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Preface

The greatest value of a picture is when it forces us to notice what we never expected to
see.

Tukey (1977, p. vi)

Data analysis and graphics

This book stems from the conviction that data analysis and statistical graphics should go hand-
in-hand in the process of understanding and communicating statistical data. Statistical summaries
compress a data set into a few numbers, the result of an hypothesis test, or coefficients in a fitted
statistical model, while graphical methods help to explore patterns and trends, see the unexpected,
identify problems in an analysis and communicate results and conclusions in principled and effective
ways.

This interplay between analysis and visualization has long been a part of statistical practice
for quantitative data. Indeed, the origin of correlation, regression and linear models (regression,
ANOVA) can arguably be traced to Francis Galton’s (1886) visual insight from a scatterplot of
heights of children and their parents on which he overlaid smoothed contour curves of roughly
equal bivariate frequencies and lines for the means of Y |X and X |Y (described in Friendly and
Denis (2005), Friendly et al. (2013)).

The analysis of discrete data is a much more recent arrival, beginning in the 1960s and giving
rise to a few seminal books in the 1970s (Bishop et al., 1975, Haberman, 1974, Goodman, 1978,
Fienberg, 1980). Agresti (2013, Chapter 17) presents a brief historical overview of the development
of these methods from their early roots around the beginning of the 20th Century.

Yet curiously, associated graphical methods for categorical data were much slower to develop.
This began to change as it was recognized that counts, frequencies and discrete variables required
different schemes for mapping numbers into useful visual representations (Friendly, 1995, 1997),
some quite novel. The special nature of discrete variables and frequency data vis-a-vis statistical
graphics is now more widely accepted, and many of these new graphical methods (e.g., mosaic
displays, fourfold plots, diagnostic plots for generalized linear models) have become, if not main
stream, then at least more widely used in research, teaching and communication.

Much of what had been developed through the 1990s for graphical methods for discrete data was
described in the book Visualizing Categorical Data (Friendly, 2000) and was implemented in SAS®
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software. Since that time, there has been considerable growth in both statistical methods for the
analysis of categorical data (e.g., generalized linear models, zero-inflation models, mixed models for
hierarchical and longitudinal data with discrete outcomes), along with some new graphical methods
for visualizing and interpreting the results (3D mosaic plots, effect plots, diagnostic plots, etc.)
The bulk of these developments have been implemented in R, and the time is right for an in-depth
treatment of modern graphical methods for the analysis of categorical data, to which you are now
invited.

Goals

This book aims to provide an applied, practically-oriented treatment of modern methods for the anal-
ysis of categorical data—discrete response data and frequency data—with a main focus on graphical
methods for exploring data, spotting unusual features, visualizing fitted models and presenting or
explaining results.

We describe the necessary statistical theory (sometimes in abbreviated form) and illustrate the
practical application of these techniques to a large number of substantive problems: how to organize
the data, conduct an analysis, produce informative graphs, and understand what they have to say
about the data at hand.

Overview and organization of this book

This book is divided into three parts. Part I, Chapters 1–3, contains introductory material on graph-
ical methods for discrete data, basic R skills needed for the book and methods for fitting and visu-
alizing one-way discrete distributions.

Part II, Chapters 4–6, is concerned largely with simple, traditional non-parametric tests and
exploratory methods for visualizing patterns of association in two-way and larger frequency tables.
Some of the discussion here introduces ideas and notation for loglinear models that are treated more
generally in Part III.

Part III, Chapters 7–11, discusses model-based methods for the analysis of discrete data. These
are all examples of generalized linear models. However, for our purposes, it has proved more
convenient to develp this topic from the specific cases (logistic regression, loglinear models) to the
general rather than the reverse.

Chapter 1: Introduction. Categorical data require different statistical and graphical methods than
commonly used for quantitative data. This chapter outlines the basic orientation of the book
toward visualization methods and some key distinctions regarding the analysis and visualization
of categorical data.

Chapter 2: Working with Categorical Data. Categorical data can be represented in various forms:
case form, frequency form, and table form. This chapter describes and illustrates the skills and
techniques in R needed to input, create and manipulate R data objects to represent categorical
data, and convert these from one form to another for the purposes of statistical analysis and
visualization which are the subject of the remainder of the book.

Chapter 3: Fitting and Graphing Discrete Distributions. Understanding and visualizing discrete
data distributions provides a building block for model-based methods discussed in Part III. This
chapter introduces the well-known discrete distributions— the binomial, Poisson, negative-
binomial and others— in the simplest case of a one-way frequency table.

Chapter 4: Two-way Contingency Tables. The analysis of two-way frequency tables concerns the
association between two variables. A variety of specialized graphical displays help to visualize
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the pattern of association, using area of some region to represent the frequency in a cell. Some
of these methods are focused on visualizing an odds ratio (for 2×2 tables), or the general pattern
of association, or the agreement between row and column categories in square tables.

Chapter 5: Mosaic Displays for n-way Tables. This chapter introduces mosaic displays, designed
to help to visualize the pattern of associations among variables in two-way and larger tables.
Extensions of this technique can reveal partial associations, marginal associations, and shed
light on the structure of loglinear models themselves.

Chapter 6: Correspondence Analysis. Correspondence analysis provides visualizations of associ-
ations in a two-way contingency table in a small number of dimensions. Multiple correspon-
dence analysis extends this technique to n-way tables. Other graphical methods, including mo-
saic matrices and biplots provide complementary views of loglinear models for two-way and
n-way contingency tables.

Chapter 7: Logistic Regression Models. This chapter introduces the modeling framework for cat-
egorical data in the simple situation where we have a categorical response variable, often binary,
and one or more explanatory variables. A fitted model provides both statistical inference and
prediction, accompanied by measures of uncertainty. Data visualization methods for discrete
response data must often rely on smoothing techniques, including both direct, non-parametric
smoothing and the implicit smoothing that results from a fitted parametric model. Diagnostic
plots help us to detect influential observations which may distort our results.

Chapter 8: Models for Polytomous Responses. This chapter generalizes logistic regression mod-
els for a binary response to handle a multi-category (polytomous) response. Different models
are available depending on whether the response categories are nominal or ordinal. Visualiza-
tion methods for such models are mostly straight-forward extensions of those used for binary
responses presented in Chapter 7.

Chapter 9: Loglinear and Logit Models for Contingency Tables. This chapter extends the model-
building approach to loglinear and logit models. These comprise another special case of gen-
eralized linear models designed for contingency tables of frequencies. They are most easily
interpreted through visualizations, including mosaic displays and effect plots of associated logit
models.

Chapter 10: Extending Loglinear Models. Loglinear models have special forms to represent ad-
ditional structure in the variables in contingency tables. Models for ordinal factors allow a more
parsimonious description of associations. Models for square tables allow a wide range of spe-
cific models for the relationship between variables with the same categories. Another extended
class of models arise when there two or more response variables.

Chapter 11: Generalized Linear Models. Generalized linear models extend the familiar linear mod-
els of regression and ANOVA to include counted data, frequencies, and other data for which the
assumptions of independent, normal errors are not reasonable. We rely on the analogies between
ordinary and generalized linear models (GLMs) to develop visualization methods to explore the
data, display the fitted relationships and check model assumptions. The main focus of this
chapter is on models for count data.

Audience

This book has been written to appeal to two broad audiences wishing to learn to apply methods for
discrete data analysis:
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• Advanced undergraduate, graduate students in the social and health sciences, epidemiology,
economics, business and (bio)statistics

• Substantive researchers, methodologists and consultants in various disciplines wanting to be
able to use these methods with their own data and analyses.

It assumes the reader has a basic understanding of statistical concepts at least at an intermediate
undergraduate level including regression and analysis of variance (for example, at the level of Neter
et al. (1990), Mendenhall and Sincich (2003)). It is less technically demanding than other modern
texts covering categorical data analysis at a graduate level, such as Agresti (2013), Categorical
Data Analysis, Powers and Xie (2008), Statistical Methods for Categorical Data Analysis, and
Christensen (1997), Log-Linear Models and Logistic Regression. Nevertheless, there are some
topics that are a bit more advanced or technical, and these are marked as ? or ?? sections.

As well, there are also a number of mathematical or statistical topics that we use in passing, but
do not describe in these pages (some matrix notation, basic probability theory, maximum likelihood
estimation, etc.). Most of these are described in Fox (2015), available online and which serves well
as a supplement to this book.

In addition, it is not possible to include all details of using R effectively for data analysis. It is
assumed that the reader has at least basic knowledge of the R language and environment, includ-
ing interacting with the R console (RGui for Windows, R.app for Mac OS X) or other graphical
user interface (e.g., RStudio), using R functions in packages, getting help for these from R, etc.
One introductory chapter (Chapter 2) is devoted to covering the particular topics most important to
categorical data analysis, beyond such basic skills needed in the book.

Textbook use

This book is most directly suitable for one-semester applied advanced undergraduate or gradu-
ate course on categorical data analysis with a strong emphasis on the use of graphical methods
to understand and explain data and results of analysis. A detailed outline of such a course, to-
gether with lecture notes and assignments, is available at the first author’s web page, http:
//euclid.psych.yorku.ca/www/psy6136/, using this book as the main text. This course
also uses Agresti (2007), An Introduction to Categorical Data Analysis for additional readings.

For instructors teaching a more traditional course using one of the books mentioned above as the
main text, this book would be a welcomed supplement, because almost all other texts treat graphical
methods only perfunctorily, if at all. A few of these contain a brief appendix mentioning software,
or have a related web site with some data sets and software examples. Moreover, none actually
describe how to do these analyses and graphics with R.

Features

• Provides an accessible introduction to the major methods of categorical data analysis for data
exploration, statistical testing and statistical models.

• The emphasis throughout is on computing, visualizing, understanding and communicating the
results of these analyses.

• As opposed to more theoretical books, the goal here is to help the reader to translate theory into
practical application, by providing skills and software tools for carrying out these methods.

• Includes many examples using real data, often treated from several perspectives.
• The book is supported directly by R packages vcd and vcdExtra, along with numerous other R

packages.
• All materials (data sets, R code) will be available online on the web site for the book.



Preface xiii

• Each chapter contains a collection of lab exercises, which work through applications of some
of the methods presented in that chapter. This makes the book more suitable for both self-study
and classroom use.
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1
Introduction

{ch:intro}

1
Introduction

1.1
Overview

1.2 What is
categorical

data?

1.3
Strategies
for analysis

1.4
Graphical
methods

Categorical data consist of variables whose values comprise a set of discrete cate-
gories. Such data require different statistical and graphical methods than commonly used
for quantitative data. The focus of this book is on visualization techniques and graphical
methods designed to reveal patterns of relationships among categorical variables. This
chapter outlines the basic orientation of the book and some key distinctions regarding the
analysis and visualization of categorical data.

1.1 Data visualization and categorical data: Overview
{sec:viscat}

Beauty is truth; truth, beauty.
That is all ye know on Earth, all ye need to know.

John Keats, Ode on a Grecian urn

“Data visualization” can mean many things, from popular press infographics, to maps of voter
turnout or party choice. Here we use this term in the narrower context of statistical analysis. As
such, we refer to an approach to data analysis that focuses on insightful graphical display in the
service of both understanding our data and communicating our results to others.

We may display the raw data, some summary statistics, or some indicators of the quality or
adequacy of a fitted model. The word “insightful” suggests that the goal is (hopefully) to reveal
some aspects of the data which might not be perceived, appreciated, or absorbed by other means.
As in the quote from Keats, the overall aims include both beauty and truth, though each of these are
only as perceived by the beholder.

Methods for visualizing quantitative data have a long history and are now widely used in both

3



4 1. Introduction

data analysis and in data presentation, and in both popular and scientific media. Graphical methods
for categorical data, however, have only a more recent history, and are consequently not as widely
used. The goal of this book is to show concretely how data visualization may be usefully applied to
categorical data.

“Categorical” means different things in different contexts. We introduce the topic in Section 1.2
with some examples illustrating (a) types of categorical variables: binary, nominal, and ordinal, (b)
data in case form vs. frequency form, (c) frequency data vs. count data, (d) univariate, bivariate, and
multivariate data, and (e) the distinction between explanatory and response variables.

Statistical methods for the analysis of categorical data also fall into two quite different cate-
gories, described and illustrated in Section 1.3: (a) the simple randomization-based methods typi-
fied by the classical Pearson chi-squared (χ2) test, Fisher’s exact test, and Cochran-Mantel-Haenszel
tests, and (b) the model-based methods represented by logistic regression, loglinear, and generalized
linear models. In this book, Chapters 3–6 are mostly related to the randomization-based methods;
Chapters 7–9 illustrate the model-based methods.

In Section 1.4 we describe some important similarities and differences between categorical data
and quantitative data, and discuss the implications of these differences for visualization techniques.
Section 1.4.5 outlines a strategy of data analysis focused on visualization.

In a few cases we show R code or results as illustrations here, but the fuller discussion of using
R for categorical data analysis is postponed to Chapter 2.

1.2 What is categorical data?
{sec:whatis}

A categorical variable is one for which the possible measured or assigned values consist of a dis-
crete set of categories, which may be ordered or unordered. Some typical examples are:

• Gender, with categories “Male”, “Female”.
• Marital status, with categories “Never married”, “Married”, “Separated”, “Divorced”,

“Widowed”.
• Fielding position (in baseball), with categories “Pitcher”, “Catcher”, “1st base”, “2nd

base”, . . ., “Left field”.
• Side effects (in a pharmacological study), with categories “None”, “Skin rash”, “Sleep

disorder”, “Anxiety”, . . ..
• Political attitude, with categories “Left”, “Center”, “Right”.
• Party preference (in Canada), with categories “NDP”, “Liberal”, “Conservative”, “Green”.
• Treatment outcome, with categories “no improvement”, “some improvement”, or “marked

improvement”.
• Age, with categories “0-9”, “10-19”, “20-29”, “30-39”, . . . .
• Number of children, with categories 0, 1, 2, . . . .

As these examples suggest, categorical variables differ in the number of categories: we often
distinguish binary variables (or dichotomous variables) such as Gender from those with more
than two categories (called polytomous variables). For example, Table 1.1 gives data on 4, 526
applicants to graduate departments at the University of California at Berkeley in 1973, classified by
two binary variables, gender and admission status.

Some categorical variables (Political attitude, Treatment outcome) may have
ordered categories (and are called ordinal), while other (nominal) variables like Marital status
have unordered categories.1 For example, Table 1.2 shows a 2 × 2 × 3 table of ordered outcomes
(“none”, “some” or “marked” improvement) to an active treatment for rheumatoid arthritis com-
pared to a placebo for men and women.

1An ordinal variable may be defined as one whose categories are unambiguously ordered along a single underlying dimen-
sion. Both marital status and fielding position may be weakly ordered, but not on a single dimension, and not unambiguously.
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Table 1.1: Admissions to Berkeley graduate programs{tab:berk220}

Admitted Rejected Total
Males 1198 1493 2691
Females 557 1278 1835
Total 1755 2771 4526

Table 1.2: Arthritis treatment data{tab:arthrit0}

Improvement
Treatment Sex None Some Marked Total

Active Female 6 5 16 27
Male 7 2 5 14

Placebo Female 19 7 6 32
Male 10 0 1 11

Total 42 14 28 84

Finally, such variables differ in the fineness or level to which some underlying observation has
been categorized for a particular purpose. From one point of view, all data may be considered
categorical because the precision of measurement is necessarily finite, or an inherently continuous
variable may be recorded only to limited precision.

But this view is not helpful for the applied researcher because it neglects the phrase “for a
particular purpose”. Age, for example, might be treated as a quantitative variable in a study of
native language vocabulary, or as an ordered categorical variable with decade groups (0-10, 11-20,
20-30, . . .) in terms of the efficacy or side-effects of treatment for depression, or even as a binary
variable (“child” vs. “adult”) in an analysis of survival following an epidemic or natural disaster. In
the analysis of data using categorical methods, continuous variables are often recoded into ordered
categories with a small set of categories for some purpose.2

1.2.1 Case form vs. frequency form
{sec:case-freq}

In many circumstances, data is recorded on each individual or experimental unit. Data in this form
is called case data, or data in case form. The data in Table 1.2, for example, were derived from the
individual data listed in the data set Arthritis from the vcd package. The following lines show
the first five of N = 84 cases in the Arthritis data,

ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked

Whether or not the data variables, and the questions we ask, call for categorical or quantitative

2This may be a waste of information available in the original variable, and should be done for substantive reasons,
not mere convenience. For example, some researchers unfamiliar with regression methods often perform a “median-split”
on quantitative predictors so they can use ANOVA methods. Doing this precludes the possibility of determining if those
variables have non-linear relations with the outcome while also decreasing statistical power.



6 1. Introduction

data analysis, when the data are in case form, we can always trace any observation back to its
individual identifier or data record (for example, if the case with ID equal to 57 turns out to be
unusual or noteworthy).

Data in frequency form has already been tabulated, by counting over the categories of the table
variables. The same data shown as a table in Table 1.2 appear in frequency form as shown below.

Treatment Sex Improved Freq
1 Placebo Female None 19
2 Treated Female None 6
3 Placebo Male None 10
4 Treated Male None 7
5 Placebo Female Some 7
6 Treated Female Some 5
7 Placebo Male Some 0
8 Treated Male Some 2
9 Placebo Female Marked 6
10 Treated Female Marked 16
11 Placebo Male Marked 1
12 Treated Male Marked 5

Data in frequency form may be analyzed by methods for quantitative data if there is a quan-
titative response variable (weighting each group by the cell frequency, with a weight variable).
Otherwise, such data are generally best analyzed by methods for categorical data, where statistical
models are often expressed as models for the frequency variable, in the form of an R formula like
Freq ~ ..

In any case, an observation in a data set in frequency form refers to all cases in the cell col-
lectively, and these cannot be identified individually. Data in case form can always be reduced to
frequency form, but the reverse is rarely possible. In Chapter 2, we identify a third format, table
form, which is the R representation of a table like Table 1.2.

1.2.2 Frequency data vs. count data
{sec:freq-count}

In many cases the observations representing the classifications of events (or variables) are recorded
from operationally independent experimental units or individuals, typically a sample from some
population. The tabulated data may be called frequency data. The data in Table 1.1 and Table 1.2
are both examples of frequency data because each tabulated observation comes from a different
person.

However, if several events or variables are observed for the same units or individuals, those
events are not operationally independent, and it is useful to use the term count data in this situa-
tion. These terms (following Lindsey (1995)) are by no means standard, but the distinction is often
important, particularly in statistical models for categorical data.

For example, in a tabulation of the number of male children within families (Table 1.3, described
in Section 1.2.3 below), the number of male children in a given family would be a count variable,
taking values 0, 1, 2, . . .. The number of independent families with a given number of male children
is a frequency variable. Count data also arise when we tabulate a sequence of events over time or
under different circumstances in a number of individuals.

Table 1.3: Number of Males in 6115 Saxony Families of Size 12{tab:saxdata}

Males 0 1 2 3 4 5 6 7 8 9 10 11 12
Families 3 24 104 286 670 1,033 1,343 1,112 829 478 181 45 7
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1.2.3 Univariate, bivariate, and multivariate data
{sec:uni-multi}

Another distinction concerns the number of variables: one, two or (potentially) many shown in
a data set or table, or used in some analysis. Table 1.1 is an example of a bivariate (two-way)
contingency table and Table 1.2 classifies the observations by three variables. Yet, we will see later
that the Berkeley admissions data also recorded the department to which potential students applied
(giving a three-way table), and in the arthritis data, the age of subjects was also recorded.

Any contingency table (in frequency or table form) therefore records the marginal totals, summed
over all variables not represented in the table. For data in case form, this means simply ignoring (or
not recording) one or more variables; the “observations” remain the same. Data in frequency form,
however, result in smaller tables when any variable is ignored; the “observations” are the cells of
the contingency table. For example, in the Arthritis data, ignoring Sex gives the smaller 2× 3
table for Treatment and Improved.

