58	39.4			
Mean	37.4	28.0	24.9	35.4	32.7	48.1	34.4			

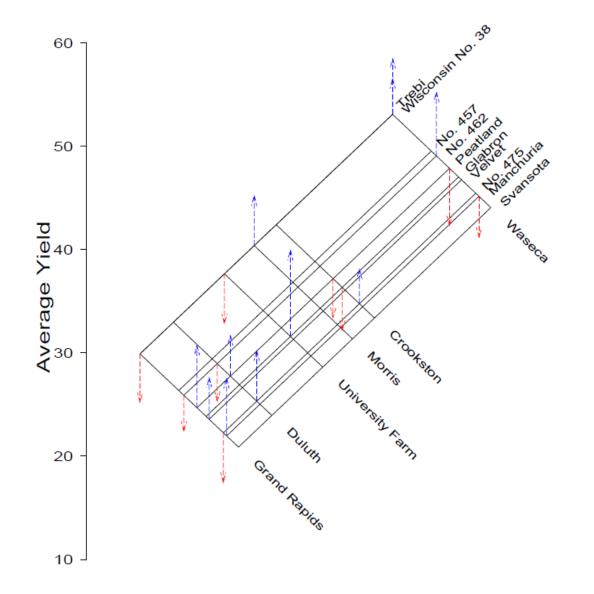
Tabular displays: Main effect ordering

- Better: sort rows/cols by means/medians
- Shade cells according to residual from additive model

Table 2: Average Barley Yields, sorted by Mean, shaded by residual from the model Yield = Variety + Site

	Site								
Variety	Grand Rapids	Duluth	University Farm	Morris	Crookston	Waseca	Mean		
Svansota	23	24	31	30	31	43	30.4		
Manchuria	28	26	27	31	36	41	31.5		
No. 475	17	30	27	33	38	44	31.8		
Velvet	28	24	33	32	37	44	33.1		
Glabron	22	28	40	32	32	46	33.3		
Peatland	31	32	30	37	33	42	34.2		
No. 462	22	25	31	39	40	55	35.4		
No. 457	26	28	35	36	40	50	35.8		
Wisconsin No. 38	28	30	39	38	43	58	39.4		
Trebi	25	32	33	45	44	57	39.4		
Mean	24.9	28.0	32.7	35.4	37.4	48.1	34.4		

Tabular displays: Main effect ordering


Yield difference, $\Delta y_{ij} = 1931 - 1932$ by Variety & Site

Ordered: by row and column means; **shaded:** by value ($|\Delta y_{ij}| > \{2,3\} \times \sigma(\Delta y_{ij})$) What features stand out?

Table 3: Yield Differences, 1931-1932, sorted by mean difference, and shaded by value

	Site								
Variety	Morris	Duluth	University Farm	Grand Rapids	Waseca	Crookston	Mean		
No. 475	-22	6	-5	4	6	12	0.1		
Wisconsin No. 38	-18	2	1	14	1	14	2.4		
Velvet	-13	4	13	- 9	13	9	2.9		
Peatland	-13	1	5	8	13	16	4.8		
Manchuria	-7	6	0	11	15	7	5.5		
Trebi	-3	3	7	9	15	5	6.1		
Svansota	- 9	3	8	13	9	20	7.3		
No. 462	-17	6	11	5	21	18	7.4		
Glabron	- 6	4	6	15	17	12	8.0		
No. 457	-15	11	17	13	16	11	8.8		
Mean	-12.2	4.6	6.3	8.2	12.5	12.5	5.3		

Graphical display: Two-way tables

Tukey two-way plot of average barley yield

If there is no interaction, $y_{ij} = \mu + \alpha_{site} + \beta_{variety}$

Site & variety effects sorted automatically Effects are spaced by fitted values

More variation among sites than varieties Waseca best, by a wide margin

Multivariate data: correlation ordering

- Arrange variables so that:
 - Similar variables are contiguous
 - Ordered to show patterns of relations
- Arrange observations so that:
 - Similar variables are contiguous
 - Ordered to show patterns of relations

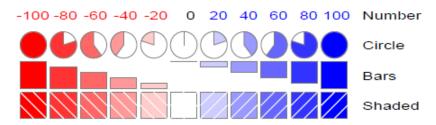
Correlation matrices

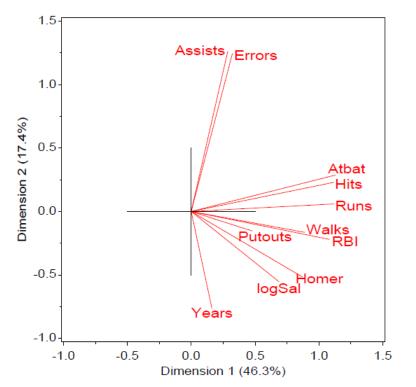
Baseball data: Batting, fielding and (log) Salary Nobody wants to see all those decimals

```
> cor(bb)
       Assists Atbat
                      Errors
                                 Hits
                                         Homer logSal Putouts
                                                                 RBI
                                                                            Walks
                                                                                     Years
Assists 1.0000 0.3421
                       0.70350 0.3040 -0.16160
                                                0.0500 -0.0434 0.0629
                                                                      0.179 0.1025 -0.0851
At.bat.
         0.3421 1.0000
                       0.32558 0.9640
                                       0.55510
                                               0.4149 0.3096 0.7960
                                                                      0.900 0.6244
                       1.00000 0.2799 -0.00974 -0.0208 0.0753 0.1502
Errors 0.7035 0.3256
                                                                      0.193 0.0819 -0.1565
Hits
        0.3040 0.9640
                      0.27988 1.0000
                                      0.53063
                                               0.4496 0.2997 0.7885 0.911 0.5873
                                                                                    0.0186
Homer
       -0.1616 0.5551 -0.00974 0.5306
                                      1.00000
                                               0.3398 0.2509 0.8491
                                                                      0.631 0.4405
                                                                                    0.1135
       0.0500 0.4149 -0.02080 0.4496
logSal
                                       0.33983
                                               1.0000 0.2245 0.4441
                                                                      0.426 0.4324
                                                                                    0.5374
                                       0.25093 0.2245 1.0000 0.3121
Putouts -0.0434 0.3096
                      0.07531 0.2997
                                                                      0.271 0.2809 -0.0200
                                       0.84911 0.4441 0.3121 1.0000
         0.0629 0.7960
                       0.15015 0.7885
RBI
                                                                      0.779 0.5695
                                      0.63108 0.4256 0.2712 0.7787
       0.1793 0.8998
                       0.19261 0.9106
                                                                      1.000 0.6970 -0.0120
Runs
Walks
       0.1025 0.6244
                      0.08194 0.5873 0.44045 0.4324 0.2809 0.5695 0.697 1.0000
       -0.0851 0.0127 -0.15651 0.0186 0.11349 0.5374 -0.0200 0.1297 -0.012 0.1348 1.0000
Years
```

