Varieties of information visualization

Michael Friendly
Psych 6135

http://euclid.psych.yorku.ca/www/psy6135
So many types

There are so many kinds of charts, diagrams, graphs, maps
What are their features?
What tasks are they good for? – Accuracy or speed of judgment? Memorability?
Topics

• Statistical data graphs
 - 1D: dotplot, boxplot, violin plot
 - 1.5D: time-series plot, density plot, bar chart, pie chart
 - 2D: scatterplot, ridgeline plot
 - 3D: contour plot, 3D scatterplot, surface plot

• Thematic maps
 - Choropleth map
 - Anamorphic map
 - Flow maps

• Network & tree visualization

• Animation & interactive graphics
1D: Infographic vs. Data graphic

The same data can be shown in different forms, for different purposes.

One might argue that this infographic has greater impact in showing the relative size of GDP.

One might argue that this statistical graph makes comparisons easier.
1D: Dotplots & boxplots

What number do you give to a probability phrase?

Boxplots summarize the important characteristics of a univariate data distribution:
- center (median)
- spread (IQR)
- shape (symmetric? skewed?)
- outliers?

This example overlays the boxplot with a jittered dotplot, so we can also see the individual observations.

This visualization made the longlist for the 2015 Kantar Information is beautiful award. Data & R code: https://github.com/zonination/perceptions
Another possible 1D display is a density estimate—a statistically smoothed histogram.

For comparing a set of them, a ridgeline plot stacks them vertically to create the impression of a mountain range.

As in the boxplot version, this uses:

- a progressive scale of colors
- transparent colors to handle overlap

Q: What features stand out here?

Software note: These figures are drawn with R, using ggplot2 and the ggridges package. See: https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.html
William Playfair (1786), *The Commercial and Political Atlas*, invented the time series line graph as a way to show data on England’s trade with other countries.

One curve for imports, one for exports.

The **balance of trade** could be seen as the difference between the curves.

Trade with Germany was consistently in favor of England.

With North America, the balance changed back and forth over time.

Economic ‘history’ could now be visualized and explained.
What Playfair didn’t know is that judgments of distance between curves are biased. We tend to see the perpendicular distance rather than the vertical distance.

Plotting balance of trade directly.
Things get messy when there are many series to be compared
To be fair, this was designed as **timeline of history**— a visual story of economics. It was Playfair’s last graph.

Playfair, W. (1824) *Chronology of Public Events and Remarkable Occurrences*.
Another solution for multiple time series is to chart the ranks of observations and connect them with lines to show changes in relative position.

Slopes of lines reflect change in rank
Red bars try to show the numbers

From: *Statistical Atlas of the United States* (1880)
Who voted for Rob Ford in the 2014 Toronto mayoral election?

These simple scatterplots by data journalist Patrick Cain use simple enhancements:

- Color, for candidate (Chow, Ford, Tory)
- Overall regression line

Scatterplots: Wage gap

How to compare salaries of men & women in different occupations?

The NYT chose to plot median salaries for women against those for men, in different occupational groups.

The 45° line represents wage parity.
Other lines show 10, 20, 30% less for women.

Alberto Cairo, *The Truthful Art*, Fig 9.19, from:
This graph, from fivethirtyeight.com was designed to show how some presidential candidates had shifted positions before the 2016 election.

The axes are a score on social and economic policy, but they rotate the axes by 45° to create zones related to political thought.

This info graphic is eye-catching and self-explanatory:

• colored/labeled zones
• interpretive labels on axes
• arrows showing movement to extremes
Data from the US draft lottery, 1970

- Birth dates were drawn at random to assign a “draft priority value” (1=bad)
- Can you see any pattern or trend?

This is an example of data with a weak signal and a lot of noise

Me (May 7):
127 → priority = 35
Scatterplots: Smoothing enhances perception

Drawing a smooth curve shows a systematic decrease toward the end of the year.

- The smooth curve is fit by loess, a form of non-parametric regression.