Treatment Improved Freq
1 Placebo None 29
2 Treated None 13
3 Placebo Some 7
4 Treated Some 7
5 Placebo Marked 7
6 Treated Marked 21

In the limiting case, only one table variable may be recorded or available, giving the categorical
equivalent of univariate data. For example, Table 1.3 gives data on the distribution of the number
of male children in families with 12 children (discussed further in Example 3.2). These data were
part of a large tabulation of the sex distribution of families in Saxony in the 19th century, but the
data in Table 1.3 have only one discrete classification variable, number of males. Without further
information, the only statistical questions concern the form of the distribution. We discuss methods
for fitting and graphing such discrete distributions in Chapter 3. The remaining chapters relate to
bivariate and multivariate data.

1.2.4 Explanatory vs. Response variables
{sec:exp-resp}

Most statistical models make a distinction between response variables (or dependent, or criterion
variables) and explanatory variables (or independent, or predictor variables).

In the standard (classical) linear models for regression and analysis of variance (ANOVA), for
instance, we treat one (or more) variables as responses, to be explained by the other, explanatory
variables. The explanatory variables may be quantitative or categorical (e.g., factors in R). This
affects only the details of how the model is specified or how coefficients are interpreted for lm() or
glm(). In these classical models, the response variable (“treatment outcome”, for example), must
be considered quantitative, and the model attempts to describe how the mean of the distribution of
responses changes with the values or levels of the explanatory variables, such as age or gender.

When the response variable is categorical, however, the standard linear models do not apply,
because they assume a normal (Gaussian) distribution for the model residuals. For example, in
Table 1.2 the response variable is Improvement, and even if numerical scores were assigned to
the categories “none”, “some”, “marked”, it may be unlikely that the assumptions of the classical
linear models could be met.

Hence, a categorical response variable generally requires analysis using methods for categorical
data, but categorical explanatory variables may be readily handled by either method.

The distinction between response and explanatory variables also becomes important in the use
of loglinear models for frequency tables (described in Chapter 9), where models can be specified in
a simpler way (as equivalent logit models) by focusing on the response variable.
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1.3 Strategies for categorical data analysis
{sec:strategies}

Data analysis typically begins with exploratory and graphical methods designed to expose features
of the data, followed by statistical analysis designed to summarize results, answer questions and
draw conclusions. Statistical methods for the analysis of categorical data can be classified into two
broad categories: those concerned with hypothesis testing per se versus those concerned with model
building.

1.3.1 Hypothesis testing approaches
{sec:strategies-hyp}

In many studies, the questions of substantive interest translate readily into questions concerning
hypotheses about association between variables, a more general idea than that of correlation (linear
association) for quantitative variables. If a non-zero association exists, we may wish to characterize
the strength of the association numerically and understand the pattern or nature of the association.

For example, in Table 1.1, a main question is: “Is there evidence of gender-bias in admission
to graduate school?” Another way to frame this: “Are males more likely to be admitted?” These
questions can be expressed in terms of an association between gender and admission status in a
2 × 2 contingency table of applicants classified by these two variables. If there is evidence for
an association, we can assess its strength by a variety of measures, including the difference in
proportions admitted for men and women or the ratio of the odds of admission for men compared
to women, as described in Section 4.2.2.

Similarly, in Table 1.2, questions about the efficacy of the treatment for rheumatoid arthritis can
be answered in terms of hypotheses about the associations among the table variables: Treatment,
Sex, and the Improvement categories. Although the main concern might be focused on the
overall association between Treatment and Improvement, one would also wish to know if
this association is the same for men and women. A stratified analysis (Section 4.3) controls for
the effects of background variables like Sex, and tests for homogeneity of association helping to
determine if these associations are equal.

Questions involving tests of such hypotheses are answered most easily using a large variety
of specific statistical tests, often based on randomization arguments. These include the familiar
Pearson chi-squared test for two-way tables, the Cochran-Mantel-Haenszel test statistics, Fisher’s
exact test, and a wide range of measures of strength of association. These tests make minimal
assumptions, principally requiring that subjects or experimental units have been randomly assigned
to the categories of experimental factors. The hypothesis testing approach is illustrated in Chapter 4–
6, though the emphasis is on graphical methods which help to understand the nature of association
between variables.{ex:haireye0}

EXAMPLE 1.1: Hair color and eye color
The data set HairEye below records data on the relationship between hair color and eye color

in a sample of nearly 600 students.

Eye
Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

The standard analysis (with chisq.test() or assocstats()) gives a Pearson χ2 of 138.3
with nine degrees of freedom, indicating substantial departure from independence. Among the mea-
sures of strength of association, Cramer’s V, V =

√
χ2/N min(r − 1, c− 1) = 0.279, indicates a

substantial relationship between hair and eye color.3

3Cramer’s V varies from 0 (no association) to 1 (perfect association).
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X^2 df P(> X^2)
Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0

Phi-Coefficient : NA
Contingency Coeff.: 0.435
Cramer's V : 0.279

The further (and perhaps more interesting question) is how do we understand the nature of this
association between hair and eye color? Two graphical methods related to the hypothesis testing
approach are shown in Figure 1.1.
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Figure 1.1: Graphical displays for the hair color and eye color data. Left: mosaic display; right:
correspondence analysis plot {fig:haireye02}

The left panel of Figure 1.1 is a mosaic display (Chapter 5), constructed so that the size of each
rectangle is proportional to the observed cell frequency. The shading reflects the cell contribution
to the χ2 statistic—shades of blue when the observed frequency is substantially greater than the
expected frequency under independence, shades of red when the observed frequency is substantially
less, as shown in the legend.

The right panel of this figure shows the results of a correspondence analysis (Chapter 6), where
the deviations of the hair color and eye color points from the origin accounts for as much of the χ2

as possible in two dimensions.
We observe that both the hair colors and the eye colors are ordered from dark to light in the

mosaic display and along Dimension 1 in the correspondence analysis plot. The deviations between
observed and expected frequencies have an opposite-corner pattern in the mosaic display, except for
the combination of red hair and green eyes, which also stand out as the largest values on Dimension
2 in the Correspondence analysis plot. Displays such as these provide a means to understand how
the variables are related. 4

1.3.2 Model building approaches

Model-based methods provide tests of equivalent hypotheses about associations, but offer additional
advantages (at the cost of additional assumptions) not provided by the simpler hypotheses-testing
approaches. Among these advantages, model-based methods provide estimates, standard errors and
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confidence intervals for parameters, and the ability to obtain predicted (fitted/expected) values with
associated measures of precision.

We illustrate this approach here for a dichotomous response variable, where it is often convenient
to construct a model relating a function of the probability, π, of one event to a linear combination
of the explanatory variables. Logistic regression uses the logit function,

logit(π) ≡ loge

(
π

1− π

)
which may be interpreted as the log odds of the given event. A linear logistic model can then be
expressed as

logit(π) = β0 + β1x1 + β2x2 + . . .

Statistical inferences from model-based methods provide tests of hypotheses for the effects of
the predictors, x1, x2, . . ., but they also provide estimates of parameters in the model, β1, β2, . . . and
associated confidence intervals. Standard modeling tools allow us to graphically display the fitted
response surface (with confidence or prediction intervals) and even to extrapolate these predictions
beyond the given data. A particular advantage of the logit representation in the logistic regression
model is that estimates of odds ratios (Section 4.2.2) may be obtained directly from the parameter
estimates.{ex:nasa0}

EXAMPLE 1.2: Space shuttle disaster
To illustrate the model-based approach, the graph in Figure 1.2 is based on a logistic regression

model predicting the probability of a failure in one of the O-ring seals used in the 24 NASA space
shuttles prior to the disastrous launch of the Challenger in January, 1986. The explanatory variable
is the ambient temperature (in Fahrenheit) at the time of the flight. The sad story behind these data,
and the lessons to be learned for graphical data display are related in Example 1.10.
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Figure 1.2: Space shuttle O-ring failure, observed and predicted probabilities. The dotted vertical
line at 31◦ shows the prediction for the launch of the Challenger.{fig:spaceshuttle0}

Here, we simply note that the fitted model, shown by the solid line in Figure 1.2, corresponds to
the prediction equation (with standard errors shown in parentheses),

logit(Failure) = 5.09
(3.06)

− 0.116
(0.047)

Temperature

A hypothesis test that failure probability is unassociated with temperature is equivalent to the test
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that the coefficient for temperature in this model equals 0; this test has a p-value of 0.014, convincing
evidence for rejection.

The parameter estimate for temperature, −0.116, however, gives more information. Each 1◦

increase in temperature decreases the log odds of failure by 0.116, with 95% confidence interval
[−0.208,−0.0235]. The equivalent odds ratio is exp(−0.116) = 0.891 [0.812, 0.977]. Equiva-
lently, a 10◦ decrease in temperature corresponds to an odds ratio of a failure of exp(10×0.116) =
3.18, more than tripling the odds of a failure.

When the Challenger was launched, the temperature was only 31◦. The shaded region in Fig-
ure 1.2 show 95% prediction intervals for failure probability. All previous shuttles (shown by the
points in the figure) had been launched at much warmer temperatures, so the prediction interval
(the dashed vertical line) at 31◦ represents a considerable extrapolation beyond the available data.
Nonetheless, the model building approach does provide such predictions along with measures of
their uncertainty. Figure 1.2 is a graph that might have saved lives.

4
{ex:donner0}

EXAMPLE 1.3: Donner Party
In April–May of 1846 (three years before the California gold rush), the Donner and Reed fam-

ilies set out for California from the American mid-west in a wagon train to seek a new life and
perhaps their fortune in the new American frontier. By mid July, a large group had reached a site
in present-day Wyoming; George Donner was elected to lead what was to be called the “Donner
Party,” which eventually numbered 87 people in 23 wagons, along with their oxen, cattle, horses,
and worldly possessions.

They were determined to reach California as quickly as possible. Lansford Hastings, a self-
proclaimed trailblazer (retrospectively, of dubious distinction), proposed that the party follow him
through a shorter path through the Wasatch Mountains. Their choice of “Hastings’s Cutoff” proved
disastrous: Hastings had never actually crossed that route himself, and the winter of of 1846 was to
be one of the worst on record.

In October, 1846, heavy snow stranded them in the eastern Sierra Nevada, just to the east of a
pass which bears their name today. The party made numerous attempts to seek rescue, most turned
back by blizzard conditions. Relief parties in March–April 1847 rescued 40, but discovered grizzly
evidence that those who survived had cannibalized those who died.

Here we briefly examine of how statistical models and graphical evidence can shed light on the
question of who survived in the Donner party.

Figure 1.3 is an example of what we call a data-centric, model-based graph of a discrete (binary)
outcome: lived (1) versus died (0). That is, it shows both the data and a statistical summary based
on a fitted statistical model. The statistical model provides a smoothing of the discrete data.

The jittered points at the top and bottom of the graph show survival in relation to age of the
person. You can see that there were more people who survived among the young, and more who
died among the old. The blue curve in the plot shows the fitted probability of survival from a
linear logistic regression model for these data with a 95% confidence band for the predictions. The
prediction equation for this model can be given as:

logit(survived) = 0.868
(0.372)

− 0.0353
(0.015)

age

The equation above implies that the log odds of survival decreases by 0.0352 with each addi-
tional year of age or by 10 × 0.0352 = 0.352 for an additional decade. Another way to say this
is that the odds of survival is multiplied by exp(0.353) = .702 with each 10 years of age, a 30%
decrease.

Of course, these visual and statistical summary depends on the validity of fitted model. For
contrast, Figure 1.4 shows two other model-based smoothers that relax the assumption of the linear
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Figure 1.3: Donner party data, showing the relationship between age and survival. The blue curve
and confidence band give the predicted probability of survival from a linear logistic regression
model. {fig:donner0}

logistic regression model. The left panel shows the result of fitting a semi-parametric model with a
natural cubic spline with one more degree of freedom than the linear logistic model. The right panel
shows the fitted curve for a non-parametric, locally weighted scatterplot smoothing (loess) model.
Both of these hint that the relationship of survival to age is more complex than what is captured in
the linear logistic regression model. We return to these data in Chapter 7.
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Figure 1.4: Donner party data, showing other model-based smoothers for the relationship between
age and survival. Left: using a natural spline; right: using a non-parametric loess smoother.{fig:donner0-other}

4
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1.4 Graphical methods for categorical data
{sec:methods}

You can see a lot, just by looking

Yogi Berra

The graphical methods for categorical data described in this book are in some cases straightfor-
ward adaptations of more familiar visualization techniques developed for quantitative data. Graph-
ical principles and strategies, and the relations between the visualization approach and traditional
statistical methods are described in a number of sources, including Chambers et al. (1983), Cleve-
land (1993b) and several influential books by Tufte (Tufte, 1983, 1990, 1997, 2006).

The fundamental ideas of statistical graphics as a comprehensive system of visual signs and
symbols with a grammar and semantics was first proposed in Jacques Bertin’s Semiology of Graph-
ics (1983), These ideas were later extended to a computational theory in Wilkinson’s Grammar of
Graphics (2005), and implemented in R in Hadley Wickham’s ggplot2 package (Wickham, 2009,
Wickham and Chang, 2013).

Another perspective on visual data display is presented in Section 1.4.1 focusing on the commu-
nication goals of statistical graphics. However, the discrete nature of categorical data implies that
some familiar graphic methods need to be adapted, while in other cases we require a new graphic
metaphor for data display. These issues are illustrated in Section 1.4.2. Section 1.4.3 discusses the
principle of effect ordering for categorical variables in graphs and tables.

1.4.1 Goals and design principles for visual data display
{sec:intro-goals}

Designing good graphics is surely an art, but as surely, it is one that ought to be informed by science.
In constructing a graph, quantitative and qualitative information is encoded by visual features, such
as position, size, texture, symbols and color. This translation is reversed when a person studies a
graph. The representation of numerical magnitude and categorical grouping, and the apperception
of patterns and their meaning must be extracted from the visual display.

There are many views of graphs, of graphical perception, and of the roles of data visualization
in discovering and communicating information. On the one hand, one may regard a graphical
display as a stimulus—a package of information to be conveyed to an idealized observer. From
this perspective certain questions are of interest: which form or graphic aspect promotes greater
accuracy or speed of judgment (for a particular task or question)? What aspects lead to greatest
memorability or impact? Cleveland (Cleveland and McGill, 1984, 1985, Cleveland, 1993a), Spence
and Lewandowsky (Lewandowsky and Spence, 1989, Spence, 1990, Spence and Lewandowsky,
1990) have made important contributions to our understanding of these aspects of graphical display.

An alternative view regards a graphical display as an act of communication—like a narrative,
or even a poetic text or work of art. This perspective places the greatest emphasis on the desired
communication goal, and judges the effectiveness of a graphical display in how well that goal is
achieved (Friendly and Kwan, 2011). Kosslyn (1985, 1989) and Tufte (1983, 1990, 1997) have
articulated this perspective most clearly.

In this view, an effective graphical display, like good writing, requires an understanding of its
purpose—what aspects of the data are to be communicated to the viewer. In writing we communi-
cate most effectively when we know our audience and tailor the message appropriately. So too, we
may construct a graph in different ways to: (a) use ourselves, (b) present at a conference or meet-
ing of our colleagues, (c) publish in a research report, or (d) communicate to a general audience
(Friendly (1991, Ch. 1), Friendly and Kwan (2011)). Figure 1.5 illustrates a basic contrast between
graphs for presentation purposes, designed to appeal persuasively to a large audience (one-to-many)
and the use of perhaps many graphs we might make for ourselves for exploratory data analysis
(many-to-one).
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Figure 1.5: Different communication purposes require different graphs. For presentations,
a single, carefully crafted graph may appeal best to a large audience; for exploratory anal-
ysis, many related images from different perspectives for a narrow audience (often you!).
Source: Adapted from a blog entry by Martin Theus, http://www.theusrus.de/blog/
presentation-vs-exploration/. {fig:presentation-exploration}

Figure 1.6 shows one organization of visualization methods in terms of the primary use or
intended communication goal, the functional presentation goal, and suggested corresponding design
principles.

Basic functions of data display

Data Display

Perception

Detection

Comparison

Exposition
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Exploration
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Model building

Aesthetics
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to Simulate

to Persuade

to Inform

Presentation Goal Design PrinciplesPrimary Use

Analysis

Presentation

Figure 1.6: A taxonomy of the basic functions of data display by intended use, presentation goal
and design principles. {fig:datadisp}

We illustrate these ideas and distinction in the examples below, most of which are treated again
in later chapters.{ex:arrests0}

EXAMPLE 1.4: Racial profiling: Arrests for marijuana possession
In a case study that will be examined in detail in Chapter 7 (Example 7.10), the Toronto Star

newspaper studied a huge data base of arrest records by Toronto police for indications of possible
racial profiling, i.e., differential treatment of those arrested on the basis of skin color. They focused
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on the charge of simple possession of a small amount of marijuana, for which enforcement proce-
dures allowed police discretion. An officer could release an arrestee with a summons (“Form 9”)
to appear in court, or take the person to a police station for questioning (“Form 10”) or booking
(“Form 11.1”) or order the person held in jail for a bail hearing (“Show cause”).

The statistical issue was whether the data on these arrests showed evidence of differential treat-
ment in relation to skin color, particularly in the treatment of blacks vs. whites, controlling, of
course, for other factors. Statistical tests on these data (χ2 tests, loglinear models, logistic regres-
sion) showed overwhelming evidence of differential treatment of blacks and whites. However, tables
of these results do not reveal the nature of this association.

Figure 1.7 is an example of a graph designed for analysis—a mosaic display (Chapter 5) show-
ing the frequencies of those arrested on this charge by skin color and release type. The size of
each rectangle shows the frequency and these are shaded in relation to the asociation between skin
color and release—blue for positive associations (more than expected under independence) to red
for negative associations.
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Figure 1.7: Mosaic display showing the relationship between skin color and release type for those
arrested on a charge of simple possession of marijuana in Toronto, 1996-2002. {fig:arrests0-mosaic}

Once you know how to read such graphs, the pattern is clear: blacks were indeed more likely
to be held for more severe treatment, whites were more likely to be released with a summons. But
this is hardly a graph that would be clear to a general audience, and would require a good deal of
explanation.

In contrast, Figure 1.8 shows a redesign of this as a presentation graphic prepared by the Star
and published on December 11, 2002 in conjunction with a meeting between the newspaper and
the Toronto Police Services Board to consider the issue of racial profiling. The police vehemently
denied that racial profiling was taking place. The revision makes the point immediately obvious and
compelling in the following ways:

• It announces the conclusion in the figure title: “Same charge, different treatment”
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• The text box at the top provides the context for this conclusion
• Skin colors “Brown” and “Other”, which were of low frequency were removed, and the release

categories “Form 10” and “Form 11.1” were combined as “released at station.”
• The graphic is still a mosaic display, however, it now shows explicitly the number of charges

laid against whites and blacks and the percentage of each treatment.
• The labels for Whites and Blacks were enhanced by indicating what a reader should see for

each.
• The legend for color is titled non-technically as “degree of likelihood.”

Figure 1.8: Redesign of Figure 1.7 as a presentation graphic. Source: Graphics department, The
Toronto Star, December 11, 2002. Used by permission.{fig:arrests0-star}

Clear communication is not achieved without effort. The revised graph required several itera-
tions and emails between the graphic designer and the statistical consultant (the first author of this
book) in the few hours available before the newspaper went to press. The main question was, “what
are we trying to show here?” Starting with the original Figure 1.7 mosaic, we asked “what can we
remove?” and “what can we add?” to make the message clearer.

4

1.4.2 Categorical data require different graphical methods
{sec:intro-catdata}

We mentioned earlier, and will see in greater detail in Chapter 7 and Chapter 9, that statistical
models for discrete response data and for frequency data are close analogs of the linear regression
and ANOVA models used for quantitative data. These analogies suggest that the graphical methods
commonly used for quantitative data may be adapted directly to categorical data.