If you are going to present the numbers, round a lot

Assists	Assists 100		Errors	TI - + -							
Assists	100	2.4		HILS	Homer	logSal	Putouts	RBI	Runs	Walks	Years
		34	70	30	-16	5	-4	6	18	10	- 9
Atbat	34	100	33	96	56	41	31	80	90	62	1
Errors	70	33	100	28	-1	-2	8	15	19	8	-16
Hits	30	96	28	100	53	45	30	79	91	59	2
Homer	-16	56	-1	53	100	34	25	85	63	44	11
logSal	5	41	-2	45	34	100	22	44	43	43	54
Putouts	-4	31	8	30	25	22	100	31	27	28	-2
RBI	6	80	15	79	85	44	31	100	78	57	13
Runs	18	90	19	91	63	43	27	78	100	70	-1
Walks	10	62	8	59	44	43	28	57	70	100	13
Years	- 9	1	-16	2	11	54	-2	13	-1	13	100

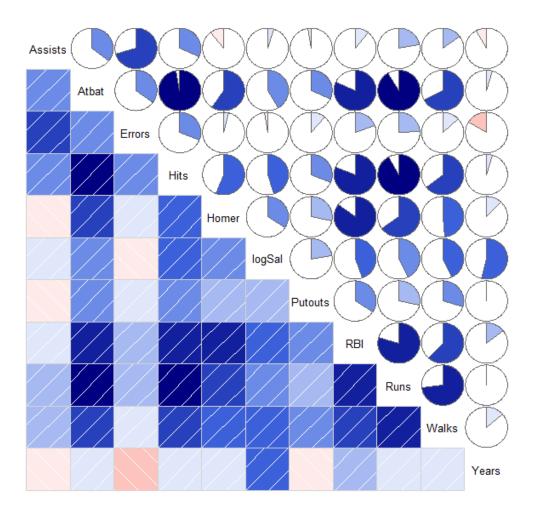

Correlation ordering: corrgrams


Rendering: a correlation value can be displayed in different ways, for different tasks

Correlation ordering:

- A PCA finds weighted sums of variable to maximize variance accounted for
- Angles between vectors reflect the correlations
- → Arrange variables in the order of their angles

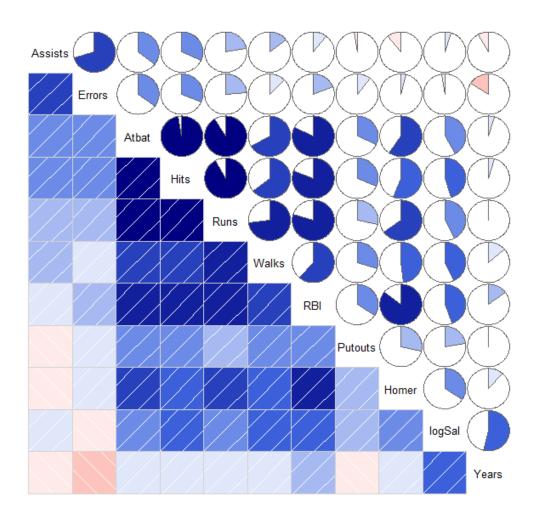
Correlation value (x 100)



Baseball data

This is a corrgram display of the correlations among the baseball statistics, with the variables ordered alphabetically

Baseball data alphabetic order

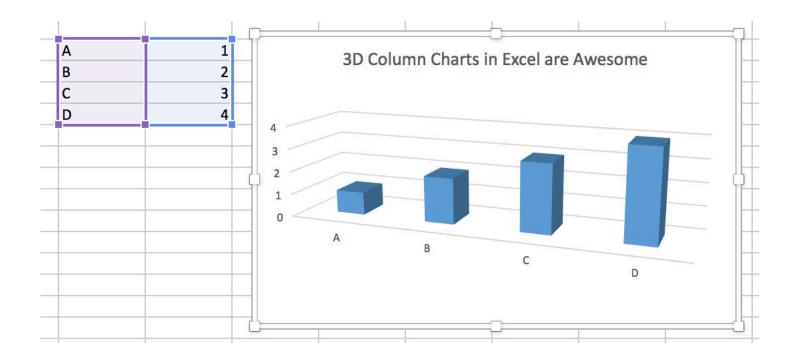


Baseball data

The same display, with the variables sorted according to the angles between vectors in the PCA

