ggplot2: Going further in the tidyverse

Michael Friendly
Psych 6135

http://euclid.psych.yorku.ca/www/psy6135/
A larger view: Data science

- Data science treats statistics & data visualization as parts of a larger process
 - Data import: text files, databases, web scraping, ...
 - Data cleaning → “tidy data”
 - Model building & visualization
 - Reproducible report writing
The tidyverse of R packages

Import
- readr
- tidyr

Tidy
- dplyr
- broom

Transform
- %>%

Visualise
- ggplot2
- ggmap

Model
- linear models

Communicate
- rmarkdown
Topics

• Data wrangling: getting your data into shape
 ▪ dplyr & tidyr
 ▪ pipes: %>%
 ▪ grouping & summarizing
 ▪ Example: NASA data on solar radiation

• Visualizing models: broom
 ▪ Example: gapminder data

• ggplot2 extensions

• tables in R
Tidy tools: overview

tidyr
- **gather()**
- **spread()**

Reshape data to be tidy

dplyr
- **filter()**
- **select()**

Manipulate & summarize tidy data

ggplot2

Visualize me!
Data wrangling with dplyr & tidyr

What is Tidy Data?
A dataset is said to be tidy if:
• observations are in rows
• variables are in columns
• each value is in its own cell.

A “messy” dataset: Survey of income by religion from Pew Research
• Values of income are in separate columns
• Column headers are values, not variable names
• Cell values are frequencies--- implicit, not explicit

<table>
<thead>
<tr>
<th>religion</th>
<th><$10k</th>
<th>$10-20k</th>
<th>$20-30k</th>
<th>$30-40k</th>
<th>$40-50k</th>
<th>$50-75k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agnostic</td>
<td>27</td>
<td>34</td>
<td>60</td>
<td>81</td>
<td>76</td>
<td>137</td>
</tr>
<tr>
<td>Atheist</td>
<td>12</td>
<td>27</td>
<td>37</td>
<td>52</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>Buddhist</td>
<td>27</td>
<td>21</td>
<td>30</td>
<td>34</td>
<td>33</td>
<td>58</td>
</tr>
<tr>
<td>Catholic</td>
<td>418</td>
<td>617</td>
<td>732</td>
<td>670</td>
<td>638</td>
<td>1116</td>
</tr>
</tbody>
</table>

This organization is easy in Excel
But, this makes data analysis and graphing hard
Tidying: reshaping wide to long

We can tidy the data by reshaping from wide to long format using tidyr::gather()

```r
> pew <- read.delim(
file = "http://stat405.had.co.nz/data/pew.txt",
header = TRUE,
stringsAsFactors = FALSE, check.names = FALSE)
> (pew1 <- pew[1:4, 1:6])  # small subset

religion <$10k $10-20k $20-30k $30-40k $40-50k
1 Agnostic 27 34 60 81 76
2 Atheist 12 27 37 52 35
3 Buddhist 27 21 30 34 33
4 Catholic 418 617 732 670 638

>library(tidyr)
>gather(pew1, "income", "frequency", 2:6)

religion  income  frequency
1  Agnostic   <$10k        27
2   Atheist   <$10k        12
3  Buddhist   <$10k        27
4  Catholic   <$10k       418
5  Agnostic $10-20k        34
6   Atheist $10-20k        27
7  Buddhist $10-20k       418
8  Catholic $10-20k       617
9  Agnostic $20-30k        60
10  Atheist $20-30k        37
11 Buddhist $20-30k        30
12 Catholic $20-30k       732
13  Agnostic $30-40k        81
14  Atheist $30-40k        52
15 Buddhist $30-40k        34
16 Catholic $30-40k       670
...  ...        ...  ...

Another solution, using reshape2::melt()

```r

> library(reshape2)
> pew_tidy <- melt(
 data = pew1,
 id = "religion",
 variable.name = "income",
 value.name = "frequency"
)

>library(tidyr)
> gather(pew1, "income", "frequency", 2:6)

key value columns
-- ------ -------
religion income frequency
1 Agnostic <$10k 27
2 Atheist <$10k 12
3 Buddhist <$10k 27
4 Catholic <$10k 418
5 Agnostic $10-20k 34
6 Atheist $10-20k 27
7 Buddhist $10-20k 418
8 Catholic $10-20k 617
9 Agnostic $20-30k 60
10 Atheist $20-30k 37
11 Buddhist $20-30k 30
12 Catholic $20-30k 732
13 Agnostic $30-40k 81
14 Atheist $30-40k 52
15 Buddhist $30-40k 34
16 Catholic $30-40k 670
...