Happily, it turns out that many of the analysis graphs and diagnostic displays (e.g., effect plots,
influence plots, added variable and partial residual plots, etc.) that have become common adjuncts in
the analysis of quantitative data have been extended to generalized linear models including logistic
regression (Section 7.5) and loglinear models (Section 11.6)

Unhappily, the familiar techniques for displaying raw data are often disappointing when applied
to categorical data. The simple scatterplot, for example, widely used to show the relation between
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Figure 1.9: Frequencies of categorical variables shown as areas. Left: fourfold display of the
relation between gender and admission in the Berkeley data; right: agreement plot for two raters
assessing mammograms. {fig:area-diagrams}

quantitative response and predictors, when applied to discrete variables, gives a display of the cate-
gory combinations, with all identical values overplotted, and no representation of their frequency.

Instead, frequencies of categorical variables are often best represented graphically using areas
rather than as position along a scale. Friendly (1995) describes conceptual and statistical models
that give a rationale for this graphic representation. Figure 1.7 does this in the form of a modified
bar chart (mosaic plot), where the widths of the horizontal bars show the proportions of whites
and blacks in the data, and the divisions of each group give the percents of each release type.
Consequently, the areas of each bar are proportional to the frequency in the cells of this 2× 3 table.

As we describe later in this book, using the visual attribute

area ∼ frequency

also allows creating novel graphical displays of frequency data for special circumstances.
Figure 1.9 shows two examples. The left panel gives a fourfold display of the frequencies of

admission and gender in the Berkeley data shown in Table 1.1. What should be seen at a glance is
that males are more often admitted and females more often rejected (shaded blue); see Section 4.4
for details.

The right panel shows another specialized display, an agreement chart designed to show the
strength of agreement in a square table for two raters (see Section 4.7.2). The example here (Ex-
ample 4.18) concerns agreement of ratings of breast cancer from mammograms by two raters. The
dark squares along the diagonal show exact agreement; the lighter diagonal rectangles allow 1-off
agreement, and both are shown in relation to chance agreement (diagonal enclosing rectangles).
What should be seen at a glance is that exact agreement is moderately strong and extremely strong
if you allow the raters to differ by one rating category.

1.4.3 Effect ordering and rendering for data display
{sec:effect-order}

In plots of quantitative variables, standard methods (histograms, scatterplots) automatically posi-
tion values along ordered scales, facilitating comparison (“which is less/more?”) and detection of
patterns, trends and anomalies. However, by its nature, categorical data involves discrete variables
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such as education level, hair color, geographic region (state or province) or preference for a polit-
ical party. With alphabetic labels for ordered categories (e.g., education: Low, Medium, High), it
is unfortunately all to easy to end up with a nonsensical display with the categories ordered High,
Low, Medium. Geographic regions (U.S. states) are often ordered alphabetically by default as are
the names of political parties and other categorical variables. This may be useful for lookup, but for
the purposes of comparison and detection, this is almost always a bad idea.

Instead, Friendly and Kwan (2003), proposed the principle of effect-order sorting for visual
displays (tables as well as graphs):

sort the data by the effects to be seen to facilitate comparison

For quantitative data, this is often achieved by sorting the data according to means or medians of
row and column factors, called main-effect ordering. For categorical data, graphs and tables are
often most effective when the categories are arranged in an order reflecting their association, called
association ordering.

Another important principle concerns the rendering of visual attributes of elements in graphical
displays (Friendly, 2002). For example, categorical variables in plots (and tables) can be distin-
guished by any one or more of color, size, shape, or font. The examples below show the use of color
to illustrate the precept:

render the data by the effects to be seen to facilitate detection
{ex:glass}

EXAMPLE 1.5: British social mobility
Bishop et al. (1975, p. 100) analyzed data on the occupations of 3500 British fathers and their

sons from a study by Glass (1954), with five occupational categories: Professional, Managerial,
Supervisory, Skilled manual and Unskilled manual.

One would expect, of course, a strong association between a son’s occupation and that of his
father—the apple doesn’t fall very far from the tree. Mosaic plots (detailed in Chapter 5) provide a
natural way to show such relationships. Figure 1.10 shows two such plots. The left panel shows the
result obtained when the table variables father and son are read as factors, and therefore ordered
alphabetically by default. It is difficult to see any overall pattern, except for the large values in the
diagonal cells (shaded blue) corresponding to equal occupational status.

In the right panel, the categories have been arranged in decreasing order of occupational status
to show the association according to status. Now you can see a global pattern of shading color,
where the tiles become increasingly red as one moves away from the main diagonal, reflecting a
greater difference between the occupation of the father and son. The interpretation here is that most
sons remain in their father’s occupational class, but when they differ, there is little mobility across
large steps.

In this example, father and son are clearly ordinal variables and should be treated as such
in both graphs and statistical models. Correspondence analysis (Chapter 6) provides a natural way
to depict association by assigning scores to the categories to optimally represent their relationships.
Loglinear models provide special methods for ordinal variables (Section 10.1) and square frequency
tables (Section 10.2).

4

The ideas of effect ordering and rendering with color shading to enhance perception can also be
used in tabular displays, as illustrated in the next example.{ex:barley}

EXAMPLE 1.6: Barley data
The classic barley dataset (in lattice) from Immer et al. (1934) gives a 10 × 2 × 6 table of

yields of 10 varieties of barley in two years (1931, 1932) planted at 6 different sites in Minnesota.
Cleveland (1993b) and many others have used this data to illustrate graphical methods, and one
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Figure 1.10: Mosaic plots for Glass’ mobility table of occupational status. In these displays the area
of each tile is proportional to frequency and shading color shows the departure from independence,
using blue for positive, red for negative association. Left: default alphabetic ordering of categories;
right: occupational categories ordered by status.{fig:glass-mosaic}

surprising finding not revealed in standard tabular displays is that the data for one site (Morris) may
have had the values for 1931 and 1932 switched.4

To focus attention on this suspicious effect in a tabular display, you can calculate the yield
difference ∆yij = yij,1931 − yij,1932. Table 1.4 shows these values in a 10× 6 table with the rows
and columns sorted by their means (main-effect ordering). In addition, the table cells have been
colored according to the sign and magnitude of the year difference. The shading scheme uses blue
for large positive values and red for large negative values, with a white background for intermediate
values. The shading intensity values were determined as |∆yij | > {2, 3} × σ̂(∆yij).

Effect ordering and color rendering have the result of revealing a new effect, shown as a regular
progression in the body of the table. The negative values for Morris now immediately stand out. In
addition, the largely positive other values show a lower-triangular pattern, with the size of the yield
difference increasing with both row and column means. Against this background, one other cell, for
Velvet grown at Grand Rapids stands out with an anomalous negative value.

Although the use of color for graphs is now more common in some journals, color and other
rendering details in tables are still difficult. The published version of Table 1.4 (Friendly and Kwan,
2003, Table 3) was forced to use only font shape (normal, italics) to distinguish positive and negative
values.

4

Finally, effect ordering is also usefully applied to the variables in multivariate data sets, which
by default, are often ordered in data displays according to their position in a data frame or alphabet-
ically. {ex:1.7}

EXAMPLE 1.7: Iris data
4This canonical story, like many others in statistics and graphics lore turns out to be apocryphal on closer ex-

amination. Wright (2013) recently took a closer look at the original data and gives an expanded data set as
minnesota.barley.yield in the agridat package. With a wider range of years (1927–1936), other local effects
like weather had a greater impact than the overall year effects seen in 1931–1932, and the results for the Morris site no
longer stand out as surprising.
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Table 1.4: Barley data, yield differences, 1931-1932, sorted by mean difference, and shaded by
value {tab:barley2c}

Site
Variety Morris Duluth

University
Farm

Grand
Rapids Waseca Crookston Mean

No. 475 -22 6 -5 4 6 12 0.1
Wisconsin No. 38 -18 2 1 14 1 14 2.4
Velvet -13 4 13 -9 13 9 2.9
Peatland -13 1 5 8 13 16 4.8
Manchuria -7 6 0 11 15 7 5.5
Trebi -3 3 7 9 15 5 6.1
Svansota -9 3 8 13 9 20 7.3
No. 462 -17 6 11 5 21 18 7.4
Glabron -6 4 6 15 17 12 8.0
No. 457 -15 11 17 13 16 11 8.8

Mean -12.2 4.6 6.3 8.2 12.5 12.5 5.3

The classic iris data set (Anderson, 1935, Fisher, 1936b) gives the measurements in centime-
ters of the variables sepal length and width and petal length and width, respectively, for 50 flowers
from each of 3 species of iris, Iris setosa, versicolor, and virginica. Such multivariate data are often
displayed in parallel coordinate plots, using a separate vertical axis for each variable, scaled from
its minimum to maximum.

The default plot, with variables shown in their data frame order is shown in the left panel of
Figure 1.11, and gives rise to the epithet spaghetti plot for such displays because of the large number
of line crossings. This feature arises because one variable, sepal width, has negative relations in the
species means with the other variables. Simple rearrangement of the variables to put sepal width
last (or first) makes the relations among the species and the variables more apparent, as shown in
the right panel of Figure 1.11. This plot has also been enhanced by using alpha-blending (partial
transparency) of thicker lines, so that the density of lines is more apparent.

Parallel coordinate plots for categorical data are discussed in an online supplement on the web
site for the book. A general method for reordering variables in multivariate data visualizations based
on cluster analysis was proposed by Hurley (2004).

4

1.4.4 Interactive and dynamic graphics
{sec:intro-interactive}

Graphics displayed in print form, such as this book, are necessarily static and fixed at the time they
are designed and rendered as an image. Yet, recent developments in software, web technology and
media alternative to print have created the possibility to extend graphics in far more useful and
interesting ways, for both presentation and analysis purposes.

Interactive graphics allow the viewer to directly manipulate the statistical and visual components
of graphical display. These range from

• graphical controls (sliders, selection boxes and other widgets) to control details of an analysis
(e.g., a smoothing parameter) or graph (colors and other graphic details), to

• higher-level interaction including zooming in or out, drilling down to a data subset, linking
multiple displays, selecting terms in a model and so forth.
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Figure 1.11: Parallel coordinates plots of the Iris data. Left: Default variable order; right: Variables
ordered to make the pattern of correlations more coherent.{fig:iris-parallel}

The important effect is that the analysis and/or display is immediately re-computed and updated
visually.

In addition, dynamic graphics use animation to show a series of views, as frames in a movie.
Adding time as an additional dimension allows far more possibilities, for example showing a rotat-
ing view of a 3D graph or showing smooth transitions or interpolations from one view to another.

There are now many packages in R providing interactive and dynamic plots (e.g., rggobi, iplots)
as well as capabilities to incorporate these into interactive documents, presentations and web pages
(e.g., rCharts, googleVis, ggvis). The animate package facilitates creating animated graphics and
movies in a variety of formats. The RStudio editor and development environment5 provides its own
manipulate package, as well as the shiny framework for developing interactive R web applications. {ex:512paths}

EXAMPLE 1.8: 512 paths to the White House
Shortly before the 2012 U.S. presidential election (November 2, 2012) the New York Times

published an interactive graphic6, designed by Mike Bostock and Shan Carter7 showing the effect
that a win for Barack Obama or Mitt Romney in the nine most highly contested states would have
on the chances that either candidate would win the presidency.

With these nine states in play there are 29 = 512 possible outcomes, each with a different
number of votes in the Electorial College. In Figure 1.12, a win for Obama in Florida and Virginia
was selected, with wins for Romney in Ohio and North Carolina. Most other selections also lead to
a win by Obama, but those with the most votes are made most visible at the top. An R version of
this chart was created using the rCharts package.8 The design of this graphic as a binary tree was
chosen here, but another possibility would be a treemap graphic (Shneiderman, 1992) or a mosaic
plot.

4

5http://www.rstudio.com
6http://www.nytimes.com/interactive/2012/11/02/us/politics/

paths-to-the-white-house.html
7see: https://source.opennews.org/en-US/articles/nyts-512-paths-white-house/ for a de-

scription of their design process.
8http://timelyportfolio.github.io/rCharts_512paths/
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Figure 1.12: 512 paths to the White House. This interactive graphic allows the viewer to select a
winner in any one or more of the nine most highly contested U.S. states and highlights the number
of paths leading to a win by Obama or Romney, sorted and weighted by the number of Electoral
College votes. {fig:nyt_512paths}

1.4.5 Visualization = Graphing + Fitting + Graphing . . .
{sec:vis}

Look here, upon this picture, and on this.

Shakespeare, Hamlet

Statistical summaries, hypothesis tests, and the numerical parameters derived in fitted models
are designed to capture a particular feature of the data. A quick analysis of the data from Ta-
ble 1.1, for example, shows that 1198/2691 = 44.5% of male applicants were admitted, compared
to 557/1835 = 30.4% of female applicants.

Statistical tests give a Pearson χ2 of 92.2 with 1 degree of freedom for association between
admission and gender (p < 0.001), and various measures for the strength of association. Expressed
in terms of the odds ratio, males were apparently 1.84 times as likely to be admitted as females, with
99% confidence bounds (1.56, 2.17). Each of these numbers expresses some part of the relationship
between gender and admission in the Berkeley data. Numerical summaries such as these are each
designed to compress the information in the data, focusing on some particular feature.

In contrast, the visualization approach to data analysis is designed to (a) expose information and
structure in the data, (b) supplement the information available from numerical summaries, and (c)
suggest more adequate models. In general, the visualization approach seeks to serve the needs of
both summarization and exposure.

This approach recognizes that both data analysis and graphing are iterative processes. You
should not expect that any one model captures all features of the data, any more than we should
expect that a single graph shows all that may be seen. In most cases, your initial steps should
include some graphical display guided by understanding of the subject matter of the data. What you
learn from a graph may then help suggest features of the data to be incorporated into a fitted model.
Your desire to ensure that the fitted model is an adequate summary may then lead to additional
graphs.
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The precept here is that

Visualization = Graphing + Fitting + Graphing . . .

where the ellipsis indicates the often iterative nature of this process. Even for descriptive purposes,
an initial fit of salient features can be removed from the data, giving residuals (departures from a
model). Displaying the residuals may then suggest additional features to account for.

Simple examples of this idea include detrending time series graphs to remove overall and sea-
sonal effects and plots of residuals from main-effect models for ANOVA designs. For categorical
data, mosaic plots (Chapter 5) display the unaccounted-for association between variables by shad-
ing, as in Figure 1.10. Additional models and plots considered in Section 10.2 can reveal additional
structure in square tables beyond the obvious effect that sons tend most often to follow in their
fathers’ footsteps. {ex:donner0a}

EXAMPLE 1.9: Donner Party
The graphs in Figure 1.3 and Figure 1.4 suggest three different initial descriptions for survival in

the Donner party. Yet they ignore all other influences, of which gender and family structure might
also be important. A more complete understanding of this data can be achieved by taking these
effects into account, both in fitted models and graphs. See Example 7.9 for a continuation of this
story. 4

{ex:nasa}

EXAMPLE 1.10: Space shuttle disaster
The space shuttle Challenger mentioned in Example 1.2 exploded 73 seconds after take-off on

January 28, 1986. Subsequent investigation presented to the presidential commission headed by
William Rogers determined that the cause was failure of the O-ring seals used to isolate the fuel
supply from burning gases. The story behind the Challenger disaster is perhaps the most poignant
missed opportunity in the history of statistical graphics. See Tufte (1997) for a complete exposition.
It may be heartbreaking to find out that some important information was there, but the graph maker
missed it.
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Figure 1.13: NASA Space Shuttle pre-launch graph prepared by the engineers at Morton Thiokol. {fig:nasa0}

Engineers from Morton Thiokol, manufacturers of the rocket motors, had been worried about
the effects of unseasonably cold weather on the O-ring seals and recommended aborting the flight.
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NASA staff analysed the data, tables and charts submitted by the engineers and concluded that there
was insufficient evidence to cancel the flight.

The data relating O-ring failures to temperature were depicted as in Figure 1.13, our candidate
for the most misleading graph in history. There had been 23 previous launches of these rockets
giving data on the number of O-rings (out of 6) that were seen to have suffered some damage or
failure. However, the engineers omitted the observations where no O-rings failed or showed signs
of damage, believing that they were uninformative.

Examination of this graph seemed to indicate that there was no relation between ambient tem-
perature and failure. Thus, the decision to launch the Challenger was made, in spite of the initial
concerns of the Morton Thiokol engineers. Unfortunately, those observations had occurred when
the launch temperature was relatively warm (65− 80◦F.) and were indeed informative. The coldest
temperature at any previous launch was 53◦; when Challenger was launched on January 28, the
temperature was a frigid 31◦.

These data have been analyzed extensively (Dalal et al., 1989, Lavine, 1991). Tufte (1997) gives
a thorough and convincing visual analysis of the evidence available prior to the launch. We consider
statistical analysis of these data in Chapter 7, Example 7.4.

But, what if the engineers had simply made a better graph? At the very least, that would entail
(a) drawing a smoothed curve to fit the points (to show the trend) (b) removing the background grid
lines (which obscure the data). Figure 1.14 shows a revised version of the same graph, highlighting
the non-zero observations and adding a simple quadratic curve to allow for a possible non-linear
relationship. For comparison, the excluded zero observations are also shown in grey. This plot, even
showing only the non-zero points should have caused any engineer to conclude that either: (a) the
data were wrong, or (b) there were excessive risks associated with both high and low temperatures.
But it is well-known that brittleness of the rubber used in the O-rings is inversely proportional to
Temperature cubed, so prudent interest might have focussed on the first possibility.9

4

1.4.6 The 80-20 rule
The Italian economist Vilfredo Pareto observed in 1906 that 80% of the land in Italy was owned by
20% of the population and this ratio also applied in other countries. It also applied to the yield of
peas from peapods in his garden (Pareto, 1971). This idea became known as the Pareto principle or
the 80–20 rule. The particular 80/20 ratio is not as important as the more general idea of the uneven
distribution of results and causes in a variety of areas.

Common applications are the rules of thumb that: (a) in business 80% of sales come from 20%
of clients; (b) in criminology 80% of crimes are said to be committed by 20% of the population. (c)
In software development, it is said that 80% of errors and (d) crashes can be eliminated by fixing
the top 20% most reported bugs or that 80% of errors reside in 20% of the code.

The Pareto chart was designed to display the frequency distribution of a variable with a his-
togram or bar chart together with a cumulative line graph to highlight the most frequent category,
and the Pareto distribution gives a mathematical form to such distributions with a parameter α (the
Pareto index) reflecting the degree of inequality.

Applied to statistical graphics, the precept is that

20% of your effort can generate 80% of your desired result in producing a given plot.

9A coda to this story shows the role of visual explanation in practice as well (Tufte, 1997, p. 50–53). The Rogers Com-
mission contracted the reknown theoretical physicist Richard Feynman to contribute to their investigation. He determined
that the most probable cause of the shuttle failure was the lack of resiliancy of the rubber O-rings at low temperature. But
how could he make this point convincingly? At a televised public hearing, he took a piece of the O-ring material, squeezed it
in C-clamp and plunged it into a glass of ice water. After a few minutes, he released the clamp, and the rubber did not spring
back to shape. He mildly said, “... there is no resilience in this particular material when it is at a temperature of 32 degress.
I believe this has some significance for our problem” (Feynman, 1988).
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Figure 1.14: Re-drawn version of the NASA pre-launch graph, showing the locations of the ex-
cluded observations and with fitted quadratics for both sets of observations{fig:nasa}

This is good news for exploratory graphs you produce for yourself. Very often, the default settings
will give a reasonable result, or you will see immediately something simple to add or change to
make the plot easier to understand.

The bad news is the corollary of this rule:

80% of your effort may be required to produce the remaining 20% of a finished
graph.