Not that dramatic, but it isolates the positive & negative correlations

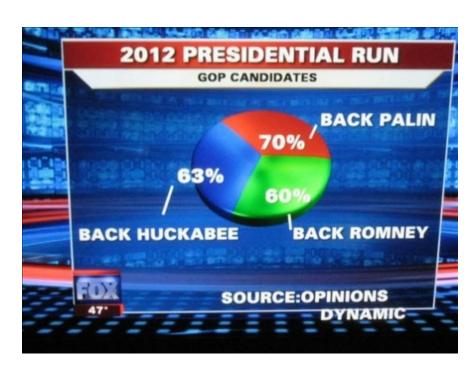
Baseball data PC2/PC1 order

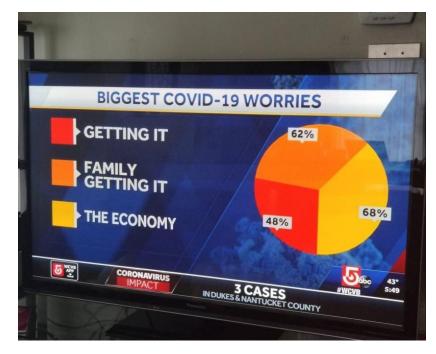


Graphs: Good/Bad, Excellent/Evil

- Like good writing, good graphical displays of data communicate ideas with:
 - clarity,
 - precision, and
 - efficiency— avoids graphic clutter
 - Even better: excellent graphs make the message obvious
- Like poor writing, bad graphical displays:
 - distort or obscure the data,
 - make it harder to understand or compare, or
 - thwart the communicative effect the graph should convey.
 - Even worse: evil graphs distort, or mislead.

Bad graphs are easy in Excel


Friends don't let friends use Excel for data visualization or statistics



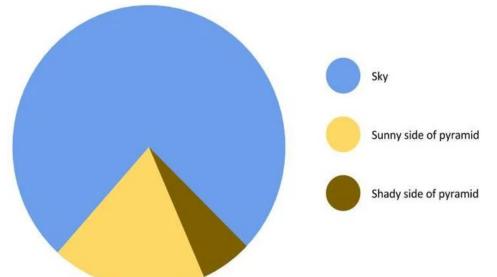
How many things are wrong with this graph?

Pie charts are easy to abuse

What's wrong with these pictures?

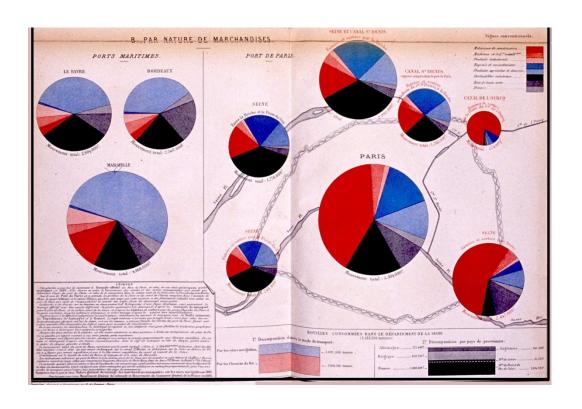
$$1 \pi = 193\%$$

$$1 \pi = 178\%$$


Why do graphic designers so often get this wrong?

Pie chart merriment

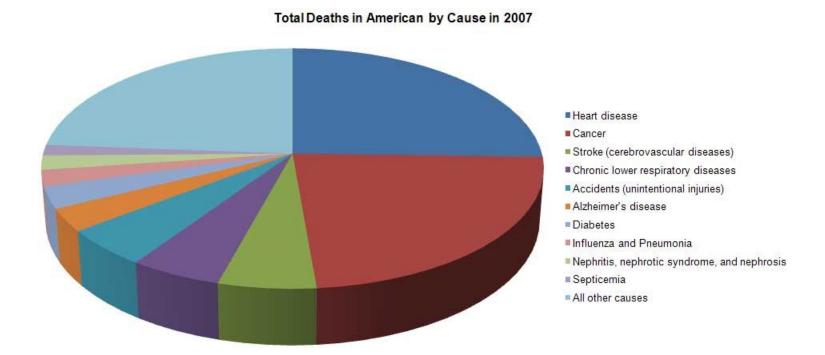
On the other hand, pie charts are a great source of merriment for people interested in graphics


But: how much π have I eaten?

What perceptual ideas make this a great joke and lesson?

Once you see the pyramid, it's hard to see the pie.

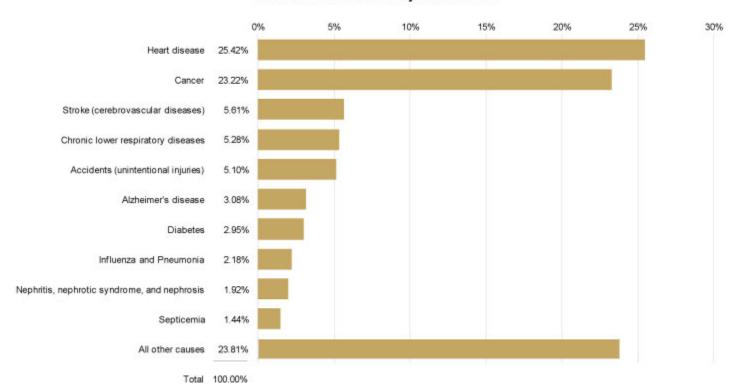
But, can be used to great effect



This graphic uses pie charts to show the transport of different kinds of goods to the ports of Paris and the principal maritime ports

- the size of each pie reflects total
- the sectors reflect relative %
- location places them in context

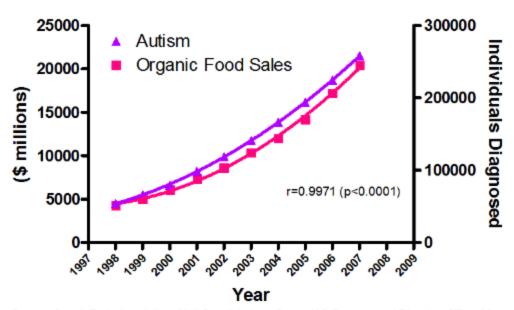
Album de Statistique Graphique, 1885, plate 17.


3D pie charts are usually evil

What was the intent of the designer of this graphic? Which category led to the greatest total deaths? What was the proportion of deaths due to strokes? Did more people die from strokes vs. accidents?