Visual explanation:
Another form of smoothing is to make one variable discrete & show a graphical summary – here a boxplot

The decrease in later months becomes apparent

Perception: the boxplots form the foreground; the jittered points show the data
A scatterplot matrix shows the bivariate relation between all pairs of variables. Seeing these all together is more useful than a collection of separate plots.

How does occupational prestige depend on %women, education and income?

The individual plots are enhanced with linear regression lines and non-parametric smooths to show non-linearity.

This figure uses scatterplotMatrix() in the car package. There are many options.
Density plots are often more useful for showing the shapes of distributions:
- women: bimodal
- income: highly skewed

A **data ellipse** gives a visual summary of the direction and strength of the relationship.

Again, graphical annotation provides aids for interpretation.
Larger data sets

Scatterplot matrices hold up well with a larger number of variables

Where to live in NYC?

This SPM shows 12 variables on ~ 60 neighborhoods

The data ellipses provide a visual summary

This remarkable chart shows survival on the *Titanic*, by Class for passengers and Gender and Age.

It was drawn by G. Bron, a graphic artist, and published in *The Sphere*, one month after the *Titanic* sank.

It uses back-to-back bar charts, with area ∼ frequency

Similar to a grouped bar chart
Shows a frequency table with tiles, area ~ frequency

```r
> data(HairEyeColor)
> HEC <- margin.table(HairEyeColor, 1:2)
> HEC

<table>
<thead>
<tr>
<th>Hair</th>
<th>Eye</th>
<th>Brown</th>
<th>Blue</th>
<th>Hazel</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td></td>
<td>68</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Brown</td>
<td></td>
<td>119</td>
<td>84</td>
<td>54</td>
<td>29</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td>26</td>
<td>17</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Blond</td>
<td></td>
<td>7</td>
<td>94</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

> chisq.test(HEC)

Pearson's Chi-squared test

data:  HEC
X-squared = 140, df = 9, p-value <2e-16
```

How to understand the association between hair color and eye color?
Shade each tile in relation to the contribution to the Pearson χ^2 statistic

$$\chi^2 = \sum r^2 = \sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

Mosaic plots extend readily to 3-way tables.
They are intimately connected with loglinear models.
Parallel Sets

Titanic data: Who survived?

Parallel sets use parallel coordinate axes to show the relations among categorical variables.

The frequencies of one variable (Class) are sub-divided according to the joint frequencies in the next (Sex) and shown by the width of the connecting line.

The ParSets application is interactive:

- categories can be reordered (a, b)
- categories can be grouped (c, d)

From: Kosera et al. (2006), https://kosara.net/papers/2006/Kosara_TVCG_2006.pdf
Pantheon, by Valerio Pellegrini
Visualizing the 100 most influential figures in History (Wikipedia visits)

Columns show occupation, country of origin and gender
Flow lines link individuals to the column variables, width ~ influence
Sankey diagram

Multiple dimensions of the most influential people in history

From: http://visualoop.com/blog/83382/pantheon-by-valerio-pellegrini
Generalized pairs plots from the `gpairs` package handle both categorical (C) and quantitative (Q) variables in sensible ways.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Q</td>
<td>scatterplot</td>
</tr>
<tr>
<td>C</td>
<td>Q</td>
<td>boxplot</td>
</tr>
<tr>
<td>Q</td>
<td>C</td>
<td>barcode</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>mosaic</td>
</tr>
</tbody>
</table>

```r
library(gpairs)
data(Arthritis)
gpairs(Arthritis[, c(5, 2:5)], ...)
```
Early attempts to show 3D data used **contours of equal value** on a map. The data was actually very thin; the contours the result of imaginative smoothing.

Francis Galton, *Isochronic chart of travel time*, 1881
John Snow’s map of cholera deaths in London, 1854

Modern statistical techniques can compute contours of constant density
Italian demographer Luigi Perozzo (1880) develops the first true 3D diagram showing the population of Sweden over years and age groups as a 3D surface.

Census counts for a given year are shown by the red lines.
Survival of a given age are shown by black lines.
Cohorts are shown by lines down & to the right.
These 3 variables are primary in demography.

A mystery here: what caused the decline at the upper right?
How does occupational prestige depend on income & education?