This is particularly important for presentation graphs, where several iterations may be necessary to
get it right (or right enough) for your communication purposes. Some important details are:

graph title A presentation graphic can be more effective when it announces the main point or
conclusion in the graphic title, as in Figure 1.8.

axis and value labels Axes should be labelled with meaningful variable descriptions (and perhaps
the data units) rather than just plot defaults (e.g., “Temperature (degrees F)” in Figure 1.2, not
temp). Axis values are often more of a challenge for categorical variables, where their text
labels often overlap, requiring abbreviation, a smaller font or text rotation.

grouping attributes Meaningfully different subsets of the data should be rendered with distinct
visual attributes such as color, shape, and line style, and sometimes with more than one.

legends and direct labels Different data groups in a graphic display shown by color, shape, etc.
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usually need at least a graphic legend defining the symbols and group labels. Sometimes you can
do better by applying the labels directly to the graphical elements,10 as was done in Figure 1.14.

legibility A common failure in presentation graphs in journals and lectures is the use of text fonts
too small to be read easily. One rule of thumb is to hold the graph at arms length for a journal
and put it on the floor for a lecture slide. If you can’t read the labels, the font is too small.

plot annotations Beyond the basic graphic data display, additional annotations can add consider-
able information to interpret the context or uncertainty, as in the use of plot envelopes to show
confidence bands or regions (see Figure 1.3 and Figure 1.4).

aspect ratio Line graphs (such as Figure 3.1) are often easiest to understand when the ratio of
height to width is such that line segments have an average slope near 1.0 (Cleveland et al.,
1988). In R, you can easily manipulate a graph window manually with a mouse to observe this
effect and find an aspect ratio that looks right.

Moreover, in graphs for biplots and correspondence analysis (Chapter 6), interpretation involves
distances between points and angles between line segments. This requires an aspect ratio that
equates the units on the axes. Careful software will do this for you,11 and you should resist the
temptation to re-shape the plot.

colors Whereas a good choice of colors can greatly enhance a graphical display, badly-chosen
colors, ignoring principles of human perception, can actually spoil it. First, considering that
a significant percentage of the human population is affected by color deficiencies, important
information should never be coded by color alone. Second, color palettes should be chosen
carefully to put the desired emphasis on the information visualized. For example, consider
Figure 1.15 showing qualitative color palettes (appropriate for unordered categories) taken from
two different color spaces: Hue-Saturation-Value (HSV) and Hue-Chroma-Luminance (HCL),
where only the hue is varied. Whereas one would expect such a palette to be balanced with
respect to colorfulness and brightness, the red colors in the left (HSV) color wheel are generally
perceived to be more more intense and flashy than the corresponding blue colors, and the highly
saturated dark blue dominates the wheel. Consequently, areas shaded with these colors may
appear more important than others in an uncontrolled way, distracting from the information to
be conveyed. In contrast, the colors from the right (HCL) wheel are all balanced to the same
gray level and in “harmony”. These clearly should be preferred whenever categories of the
same importance shall be compared. Another related perception rule prescribes that lighter and
darker colors should not be mixed in a display where areas should be compared since lighter
colors look larger than darker ones. More background information on the choice of “good”
colors for statistical graphics can be found in ?.

visual impact Somewhat related, important features of a display should be distinguished from the
less important. This may be achieved by different color or gray shading levels, or simply by
contrasting filled with non-filled geometric shapes, or a different density of shading lines. As a
consequence, displays should never be overloaded with filled areas, so that the important ones
can stand out.

Nearly all of the graphs in this book were produced using R code in scripts saved as files. This
has the advantages of reproducibility and enhancement: just re-run the code, or tweak it to improve
a graph. If this is too hard, you can always use an external graphics editor (Gimp, Inkscape, Adobe
Illustrator, etc.) to make improvements manually.

10For example, the identify() function allows points in a plot to be labeled interactively with a mouse. The directla-
bels package provides a general method for a variety of plots.

11For example using the graphics parameter asp=1, eqsplot() in MASS, or the equivalents in lattice
(aspect="iso") and ggplot2 (coord_equal).
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Figure 1.15: Qualitative color palette for the HSV (left) and HCL (right) spaces. The HSV colors
are (H, 100, 100) and the HCL colors (H, 50, 70) for the same hues H . Note that in a monochrome
version of this paper, all pies in the right wheel will be shaded with the same gray, i.e., they will
appear to be virtually identical.{fig:colors}

1.5 Chapter summary

• Categorical data differs from quantitative data because the variables take on discrete values
(ordered or unordered, character or numeric) rather than continuous numerical values. Con-
sequently, such data often appear in aggregated form representing category frequencies or in
tables.

• Data analysis methods for categorical data are comprised of those concerned mainly with testing
particular hypotheses versus those that fit statistical models. Model building methods have the
advantages of providing parameter estimates and model-predicted values, along with measures
of uncertainty (standard errors).

• Graphical methods can serve different purposes for different goals (data analysis versus presen-
tation), and these suggest different design principles that a graphic should respect to achieve a
given communication goal.

• For categorical data, some graphic forms (bar charts, line graphs, scatterplots) used for quanti-
tative data can be readily adapted to discrete variables. However, frequency data often requires
novel graphics using area and other visual attributes.

• Graphics can be far more effective when categorical variables are ordered to facilitate compari-
son of the effects to be seen and rendered to facilitate detection of patterns, trends or anomalies.

• The visualization approach to data analysis often entails a sequence of intertwined steps involv-
ing graphing and model fitting.

• Producing effective graphs for presentation is often hard work, requiring attention to details that
support or detract from your communication goal.

1.6 Further reading
{sec:ch01-reading}

1.7 Lab exercises
{sec:ch01-exercises}{lab:1.1}

Exercise 1.1 A web page, “The top ten worst graphs, ” http://www.biostat.wisc.edu/
~kbroman/topten_worstgraphs/ by Karl Broman lists his picks for the worst graphs (and
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a table) that have appeared in the statistical and scientific literature. Each entry links to graph(s) and
a brief discussion of what is wrong and how it could be improved.

(a) Examine a number of recent issues of a scientific or statistical journal in which you have some
interest. Find one or more examples of a graph or table that is a particularly bad use of display
material to summarize and communicate research findings. Write a few sentences indicating
how or why the display fails and how it could be improved.

(b) Do the same task for some popular magazine or newspaper that uses data displays to supple-
ment the text for some story. Again, write a few sentences describing why the display is bad
and how it could be improved.

{lab:1.2}

Exercise 1.2 As in the previous exercise, examine the recent literature in recent issues of some
journal of interest to you. Find one or more examples of a graph or table that you feel does a good
job of summarizing and communicating research findings.

(a) Write a few sentences describing why you chose these displays.
(b) Now take the role of a tough journal reviewer. Are there any features of the display that could

be modified to make them more effective?
{lab:1.3}

Exercise 1.3 Infographics are another form of visual displays, quite different from the data graph-
ics featured in this book, but often based on some data or analysis. Do a Google image search for
the topic “Global warming” to see a rich collection.

(a) Find and study one or two images that attempt some visual explanation of causes and/or effects
of global warming. Describe the main message in a sentence or two.

(b) What visual and graphic features are used in these to convey the message?
{lab:1.4}

Exercise 1.4 The Wikipedia web page en.wikipedia.org/wiki/Portal:Global_warming
gives a few data-based graphics on the topic of global warming. Read the text and study the graphs.

(a) Write a short figure title for each that would announce the conclusion to be drawn in a presen-
tation graphic.

(b) Write a figure caption for each that would explain what is shown and the important graphical
details for a reader to understand.
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Creating and manipulating categorical data sets requires some skills and techniques in
R beyond those ordinarily used for quantitative data. This chapter illustrates these for the
main formats for categorical data: case form, frequency form and table form.

Categorical data can be represented as data sets in various formats: case form, frequency form,
and table form. This chapter describes and illustrates the skills and techniques in R needed to input,
create and manipulate R data objects to represent categorical data, and convert these from one form
to another for the purposes of statistical analysis and visualization which are the subject of the
remainder of the book.

As mentioned earlier, this book assumes that you have at least a basic knowledge of the R
language and environment, including interacting with the R console (Rgui for Windows, R.app for
Mac OS X) or some other editor/environment (e.g., R Studio), loading and using R functions in
packages (e.g., library(vcd)) getting help for these from R (e.g., help(matrix)), etc. This
chapter is therefore devoted to covering those topics needed in the book beyond such basic skills.1

1Some excellent introductory treatments of R are: Fox and Weisberg (2011, Chapter 2), Maindonald and Braun
(2007) and Dalgaard (2008). Tom Short’s R Reference Card, http://cran.us.r-project.org/doc/contrib/
Short-refcard.pdf is a handy 4-page summary of the main functions. The web sites Quick-R http://www.
statmethods.net/ and Cookbook for R http://www.cookbook-r.com/ provide very helpful examples, orga-
nized by topics and tasks.

29
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vector array data framematrix

logicals characters numbers

Figure 2.1: Principal data structures and data types in R. Colors represent different data types:
numeric, character, logical.{fig:datatypes}

2.1 Working with R data: vectors, matrices, arrays and
data frames

{sec:Rdata}
R has a wide variety of data structures for storing, manipulating and calculating with data. Among
these, vectors, matrices, arrays and data frames are most important for the material in this book.

In R, a vector is a collection of values, like numbers, character strings, or logicals (TRUE,
FALSE), and often correspond to a variable in some analysis. Matrices are rectangular arrays like a
traditional table, composed of vectors in their columns or rows. Arrays add additional dimensions,
so that, for example, a 3-way table can be represented as composed of rows, columns and layers.
An important consideration is that the values in vectors, matrices and arrays must all be of the same
mode, e.g., numbers or character strings. A data frame is a rectangular table, like a traditional data
set in other statistical environments, and composed of rows and columns like a matrix, but allowing
variables (columns) of different types. These data structures and the types of data they can contain
are illustrated in Figure 2.1. A more general data structure is a list, a generic vector which can
contain any other types of objects (including lists, allowing for recursive data structures). A data
frame is basically a list of equally-sized vectors, each representing a column of the data frame.

2.1.1 Vectors

The simplest data structure in R is a vector, a one-dimensional collection of elements of the same
type. An easy way to create a vector is with the c() function, which combines its arguments. The
following examples create and print vectors of length 4, containing numbers, character strings and
logical values, respectively:

> c(17, 20, 15, 40)

[1] 17 20 15 40

> c("female", "male", "female", "male")

[1] "female" "male" "female" "male"

> c(TRUE, TRUE, FALSE, FALSE)

[1] TRUE TRUE FALSE FALSE

To store these values in variables, R uses the assignment operator (<-) or equals sign (=). This
creates a variable named on the left-hand side. An assignment doesn’t print the result, but a bare
expression does, so you can assign and print by surrounding the assignment with ().
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> count <- c(17, 20, 15, 40) # assign
> count # print

[1] 17 20 15 40

> (sex <- c("female", "male", "female", "male")) # both

[1] "female" "male" "female" "male"

> (passed <- c(TRUE, TRUE, FALSE, FALSE))

[1] TRUE TRUE FALSE FALSE

Other useful functions for creating vectors are:

• The : operator for generating consecutive integer sequences, e.g., 1:10 gives the integers 1 to
10. The seq() function is more general, taking the forms seq(from, to), seq(from,
to, by= ), and seq(from, to, length.out= ) where the optional argument by
specifies the interval between adjacent values and length.out gives the desired length of the
result.

• The rep() function generates repeated sequences, replicating its first argument (which may be
a vector) a given number of times, and individual elements can be repeated with each until
an optional length.out is obtained.

> seq(10, 100, by = 10) # give interval

[1] 10 20 30 40 50 60 70 80 90 100

> seq(0, 1, length.out = 11) # give length

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> (sex <- rep(c("female", "male"), times = 2))

[1] "female" "male" "female" "male"

> (sex <- rep(c("female", "male"), length.out = 4)) # same

[1] "female" "male" "female" "male"

> (passed <- rep(c(TRUE, FALSE), each = 2))

[1] TRUE TRUE FALSE FALSE

2.1.2 Matrices
A matrix is a two-dimensional array of elements of the same type composed in a rectangular array of
rows and columns. Matrices can be created by the function matrix(values, nrow, ncol),
which reshapes the elements in the first argument (values) to a matrix with nrow rows and ncol
columns. By default, the elements are filled in columnwise, unless the optional argument byrow
= TRUE is given.

> (matA <- matrix(1:8, nrow = 2, ncol = 4))

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
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> (matB <- matrix(1:8, nrow = 2, ncol = 4, byrow = TRUE))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8

> (matC <- matrix(1:4, nrow = 2, ncol = 4))

[,1] [,2] [,3] [,4]
[1,] 1 3 1 3
[2,] 2 4 2 4

The last example illustrates that the values in the first argument are recycled as necessary to fill the
given number of rows and columns.

All matrices have a dimensions attribute, a vector of length two giving the number of rows and
columns, retrieved with the function dim(). Labels for the rows and columns can be assigned using
dimnames(),2 which takes a list of two vectors for the row names and column names respectively.
To see the structure of a matrix (or any other R object) and its attributes, you can use the str()
function, as shown in the example below.

> dim(matA)

[1] 2 4

> str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8

> dimnames(matA) <- list(c("M", "F"), LETTERS[1:4])
> matA

A B C D
M 1 3 5 7
F 2 4 6 8

> str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8
- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "M" "F"
..$ : chr [1:4] "A" "B" "C" "D"

Additionally, names for the row and column variables themselves can also be assigned in the
dimnames call by giving each dimension vector a name.

> dimnames(matA) <- list(sex = c("M", "F"), group = LETTERS[1:4])
> ## or: names(dimnames(matA)) <- c("Sex", "Group")
> matA

group
sex A B C D
M 1 3 5 7
F 2 4 6 8

> str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8
- attr(*, "dimnames")=List of 2
..$ sex : chr [1:2] "M" "F"
..$ group: chr [1:4] "A" "B" "C" "D"

2The dimnames can also be specified as an optional argument to matrix().
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(LETTERS is a predefined character vector of the 26 uppercase letters). Matrices can also be created
or enlarged by “binding” vectors or matrices together by rows or columns:

• rbind(a, b, c) creates a matrix with the vectors a, b and c as its rows, recycling the
elements as necessary to the length of the longest one.

• cbind(a, b, c) creates a matrix with the vectors a, b and c as its columns.
• rbind(mat, a, b, ...) and cbind(mat, a, b, ...) add additional rows (columns)

to a matrix mat, recycling or subsetting the elements in the vectors to conform with the size of
the matrix.

> rbind(matA, c(10, 20))

A B C D
M 1 3 5 7
F 2 4 6 8
10 20 10 20

> cbind(matA, c(10, 20))

A B C D
M 1 3 5 7 10
F 2 4 6 8 20

Rows and columns can be swapped (transposed) using t():

> t(matA)

sex
group M F

A 1 2
B 3 4
C 5 6
D 7 8

Finally, we note that basic computations involving matrices are performed element-wise:

> 2 * matA / 100

group
sex A B C D
M 0.02 0.06 0.10 0.14
F 0.04 0.08 0.12 0.16

Special operators and functions do exist for matrix operations, such as %*% for the matrix product.

2.1.3 Arrays
Higher-dimensional arrays are less frequently encountered in traditional data analysis, but they are
of great use for categorical data, where frequency tables of three or more variables can be naturally
represented as arrays, with one dimension for each table variable.

The function array(values, dim) takes the elements in values and reshapes these into
an array whose dimensions are given in the vector dim. The number of dimensions is the length
of dim. As with matrices, the elements are filled in with the first dimension (rows) varying most
rapidly, then by the second dimension (columns) and so on for all further dimensions, which can be
considered as layers. A matrix is just the special case of an array with two dimensions.
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> dims <- c(2, 4, 2)
> (arrayA <- array(1:16, dim = dims)) # 2 rows, 4 columns, 2 layers

, , 1

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]
[1,] 9 11 13 15
[2,] 10 12 14 16

> str(arrayA)

int [1:2, 1:4, 1:2] 1 2 3 4 5 6 7 8 9 10 ...

> (arrayB <- array(1:16, dim = c(2, 8))) # 2 rows, 8 columns

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 3 5 7 9 11 13 15
[2,] 2 4 6 8 10 12 14 16

> str(arrayB)

int [1:2, 1:8] 1 2 3 4 5 6 7 8 9 10 ...

In the same way that we can assign labels to the rows, columns and variables in matrices, we
can assign these attributes to dimnames(arrayA), or include this information in a dimnames=
argument to array().

> dimnames(arrayA) <- list(sex = c("M", "F"),
+ group = letters[1:4],
+ time = c("Pre", "Post"))
> arrayA

, , time = Pre

group
sex a b c d
M 1 3 5 7
F 2 4 6 8

, , time = Post

group
sex a b c d
M 9 11 13 15
F 10 12 14 16

> str(arrayA)

int [1:2, 1:4, 1:2] 1 2 3 4 5 6 7 8 9 10 ...
- attr(*, "dimnames")=List of 3
..$ sex : chr [1:2] "M" "F"
..$ group: chr [1:4] "a" "b" "c" "d"
..$ time : chr [1:2] "Pre" "Post"

Arrays in R can contain any single type of elements— numbers, character strings, logicals. R
also has a variety of functions (e.g., table(), xtabs()) for creating and manipulating "table"
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objects, which are specialized forms of matrices and arrays containing integer frequencies in a
contingency table. These are discussed in more detail below (Section 2.4).

2.1.4 data frames
{sec:data-frames}

Data frames are the most commonly used form of data in R and more general than matrices in that
they can contain columns of different types. For statistical modeling, data frames play a special role,
in that many modeling functions are designed to take a data frame as a data= argument, and then
find the variables mentioned within that data frame. Another distinguishing feature is that discrete
variables (columns) like character strings ("M", "F") or integers (1, 2, 3) in data frames
can be represented as factors, which simplifies many statistical and graphical methods.

A data frame can be created using keyboard input with the data.frame() function, applied
to a list of objects, data.frame(a, b, c, ...), each of which can be a vector, matrix or
another data frame, but typically all containing the same number of rows. This works roughly like
cbind(), collecting the arguments as columns in the result.

The following example generates n = 100 random observations on three discrete factor vari-
ables, A, B, sex, and a numeric variable, age. As constructed, all of these are statistically
independent, since none depends on any of the others. The function sample() is used here to
generate n random samples from the first argument allowing replacement (replace = TRUE).
The rnorm() function produces a vector of n normally distributed values with mean 30 and stan-
dard deviation 5. The call to set.seed() guarantees the reproducibility of the resulting data.
Finally, all four variables are combined into the data frame mydata.

> set.seed(12345) # reproducibility
> n <- 100
> A <- factor(sample(c("a1", "a2"), n, replace = TRUE))
> B <- factor(sample(c("b1", "b2"), n, replace = TRUE))
> sex <- factor(sample(c("M", "F"), n, replace = TRUE))
> age <- round(rnorm(n, mean = 30, sd = 5))
> mydata <- data.frame(A, B, sex, age)
> head(mydata, 5)

A B sex age
1 a2 b1 F 22
2 a2 b2 F 33
3 a2 b2 M 31
4 a2 b2 F 26
5 a1 b2 F 29

> str(mydata)

'data.frame': 100 obs. of 4 variables:
$ A : Factor w/ 2 levels "a1","a2": 2 2 2 2 1 1 1 2 2 2 ...
$ B : Factor w/ 2 levels "b1","b2": 1 2 2 2 2 2 2 2 1 1 ...
$ sex: Factor w/ 2 levels "F","M": 1 1 2 1 1 1 2 2 1 1 ...
$ age: num 22 33 31 26 29 29 38 28 30 27 ...

Rows, columns and individual values in a data frame can be manipulated in the same way as a
matrix. Additionally, variables can be extracted using the $ operator:

> mydata[1,2]

[1] b1
Levels: b1 b2

> mydata$sex
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[1] F F M F F F M M F F M F M M F M M F F M M M M F F F F M M F
[31] M F M F F F F F M M F F F F F F F F M F M F M M F F M M M M
[61] F F F F F M M F F F M M M F F M F M M F M F M M M M M F F F
[91] F F M M F M F M F M
Levels: F M

> ##same as: mydata[,"sex"] or mydata[,3]

Values in data frames can conveniently be edited using, e.g., fix(mydata), opening a simple,
spreadsheet-like editor.