Simple re-design makes it clearer

Total Deaths in America by Cause in 2007


Double Y-axis: Really evil graphs

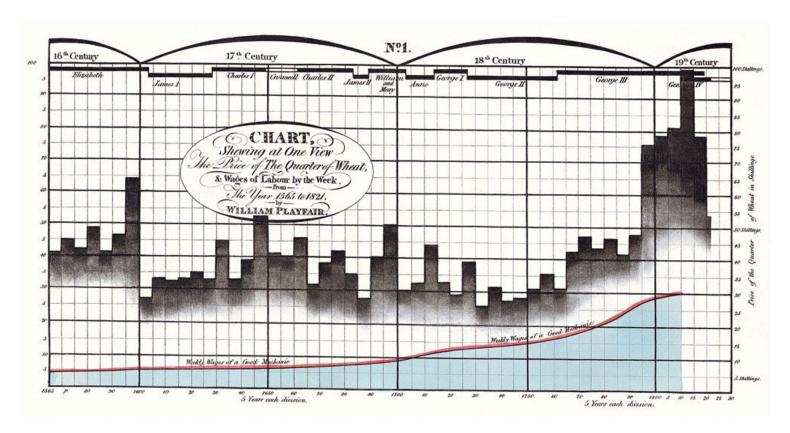
After pie charts, double Y-axis graphs have caused more trouble than almost any other

OMG, autism has been increasing directly with sales of organic food!

BAN ORGANIC FOOD!

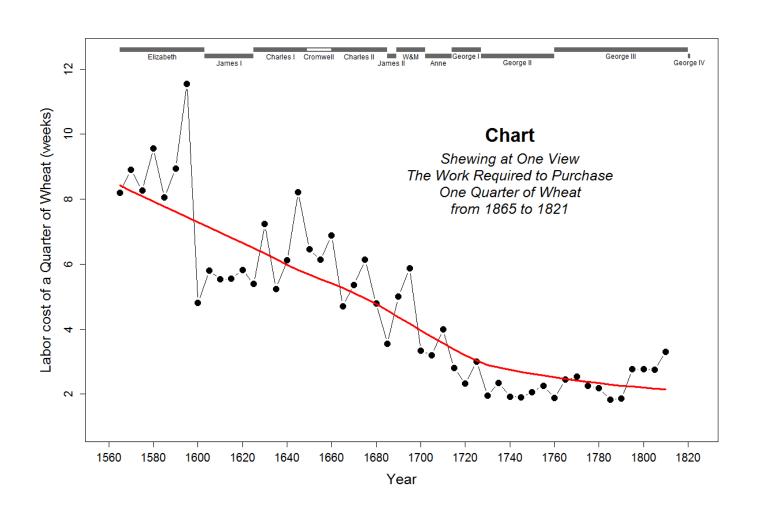
The real cause of increasing autism prevalence?

Sources: Organic Trade Association, 2011 Organic Industry Survey, U.S. Department of Education, Office of Spec Education Programs, Data Analysis System (DANS), OMB# 1820-0043: "Children with Disabilities Receiving Spec Education Under Part B of the Individuals with Disabilities Education Act


But, can be used to great effect

William Playfair invented the pie chart, line chart and bar chart.

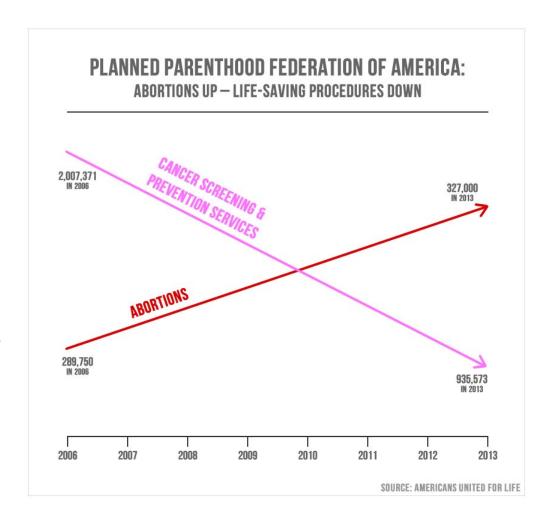
In this figure, he shows 3 parallel time series over a 250-year period, 1560--1810


- weekly wages of a good mechanic
- price of wheat
- reigning monarch

Goal: show that workers were better off most recently (1810) than in the past

Or, another graph would have been better

A modern re-vision plots the ratio of price of wheat to wages directly

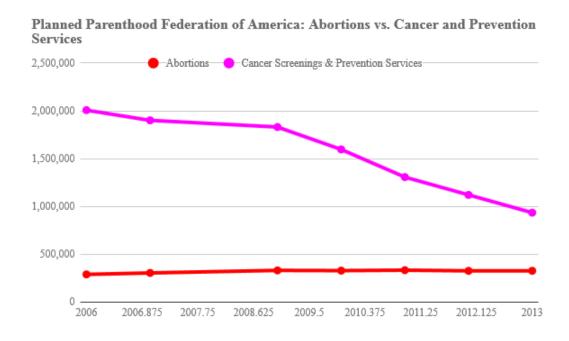

Even more evil: No scales, no data

Rep. Jason Chaffetz, R-Utah, sparred with Planned Parenthood president Cecile Richards during a high-profile hearing on Sept. 29, 2015 and presented this graph.

"In pink, that's the reduction in the breast exams, and the red is the increase in the abortions. That's what's going on in your organization."

Created by an anti-abortion group it is a deliberate attempt to mislead.

Can you see why?