This plot shows the data and a fitted multiple regression surface, connecting the points to the regression plane. It is hard to see in a static view, but easier when the plot is rotated dynamically.

This plot is produced in R, using the `car` and `rgl` packages.

```r
data("Duncan", package="car")
scatter3d(prestige ~ income + education, data=Duncan, id.n=2)
movie3d(spin3d(c(0,1,0), rpm=6), duration=6, movie="duncan-reg3d")
```
Thematic maps use a wide variety of techniques to display quantitative or qualitative variables on the geographic framework of a map.

Once the domain of cartographers, these ideas are now being developed as an area of geospatial visualization and geospatial statistical methods.

From: Slocum et al., *Thematic cartography and geographical visualization*, Fig 4.3
Thematic maps: Types

Basic types of thematic maps

Most are direct mappings of numbers to visual variables

Isopleth maps combine some analysis with display

From: Slocum et al., *Thematic cartography and geographical visualization*, Fig 4.9
Alan MacEachern (1979) classifies point, line and area symbols on thematic maps according to whether they depict **quantitative** or **qualitative** phenomena, in the **physical** or **cultural** domain.

Theories, ideas, and methods have advanced considerably since this time.

Balbi & Guerry (1829)

- First thematic maps of crime data
- First comparative maps (“small multiples”)
- Crime against persons inversely related to crime against property
- Education: *France obscure* & *France éclairée*
- N. of France highest in education & also property crime
Anamorphic maps

- *Anamorph*: Deforming a spatial size or shape to show a quantitative variable

- Émile Cheysson used this to show the decrease in travel time from Paris to anywhere in France over 200 years

Album de Statistique Graphique, 1888, plate 8
Choropleth maps are misleading because size (area) of units dominates perception. This is particularly true for maps of the US & Canada. Not so for France (why?)

Montana looks bigger than Washington

Note use of labels for small NE states

fivethirtyeight.com election predictions, Oct. 13, 2017
A tilegram uses hexagonal tiles to make area proportional to a given variable.

Here, the size of each state is made ~ number of electoral college votes.

Now, it is easy to see the impact of states.

fivethirtyeight.com election predictions, Oct. 13, 2017
Worldmapper: The world in cartograms

How to visualize social, economic, disease, ... data for geographic units?

worldmapper.com: **cartograms: area ~ variable of interest** (700+ maps)
Worldmapper: Carbon emissions

These pages are well-designed according to data vis. Ideas: high impact graph + interpretive details & explanation

Carbon Emissions 2000

Carbon dioxide causes roughly 60% of the "enhanced greenhouse effect" or global warming resulting from certain gases emitted by human activities. In 2000 there were almost 23 billion tonnes of carbon dioxide emitted worldwide. Of this, 28% came from North American territories; 0.09% came from Central African territories.

Emissions of carbon dioxide vary hugely between places, due to differences in lifestyle and ways of producing energy. Whilst people living in 66 territories emitted less than 1 tonne per person in 2000; more than 10 tonnes per person were emitted by people living in the highest polluting 21 territories that year.

Territory size shows the proportion of carbon dioxide emissions in 2000 that were directly from them.

"If the world does not learn now to show respect to nature, what kind of future will the new generations have?"

Rigoberta Menchú Tum, 1992

Map 215
Deaths from cholera in 2004. Territory size ~ proportion of worldwide deaths

Cholera deaths result from severe dehydration caused by diarrhoea. This is treatable: in 2004 the number of cholera deaths was only 2.5% of the number of cholera cases that year. Distributions of cholera cases and deaths differ due to differing availability of treatments.

In 1962, in Papua New Guinea, 36% of cholera cases, which was 464 people, died. In 2004, in the Central African Republic, 15% of cholera cases, which was 48 people, died.

In contrast, there were 73 territories where nobody died from cholera, because of good sanitation, clean water and available treatment. These territories have no area on this map.

"The cholera outbreak has continued ... water provided by the tankers is not enough and they try to boost their supply from the wells, which are not covered. The rain washes faeces and other pollutants into the wells ..." Pierre Kahuzi, 2004

In the *Cambridge Online Survey of World Englishes*, Bert Vaux and Marius L. Jøhndal surveyed 11,500 people to study the ways people use English words.