For real data sets, it is usually most convenient to read these into R from external files, and this is
easiest using plain text (ASCII) files with one line per observation and fields separated by commas
(or tabs), and with a first header line giving the variable names– called comma-separated or CSV
format. If your data is in the form of Excel, SAS, SPSS or other file format, you can almost always
export that data to CSV format first.3

The function read.table() has many options to control the details of how the data are read
and converted to variables in the data frame. Among these some important options are:

header indicates whether the first line contains variable names. The default is FALSE unless the
first line contains one fewer field than the number of columns;

sep (default: "" meaning white space, i.e., one or more spaces, tabs or newlines) specifies the
separator character between fields;

stringsAsFactors (default: TRUE) determines whether character string variables should be
converted to factors;

na.strings (default: "NA") one or more strings which are interpreted as missing data values
(NA);

For delimited files, read.csv() and read.delim() are convenient wrappers to read.table(),
with default values sep="," and sep="\t" respectively, and header=TRUE.{ex:ch2-arth-csv}

EXAMPLE 2.1: Arthritis treatment
The file Arthritis.csv contains data in CSV format from Koch and Edwards (1988), rep-

resenting a double-blind clinical trial investigating a new treatment for rheumatoid arthritis with 84
patients.4 The first (“header”) line gives the variable names. Some of the lines in the file are shown
below, with ... representing omitted lines:

ID,Treatment,Sex,Age,Improved
57,Treated,Male,27,Some
46,Treated,Male,29,None
77,Treated,Male,30,None
17,Treated,Male,32,Marked
...
42,Placebo,Female,66,None
15,Placebo,Female,66,Some
71,Placebo,Female,68,Some
1,Placebo,Female,74,Marked

We read this into R using read.table() as shown below:

3The foreign package contains specialized functions to directly read data stored by Minitab, SAS, SPSS, Stata, Systat
and other software. There are also a number of packages for reading (and writing) Excel spreadsheets directly (gdata,
XLConnect, xlsx). The R manual, R Data Import/Export covers many other variations, including data in relational data
bases.

4This data can be created using: library(vcd); write.table(Arthritis, file =
"Arthritis.csv", quote = FALSE, sep = ",")
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> path <- "ch02/Arthritis.csv" ## set path
> ## for convenience, use path <- file.choose() to retrieve a path
> ## then, use file.show(path) to inspect the data format
> Arthritis <- read.table(path, header = TRUE, sep = ",")
> str(Arthritis)

'data.frame': 84 obs. of 5 variables:
$ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Factor w/ 3 levels "Marked","None",..: 3 2 2 1 1 1 2 1 2 2 ...

Note that the character variables Treatment, Sex and Improved were converted to fac-
tors, and the levels of those variables were ordered alphabetically. This often doesn’t matter much
for binary variables, but here, the response variable Improved has levels that should be con-
sidered ordered, as "None", "Some", "Marked". We can correct this here by re-assigning
Arthritis$Improved using ordered(). The topic of re-ordering variables and levels in
categorical data is considered in more detail in Section 2.3.

> levels(Arthritis$Improved)

[1] "Marked" "None" "Some"

> Arthritis$Improved <- ordered(Arthritis$Improved,
+ levels = c("None", "Some", "Marked"))

4

2.2 Forms of categorical data: case form, frequency form
and table form

{sec:forms}
As we saw in Chapter 1, categorical data can be represented as ordinary data sets in case form, but
the discrete nature of factors or stratifying variables allows the same information to be represented
more compactly in summarized form with a frequency variable for each cell of factor combina-
tions, or in tables. Consequently, we sometimes find data created or presented in one form (e.g., a
spreadsheet data set, a two-way table of frequencies) and want to input that into R. Once we have
the data in R, it is often necessary to manipulate the data into some other form for the purposes of
statistical analysis, visualizing results and our own presentation. It is useful to understand the three
main forms of categorical data in R and how to work with them for our purposes.

2.2.1 Case form
Categorical data in case form are simply data frames, with one or more discrete classifying variables
or response variables, most conveniently represented as factors or ordered factors. In case form, the
data set can also contain numeric variables (covariates or other response variables), that cannot be
accommodated in other forms.

As with any data frame, X, you can access or compute with its attributes using nrow(X) for the
number of observations, ncol(X) for the number of variables, names(X) or colnames(X) for
the variable names and so forth. {ex:ch2-arth}

EXAMPLE 2.2: Arthritis treatment
The Arthritis data is available in case form in the vcd package. There are two explanatory

factors: Treatment and Sex. Age is a numeric covariate, and Improved is the response—an
ordered factor, with levels "None" < "Some" < "Marked". Excluding Age, we would have
a 2× 2× 3 contingency table for Treatment, Sex and Improved.
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> data("Arthritis", package = "vcd") # load the data
> names(Arthritis) # show the variables

[1] "ID" "Treatment" "Sex" "Age" "Improved"

> str(Arthritis) # show the structure

'data.frame': 84 obs. of 5 variables:
$ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...

> head(Arthritis, 5) # first 5 observations, same as Arthritis[1:5,]

ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked

4

2.2.2 Frequency form
Data in frequency form is also a data frame, containing one or more discrete factor variables and a
frequency variable (often called Freq or count) representing the number of basic observations in
that cell.

This is an alternative representation of a table form data set considered below. In frequency form,
the number of cells in the equivalent table is nrow(X), and the total number of observations is the
sum of the frequency variable, sum(X$Freq), sum(X[,"Freq"]) or a similar expression.{ex:ch2-GSS}

EXAMPLE 2.3: General social survey
For small frequency tables, it is often convenient to enter them in frequency form using expand.grid()

for the factors and c() to list the counts in a vector. The example below, from Agresti (2002) gives
results for the 1991 General Social Survey, with respondents classified by sex and party identifica-
tion. As a table, the data look like this:

party
sex dem indep rep

female 279 73 225
male 165 47 191

We use expand.grid() to create a 6 × 2 matrix containing the combinations of sex and
party with the levels for sex given first, so that this varies most rapidly. Then, input the frequen-
cies in the table by columns from left to right, and combine these two results with data.frame().

> # Agresti (2002), table 3.11, p. 106
> tmp <- expand.grid(sex = c("female", "male"),
+ party = c("dem", "indep", "rep"))
> tmp

sex party
1 female dem
2 male dem
3 female indep
4 male indep
5 female rep
6 male rep
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> GSS <- data.frame(tmp, count = c(279, 165, 73, 47, 225, 191))
> GSS

sex party count
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191

> names(GSS)

[1] "sex" "party" "count"

> str(GSS)

'data.frame': 6 obs. of 3 variables:
$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2
$ party: Factor w/ 3 levels "dem","indep",..: 1 1 2 2 3 3
$ count: num 279 165 73 47 225 191

> sum(GSS$count)

[1] 980

The last line above shows that there are 980 cases represented in the frequency table. 4

2.2.3 Table form
Table form data is represented as a matrix, array or table object whose elements are the frequencies
in an n-way table. The number of dimensions of the table is the length, length(dim(X)), of
its dim (or dimnames) attribute, and the sizes of the dimensions in the table are the elements of
dim(X). The total number of observations represented is the sum of all the frequencies, sum(X). {ex:ch2-hec}

EXAMPLE 2.4: Hair color and eye color
A classic data set on frequencies of hair color, eye color and sex is given in table form in

HairEyeColor in the datasets package, reporting the frequencies of these categories for 592
students in a statistics course.

> data("HairEyeColor", package = "datasets") # load the data
> str(HairEyeColor) # show the structure

table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
..$ Sex : chr [1:2] "Male" "Female"

> dim(HairEyeColor) # table dimension sizes

[1] 4 4 2

> dimnames(HairEyeColor) # variable and level names

$Hair
[1] "Black" "Brown" "Red" "Blond"

$Eye
[1] "Brown" "Blue" "Hazel" "Green"

$Sex
[1] "Male" "Female"
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> sum(HairEyeColor) # number of cases

[1] 592

Three-way (and higher-way) tables can be printed in a more convenient form using structable()
and ftable() as described below in Section 2.5. 4

Tables are often created from raw data in case form or frequency form using the functions
table() and xtabs() described in Section 2.4. For smallish frequency tables that are already
in tabular form, you can enter the frequencies in a matrix, and then assign dimnames and other
attributes.

To illustrate, we create the GSS data as a table below, entering the values in the table by rows
(byrow=TRUE), as they appear in printed form.

> GSS.tab <- matrix(c(279, 73, 225,
+ 165, 47, 191),
+ nrow = 2, ncol = 3, byrow = TRUE)
> dimnames(GSS.tab) <- list(sex = c("female", "male"),
+ party = c("dem", "indep", "rep"))
> GSS.tab

party
sex dem indep rep
female 279 73 225
male 165 47 191

GSS.tab is a matrix, not an object of class("table"), and some functions are happier
with tables than matrices.5 You should therefore coerce it to a table with as.table(),

> GSS.tab <- as.table(GSS.tab)
> str(GSS.tab)

table [1:2, 1:3] 279 165 73 47 225 191
- attr(*, "dimnames")=List of 2
..$ sex : chr [1:2] "female" "male"
..$ party: chr [1:3] "dem" "indep" "rep"

{ex:jobsat1}

EXAMPLE 2.5: Job satisfaction
Here is another similar example, entering data on job satisfaction classified by income and

level of satisfaction from a 4× 4 table given by Agresti (2002, Table 2.8, p. 57).

> ## A 4 x 4 table Agresti (2002, Table 2.8, p. 57) Job Satisfaction
> JobSat <- matrix(c(1, 2, 1, 0,
+ 3, 3, 6, 1,
+ 10, 10, 14, 9,
+ 6, 7, 12, 11),
+ nrow = 4, ncol = 4)
> dimnames(JobSat) <-
+ list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
+ satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS"))
> JobSat <- as.table(JobSat)
> JobSat

satisfaction
income VeryD LittleD ModerateS VeryS

5There are quite a few functions in R with specialized methods for "table" objects. For example, plot(GSS.tab)
gives a mosaic plot and barchart(GSS.tab) gives a divided bar chart.
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< 15k 1 3 10 6
15-25k 2 3 10 7
25-40k 1 6 14 12
> 40k 0 1 9 11

4

2.3 Ordered factors and reordered tables
{sec:ordered}

As we saw above (Example 2.1), the levels of factor variables in data frames (case form or frequency
form) can be re-ordered (and the variables declared as ordered factors) using ordered(). As well,
the order of the factor values themselves can be rearranged by sorting the data frame using sort().

However, in table form, the values of the table factors are ordered by their position in the table.
Thus in the JobSat data, both income and satisfaction represent ordered factors, and the
positions of the values in the rows and columns reflects their ordered nature, but only implicitly.

Yet, for analysis or graphing, there are occasions when you need numeric values for the levels
of ordered factors in a table, e.g., to treat a factor as a quantitative variable. In such cases, you
can simply re-assign the dimnames attribute of the table variables. For example, here, we assign
numeric values to income as the middle of their ranges, and treat satisfaction as equally
spaced with integer scores.

> dimnames(JobSat)$income <- c(7.5, 20, 32.5, 60)
> dimnames(JobSat)$satisfaction <- 1:4

A related case is when you want to preserve the character labels of table dimensions, but also
allow them to be sorted in some particular order. A simple way to do this is to prefix each label with
an integer index using paste().

> dimnames(JobSat)$income <-
+ paste(1:4, dimnames(JobSat)$income, sep = ":")
> dimnames(JobSat)$satisfaction <-
+ paste(1:4, dimnames(JobSat)$satisfaction, sep = ":")

A different situation arises with tables where you want to permute the levels of one or more
variables to arrange them in a more convenient order without changing their labels. For example, in
the HairEyeColor table, hair color and eye color are ordered arbitrarily. For visualizing the data
using mosaic plots and other methods described later, it turns out to be more useful to assure that
both hair color and eye color are ordered from dark to light. Hair colors are actually ordered this way
already: "Black", "Brown", "Red", "Blond". But eye colors are ordered as "Brown",
"Blue", "Hazel", "Green". It is easiest to re-order the eye colors by indexing the columns
(dimension 2) in this array to a new order, "Brown", "Hazel", "Green", "Blue", giving
the indices of the old levels in the new order (here: 1,3,4,2). Again str() is your friend, showing
the structure of the result to check that the result is what you want.

> data("HairEyeColor", package = "datasets")
> HEC <- HairEyeColor[, c(1, 3, 4, 2), ]
> str(HEC)

num [1:4, 1:4, 1:2] 32 53 10 3 10 25 7 5 3 15 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Hazel" "Green" "Blue"
..$ Sex : chr [1:2] "Male" "Female"
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Finally, there are situations where, particularly for display purposes, you want to re-order the
dimensions of an n-way table, and/or change the labels for the variables or levels. This is easy
when the data are in table form: aperm() permutes the dimensions, and assigning to names and
dimnames changes variable names and level labels respectively.

> str(UCBAdmissions)

table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "A" "B" "C" "D" ...

> # vary along the 2nd, 1st, and 3rd dimension in UCBAdmissions
> UCB <- aperm(UCBAdmissions, c(2, 1, 3))
> dimnames(UCB)$Admit <- c("Yes", "No")
> names(dimnames(UCB)) <- c("Sex", "Admitted", "Department")
> str(UCB)

table [1:2, 1:2, 1:6] 512 89 313 19 353 17 207 8 120 202 ...
- attr(*, "dimnames")=List of 3
..$ Sex : chr [1:2] "Male" "Female"
..$ Admitted : chr [1:2] "Yes" "No"
..$ Department: chr [1:6] "A" "B" "C" "D" ...

2.4 Generating tables with table() and xtabs()
{sec:table}

With data in case form or frequency form, you can generate frequency tables from factor variables
in data frames using the table() function; for tables of proportions, use the prop.table()
function, and for marginal frequencies (summing over some variables) use margin.table().
The examples below use the same case-form data frame mydata used earlier (Section 2.1.4).

> set.seed(12345) # reproducibility
> n <- 100
> A <- factor(sample(c("a1", "a2"), n, replace = TRUE))
> B <- factor(sample(c("b1", "b2"), n, replace = TRUE))
> sex <- factor(sample(c("M", "F"), n, replace = TRUE))
> age <- round(rnorm(n, mean = 30, sd = 5))
> mydata <- data.frame(A, B, sex, age)

2.4.1 table()
{sec:table2}

table(...) takes a list of variables interpreted as factors, or a data frame whose columns are so
interpreted. It does not take a data= argument, so either supply the names of columns in the data
frame (possibly using with() for convenience), or select the variables using column indexes:

> # 2-Way Frequency Table
> table(mydata$A, mydata$B) # A will be rows, B will be columns

b1 b2
a1 18 30
a2 22 30

> ## same: with(mydata, table(A, B))
> (mytab <- table(mydata[,1:2])) # same
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B
A b1 b2
a1 18 30
a2 22 30

We can use margin.table(X, margin) to sum a table X for the indices in margin, i.e.,
over the dimensions not included in margin. A related function is addmargins(X, margin,
FUN = sum), which extends the dimensions of a table or array with the marginal values calcu-
lated by FUN.

> margin.table(mytab) # sum over A & B

[1] 100

> margin.table(mytab, 1) # A frequencies (summed over B)

A
a1 a2
48 52

> margin.table(mytab, 2) # B frequencies (summed over A)

B
b1 b2
40 60

> addmargins(mytab) # show all marginal totals

B
A b1 b2 Sum
a1 18 30 48
a2 22 30 52
Sum 40 60 100

The function prop.table() expresses the table entries as a fraction of a given marginal table.

> prop.table(mytab) # cell proportions

B
A b1 b2
a1 0.18 0.30
a2 0.22 0.30

> prop.table(mytab, 1) # row proportions

B
A b1 b2
a1 0.37500 0.62500
a2 0.42308 0.57692

> prop.table(mytab, 2) # column proportions

B
A b1 b2
a1 0.45 0.50
a2 0.55 0.50

table() can also generate multidimensional tables based on 3 or more categorical variables.
In this case, use the ftable() or structable() function to print the results more attractively
as a “flat” (2-way) table.
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> # 3-Way Frequency Table
> mytab <- table(mydata[,c("A", "B", "sex")])
> ftable(mytab)

sex F M
A B
a1 b1 9 9

b2 15 15
a2 b1 12 10

b2 19 11

table() ignores missing values by default, but has optional arguments useNA and exclude
that can be used to control this. See help(table) for the details.

2.4.2 xtabs()
{sec:xtabs}

The xtabs() function allows you to create cross tabulations of data using formula style input.
This typically works with case-form or frequency-form data supplied in a data frame or a matrix.
The result is a contingency table in array format, whose dimensions are determined by the terms on
the right side of the formula. As shown below, the summary method for tables produces a simple
χ2 test of independence of all factors, and indicates the number of cases and dimensions.

> # 3-Way Frequency Table
> mytable <- xtabs(~ A + B + sex, data = mydata)
> ftable(mytable) # print table

sex F M
A B
a1 b1 9 9

b2 15 15
a2 b1 12 10

b2 19 11

> summary(mytable) # chi-squared test of independence

Call: xtabs(formula = ~A + B + sex, data = mydata)
Number of cases in table: 100
Number of factors: 3
Test for independence of all factors:
Chisq = 1.54, df = 4, p-value = 0.82

When the data have already been tabulated in frequency form, include the frequency variable
(usually count or Freq) on the left side of the formula, as shown in the example below for the
GSS data.

> (GSStab <- xtabs(count ~ sex + party, data = GSS))

party
sex dem indep rep
female 279 73 225
male 165 47 191

> summary(GSStab)

Call: xtabs(formula = count ~ sex + party, data = GSS)
Number of cases in table: 980
Number of factors: 2
Test for independence of all factors:
Chisq = 7, df = 2, p-value = 0.03
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For "table" objects, the plot method produces basic mosaic plots using the mosaicplot()
function from the graphics package.

2.5 Printing tables with structable() and ftable()
{sec:structable}

2.5.1 Text output
For 3-way and larger tables, the functions ftable() (in the stats package) and structable()
(in vcd) provide a convenient and flexible tabular display in a “flat” (2-way) format.

With ftable(X, row.vars=, col.vars=), variables assigned to the rows and/or columns
of the result can be specified as the integer numbers or character names of the variables in the ar-
ray X. By default, the last variable is used for the columns. The formula method, in the form
ftable(colvars ~ rowvars, data) allows a formula, where the left and right hand side
of formula specify the column and row variables respectively.

> ftable(UCB) # default

Department A B C D E F
Sex Admitted
Male Yes 512 353 120 138 53 22

No 313 207 205 279 138 351
Female Yes 89 17 202 131 94 24

No 19 8 391 244 299 317

> #ftable(UCB, row.vars = 1:2) # same result
> ftable(Admitted + Sex ~ Department, data = UCB) # formula method

Admitted Yes No
Sex Male Female Male Female

Department
A 512 89 313 19
B 353 17 207 8
C 120 202 205 391
D 138 131 279 244
E 53 94 138 299
F 22 24 351 317

The structable() function is similar, but more general, and uses recursive splits in the
vertical or horizontal directions (similar to the construction of mosaic displays). It works with both
data frames and table objects.

> library(vcd)
> structable(HairEyeColor) # show the table: default

Eye Brown Blue Hazel Green
Hair Sex
Black Male 32 11 10 3

Female 36 9 5 2
Brown Male 53 50 25 15

Female 66 34 29 14
Red Male 10 10 7 7

Female 16 7 7 7
Blond Male 3 30 5 8

Female 4 64 5 8

> structable(Hair + Sex ~ Eye, HairEyeColor) # specify col ~ row variables

Hair Black Brown Red Blond
Sex Male Female Male Female Male Female Male Female
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Eye
Brown 32 36 53 66 10 16 3 4
Blue 11 9 50 34 10 7 30 64
Hazel 10 5 25 29 7 7 5 5
Green 3 2 15 14 7 7 8 8

It also returns an object of class "structable" for which there are a variety of special meth-
ods. For example, the transpose function t() interchanges rows and columns, so that a call like
t(structable(HairEyeColor)) produces the second result shown just above. There are
also plot methods: for example, plot() produces mosaic plots from the vcd package.