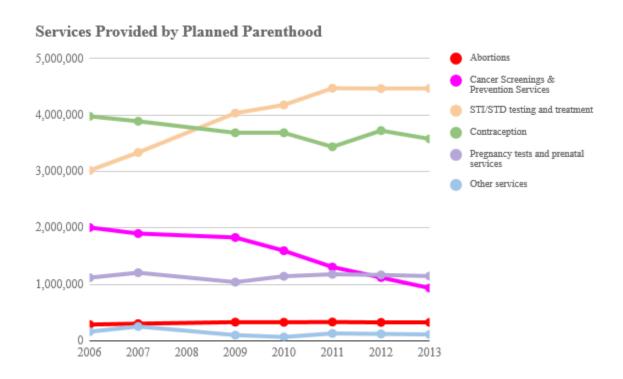

See: http://www.politifact.com/truth-o-meter/statements/2015/oct/01/jason-chaffetz/chart-shown-planned-parenthood-hearing-misleading-/

Corrected graph

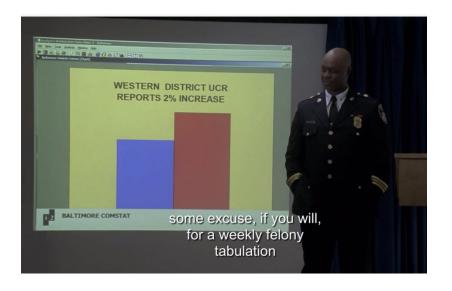
This graph shows the actual data from the Planned Parenthood reports used by Americans United for Life

The number of abortions was relatively steady.

Some services like pap smears, dropped due to changing medical standards about who should be screened and how often.



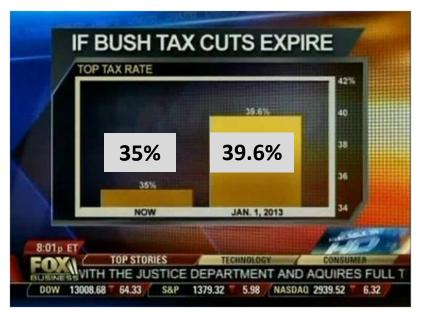
What are a few improvements that could be made to this graph?

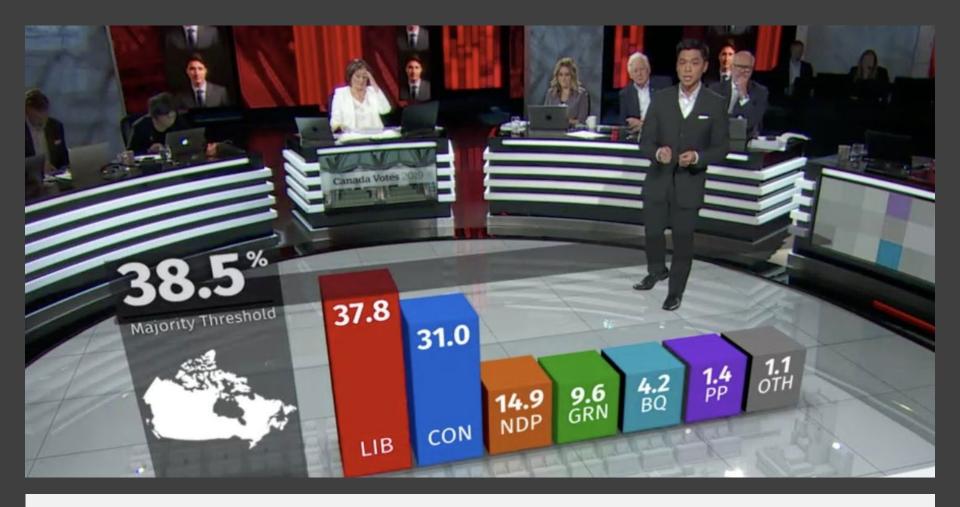

Corrected graph, in context

Showing a wider range of PP activities puts these data in context

PP activities were far higher for contraception and STD testing

Evil Bars


You can say anything you want if you don't show a scale for the vertical axis


Q: Do people judge the difference in heights or the ratio of heights?

A: It depends on the question

You can greatly distort the perception of difference or ratio by truncating the Y axis.

Y-axis truncation is/was the default in Excel!

More evil: 3D bars

- CBC found it irresistible to make 3D bars to show the 2015 election projection.
- Why do you think the smallest 5 bars are all the same height?

Graphical Excellence: Tables

A study by Abigail Friendly (2017) wanted to show the use of benefits afforded to Toronto developers for their contributions of different types over time

Figure 9: Section 37 benefits by type (1998–2015)

fron	ale	Sca	2014– 2016	2010– 2013	2006– 2009	2003– 2005	1998– 2002	
higl valı		0 - 10	15	83	54	35	30	Roads, streetscapes
		11 - 20	16	47	59	50	26	Culture, community, recreation
Mo		21 - 30	20	52	41	41	27	Parks
app		31 - 40	11	56	38	26	17	Affordable housing
Car		41 - 50	4	32	41	25	26	Public art
and		51 - 60	3	18	26	13	16	Heritage
Wh		61 - 70	3	20	10	7	11	Transit
201		71 - 80	1	11	5	2	6	Libraries
		81 - 90	3	8	7	6	3	Other
		31 - 40 41 - 50 51 - 60 61 - 70 71 - 80	11 4 3 3	56 32 18 20 11	38 41 26 10 5	26 25 13 7 2	17 26 16 11 6	Affordable housing Public art Heritage Transit Libraries

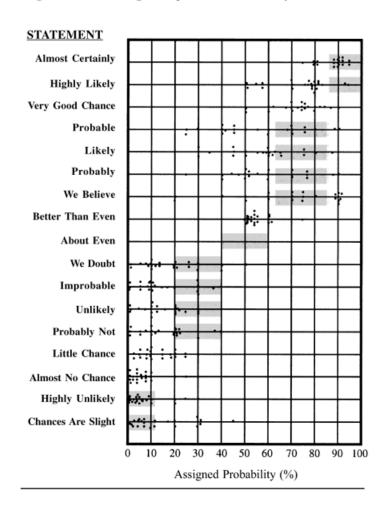
Color background scale from light to dark highlights the largest values

Most frequent benefits appear at the top

Can see overall trends and anomalies

What happened in 2014-2016?