NB: income is a character variable; we might want to create an ordered factor or numeric version
Using pipes: %>%

- R is a functional language
 - This means that $f(x)$ returns a value, as in $y <- f(x)$
 - That value can be passed to another function: $g(f(x))$
 - And so on: $h(g(f(x)))$

  ```r
  > x <- c(0.109, 0.359, 0.63, 0.996, 0.515, 0.142)
  > exp(diff(log(x)))
  [1] 3.29 1.75 1.58 0.52 0.28
  
  > # Compute the logarithm of `x`, calculate lagged differences, 
  > # return the exponential function of the result
  > log(x)
  [1] -2.216 -1.024 -0.462 -0.004 -0.664 -1.952
  > diff(log(x))  #calculate lagged diffs
  [1] 1.19 0.56 0.46 -0.66 -1.29
  > exp(diff(log(x)))  # convert back to original scale
  [1] 3.29 1.75 1.58 0.52 0.28
  ```

- This gets messy and hard to read, unless you break it down step by step
Using pipes: %>%

- Pipes (%>%) change the syntax to make this easier

- Basic rules
 - x %>% f() passes object on left hand side as first argument (or . argument) of function on right hand side
 - x %>% f(y) is the same as f(x, y)
 - y %>% f(x, ., z) is the same as f(x, y, z)
 - x %<-% f() does the same, but assigns the result to x
 - Shortcut for x <- x %>% f()

```r
> # use pipes
> x %>% log() %>% diff() %>% exp()
[1] 3.29 1.75 1.58 0.52 0.28
```
For the Pew data, mutate income into an ordered factor and make a ggplot

```
pew1 %>%
  gather("income", "frequency", 2:6) %>%
  mutate(income = ordered(income, levels=unique(income))) %>%
  ggplot(aes(x=income, fill=religion)) +
  geom_bar(aes(weight=frequency))
```

`mutate()` calculates new column variables
The levels of income are now ordered appropriately.

The result is piped to `ggplot()`
It sometimes happens that several variables are crammed into one column, or parts of one variable are split across multiple columns.

For example, for the pew data, we might want to separate income into low & high:

```r
pew_long %>%
  mutate(inc = gsub("[\$k]", "", income)) %>%
  mutate(inc = gsub("<", "0-", inc)) %>%
  separate(inc, c("low", "high"), ",") %>%
  head()
```

<table>
<thead>
<tr>
<th>religion</th>
<th>income</th>
<th>frequency</th>
<th>low</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agnostic</td>
<td><$10k</td>
<td>27</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Atheist</td>
<td><$10k</td>
<td>12</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Buddhist</td>
<td><$10k</td>
<td>27</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Catholic</td>
<td><$10k</td>
<td>418</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Agnostic</td>
<td>$10-20k</td>
<td>34</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Atheist</td>
<td>$10-20k</td>
<td>27</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
dplyr: Subset observations (rows)

dplyr implements a variety of verbs to select a subset of observations from a dataset.

- `dplyr::filter(iris, Sepal.Length > 7)`
 Extract rows that meet logical criteria.

- `dplyr::distinct(iris)`
 Remove duplicate rows.

- `dplyr::sample_frac(iris, 0.5, replace = TRUE)`
 Randomly select fraction of rows.

- `dplyr::sample_n(iris, 10, replace = TRUE)`
 Randomly select n rows.

- `dplyr::slice(iris, 10:15)`
 Select rows by position.

- `dplyr::top_n(storms, 2, date)`
 Select and order top n entries (by group if grouped data).