2.6 Subsetting data
{sec:subsettingdata}

Often, the analysis of some data set is focused on a subset only. For example, the HairEyeColor
data set introduced above tabulates frequencies of hair and eye colors for male and female students—
the analysis could concentrate on one group only, or compare both groups in a stratified analysis.
This section deals with extracting subsets of data in tables, structables or data frames.

2.6.1 Subsetting tables
{sec:subsettingtables}

If data are available in tabular form created with table() or xtabs(), resulting in table
objects, subsetting is done via indexing, either with integers or character strings corresponding to
the factor levels. The following code extracts the female data from the HairEyeColor data set:

> HairEyeColor[,,"Female"]

Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

> ##same using index: HairEyeColor[,,2]

Empty indices stand for taking all data of the corresponding dimension. The third one (Sex) is fixed
at the second (“Female”) level. Note that in this case, the dimensionality is reduced to a two-way
table, since dimensions with only one level are dropped by default. Functions like apply() can
iterate through all levels of one or several dimensions and apply a function to each subset. The
following calculates the total amount of male and female students:

> apply(HairEyeColor, 3, sum)

Male Female
279 313

It is of course possible to select more than one level:

> HairEyeColor[c("Black", "Brown"), c("Hazel", "Green"),]

, , Sex = Male

Eye
Hair Hazel Green
Black 10 3
Brown 25 15
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, , Sex = Female

Eye
Hair Hazel Green
Black 5 2
Brown 29 14

2.6.2 Subsetting structables
{sec:subsettingstructables}

Structables work in a similar way, but take into account the hierarchical structure imposed by the
“flattened” format, and also distinguish explicitely between subsetting levels and subsetting tables.
In the following example, compare the different effects of applying the [ and [[ operators to the
structable:

> hec <- structable(Eye ~ Sex + Hair, data = HairEyeColor)
> hec

Eye Brown Blue Hazel Green
Sex Hair
Male Black 32 11 10 3

Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

Female Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

> hec["Male",]

Eye Brown Blue Hazel Green
Sex Hair
Male Black 32 11 10 3

Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

> hec[["Male",]]

Eye Brown Blue Hazel Green
Hair
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

The first form keeps the dimensionality, whereas the second conditions on the “Male” level and
returns the corresponding subtable. The following does this twice, once for Sex, and once for
Hair (restricted to the Male level):

> hec[[c("Male", "Brown"),]]

Eye Brown Blue Hazel Green

53 50 25 15
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2.6.3 Subsetting data frames
{sec:subsettingdf}

Data available in data frames (frequency or case form) can also be subsetted, either by using indexes
on the rows and/or columns, or, more conveniently, by applying the subset() function. The
following statement will extract the Treatment and Improved variables for all female patients
older than 68:

> rows <- Arthritis$Sex == "Female" & Arthritis$Age > 68
> cols <- c("Treatment", "Improved")
> Arthritis[rows, cols]

Treatment Improved
39 Treated None
40 Treated Some
41 Treated Some
84 Placebo Marked

Note the use of the single & for the logical expression selecting the rows. The same result can be
achieved more conveniently using the subset() function, first taking the data set, followed by an
expression for selecting the rows (evaluated in the context of the data frame), and then an expression
for selecting the columns:

> subset(Arthritis, Sex == "Female" & Age > 68,
+ select = c(Treatment, Improved))

Treatment Improved
39 Treated None
40 Treated Some
41 Treated Some
84 Placebo Marked

Note the non-standard evaluation of c(Treatment, Improved): the meaning of c() is not
“combine the two columns into a single vector”, but “select both from the data frame”. Likewise,
columns can be removed using - on column names, which is not possible using standard indexing
in matrices or data frames:

> subset(Arthritis, Sex == "Female" & Age > 68,
+ select = -c(Age, ID))

Treatment Sex Improved
39 Treated Female None
40 Treated Female Some
41 Treated Female Some
84 Placebo Female Marked

2.7 Collapsing tables
{sec:collapsetables}

2.7.1 Collapsing over table factors: aggregate(), margin.table()
and apply()

{sec:collapse}
It sometimes happens that we have a data set with more variables or factors than we want to analyse,
or else, having done some initial analyses, we decide that certain factors are not important, and so
should be excluded from graphic displays by collapsing (summing) over them. For example, mosaic
plots and fourfold displays are often simpler to construct from versions of the data collapsed over
the factors which are not shown in the plots.



2.7: Collapsing tables 49

The appropriate tools to use again depend on the form in which the data are represented—
a case-form data frame, a frequency-form data frame (aggregate()), or a table-form array or
table object (margin.table() or apply()).

When the data are in frequency form, and we want to produce another frequency data frame,
aggregate() is a handy tool, using the argument FUN = sum to sum the frequency variable
over the factors not mentioned in the formula. {ex:dayton1}

EXAMPLE 2.6: Dayton survey
The data frame DaytonSurvey in the vcdExtra package represents a 25 table giving the

frequencies of reported use (“ever used?”) of alcohol, cigarettes and marijuana in a sample of 2276
high school seniors, also classified by sex and race.

> data("DaytonSurvey", package = "vcdExtra")
> str(DaytonSurvey)

'data.frame': 32 obs. of 6 variables:
$ cigarette: Factor w/ 2 levels "Yes","No": 1 2 1 2 1 2 1 2 1 2 ...
$ alcohol : Factor w/ 2 levels "Yes","No": 1 1 2 2 1 1 2 2 1 1 ...
$ marijuana: Factor w/ 2 levels "Yes","No": 1 1 1 1 2 2 2 2 1 1 ...
$ sex : Factor w/ 2 levels "female","male": 1 1 1 1 1 1 1 1 2 2 ...
$ race : Factor w/ 2 levels "white","other": 1 1 1 1 1 1 1 1 1 1 ...
$ Freq : num 405 13 1 1 268 218 17 117 453 28 ...

> head(DaytonSurvey)

cigarette alcohol marijuana sex race Freq
1 Yes Yes Yes female white 405
2 No Yes Yes female white 13
3 Yes No Yes female white 1
4 No No Yes female white 1
5 Yes Yes No female white 268
6 No Yes No female white 218

To focus on the associations among the substances, we want to collapse over sex and race. The
right-hand side of the formula used in the call to aggregate() gives the factors to be retained
in the new frequency data frame, Dayton_ACM_df. The left-hand side is the frequency variable
(Freq), and we aggregate using the FUN = sum.

> # data in frequency form: collapse over sex and race
> Dayton_ACM_df <- aggregate(Freq ~ cigarette + alcohol + marijuana,
+ data = DaytonSurvey, FUN = sum)
> Dayton_ACM_df

cigarette alcohol marijuana Freq
1 Yes Yes Yes 911
2 No Yes Yes 44
3 Yes No Yes 3
4 No No Yes 2
5 Yes Yes No 538
6 No Yes No 456
7 Yes No No 43
8 No No No 279

4

When the data are in table form, and we want to produce another table, apply() with FUN =
sum can be used in a similar way to sum the table over dimensions not mentioned in the MARGIN
argument. margin.table() is just a wrapper for apply() using the sum() function. {ex:dayton2}
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EXAMPLE 2.7: Dayton survey
To illustrate, we first convert the DaytonSurvey to a 5-way table using xtabs(), giving

Dayton_tab.

> # convert to table form
> Dayton_tab <- xtabs(Freq ~ cigarette + alcohol + marijuana + sex + race,
+ data = DaytonSurvey)
> structable(cigarette + alcohol + marijuana ~ sex + race,
+ data = Dayton_tab)

cigarette Yes No
alcohol Yes No Yes No
marijuana Yes No Yes No Yes No Yes No

sex race
female white 405 268 1 17 13 218 1 117

other 23 23 0 1 2 19 0 12
male white 453 228 1 17 28 201 1 133

other 30 19 1 8 1 18 0 17

Then, use apply() on Dayton_tab to give the 3-way table Dayton_ACM_tab summed
over sex and race. The elements in this new table are the column sums for Dayton.tab shown by
structable() just above.

> # collapse over sex and race
> Dayton_ACM_tab <- apply(Dayton_tab, MARGIN = 1:3, FUN = sum)
> Dayton_ACM_tab <- margin.table(Dayton_tab, 1:3) # same result
> structable(cigarette + alcohol ~ marijuana, data = Dayton_ACM_tab)

cigarette Yes No
alcohol Yes No Yes No

marijuana
Yes 911 3 44 2
No 538 43 456 279

4

(Note that structable() would do the collapsing job for us anyway.)
Many of these operations can be performed using the **ply() functions in the plyr pack-

age. For example, with the data in a frequency form data frame, use ddply() to collapse over
unmentioned factors, and summarise()as the function to be applied to each piece.

> library(plyr)
> Dayton_ACM_df <- ddply(DaytonSurvey, .(cigarette, alcohol, marijuana),
+ summarise, Freq = sum(Freq))

2.7.2 Collapsing table levels: collapse.table()
{sec:collapse-levels}

A related problem arises when we have a table or array and for some purpose we want to reduce the
number of levels of some factors by summing subsets of the frequencies. For example, we may have
initially coded Age in 10-year intervals, and decide that, either for analysis or display purposes, we
want to reduce Age to 20-year intervals. The collapse.table() function in vcdExtra was
designed for this purpose.{ex:collapse-cat}

EXAMPLE 2.8: Collapsing categories
Create a 3-way table, and collapse Age from 10-year to 20-year intervals and Education from

three levels to two. To illustrate, we first generate a 2×6×3 table of random counts from a Poisson
distribution with mean of 100, with factors sex, age and education.
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> # create some sample data in frequency form
> set.seed(12345) # reproducibility
> sex <- c("Male", "Female")
> age <- c("10-19", "20-29", "30-39", "40-49", "50-59", "60-69")
> education <- c("low", "med", "high")
> dat <- expand.grid(sex = sex, age = age, education = education)
> counts <- rpois(36, 100) # random Poisson cell frequencies
> dat <- cbind(dat, counts)
> # make it into a 3-way table
> tab1 <- xtabs(counts ~ sex + age + education, data = dat)
> structable(tab1)

age 10-19 20-29 30-39 40-49 50-59 60-69
sex education
Male low 105 98 123 97 95 105

med 74 113 114 82 95 85
high 121 116 104 103 89 100

Female low 107 95 105 116 103 92
med 96 88 93 118 99 108
high 120 102 96 103 127 84

Now collapse age to 20-year intervals, and education to 2 levels. In the arguments to
collapse.table(), levels of age and education given the same label are summed in the
resulting smaller table.

> # collapse age to 3 levels, education to 2 levels
> tab2 <- collapse.table(tab1,
+ age = c("10-29", "10-29", "30-49", "30-49", "50-69", "50-69"),
+ education = c("<high", "<high", "high"))
> structable(tab2)

age 10-29 30-49 50-69
sex education
Male <high 390 416 380

high 237 207 189
Female <high 386 432 402

high 222 199 211

4

2.8 Converting among frequency tables and data frames
{sec:convert}

As we’ve seen, a given contingency table can be represented equivalently in case form, frequency
form and table form. However, some R functions were designed for one particular representation.
Table 2.1 gives an overview of some handy tools (with sketched usage) for converting from one
form to another, discussed below.

2.8.1 Table form to frequency form

A contingency table in table form (an object of class "table") can be converted to a data frame
in frequency form with as.data.frame().6 The resulting data frame contains columns repre-
senting the classifying factors and the table entries (as a column named by the responseName
argument, defaulting to Freq). The function as.data.frame() is the inverse of xtabs(),
which converts a data frame to a table. {ex:GSS-convert}

6Because R is object-oriented, this is actually a short-hand for the function as.data.frame.table(), which is
automatically selected for objects of class "table".
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Table 2.1: Tools for converting among different forms for categorical data {tab:convert}

To this
From this Case form Frequency form Table form

Case form —
Z <- xtabs(˜ A + B)
as.data.frame(Z)

table(A, B)

Frequency form expand.dft(X) — xtabs(count ~ A + B)
Table form expand.dft(X) as.data.frame(X) —

EXAMPLE 2.9: General social survey
Convert the GSStab object in table form to a data.frame in frequency form. By default, the

frequency variable is named Freq, and the variables sex and party are made factors.

> as.data.frame(GSStab)

sex party Freq
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191

4

In addition, there are situations where numeric table variables are represented as factors, but you
need to convert them to numerics for calculation purposes.{ex:horse.df}

EXAMPLE 2.10: Death by horse kick
For example, we might want to calculate the weighted mean of nDeaths in the HorseKicks

data. Using as.data.frame() won’t work here, because the variable nDeaths becomes a
factor.

> str(as.data.frame(HorseKicks))

'data.frame': 5 obs. of 2 variables:
$ nDeaths: Factor w/ 5 levels "0","1","2","3",..: 1 2 3 4 5
$ Freq : int 109 65 22 3 1

One solution is to use data.frame() directly and as.numeric() to coerce the table
names to numbers.

> horse.df <- data.frame(nDeaths = as.numeric(names(HorseKicks)),
+ Freq = as.vector(HorseKicks))
> str(horse.df)

'data.frame': 5 obs. of 2 variables:
$ nDeaths: num 0 1 2 3 4
$ Freq : int 109 65 22 3 1

> horse.df

nDeaths Freq
1 0 109
2 1 65
3 2 22
4 3 3
5 4 1
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Then, weighted.mean() works as we would like:

> weighted.mean(horse.df$nDeaths, weights=horse.df$Freq)

[1] 2

4

2.8.2 Case form to table form
Going the other way, we use table() to convert from case form to table form. {ex:Arth-convert}

EXAMPLE 2.11: Arthritis treatment
Convert the Arthritis data in case form to a 3-way table of Treatment× Sex× Improved.

We select the desired columns with their names, but could also use column numbers, e.g.,
table(Arthritis[,c(2,3,5)]).

> Art.tab <- table(Arthritis[,c("Treatment", "Sex", "Improved")])
> str(Art.tab)

'table' int [1:2, 1:2, 1:3] 19 6 10 7 7 5 0 2 6 16 ...
- attr(*, "dimnames")=List of 3
..$ Treatment: chr [1:2] "Placebo" "Treated"
..$ Sex : chr [1:2] "Female" "Male"
..$ Improved : chr [1:3] "None" "Some" "Marked"

> ftable(Art.tab)

Improved None Some Marked
Treatment Sex
Placebo Female 19 7 6

Male 10 0 1
Treated Female 6 5 16

Male 7 2 5

4

2.8.3 Table form to case form
There may also be times that you will need an equivalent case form data frame with factors rep-
resenting the table variables rather than the frequency table. For example, the mca() function in
package MASS (for multiple correspondence analysis) only operates on data in this format. The
function expand.dft()7 in vcdExtra does this, converting a table into a case form. {ex:Arth-convert2}

EXAMPLE 2.12: Arthritis treatment
Convert the Arthritis data in table form (Art.tab) back to a data.frame in case form,

with factors Treatment, Sex and Improved.

> library(vcdExtra)
> Art.df <- expand.dft(Art.tab)
> str(Art.df)

'data.frame': 84 obs. of 3 variables:
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 1 1 1 1 1 1 1 1 1 1 ...
$ Sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
$ Improved : Factor w/ 3 levels "Marked","None",..: 2 2 2 2 2 2 2 2 2 2 ...

4

7The original code for this function was provided by Marc Schwarz on the R-Help mailing list.
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2.8.4 Publishing tables to LATEX or HTML

OK, you’ve read your data into R, done some analysis, and now want to include some tables in a
LATEX document or in a web page in HTML format. Formatting tables for these purposes is often
tedious and error-prone.

There are a great many packages in R that provide for nicely formatted, publishable tables for
a wide variety of purposes; indeed, most of the tables in this book are generated using these tools.
See Leifeld (2013) for description of the texreg package and a comparison with some of the other
packages.

Here, we simply illustrate the xtable package, which, along with capabilities for statistical
model summaries, time-series data, and so forth, has a xtable.table method for one-way and
two-way table objects.

The HorseKicks data is a small one-way frequency table described in Example 3.4 and con-
tains the frequencies of 0, 1, 2, 3, 4 deaths per corps-year by horse-kick among soldiers in 20 corps
in the Prussian army.

> data("HorseKicks", package = "vcd")
> HorseKicks

nDeaths
0 1 2 3 4

109 65 22 3 1

By default, xtable() formats this in LATEX as a vertical table, and prints the LATEX markup to
the R console. This output is shown below.

> library(xtable)
> xtable(HorseKicks)

% latex table generated in R 3.1.1 by xtable 1.7-4 package
% Sun Apr 05 16:22:42 2015
\begin{table}[ht]
\centering
\begin{tabular}{rr}
\hline

& nDeaths \\
\hline

0 & 109 \\
1 & 65 \\
2 & 22 \\
3 & 3 \\
4 & 1 \\
\hline

\end{tabular}
\end{table}

When this is rendered in a LATEX document, the result of xtable() appears as shown in the
table below.

> xtable(HorseKicks)

The table above isn’t quite right, because the column label “nDeaths” belongs to the first column,
and the second column should be labeled “Freq”. To correct that, we convert the HorseKicks
table to a data frame (see Section 2.8 for details), add the appropriate colnames, and use the
print.xtable method to supply some other options.
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nDeaths
0 109
1 65
2 22
3 3
4 1

> tab <- as.data.frame(HorseKicks)
> colnames(tab) <- c("nDeaths", "Freq")
> print(xtable(tab), include.rownames = FALSE,
+ include.colnames = TRUE)

nDeaths Freq
0 109
1 65
2 22
3 3
4 1

There are many more options to control the LATEX details and polish the appearance of the table; see
help(xtable) and vignette("xtableGallery", package = "xtable")
Done: DM: The code looks quite complicated and the result is not satisfying (no separator between
header and table) - maybe too confusing?

Finally, in Chapter 3, we display a number of similar one-way frequency tables in a transposed
form to save display space. Table 3.3 is the finished version we show there. The code below uses
the following techniques: (a) addmargins() is used to show the sum of all the frequency values;
(b) t() transposes the data frame to have 2 rows; (c) rownames() assigns the labels we want
for the rows; (d) using the caption argument provides a table caption, and a numbered table in
LATEX; (d) column alignment ("r" or "l") for the table columns is computed as a character string
used for the align argument.

> horsetab <- t(as.data.frame(addmargins(HorseKicks)))
> rownames(horsetab) <- c( "Number of deaths", "Frequency" )
> horsetab <- xtable(horsetab, digits = 0,
+ caption = "von Bortkiewicz's data on deaths by horse kicks",
+ align = paste0("l|", paste(rep("r", ncol(horsetab)),
+ collapse = ""))
+ )
> print(horsetab, include.colnames = FALSE)

Number of deaths 0 1 2 3 4 Sum
Frequency 109 65 22 3 1 200

Table 2.2: von Bortkiewicz’s data on deaths by horse kicks

For use in a web page, blog, or Word document, you can use type="HTML" in the call to
print() for "xtable" objects. Done: DM: also show HTML version? — MF: added note above
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2.9 A complex example: TV viewing data?
{sec:working-complex}

If you have followed so far, congratulations! You are ready for a more complicated example that
puts together a variety of the skills developed in this chapter: (a) reading raw data, (b) creating
tables, (c) assigning level names to factors and (d) collapsing levels or variables for use in analysis.

For an illustration of these steps, we use the dataset tv.dat, supplied with the initial im-
plementation of mosaic displays in R by Jay Emerson. In turn, they were derived from an early,
compelling example of mosaic displays (Hartigan and Kleiner, 1984), that illustrated the method
with data on a large sample of TV viewers whose behavior had been recorded for the Neilsen rat-
ings. This data set contains sample television audience data from Neilsen Media Research for the
week starting November 6, 1995.

The data file, tv.dat is stored in frequency form as a file with 825 rows and 5 columns. There
is no header line in the file, so when we use read.table() below, the variables will be named
V1 – V5. This data represents a 4-way table of size 5× 11× 5× 3 = 825 where the table variables
are V1 – V4, and the cell frequency is read as V5.