Graphical failure


This graph reports the results of a survey by Sherman Kent for the CIA with the question:

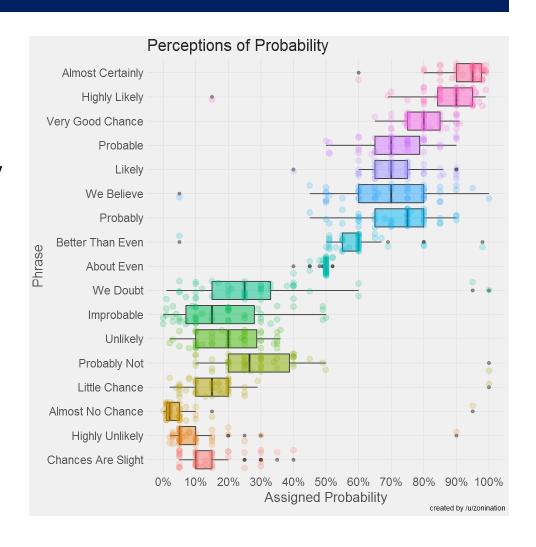
What [probability/number] would you assign to the phrase "[phrase]"

The goal was to contribute to an understanding of how intelligence analysts use these terms

Why can this be considered a graphical failure?

Figure 18: Measuring Perceptions of Uncertainty

Graphical excellence


This graph shows the same data, as both dotplots & boxplots

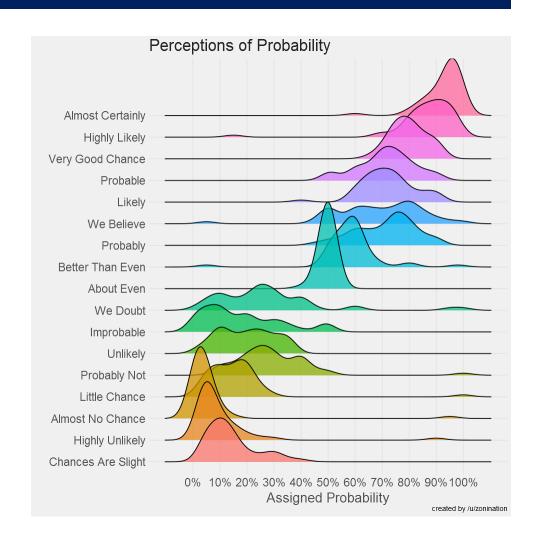
We can see a lot more:

- "about even" has very low variability
- the last 3 categories are listed out of order
- the extreme outliers stand out
- skewness is for high probability, + for low probability

Technical notes:

- software: ggplot2
- design: faint grid lines
- color: points use transparent color & jittering; outliers also shown in black

From: https://github.com/zonination/perceptions


Graphical excellence

This graph uses "ridgeline" plots to show the same data

Each one is a small version of a density plot showing a smoothed version of the distribution

Stacking them in this way allows center, variability, shape and other features to be readily compared.

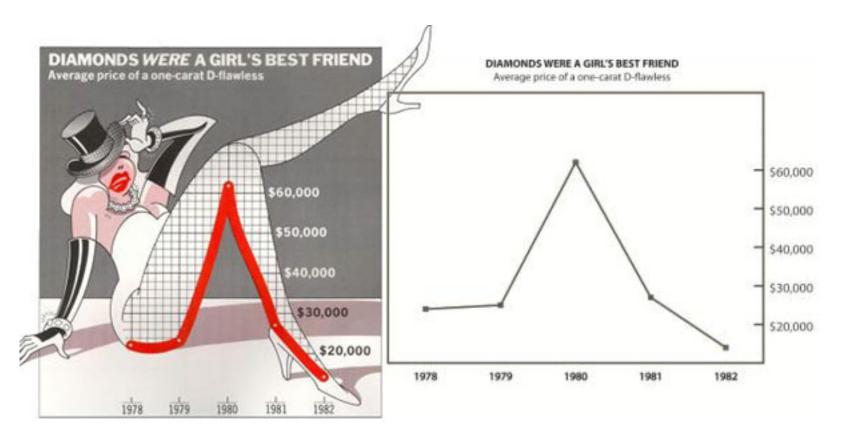

Color & transparency are used effectively

Chart junk or effective info vis?

Charts can be offensive and/or effective

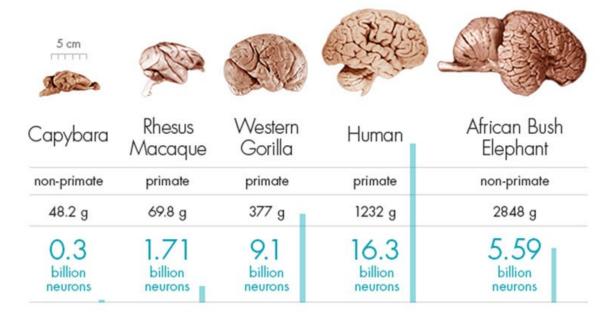
What is the message? Who is the audience?

Chart junk or effective info vis?

Suzana Herculano-Houzel has a new method for determining counts of cortical neurons across different species. How to present this effectively?

Goal: compare mammal species brain size and cortical neuron count

Neuron count is shown both as numbers and bars


Claim: Human brain is ~ linear of primate brains

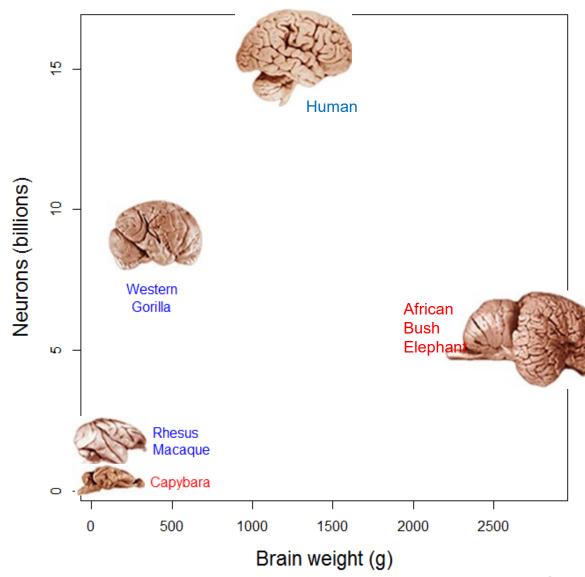
What do you think?