In a pipe expression, omit the dataset name

- `iris %>% filter(Sepal.Length > 7)`
- `iris %>% filter(Species=="setosa")`
- `iris %>% sample_n(10)`
- `iris %>% slice(1:50) # setosa`
Many helper functions in dplyr allow selection by a function of variable names:

```r
select(iris, contains("\."))
  Select columns whose name contains a character string.
select(iris, ends_with("Length"))
  Select columns whose name ends with a character string.
select(iris, everything())
  Select every column.
select(iris, matches("^[x]t\."))
  Select columns whose name matches a regular expression.
select(iris, num_range("x", 1:5))
  Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))
  Select columns whose names are in a group of names.
select(iris, starts_with("Sepal"))
  Select columns whose name starts with a character string.
select(iris, Sepal.Length:Petal.Width)
  Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, -Species)
  Select all columns except Species.
```
Fundamental operations in data munging are:

- **grouping** a dataset by one or more variables
- calculating one or more summary measures
- **ungrouping**: expand to an ungrouped copy, if needed

```r
mtcars %>%
  group_by(cyl) %>%
  summarise(avg=mean(mpg))

mtcars %>%
  group_by(cyl) %>%
  summarise(avg=mean(mpg)) %>%
  ungroup()
```
Example: NASA data on solar radiation

How does solar radiation vary with latitude, over months of the year?

How to make this plot?
This is easy to do for the total Annual solar radiation, a column in the data

```
> str(nasa)
'data.frame': 64800 obs. of 15 variables:
$ Lat: int  -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 ...
$ Lon: int  -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ Feb: num  5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 ...
$ Mar: num  0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 ...
$ Apr: num  0 0 0 0 0 0 0 0 0 0 ...
$ May: num  0 0 0 0 0 0 0 0 0 0 ...
$ Jun: num  0 0 0 0 0 0 0 0 0 0 ...
$ Jul: num  0 0 0 0 0 0 0 0 0 0 ...
$ Aug: num  0 0 0 0 0 0 0 0 0 0 ...
$ Sep: num  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...
$ Nov: num  8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 ...
$ Dec: num  11 11 11 11 11 11 11 11 11 11 ...
```

```
nasa %>%
  filter(abs(Lat) < 60) %>%
  mutate(Latf = cut(Lat, pretty(Lat, n=10))) %>%
  ggplot(aes(x=Latf, y=Ann)) +
  geom_violin(fill="pink", alpha=0.3) +
  labs(x="Latitude", y="Solar radiation G(0) (kWh/m²)")
```
This is complicated to do for the separate months, because the data structure is **untidy**--- months were in separate variables (wide format)

```r
> str(nasa)
'data.frame': 64800 obs. of 15 variables:
$ Lat: int -90 -90 -90 -90 -90 -90 -90 -90 -90 -90 ...
$ Lon: int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ Feb: num 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28 ...
$ Mar: num 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 ...
$ Apr: num 0 0 0 0 0 0 0 0 0 0 ...
$ May: num 0 0 0 0 0 0 0 0 0 0 ...
$ Jun: num 0 0 0 0 0 0 0 0 0 0 ...
$ Jul: num 0 0 0 0 0 0 0 0 0 0 ...
$ Aug: num 0 0 0 0 0 0 0 0 0 0 ...
$ Sep: num 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ...
$ Nov: num 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 ...
$ Dec: num 11 11 11 11 11 ...
```
In wide format (with lattice), one has to construct a plot formula to plot those columns

```r
> x <- paste(names(nasa)[3:14], collapse='+')
> (formula <- as.formula(paste(x, '~cut(Lat, pretty(Lat, 20))', sep='')))
Jan + Feb + Mar + Apr + May + Jun + Jul + Aug + Sep + Oct + Nov + Dec ~ cut(Lat, pretty(Lat, 20))
```

It is much easier to reshape the data to long format, so solar is all in one column

```r
library(tidyr)
library(dplyr)
library(ggplot2)
nasa_long <- nasa %>%
  select(-Ann) %>%
  gather(month, solar, Jan:Dec, factor_key=TRUE) %>%
  filter( abs(Lat) < 60 ) %>%
  mutate( Lat_f = cut(Lat, pretty(Lat, 12)))
```
tidying the data

\[\text{str(nasa_long)}\]
'tdata.frame': 514080 obs. of 5 variables:
$ Lon : int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ month: Factor w/ 12 levels "Jan","Feb","Mar",...: 1 1 1 1 1 1 1 1 1 1 ...
$ solar: num 5.19 5.19 5.25 5.25 5.17 5.17 5.15 5.15 5.15 5.15 ...
$ Lat_f: Factor w/ 12 levels "(-60,-50]","(-50,-40]",...: 1 1 1 1 1 1 1 1 1 1 ...