The table variables are:
V1– values 1:5 correspond to the days Monday–Friday;
V2– values 1:11 correspond to the quarter hour times 8:00PM through 10:30PM;
V3– values 1:5 correspond to ABC, CBS, NBC, Fox, and non-network choices;
V4– values 1:3 correspond to transition states: turn the television Off, Switch channels, or Persist

in viewing the current channel.

2.9.1 Creating data frames and arrays

The file tv.dat is stored in the doc/extdata directory of vcdExtra; it can be read as follows:

> tv_data <- read.table(system.file("doc", "extdata", "tv.dat",
+ package = "vcdExtra"))
> str(tv_data)

'data.frame': 825 obs. of 5 variables:
$ V1: int 1 2 3 4 5 1 2 3 4 5 ...
$ V2: int 1 1 1 1 1 2 2 2 2 2 ...
$ V3: int 1 1 1 1 1 1 1 1 1 1 ...
$ V4: int 1 1 1 1 1 1 1 1 1 1 ...
$ V5: int 6 18 6 2 11 6 29 25 17 29 ...

> head(tv_data, 5)

V1 V2 V3 V4 V5
1 1 1 1 1 6
2 2 1 1 1 18
3 3 1 1 1 6
4 4 1 1 1 2
5 5 1 1 1 11

To read such data from a local file, just use read.table() in this form:

> tv_data <- read.table("C:/R/data/tv.dat")

or, to select the path using the file chooser tool,
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> tv_data <- read.table(file.choose())

We could use this data in frequency form for analysis by renaming the variables, and converting
the integer-coded factors V1 – V4 to R factors. The lines below use the function within() to
avoid having to use TV.dat$Day <- factor(TV.dat$Day) etc., and only supplies labels
for the first variable.

> TV_df <- tv_data
> colnames(TV_df) <- c("Day", "Time", "Network", "State", "Freq")
> TV_df <- within(TV_df, {
+ Day <- factor(Day,
+ labels = c("Mon", "Tue", "Wed", "Thu", "Fri"))
+ Time <- factor(Time)
+ Network <- factor(Network)
+ State <- factor(State) })

Alternatively, we could just reshape the frequency column (V5 or tv_data[,5]) into a 4-way
array. In the lines below, we rely on the facts that the (a) the table is complete—there are no missing
cells, so nrow(tv_data) = 825; (b) the observations are ordered so that V1 varies most rapidly
and V4 most slowly. From this, we can just extract the frequency column and reshape it into an
array using the dim argument. The level names are assigned to dimnames(TV) and the variable
names to names(dimnames(TV)).

> TV <- array(tv_data[,5], dim = c(5, 11, 5, 3))
> dimnames(TV) <-
+ list(c("Mon", "Tue", "Wed", "Thu", "Fri"),
+ c("8:00", "8:15", "8:30", "8:45", "9:00", "9:15",
+ "9:30", "9:45", "10:00", "10:15", "10:30"),
+ c("ABC", "CBS", "NBC", "Fox", "Other"),
+ c("Off", "Switch", "Persist"))
> names(dimnames(TV)) <- c("Day", "Time", "Network", "State")

More generally (even if there are missing cells), we can use xtabs() to do the cross-tabulation,
using V5 as the frequency variable. Here’s how to do this same operation with xtabs():

> TV <- xtabs(V5 ~ ., data = tv_data)
> dimnames(TV) <-
+ list(Day = c("Mon", "Tue", "Wed", "Thu", "Fri"),
+ Time = c("8:00", "8:15", "8:30", "8:45", "9:00", "9:15",
+ "9:30", "9:45", "10:00", "10:15", "10:30"),
+ Network = c("ABC", "CBS", "NBC", "Fox", "Other"),
+ State = c("Off", "Switch", "Persist"))

Note that in the lines above, the variable names are assigned directly as the names of the elements
in the dimnames list.

2.9.2 Subsetting and collapsing

For many purposes, the 4-way table TV is too large and awkward to work with. Among the networks,
Fox and Other occur infrequently, so we will remove them. We can also cut it down to a 3-way table
by considering only viewers who persist with the current station.8

> TV <- TV[,,1:3,] # keep only ABC, CBS, NBC
> TV <- TV[,,,3] # keep only Persist -- now a 3 way table
> structable(TV)

8This relies on the fact that indexing an array drops dimensions of length 1 by default, using the argument drop =
TRUE; the result is coerced to the lowest possible dimension.
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Time 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30
Day Network
Mon ABC 146 151 156 83 325 350 386 340 352 280 278

CBS 337 293 304 233 311 251 241 164 252 265 272
NBC 263 219 236 140 226 235 239 246 279 263 283

Tue ABC 244 181 231 205 385 283 345 192 329 351 364
CBS 173 180 184 109 218 235 256 250 274 263 261
NBC 315 254 280 241 370 214 195 111 188 190 210

Wed ABC 233 161 194 156 339 264 279 140 237 228 203
CBS 158 126 207 59 98 103 122 86 109 105 110
NBC 134 146 166 66 194 230 264 143 274 289 306

Thu ABC 174 183 197 181 187 198 211 86 110 122 117
CBS 196 185 195 104 106 116 116 47 102 84 84
NBC 515 463 472 477 590 473 446 349 649 705 747

Fri ABC 294 281 305 239 278 246 245 138 246 232 233
CBS 130 144 154 81 129 153 136 126 138 136 152
NBC 195 220 248 160 172 164 169 85 183 198 204

Finally, for some purposes, we might also want to collapse the 11 Time’s into a smaller number.
Here, we use collapse.table() (see Section 2.7.2), which was designed for this purpose.

> TV2 <- collapse.table(TV,
+ Time = c(rep("8:00-8:59", 4),
+ rep("9:00-9:59", 4),
+ rep("10:00-10:44", 3)))
> structable(Day ~ Time + Network, TV2)

Day Mon Tue Wed Thu Fri
Time Network
8:00-8:59 ABC 536 861 744 735 1119

CBS 1167 646 550 680 509
NBC 858 1090 512 1927 823

9:00-9:59 ABC 1401 1205 1022 682 907
CBS 967 959 409 385 544
NBC 946 890 831 1858 590

10:00-10:44 ABC 910 1044 668 349 711
CBS 789 798 324 270 426
NBC 825 588 869 2101 585

Congratulations! If you followed the operations described above, you are ready for the material
described in the rest of the book. If not, try working through some of exercises below.

2.10 Lab exercises
{sec:ch02-exercises}{lab:2.1}

Exercise 2.1 The packages vcd and vcdExtra contain many data sets with some examples of anal-
ysis and graphical display. The goal of this exercise is to familiarize yourself with these resources.
You can get a brief summary of these using the function datasets() from vcdExtra. Use the
following to get a list of these with some characteristics and titles.

> ds <- datasets(package=c("vcd", "vcdExtra"))
> str(ds, vec.len = 2)

'data.frame': 70 obs. of 5 variables:
$ Package: chr "vcd" "vcd" ...
$ Item : chr "Arthritis" "Baseball" ...
$ class : chr "data.frame" "data.frame" ...
$ dim : chr "84x5" "322x25" ...
$ Title : chr "Arthritis Treatment Data" "Baseball Data" ...

(a) How many data sets are there altogether? How many are there in each package?
(b) Make a tabular display of the frequencies by Package and class.
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(c) Choose one or two data sets from this list, and examine their help files (e.g., help(Arthritis)
or ?Arthritis). You can use, e.g., example(Arthritis) to run the R code for a given
example.

{lab:2.2}

Exercise 2.2 For each of the following data sets in the vcdExtra package, identify which are re-
sponse variable(s) and which are explanatory. For factor variables, which are unordered (nominal)
and which should be treated as ordered? Write a sentence or two describing substantitive questions
of interest for analysis of the data. (Hint: use data(foo, package="vcdExtra") to load,
and str(foo), help(foo) to examine data set foo.)

(a) Abortion opinion data: Abortion
(b) Caesarian Births: Caesar
(c) Dayton Survey: DaytonSurvey
(d) Minnesota High School Graduates: Hoyt

{lab:2.3}

Exercise 2.3 The data set UCBAdmissions is a 3-way table of frequencies classified by Admit,
Gender and Dept.

(a) Find the total number of cases contained in this table.
(b) For each department, find the total number of applicants.
(c) For each department, find the overall proportion of applicants who were admitted.
(d) Construct a tabular display of department (rows) and gender (columns), showing the propor-

tion of applicants in each cell who were admitted relative to the total applicants in that cell.
{lab:2.4}

Exercise 2.4 The data set DanishWelfare in vcd gives a 4-way, 3 × 4 × 3 × 5 table as a
data frame in frequency form, containing the variable Freq and four factors, Alcohol, Income,
Status and Urban. The variable Alcohol can be considered as the response variable, and the
others as possible predictors.

(a) Find the total number of cases represented in this table.
(b) In this form, the variables Alcohol and Income should arguably be considered ordered

factors. Change them to make them ordered.
(c) Convert this data frame to table form, DanishWelfare.tab, a 4-way array containing the

frequencies with appropriate variable names and level names.
(d) The variable Urban has 5 categories. Find the total frequencies in each of these. How would

you collapse the table to have only two categories, City, Non-city?
(e) Use structable() or ftable() to produce a pleasing flattened display of the frequen-

cies in the 4-way table. Choose the variables used as row and column variables to make it
easier to compare levels of Alcohol across the other factors.

{lab:2.5}

Exercise 2.5 The data set UKSoccer in vcd gives the distributions of number of goals scored by
the 20 teams in the 1995/96 season of the Premier League of the UK Football Association.

> data("UKSoccer", package="vcd")
> ftable(UKSoccer)

Away 0 1 2 3 4
Home
0 27 29 10 8 2
1 59 53 14 12 4
2 28 32 14 12 4
3 19 14 7 4 1
4 7 8 10 2 0
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This two-way table classifies all 20 × 19 = 380 games by the joint outcome (Home, Away), the
number of goals scored by the Home and Away teams. The value 4 in this table actually represents
4 or more goals.

(a) Verify that the total number of games represented in this table is 380.
(b) Find the marginal total of the number of goals scored by each of the home and away teams.
(c) Express each of the marginal totals as proportions.
(d) Comment on the distribution of the numbers of home-team and away-team goals. Is there any

evidence that home teams score more goals on average?
{lab:2.6}

Exercise 2.6 The one-way frequency table Saxony in vcd records the frequencies of families
with 0, 1, 2, . . . 12 male children, among 6115 families with 12 children. This data set is used
extensively in Chapter 3.

> data("Saxony", package="vcd")
> Saxony

nMales
0 1 2 3 4 5 6 7 8 9 10 11 12
3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Another data set, Geissler, in the vcdExtra package, gives the complete tabulation of all com-
binations of boys and girls in families with a given total number of children (size). The task
here is to create an equivalent table, Saxony12 from the Geissler data.

> data("Geissler", package="vcdExtra")
> str(Geissler)

'data.frame': 90 obs. of 4 variables:
$ boys : int 0 0 0 0 0 0 0 0 0 0 ...
$ girls: num 1 2 3 4 5 6 7 8 9 10 ...
$ size : num 1 2 3 4 5 6 7 8 9 10 ...
$ Freq : int 108719 42860 17395 7004 2839 1096 436 161 66 30 ...

(a) Use subset() to create a data frame, sax12 containing the Geissler observations in
families with size==12.

(b) Select the columns for boys and Freq.
(c) Use xtabs() with a formula, Freq ~ boys, to create the one-way table.
(d) Do the same steps again, to create a one-way table, Saxony11 containing similar frequencies

for families of size==11.
{lab:2.7}

Exercise 2.7 ? Interactive coding of table factors: Some statistical and graphical methods for con-
tingency tables are implemented only for two-way tables, but can be extended to 3+-way tables by
recoding the factors to interactive combinations along the rows and/or columns, in a way similar to
what ftable() and structable() do for printed displays.

For the UCBAdmissions data, produce a two-way table object, UCB.tab2, that has the com-
binations of Admit and Gender as the rows, and Dept as its columns, to look like the result
below:

Dept
Admit:Gender A B C D E F

Admitted:Female 89 17 202 131 94 24
Admitted:Male 512 353 120 138 53 22
Rejected:Female 19 8 391 244 299 317
Rejected:Male 313 207 205 279 138 351
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(a) Try this the long way: convert UCBAdmissions to a data frame (as.data.frame()),
manipulate the factors (e.g., interaction()), then convert back to a table (as.data.frame()).

(b) Try this the short way: both ftable() and structable() have as.matrix()methods
that convert their result to a matrix.

{lab:2.8}

Exercise 2.8 The data set VisualAcuity in vcd gives a 4 × 4 × 2 table as a frequency data
frame.

> data("VisualAcuity", package="vcd")
> str(VisualAcuity)

'data.frame': 32 obs. of 4 variables:
$ Freq : num 1520 234 117 36 266 ...
$ right : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ...
$ left : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 2 2 2 2 3 3 ...
$ gender: Factor w/ 2 levels "male","female": 2 2 2 2 2 2 2 2 2 2 ...

(a) From this, use xtabs() to create two 4× 4 frequency tables, one for each gender.
(b) Use structable() to create a nicely organized tabular display.
(c) Use xtable() to create a LATEX or HTML table.
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Discrete data often follow various theoretical probability models. Graphic displays are
used to visualize goodness of fit, to diagnose an appropriate model, and determine the
impact of individual observations on estimated parameters.

Not everything that counts can be counted, and not everything that can be counted
counts.

Albert Einstein

Discrete frequency distributions often involve counts of occurrences of events, such as accident
fatalities, incidents of terrorism or suicide, words in passages of text, or blood cells with some
characteristic. Often interest is focused on how closely such data follow a particular probability
distribution, such as the binomial, Poisson, or geometric distribution, which provide the basis for
generating mechanisms that might give rise to the data. Understanding and visualizing such dis-
tributions in the simplest case of an unstructured sample provides a building block for generalized
linear models (Chapter 11) where they serve as one component. They also provide the basis for a
variety of recent extensions of regression models for count data (Chapter 11), some of which ac-
count for the excess counts of zeros (zero-inflated models) caused by left- or right-truncation often
encountered in statistical practice.

This chapter describes the well-known discrete frequency distributions: the binomial, Poisson,
negative binomial, geometric, and logarithmic series distributions in the simplest case of an unstruc-
tured sample. The chapter begins with simple graphical displays (line graphs and bar charts) to view
the distributions of empirical data and theoretical frequencies from a specified discrete distribution.

63
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The chapter then describes methods for fitting data to a distribution of a given form, and presents
simple but effective graphical methods that can be used to visualize goodness of fit, to diagnose an
appropriate model (e.g., does a given data set follow the Poisson or negative binomial?) and to
determine the impact of individual observations on estimated parameters.

3.1 Introduction to discrete distributions
{sec:discrete-intro}

Discrete data analysis is concerned with the study of the tabulation of one or more types of events,
often categorized into mutually exclusive and exhaustive categories. Binary events having two
outcome categories include the toss of a coin (head/tails), sex of a child (male/female), survival
of a patient following surgery (lived/died), and so forth. Polytomous events have more outcome
categories, which may be ordered (rating of impairment: low/medium/high, by a physician) and
possibly numerically-valued (number of dots (pips), 1–6 on the toss of a die) or unordered (political
party supported: Liberal, Conservative, Greens, Socialist).

In this chapter, we focus largely on one-way frequency tables for a single numerically-valued
variable. Probability models for such data provide the opportunity to describe or explain the struc-
ture in such data, in that they entail some data generating mechanism and provide the basis for
testing scientific hypotheses and predicting future results. If a given probability model does not fit
the data, this can often be a further opportunity to extend understanding of the data, or the underlying
substantive theory, or both.

The remainder of this section gives a few substantive examples of situations where the well-
known discrete frequency distributions (binomial, Poisson, negative binomial, geometric, and log-
arithmic series) might reasonably apply, at least approximately. The mathematical characteristics
and properties of these theoretical distributions are postponed to Section 3.2.

In many cases, the data at hand pertain to two types of variables in a one-way frequency table.
There is a basic outcome variable, k, taking integer values, k = 0, 1, . . ., and called a count. For
each value of k, we also have a frequency, nk that the count k was observed in some sample. For
example, in the study of children in families, the count variable k could be the total number of
children or the number of male children; the frequency variable, nk, would then give the number of
families with that basic count k.

3.1.1 Binomial data
{sec:binom-data}

Binomial type data arise as the discrete distribution of the number of “success” events in n indepen-
dent binary trials, each of which yields a success (yes/no, head/tail, lives/dies, male/female) with a
constant probability p.

Sometimes, as in Example 3.1 below, the available data record only the number of successes
in n trials, with separate such observations recorded over time or space. More commonly, as in
Example 3.2 and Example 3.3, we have available data on the frequency nk of k = 0, 1, 2, . . . n
successes in the n trials.{ex:arbuthnot1}

EXAMPLE 3.1: Arbuthnot data
Sex ratios, such as births of male to female children, have long been of interest in population

studies and demography. Indeed, in 1710, John Arbuthnot (Arbuthnot, 1710) used data on the ratios
of male to female christenings in London from 1629–1710 to carry out the first known significance
test. The data for these 82 years showed that in every year there were more boys than girls. He
calculated that, under the assumption that male and female births were equally likely, the probability
of 82 years of more males than females was vanishingly small, (Pr ≈ 4.14× 10−25). He used this
to argue that a nearly constant birth ratio > 1 (or Pr(Male) > 0.5) could be interpreted to show the
guiding hand of a divine being.

Arbuthnot’s data, along with some other related variables, are available in Arbuthnot in the
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HistData package. For now, we simply display a plot of the probability of a male birth over time.
The plot in Figure 3.1 shows the proportion of males over years, with horizontal lines at Pr(Male) =
0.5 and the mean, Pr(Male) = 0.517. Also shown is a (loess) smoothed curve, which suggests that
any deviation from a constant sex ratio is relatively small, but also showed some systematic trend
trend over time.

> data("Arbuthnot", package = "HistData")
> with(Arbuthnot, {
+ prob = Males / (Males + Females)
+ plot(x = Year, y = prob, type = "b",
+ ylim = c(0.5, 0.54), ylab = "Pr (Male)")
+ abline(h = 0.5, col = "red", lwd = 2)
+ abline(h = mean(prob), col = "blue")
+ lines(loess.smooth(Year, prob), col = "blue", lwd = 2)
+ text(x = 1640, y = 0.5, expression(H[0]: "Pr(Male)=0.5"),
+ pos = 3, col = "red")
+ })
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Figure 3.1: Arbuthnot’s data on male/female sex ratios in London, 1629–1710, together with a
(loess) smoothed curve (blue) over time and the mean Pr(Male) {fig:arbuthnot1}

Done: DM: use slightly simpler alternative? MF: rejected this because we’re not explaining the
code, but the code is needed for Exercise 3.1.

Exercise 3.1 invites you to consider some other plots for this data. We return to this data in a
later chapter where we ask whether the variation around the mean can be explained by any other
considerations, or should just be considered random variation (see Exercise 7.1). 4

{ex:saxony1}

EXAMPLE 3.2: Families in Saxony
A related example of sex ratio data that ought to follow a binomial distribution comes from a

classic study by A. Geissler (1889). Geissler listed the data on the distributions of boys and girls in
families in Saxony for the period 1876–1885. In total, over four million births were recorded, and
the sex distribution in the family was available because the parents had to state the sex of all their
children on the birth certificate.

The complete data, classified by number of boys and number of girls (each 0–12) appear in Ed-
wards (1958, Table 1).1 Lindsey (1995, Table 6.2) selected only the 6115 families with 12 children,

1Edwards (1958) notes that over these 10 years, many parents will have had several children, and their family composition
is therefore recorded more than once. However, in families with a given number of children, each family can appear only
once.
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and listed the frequencies by number of males. The data are shown in table form in Table 3.1 in the
standard form of a complete discrete distribution. The basic outcome variable, k = 0, 1, . . . , 12, is
the number of male children in a family and the frequency variable, nk is the number of families
with that number of boys.