How could this be made better?

BRAIN SIZE AND NEURON COUNT

Cerebral cortex mass and neuron count for various mammals.

From: Herculano-Houzel, "The human brain in numbers: a linearly scaled-up primate brain" https://www.frontiersin.org/articles/10.3389/neuro.09.031.2009/full

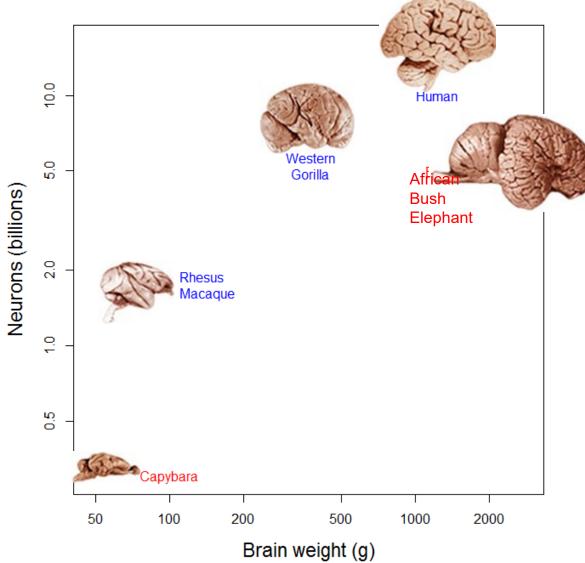

As a scatterplot

A scatterplot makes clear how humans differ from other species

- Using scaled images as point symbols also conveys brain size
- Primates are distinguished from nonprimates by text color

This is arguably a more effective display.

What do you think?



As a scatterplot – log scale

Perhaps even better is to make the plot using log scales for both axes

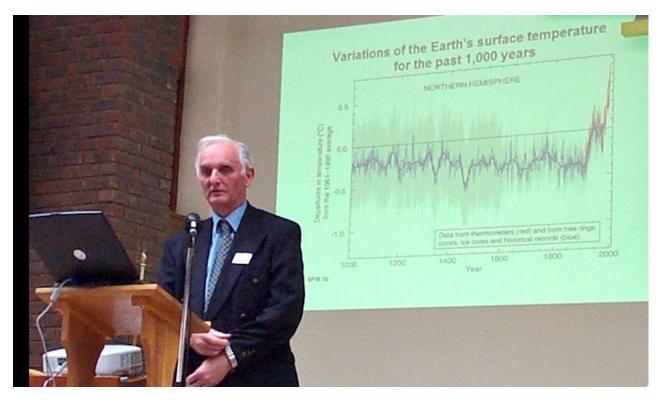
The relationship is now easier to see, but only approx. linear

The argument for neurons ~ brain weight needs more work.

Why graphs matter: Climate change

In the movie, An Inconvenient Truth (2006), Al Gore used the now-famous "hockey stick" graph to show that human activities had greatly increased the degree of global warming over the recent past

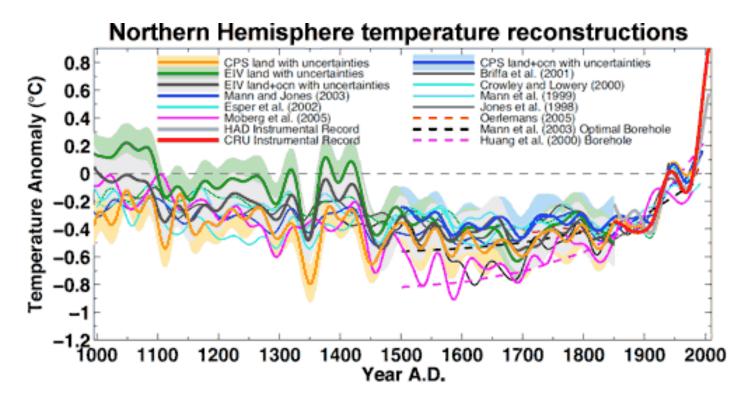
The goal was to raise public awareness and call for action to curb environmental effects: CO₂ emissions as the main agent.



Movie: https://www.youtube.com/watch?v=8ZUoYGAI5i0; http://www.imdb.com/title/tt0497116/

Climate change: Original graph

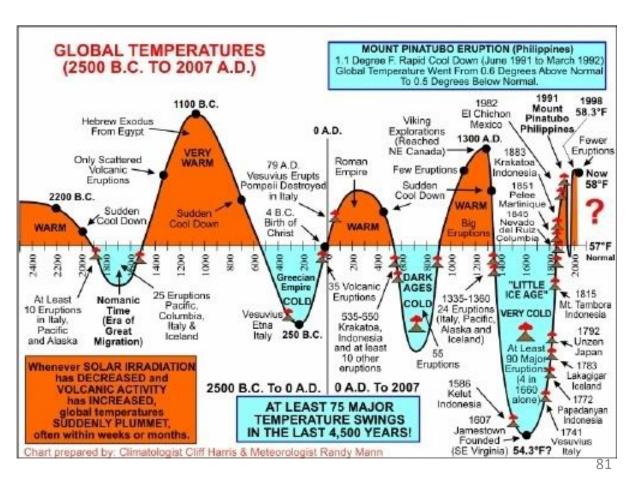
Sir John Houghton presents the original Northern Hemisphere hockey stick graph to the <u>Intergovernmental Panel on Climate Change</u> (IPCC) in 2005.


It is based on an analysis by Mann, Bradley & Hughes (1990), with a smoothed curve and uncertainty intervals.

Climate change: data sources

The MBH (1999) paper had used a wide variety of data sources. They were combined using a novel statistical technique, the first eigenvector-based climate field reconstruction (CFR).

Climate scientists understood this; the sceptics did not.