For ease of plotting, I created a factor version of Lat with 12 levels

The data are now in a form where I can plot solar against Lat or Lat_f and facet by month

\[\text{head(nasa_long)}\]
Lat Lon month solar Lat_f
1 -59 -180 Jan 5.19 (-60,-50]
2 -59 -179 Jan 5.19 (-60,-50]
3 -59 -178 Jan 5.25 (-60,-50]
4 -59 -177 Jan 5.25 (-60,-50]
5 -59 -176 Jan 5.17 (-60,-50]
6 -59 -175 Jan 5.17 (-60,-50]
plotting the tidy data

Using `geom_violin()` shows the shapes of the distributions for levels of `Lat_f`

```r
ggplot(nasa_long, aes(x=Lat_f, y=solar)) +
geom_violin(fill="pink") +
facet_wrap(~ month) +
theme_bw() +
theme(axis.text.x =
    element_text(angle = 70,
                hjust = 1))
```

`facet_wrap(~month)` does the right thing

I had to adjust the x-axis labels for `Lat_f` to avoid overplotting
Here we treat `Lat` as quantitative. `geom_smooth()` uses method = “gam” here because of large `n`.

The variation in the smoothed trends over the year suggest quite lawful behavior.
What we saw in the plot suggests a generalized additive model, with a smooth, s(Lat)

library(mgcv)
nasa.gam <- gam(solar ~ Lon + month + s(Lat), data=nasa_long)
summary(nasa.gam)

The violin plots suggest that variance is not constant. I’m ignoring this here by using the default gaussian model.

Model terms:
• Lon wasn’t included before
• month is a factor, for the plots
• s(Lat) fits a smoothed term in latitude, averaged over other factors

There are other model choices, but it is useful to visualize what we have done so far
Effect plots show the fitted relationship between the response and model terms, averaged over other predictors. The mgcv package has its own versions of these.

```r
plot(nasa.gam, cex.lab=1.25)
termplot(nasa.gam, terms="month", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)
termplot(nasa.gam, terms="Lon", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)
```

- why the dip at the equator?
- effect of longitude is very small, but maybe interpretable
- month should be modeled as a time variable
R modeling functions [lm(), glm(), …] return model objects, but these are “messy”
 - extracting coefficients takes several steps: data.frame(coef(mymod))
 - some info (R^2, F, p.value) is computed in print() method, not stored
 - can’t easily combine models

Some have associated plotting functions
 - plot(model): diagnostic plots
 - car package: many model plot methods
 - effects package: plot effects for model terms

But what if you want to:
 - make a table of model summary statistics
 - fit a collection of models, compare, summarize or visualize them?
broom: visualizing models

- The broom package turns model objects into tidy data frames
 - `glance(models)` extracts model-level summary statistics (R^2, df, AIC, BIC)
 - `tidy(models)` extracts coefficients, SE, p-values
 - `augment(models)` extracts observation-level info (residuals, ...)

Example: gapminder data

Predict life expectancy from year, population, GDP and continent:

gapmod <- lm(lifeExp ~ year + pop + log(gdpPercap) + continent, data=gapminder)
summary(gapmod)

Call:
lm(formula = lifeExp ~ year + pop + log(gdpPercap) + continent, data = gapminder)

Residuals:
 Min 1Q Median 3Q Max
-24.928 -3.285 0.314 3.699 15.221

Coefficients: observation level
(Intercept) -4.58e+02 1.67e+01 -27.43 < 2e-16 ***
year 2.38e-01 8.61e-03 27.58 < 2e-16 ***
pop 5.40e-09 1.38e-09 3.91 9.5e-05 ***
log(gdpPercap) 5.10e+00 1.60e-01 31.88 < 2e-16 ***
continentAmericas 8.74e+00 4.63e-01 18.86 < 2e-16 ***
continentAsia 6.64e+00 4.09e-01 16.22 < 2e-16 ***
continentEurope 1.23e+01 5.10e-01 24.11 < 2e-16 ***
continentOceania 1.26e+01 1.27e+00 9.88 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.79 on 1696 degrees of freedom
Multiple R-squared: 0.8, Adjusted R-squared: 0.799
F-statistic: 969 on 7 and 1696 DF, p-value: <2e-16
glance() gives the model level summary statistics

```
> glance(gapmod)
  r.squared adj.r.squared sigma statistic p.value df logLik   AIC   BIC deviance df.residual
1       0.8        0.7992 5.789       969       0  8  -5406 10830 10879    56835        1696
```