NC State Univ. student Joshua Katz turned the US data into shaded **kernel density maps**.
Spatial visualization: Analysis + maps

Linguistics: Food dialect maps—visualizing how people speak
crawfish, crawfish, crawdad?

A \(k \)-nearest neighbor kernel density estimate over \((x,y)\) locations gives a smoothed & interpretable display of the choice probabilities.

Regional differences are quite apparent.

The use of color combines discrete categories with intensity to give a meaningful display.
Flow maps show **movement** or **change** in a geographic framework.

The master work is this image by Charles Joseph Minard (1869):

- Marey (1878): “defies the pen of the historian in its brutal eloquence”
- Tufte (1983): “the best statistical graphic ever produced”
Effect of US civil war on cotton trade

Before

After

Note the deformation of the map to accommodate the data
In a graphic tribute to C. J. Minard and W. E. B. Du Bois, Raymond Andrews & Howard Wainer tell the story of the migration of blacks from the southern US after freedom from slavery.
Once the domain of mathematicians & computer scientists, graph theory and network visualization turn out to have surprising & interesting applications.

Animated demo by Martin Granjean showing transport of passengers from/to world airports.

It illustrates the difference between geography & force-directed layout to focus on volume & connections.

From: http://www.martingrandjean.ch/connected-world-air-traffic-network/
See more: https://flowingdata.com/2016/05/31/air-transportation-network/
How do I get from Chigwell to Charing Cross?
How much will it cost?

This route map shows the connections and fare zones.

The first one was designed by Henry Beck in 1931.

The modern version is zoomable and available on your phone.

See: https://tfl.gov.uk/maps/track
A new form of literary criticism?

Martin Grandjean looked at the structure of Shakespeare tragedies through character interactions.

Each circle (node) represents a character, and an edge represents two characters who appeared in the same scene.

The structural characteristics of the graphs have meaningful interpretations.

From: https://flowingdata.com/2015/12/30/shakespeare-tragedies-as-network-graphs/
Various tasks can be used to assess the relations among words/concepts in our semantic memory. The data can be used to calculate measures of similarity, and be shown in network or other diagrams.

Verbal fluency task: Say/write all the names of [animals, countries, ...] you can in 1 minute.

Similarity ratings: For each pair, indicate how similar they are.

From: Wulff et al. (2018), Structural differences in the semantic networks of younger and older adults
Do younger and older adults differ on measures calculated from their network diagrams?

\(<k>\) : Average “degree” # of connections

\(C\) : average local clustering

\(L\) : average path length in network

\(\Delta()\) : young – old difference

IMHO, this graph tries to do too much.

The fluency data is most important to their argument.
\(\Delta L\) & \(\Delta <k>\) show consistent differences between young & old
Love, Actually: Interactive app

Interactions among characters in *Love, Actually*

Data:

[Interactive Shiny app: https://dgrtwo.shinyapps.io/love-actually-network/]
Johnathan Stray & Julian Burgess analyzed > 11,000 documents for SIGACT (“significant action”) reports from the 2006 Iraqi civil war made available by WikiLeaks.

Each report is a dot. Each dot is labelled by the three most “characteristic” words in that report.

Documents that are “similar” have edges drawn between them, width ~ similarity

The graph-drawing algorithm placed similar nodes together

From: http://jonathanstray.com/a-full-text-visualization-of-the-iraq-war-logs
Certain themes became clear, and could be studied in rich detail. The underlying methods use “term frequency–inverse document frequency” measures of text-mining.

Murder cluster. All contain the word “corpse”

Torture-abduction cluster

Perry Stephenson explores the connections among the top 50 R users on Twitter

The rtweet package provides access to Twitter info

library(rtweet)
followers <- get_followers("datavisFriendly")

From: https://perrystephenson.me/2018/09/29/the-r-twitter-network/
Trees are natural, organic visual metaphors for branching processes and space-filling designs.