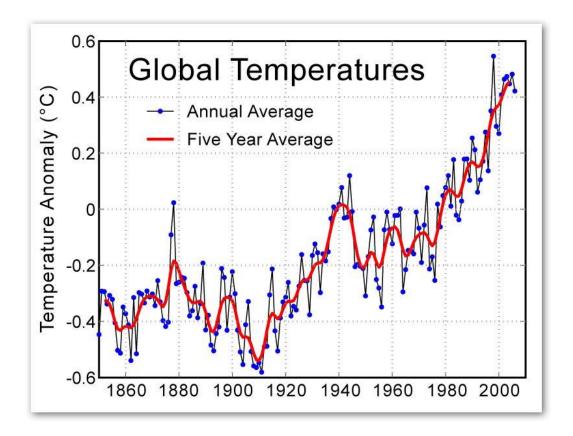

See: https://en.wikipedia.org/wiki/Hockey stick controversy for details

Countering climate change

Taking a longer view, and adding a lot of extraneous historical details, climate sceptics were easily able to mount alternative explanations: Solar irradiation & volcanoes

How to mislead:

- Show no temp. scale
- Draw smoothed curve
- Suggest that all is due to "swings" in temp.
- Compress recent history into the end of the time scale



Time scale

Perhaps one fault with the original graphs was trying to show noisy data, from many sources, over too wide a time span.

What could you do to make this graph even more convincing?

De-emphasize the annual data
 Add an overall smooth curve

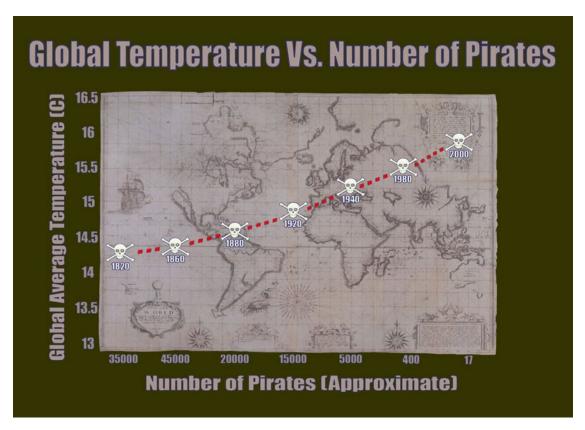
Climate change: Infographic

A politically-incorrect graphic shows very clearly the effect of global warming on panty size

Source: http://www.politically-incorrect-humor.com/2010/03/positive-proof-of-global-warming

Climate change: other explanations

This infographic attempts to relate global warming to the decrease in pirates

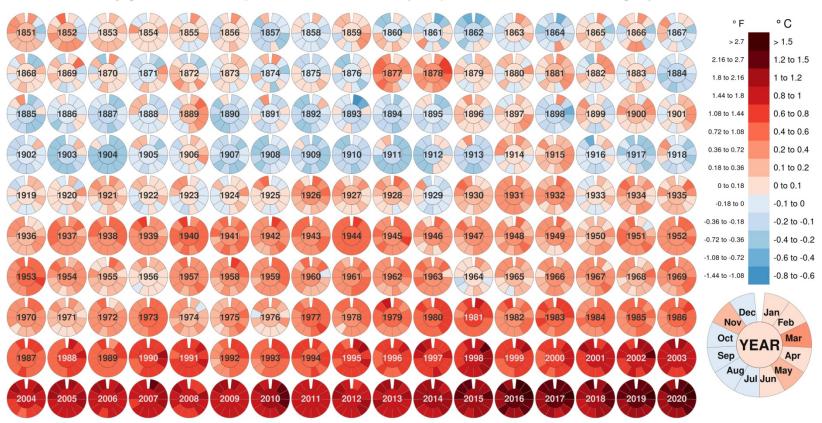

Aside from the substance, how many things are wrong about this graphic?

Simple explanation:

Lack of pirates causes global warming!

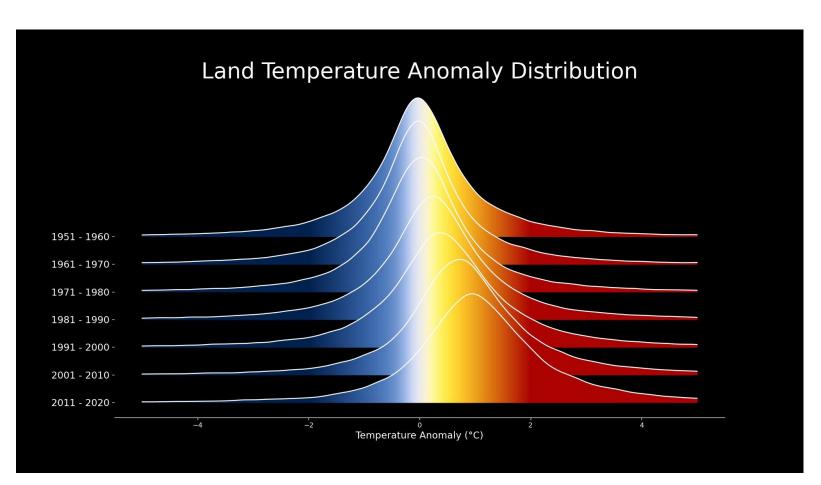
Conclusion:

To stop global warming, become a pirate!



Source: http://www.forbes.com/sites/erikaandersen/2012/03/23/true-fact-the-lack-of-pirates-is-causing-global-warming

Circle graphs


What features makes this graph effective?

Monthly global mean temperature 1851 to 2020 (compared to 1850-1900 averages)

Data: HadCRUT5 - Created by: @neilrkaye

Ridgeline plot

Some graphic rules

- Bars
 - Don't cut off their feet
 - Don't add dynamite fuses
- Pies
 - Generally, best preserved for dessert
 - Well used for part-whole relations with a small number of categories
 - Better used as a graphic form in larger displays
- Axes
 - Avoid double Y-axes
 - Don't truncate without considerable thought
- 3D
 - Avoid for useless "glitz"

Summary

- Graphs as a form of communication
 - Data (numbers), words, images → Stories
- Analysis graphs vs. presentation graphs
- Some principles of effective data display
 - Make the data stand out
 - Facilitate comparisons
 - Effect ordering