tidy() gives the model term statistics

```
> tidy(gapmod)

<table>
<thead>
<tr>
<th>term</th>
<th>estimate</th>
<th>std.error</th>
<th>statistic</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-4.585e+02</td>
<td>1.671e+01</td>
<td>-27.433</td>
<td>1.982e-137</td>
</tr>
<tr>
<td>year</td>
<td>2.376e-01</td>
<td>8.613e-03</td>
<td>27.584</td>
<td>1.122e-138</td>
</tr>
<tr>
<td>pop</td>
<td>5.403e-09</td>
<td>1.381e-09</td>
<td>3.912</td>
<td>9.496e-05</td>
</tr>
<tr>
<td>log(gdpPercap)</td>
<td>5.103e+00</td>
<td>1.601e-01</td>
<td>31.876</td>
<td>4.096e-175</td>
</tr>
<tr>
<td>continentAmericas</td>
<td>8.739e-04</td>
<td>4.635e-01</td>
<td>18.856</td>
<td>3.758e-72</td>
</tr>
<tr>
<td>continentAsia</td>
<td>6.635e+00</td>
<td>4.091e-01</td>
<td>16.219</td>
<td>4.167e-55</td>
</tr>
<tr>
<td>continentEurope</td>
<td>1.230e+01</td>
<td>5.102e-01</td>
<td>24.113</td>
<td>1.044e-110</td>
</tr>
<tr>
<td>continentOceania</td>
<td>1.256e+01</td>
<td>1.270e+00</td>
<td>9.884</td>
<td>1.943e-22</td>
</tr>
</tbody>
</table>

augment() gives the observation level statistics

```
> augment(gapmod) %>% slice(1:5)
A tibble: 5 x 12
 lifeExp year pop log.gdpPercap. continent .fitted .se.fit .resid .hat .sigma
 <dbl> <int> <int> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 28.8 1952 8425333 6.66 Asia 46.0 0.408 -17.1 0.00496 5.78
2 30.3 1957 9240934 6.71 Asia 47.4 0.390 -17.1 0.00454 5.78
3 32.0 1962 10267083 6.75 Asia 48.8 0.376 -16.8 0.00423 5.78
4 34.0 1967 11537966 6.73 Asia 49.9 0.372 -15.9 0.00413 5.78
5 36.1 1972 13079460 6.61 Asia 50.5 0.382 -14.4 0.00435 5.78
... with 2 more variables: .cooksd <dbl>, .std.resid <dbl>
```
There may be different relations by continent (interactions)
• What if want to fit (and visualize) a separate model for each continent?
• dplyr::do() allows us to store the result of an arbitrary computation in a tidy column

```r
separate models for continents
models <- gapminder %>%
 filter(continent != "Oceania") %>% # only two countries
 group_by(continent) %>%
do(mod = lm(lifeExp ~ year + pop + log(gdpPercap), data=.))

view model summaries
models %>% glance(mod)
```

# A tibble: 4 x 12
# Groups:   continent [4]
continent r.squared adj.r.squared sigma statistic   p.value    df logLik
<fct>         <dbl>         <dbl> <dbl>     <dbl>     <dbl> <int>  <dbl>
1 Africa        0.500         0.498  6.48      207. 5.90e- 93     4 -2050.
2 Americas      0.720         0.718  4.97      254. 1.39e- 81     4  -904.
3 Asia          0.696         0.694  6.56      299. 5.27e-101     4 -1305.
4 Europe        0.797         0.795  2.46      466. 7.42e-123     4  -833.
# ... with 4 more variables: AIC <dbl>, BIC <dbl>, deviance <dbl>,
#   df.residual <int>
Going further: plotting multiple models

One visual summary might be a plot of $R^2$ values, ordered by continent

```r
going <- models %>%
glance(mod) %>%
ggplot(aes(r.squared, reorder(continent, r.squared))) +
gem_point(size=4) +
gem_segment(aes(xend = 0, yend = ..y..)) +
ylab("Continent")
```

![Graph showing continent vs. r.squared values](image)
Coefﬁcient plots are often useful, but these are on different scales.

Here, I plot the $t$-statistics, $t = \frac{b_{ij}}{se(b_{ij})}$ for all terms in all models.

Any values outside $\sim \pm 2$ are significant, $p < 0.5!$
ggplot extensions

There are a large number of ggplot extensions. See: http://www.ggplot2-exts.org/
GGally contains a large number of functions that extend ggplot2 to multivariate data

ggpairs() produces generalized scatterplot matrices, with lots of options

library(GGally)
library(dplyr)
library(ggplot2)
library(gapminder)

gapminder %>%
  select(-country, -year) %>%
ggpairs(aes(color=continent))
ggplot2 extensions: ggrepel