Ramon Llull’s tree of science, showing roots and branches of knowledge

Charles Darwin’s first visual sketch of the evolution of species
History as a Tree:

- The entire history of Europe in one diagram
- space-filling design: resolution $\sim \text{time}^2$
- natural metaphors for roots, branches

History as a Tree

- Branches for countries & domains of thought
- Leaves for all the details

- linear horizontal scale → area ~ time^2
Treemaps

Where has my hard disk space gone?
Treemaps display hierarchical data as a set of nested rectangles.

Each node (leaf) has an area ~ size (file space)

The construction makes efficient use of space

Nesting shows relative size at multiple levels
Treemaps: Google Newsmap

They turn out to be useful in a wide range of applications

Google NewsMap shows top news stories with

• Size ~ popularity
• Color: domain—world news, sports, national, ...
• Shades: recency

Interactivity: Hover, click to show details
The Visual Thesaurus, from Thinkmap was the first application to make word meanings visual and interactive.

They used a radial layout to show the various related senses of given focus word.

This application was incisive in promoting ideas of interaction with tree-based data: query, zoom, tool-tips, ...

This fig from Manuel Lima, *The Book of Trees*, p. 127
Animation & Interactive Graphics

• Origins: Visualizing motion
• Animated graphics
• Dynamically updated graphics
• Linking views
• Interactive application development frameworks
Physiology: How to make internal physiological processes subject to visual analysis?

- Invented many graphic recording devices (heart rate, blood pressure, muscle contraction, etc.)
- “Every kind of observation can be expressed by graphs”

Marey’s sphygmograph, recording a visual trace of arterial blood pressure
Marey pioneered the study of human and animal motion photographically.

The photographic gun, allowing recording of 12 frames/sec. at intervals of 1/720 of a second.
Animated graphics, like movies are just a series of frames strung together in a sequence.

The data for this animation come from human figures in motion-capture suits dancing the Charleston.

The Carnegie-Mellon Graphics Lab maintains a Motion Capture Database, http://mocap.cs.cmu.edu/

From: http://blog.revolutionanalytics.com/2017/08/3-d-animations-with-r.html
Statistical concepts can often be illustrated in a dynamic plot of some process.

This example illustrates the idea of least squares fitting of a regression line.

As the slope of the line is varied, the right panel shows the residual sum of squares.

This plot was done using the animate package in R.
Animated graphics

Hans Rosling captivated audiences with dynamic graphics showing changes over time in world health data

Video: Hans Rosling, “The best stats you’ve ever seen,”
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve ever_seen
The Gapminder “moving bubble chart” was the vehicle.

- Choose (x, y) variables
- Choose bubble size variable
- Animate this over time

Liberating the X axis from time opened new vistas for data exploration

Software made this available as a general tool
Dynamically updated data visualizations

You don’t need a weatherman to know which way the wind is blowing. The wind map app, http://hint.fm/wind/ is one of a growing number of R-based applications that harvests data from web sources, and presents a visualization.
This example links a **dendrogram** to a **grand tour** and **map** of the USArrests data to visualize a classification in 5 dimensions.

The grand tour animates a series of 2D projections of the 5D data.

The image is recorded as a GIF.

Interactive application frameworks

shiny for R makes it easy to create interactive applications

https://walkerke.shinyapps.io/neighborhood_diversity/
There is now a large collection of shiny applications, https://shiny.rstudio.com/gallery/. These integrate other interactive web software: d3, Leaflet, Google Charts, ...

Interactive visualizations

Shiny is designed for fully interactive visualization, using JavaScript libraries like d3, Leaflet, and Google Charts.

- SuperZip example
- Bus dashboard
- Movie explorer
Summary

• The topics here were largely about data graphs, for analysis & presentation. Mainly not Info-graphics
 ▪ Quantitative data: different forms for 1D, 1.5D, 2D, 3+D data
 ▪ Categorical data: often best shown as areas ~ frequency (bar plots, mosaic plots)

• Thematic maps: visualizing spatially varying data
 ▪ Raw data with different visual encodings
 ▪ Spatial statistical models provide some smoothings

• Networks/trees: visualizing connections

• Animation: show changes over time or space

• Interaction: allow the viewer to explore the data