```r
devtools::install_github("slowkow/ggrepel")
library(ggplot2)
library(ggrepel)

ggplot(mtcars, aes(wt, mpg)) +
 geom_point(color = 'red') +
 geom_text_repel(aes(label = rownames(mtcars))) +
 theme_classic(base_size = 16)
```

Plotting text labels is often difficult.

ggrepel provides geoms for ggplot2 to repel overlapping text labels.
ggplot extensions: gganimate

**gganimate** is a wrapper for the animation package with ggplot2.

It adds a `frame=` aesthetic, and animates the image as the frame variable changes.

Install from github:
devtools::install_github("dgrtwo/gganimate")

```r
p5 <- ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, frame = year)) + geom_point() + geom_smooth(aes(group = year), method = "lm", show.legend = FALSE) + facet_wrap(~continent, scales = "free") + scale_x_log10()
gganimate(p5)
```
The ggpubr package provides some easy-to-use functions for creating and customizing publication ready plots.

```r
ggviolin(df, x = "dose", y = "len", fill = "dose",
 palette = c("#00AFBB", "#E7B800", "#FC4E07"),
 add = "boxplot", add.params = list(fill = "white")) +
stat_compare_means(comparisons = my_comparisons, label = "p.signif") +
stat_compare_means(label.y = 50)
```

see the examples at http://www.sthda.com/english/rpkgs/ggpubr/
ggthemes provides a large number of extra geoms, scales, and themes for ggplot

install.packages('ggthemes', dependencies = TRUE)

+ theme_tufte()

+ theme_economist()

+ theme_fivethirtyeight()
Tables in R

• Not a ggplot topic, but it is useful to know that you can also produce beautiful tables in R

• There are many packages for this: See the CRAN Task View on Reproducible Research, https://cran.r-project.org/web/views/ReproducibleResearch.html
  - xtable: Exports tables to LaTeX or HTML, with lots of control
  - stargazer: Well-formatted model summary tables, side-by-side
  - apaStyle: Generate APA Tables for MS Word
Tables in R: xtable

Just a few examples, stolen from xtable: vignette(“xtableGallery.pdf”)

```
fm1 <- aov(tlimth ~ sex + ethnicity + grade + disadvg, data = tli)
xtable(fm1)
```

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td>1</td>
<td>75.37</td>
<td>75.37</td>
<td>0.38</td>
<td>0.5417</td>
</tr>
<tr>
<td>ethnicity</td>
<td>3</td>
<td>2572.15</td>
<td>857.38</td>
<td>4.27</td>
<td>0.0072</td>
</tr>
<tr>
<td>grade</td>
<td>1</td>
<td>36.31</td>
<td>36.31</td>
<td>0.18</td>
<td>0.6717</td>
</tr>
<tr>
<td>disadvg</td>
<td>1</td>
<td>59.30</td>
<td>59.30</td>
<td>0.30</td>
<td>0.5882</td>
</tr>
<tr>
<td>Residuals</td>
<td>93</td>
<td>18682.87</td>
<td>200.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
fm3 <- glm(disadvg ~ ethnicity*grade, data = tli, family = binomial)
xtable(fm3)
```

|                          | Estimate | Std. Error | z value | Pr(>|z|) |
|--------------------------|----------|------------|---------|---------|
| (Intercept)              | 3.1887   | 1.5966     | 2.00    | 0.0458  |
| ethnicityHISPANIC        | -0.2848  | 2.4808     | -0.11   | 0.9086  |
| ethnicityOTHER           | 212.1701 | 22122.7093 | 0.01    | 0.9923  |
| ethnicityWHITE           | -8.8150  | 3.3355     | -2.64   | 0.0082  |
| grade                    | -0.5308  | 0.2892     | -1.84   | 0.0665  |
| ethnicityHISPANIC:grade  | 0.2448   | 0.4357     | 0.56    | 0.5742  |
| ethnicityOTHER:grade     | -32.6014 | 3393.4687  | -0.01   | 0.9923  |
| ethnicityWHITE:grade     | 1.0171   | 0.5185     | 1.96    | 0.0498  |

Too many decimals are used here, but you can control all that