Table 3.1: Number of male children in 6115 Saxony families of size 12{tab:saxtab}
Males (k) 0 1 2 3 4 5 6 7 8 9 10 11 12 Sum
Families (nk) 3 24 104 286 670 1,033 1,343 1,112 829 478 181 45 7 6,115

Figure 3.2 shows a bar plot of the frequencies in Table 3.1. It can be seen that the distribution is
quite symmetric. The questions of interest here are: (a) how close does the data follow a binomial
distribution, with a constant Pr(Male) = p? (b) is there evidence to reject the hypothesis that
p = 0.5?

> data("Saxony", package = "vcd")
> barplot(Saxony, xlab = "Number of males", ylab = "Number of families",
+ col = "lightblue", cex.lab = 1.5)
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Figure 3.2: Number of males in Saxony families of size 12{fig:saxony-barplot}

4
{ex:dice}

EXAMPLE 3.3: Weldon’s dice
Common examples of binomial distributions involve tossing coins or dice, where some event

outcome is considered a “success” and the number of successes (k) are tabulated in a long series of
trials to give the frequency (nk) of each basic count, k.

Perhaps the most industrious dice-tosser of all times, W. F. Raphael Weldon, an English evo-
lutionary biologist and joint founding editor of Biometrika (with Francis Galton and Karl Pearson)
tallied the results of throwing 12 dice 26,306 times. For his purposes, he considered the outcome of
5 or 6 pips showing on each die to be a success, and all other outcomes as failures.

Weldon reported his results in a letter to Francis Galton dated February 2, 1894, in order “to
judge whether the differences between a series of group frequencies and a theoretical law . . . were
more than might be attributed to the chance fluctuations of random sampling” (Kemp and Kemp,
1991). In his seminal paper, Pearson (1900) used Weldon’s data to illustrate the χ2 goodness-of-fit
test, as did Kendall and Stuart (1963, Table 5.1, p. 121).

These data are shown here as Table 3.2, in terms of the number of occurrences of a 5 or 6 in the
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throw of 12 dice. If the dice were all identical and perfectly fair (balanced), one would expect that
p = Pr{5 or 6} = 1

3 and the distribution of the number of 5 or 6 would be binomial.
A peculiar feature of these data as presented by Kendall and Stuart (not uncommon in discrete

distributions) is that the frequencies of 10–12 successes are lumped together.2 This grouping must
be taken into account in fitting the distribution. This dataset is available as WeldonDice in the
vcd package. The distribution is plotted in Figure 3.3.

Table 3.2: Frequencies of 5s or 6s in throws of 12 dice {tab:dicetab}
# 5s or 6s (k) 0 1 2 3 4 5 6 7 8 9 10+ Sum
Frequency (nk) 185 1,149 3,265 5,475 6,114 5,194 3,067 1,331 403 105 18 26,306

> data("WeldonDice", package = "vcd")
> dimnames(WeldonDice)$n56[11] <- "10+"
> barplot(WeldonDice, xlab = "Number of 5s and 6s", ylab = "Frequency",
+ col = "lightblue", cex.lab = 1.5)
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Figure 3.3: Weldon’s dice data, frequency distribution of 5s and 6s in throws of 12 dice. {fig:dice}

4

3.1.2 Poisson data
{sec:pois-data}

Data of Poisson type arise when we observe the counts of events k within a fixed interval of time or
space (length, area, volume) and tabulate their frequencies, nk. For example, we may observe the
number of radioactive particles emitted by a source per second or number of births per hour, or the
number of tiger or whale sightings within some geographical regions.

In contrast to binomial data, where the counts are bounded below and above, in Poisson data the
counts k are bounded below at 0, but can take integer values with no fixed upper limit. One defining
characteristic for the Poisson distribution is for rare events, which occur independently with a small
and constant probability, p, in small intervals, and we count the number of such occurrences.

Several examples of data of this general type are given below. {ex:horsekick1}

2The unlumped entries are, for (number of 5s or 6s: frequency) — (10: 14); (11: 4), (12:0), given by Labby (2009). In
this remarkable paper, Labby describes a mechanical device he constructed to repeat Weldon’s experiment physically and
automate the counting of outcomes. He created electronics to roll 12 dice in a physical box, and hooked that up to a webcam
to capture an image of each toss and used image processing software to record the counts.
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EXAMPLE 3.4: Death by horse kick
One of the oldest and best known examples of a Poisson distribution is the data from von

Bortkiewicz (1898) on deaths of soldiers in the Prussian army from kicks by horses and mules,
shown in Table 3.3. Ladislaus von Bortkiewicz, an economist and statistician, tabulated the number
of soldiers in each of 14 army corps in the 20 years from 1875-1894 who died after being kicked
by a horse (Andrews and Herzberg, 1985, p. 18). Table 3.3 shows the data used by Fisher (1925)
for 10 of these army corps, summed over 20 years, giving 200 ‘corps-year’ observations. In 109
corps-years, no deaths occurred; 65 corps-years had one death, etc.

The data set is available as HorseKicks in the vcd package. The distribution is plotted in
Figure 3.4.

Table 3.3: von Bortkiewicz’s data on deaths by horse kicks{tab:horsetab}
Number of deaths (k) 0 1 2 3 4 Sum
Frequency (nk) 109 65 22 3 1 200

> data("HorseKicks", package = "vcd")
> barplot(HorseKicks, xlab = "Number of deaths", ylab = "Frequency",
+ col = "lightblue", cex.lab = 1.5)
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Figure 3.4: HorseKicks data, distribution of the number of deaths in 200 corps-years{fig:horsekicks}

4
{ex:madison1}

EXAMPLE 3.5: Federalist papers
In 1787–1788, Alexander Hamilton, John Jay, and James Madison wrote a series of newspaper

essays to persuade the voters of New York State to ratify the U.S. Constitution. The essays were
titled The Federalist Papers and all were signed with the pseudonym “Publius.” Of the 77 papers
published, the author(s) of 65 are known, but both Hamilton and Madison later claimed sole au-
thorship of the remaining 12. Mosteller and Wallace (1963, 1984) investigated the use of statistical
methods to identify authors of disputed works based on the frequency distributions of certain key
function words, and concluded that Madison had indeed authored the 12 disputed papers.3

3It should be noted that this is a landmark work in the development and application of statistical methods to the analysis
of texts and cases of disputed authorship. In addition to may, they considered many such marker words, such as any, by,
from, upon, and so forth. Among these, the word upon was the best discriminator between the works known by Hamilton (3
per 1000 words) and Madison (1/6 per 1000 words). In this work, they pioneered the use of Bayesian discriminant analysis,
and the use of cross-validation to assess the stability of estimates and their conclusions.
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Table 3.4 shows the distribution of the occurrence of one of these “marker” words, the word may
in 262 blocks of text (each about 200 words long) from issues of the Federalist Papers and other
essays known to be written by James Madison. Read the table as follows: in 156 blocks, the word
may did not occur; it occurred once in 63 blocks, etc. The distribution is plotted in Figure 3.5.

Table 3.4: Number of occurrences of the word may in texts written by James Madison
tab:fedtab

Occurrences of may (k) 0 1 2 3 4 5 6 Sum
Blocks of text (nk) 156 63 29 8 4 1 1 262

> data("Federalist", package = "vcd")
> barplot(Federalist,
+ xlab = "Occurrences of 'may'",
+ ylab = "Number of blocks of text",
+ col = "lightgreen", cex.lab = 1.5)
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Figure 3.5: Federalist papers data, distribution of the uses of the word may {fig:federalist}

4
{ex:cyclists1}

EXAMPLE 3.6: London cycling deaths
Aberdein and Spiegelhalter (2013) observed that from November 5–13, 2013, six people were

killed while cycling in London. How unusual is this number of deaths in less than a two-week
period? Was this a freak occurrence, or should Londoners petition for cycling lanes and greater
road safety? To answer these questions, they obtained data from the UK Department of Transport
Road Safety Data from 2005–2012 and selected all accident fatalities of cyclists within the city of
London.

It seems reasonable to assume that, in any short period of time, deaths of people riding bicycles
are independent events. If, in addition, the probability of such events is constant over this time span,
the Poisson distribution should describe the distribution of 0, 1, 2, 3, . . . deaths. Then, an answer to
the main question can be given in terms of the probability of six (or more) deaths in a comparable
period of time.

Their data, comprising 208 counts of deaths in the fortnightly periods from January 2005 to
December 2012, are contained in the data set CyclingDeaths in vcdExtra. To work with the
distribution, we first convert this to a one-way table.
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> data("CyclingDeaths", package = "vcdExtra")
> CyclingDeaths.tab <- table(CyclingDeaths$deaths)
> CyclingDeaths.tab

0 1 2 3
114 75 14 5

The maximum number of deaths was 3, which occurred in only 5 two-week periods. The distri-
bution is plotted in Figure 3.6.

> barplot(CyclingDeaths.tab,
+ xlab = "Number of deaths", ylab = "Number of fortnights",
+ col = "pink", cex.lab = 1.5)
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Figure 3.6: Frequencies of number of cyclist deaths in two-week periods in London, 2005–2012{fig:cyclists2}

We return to this data in Example 3.10 and answer the question of how unusual six or more
deaths would be in a Poisson distribution.

4

3.1.3 Type-token distributions
{sec:type-token}

There are a variety of other types of discrete data distributions. One important class is type-token
distributions, where the basic count k is the number of distinct types of some observed event, k =
1, 2, . . . and the frequency, nk, is the number of different instances observed. For example, distinct
words in a book, words that subjects list as members of the semantic category “fruit”, musical notes
that appear in a score, and species of animals caught in traps can be considered as types, and the
occurrences of of those type comprise tokens.

This class differs from the Poisson type considered above in that the frequency for value k = 0
is unobserved. Thus, questions like (a) How many words did Shakespeare know? (b) How many
words in the English language are members of the “fruit” category? (c) How many wolves remain
in Canada’s Northwest territories? depend on the unobserved count for k = 0. They cannot easily
be answered without appeal to additional information or statistical theory.{ex:butterfly}

EXAMPLE 3.7: Butterfly species in Malaya
In studies of the diversity of animal species, individuals are collected and classified by species.

The distribution of the number of species (types) where k = 1, 2, . . . individuals (tokens) were
collected forms a kind of type-token distribution. An early example of this kind of distribution was
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presented by Fisher et al. (1943). Table 3.5 lists the number of individuals of each of 501 species
of butterfly collected in Malaya. There were thus 118 species for which just a single instance was
found, 74 species for which two individuals were found, down to 3 species for which 24 individuals
were collected. Fisher et al. note however that the distribution was truncated at k = 24. Type-token
distributions are often J-shaped, with a long upper tail, as we see in Figure 3.7.

Table 3.5: Number of butterfly species nk for which k individuals were collected {tab:buttertab}
Individuals (k) 1 2 3 4 5 6 7 8 9 10 11 12
Species (nk) 118 74 44 24 29 22 20 19 20 15 12 14
Individuals (k) 13 14 15 16 17 18 19 20 21 22 23 24 Sum
Species (nk) 6 12 6 9 9 6 10 10 11 5 3 3 501

> data("Butterfly", package = "vcd")
> barplot(Butterfly, xlab = "Number of individuals", ylab = "Number of species",
+ cex.lab = 1.5)
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Figure 3.7: Butterfly species in Malaya {fig:butterfly}

4

3.2 Characteristics of discrete distributions
{sec:discrete-distrib}

This section briefly reviews the characteristics of some of the important discrete distributions en-
countered in practice and illustrates their use with R. An overview of these distributions is shown
in Table 3.6. For more detailed information on these and other discrete distributions, Johnson et al.
(1992) and Wimmer and Altmann (1999) present the most comprehensive treatments; Zelterman
(1999, Chapter 2) gives a compact summary.

For each distribution, we describe properties and generating mechanisms, and show how its
parameters can be estimated and how to plot the frequency distribution. R has a wealth of functions
for a wide variety of distributions. For ease of reference, their names and types for the distributions
covered here are shown in Table 3.7. The naming scheme is simple and easy to remember: for each
distribution, there are functions, with a prefix letter, d, p, q, r, followed by the name for that class
of distribution:4

4The CRAN Task View on Probability Distributions, http://cran.r-project.org/web/views/
Distributions.html, provides a general overview and lists a wide variety of contributed packages for special-
ized distributions, discrete and continuous.
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Table 3.6: Discrete probability distributions
tab:distns

Discrete
distribution

Probability
function, p(k) Parameters

Binomial
(
n
k

)
pk(1− p)n−k

p = Pr (success);
n = # trials

Poisson e−λλk/k! λ = mean

Negative binomial
(
n+k−1

k

)
pn(1− p)k p; n = # successful trials

Geometric p(1− p)k p

Logarithmic series θk/[−k log(1− θ)] θ

d a density function,5 Pr{X = k} ≡ p(k) for the probability that the variable X takes the value k.
p a cumulative probability/density function, or CDF, F (k) =

∑
X≤k p(k).

q a quantile function, the inverse of the CDF, k = F−1(p). The quantile is defined as the smallest
value x such that F (k) ≥ p.

r a random number generating function for that distribution.

In the R console, help(Distributions) gives an overview listing of the distribution functions
available in the stats package.

Table 3.7: R functions for discrete probability distributions
tab:distfuns

Discrete
distribution

Density (pmf)
function

Cumulative
(CDF)

Quantile
CDF−1

Random #
generator

Binomial dbinom() pbinom() qbinom() rbinom()

Poisson dpois() ppois() qpois() rpois()

Negative binomial dnbinom() pnbinom() qnbinom() rnbinom()

Geometric dgeom() pgeom() qgeom() rgeom()

Logarithmic series dlogseries() plogseries() qlogseries() rlogseries()

3.2.1 The binomial distribution
{sec:binomial}

The binomial distribution, Bin(n, p), arises as the distribution of the number k of events of interest
which occur in n independent trials when the probability of the event on any one trial is the constant
value p = Pr(event). For example, if 15% of the population has red hair, the number of red-heads
in randomly sampled groups of n = 10 might follow a binomial distribution, Bin(10, 0.15); in
Weldon’s dice data (Example 3.3), the probability of a 5 or 6 should be 1

3 on any one trial, and the
number of 5s or 6s in tosses of 12 dice would follow Bin(12, 13 ).

Over n independent trials, the number of events k may range from 0 to n; if X is a random
variable with a binomial distribution, the probability that X = k is given by

Bin(n, p) : Pr{X = k} ≡ p(k) =

(
n

k

)
pk(1− p)n−k k = 0, 1, . . . , n , (3.1){eq:binom}

where
(
n
k

)
= n!/k!(n − k)! is the number of ways of choosing k out of n. The first three (central)

5For discrete random variables this is usually called the probability mass function (pmf).
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moments of the binomial distribution are as follows (letting q = 1− p),

Mean(X) = np

Var(X) = npq

Skew(X) = npq(q − p) .

It is easy to verify that the binomial distribution has its maximum variance when p = 1
2 . It is

symmetric (Skew(x)=0) when p = 1
2 , and negatively (positively) skewed when p < 1

2 (p > 1
2 ).

If we are given data in the form of a discrete (binomial) distribution (and n is known), then the
maximum likelihood estimator6 of p can be obtained as the weighted mean of the values k with
weights nk,

p̂ =
x̄

n
=

(
∑
k k × nk)/

∑
k nk

n
,

and has sampling variance V(p̂) = pq/n.
Done: DM: either add ref to some text explaining Maximum Likelihood estimation, or maybe add
a section similar to old book to the Appendix), or add a note in preface that this is assumed to be
known.

3.2.1.1 Calculation and visualization

As indicated in Table 3.7 (but without listing the parameters of these functions), binomial probabil-
ities can be calculated with dbinom(x, n, p), where x is a vector of the number of successes
in n trials and p is the probability of success on any one trial. Cumulative probabilities, summed
up to a vector of quantiles, Q can be calculated with pbinom(Q, n, p), and the quantiles (the
smallest value x such that F (x) ≥ P ) with qbinom(P, n, p). To generate N random obser-
vations from a binomial distribution with n trials and success probability p use rbinom(N, n,
p)7.

For example, to find and plot the binomial probabilities corresponding to Weldon’s tosses of 12
dice, with k = 0, . . . , 12 and p = 1

3 , we could do the following:

> k <- 0 : 12
> Pk <- dbinom(k, 12, 1/3)
> b <- barplot(Pk, names.arg = k,
+ xlab = "Number of successes", ylab = "Probability")
> lines(x = b, y = Pk, col = "red")

We illustrate other styles for plotting in Section 3.2.2, Example 3.11 below. {ex:dice2}

EXAMPLE 3.8: Weldon’s dice
Going a bit further, we can compare Weldon’s data with the theoretical binomial distribution

as shown below. Because the WeldonDice data collapsed the frequencies for 10–12 successes as
10+, we do the same with the binomial probabilities. The expected frequencies (Exp), if Weldon’s
dice tosses obeyed the binomial distribution, are calculated as N × p(k) for N = 26, 306 tosses.
In addition, we compute the differences of the observed (Freq) and expected (Exp) frequencies
as column Diff, to be used for the χ2 test for goodness of fit described later in Section 3.3, but a
glance these are all negative for k = 0, . . . 4 and positive thereafter.

6For the purpose of this book, we assume at least a basic familiarity with the idea of maximum likelihood estimation. A
useful brief introduction to this topic for binomial data is Fox (2015, §D.6), available online.

7Note that the actual R function arguments differ from the ones used here.
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Figure 3.8: Binomial distribution for k = 0, . . . , 12 successes in 12 trials and p=1/3 {fig:dbinom12}

> Weldon_df <- as.data.frame(WeldonDice) # convert to data frame
>
> k <- 0 : 12 # same as seq(0, 12)
> Pk <- dbinom(k, 12, 1/3) # binomial probabilities
> Pk <- c(Pk[1:10], sum(Pk[11:13])) # sum values for 10+
> Exp <- round(26306 * Pk, 5) # expected frequencies
> Diff <- Weldon_df$Freq - Exp # raw residuals
> Chisq <- Diff^2 / Exp
> data.frame(Weldon_df, Prob = round(Pk, 5), Exp, Diff, Chisq)

n56 Freq Prob Exp Diff Chisq
1 0 185 0.00771 202.749 -17.7495 1.55386
2 1 1149 0.04624 1216.497 -67.4968 3.74503
3 2 3265 0.12717 3345.366 -80.3661 1.93064
4 3 5475 0.21195 5575.610 -100.6102 1.81548
5 4 6114 0.23845 6272.561 -158.5614 4.00821
6 5 5194 0.19076 5018.049 175.9509 6.16947
7 6 3067 0.11127 2927.195 139.8047 6.67716
8 7 1331 0.04769 1254.512 76.4877 4.66346
9 8 403 0.01490 392.035 10.9649 0.30668
10 9 105 0.00331 87.119 17.8811 3.67008
11 10+ 18 0.00054 14.305 3.6947 0.95424

4

Finally, we can use programming features in R to calculate and plot probabilities for binomial
distributions over a range of both k and p as follows, for the purposes of graphing the distributions as
one or both varies. The following code uses outer() to create a 13×4 matrix Prob containing the
result of dbinom() for all combinations of k = 0:12 and p = c(1/6, 1/3, 1/2, 2/3).
These values are then supplied as arguments to dbinom().

> p <- c(1/6, 1/3, 1/2, 2/3)
> k <- 0 : 12
> Prob <- outer(k, p, function(k, p) dbinom(k, 12, p))
> str(Prob)

num [1:13, 1:4] 0.1122 0.2692 0.2961 0.1974 0.0888 ...

In this form, each column of Prob can be most easily plotted against k using matplot().
The following code generates Figure 3.9.
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> col <- palette()[2:5]
> matplot(k, Prob,
+ type = "o", pch = 15 : 17, col = col, lty = 1,
+ xlab = "Number of Successes", ylab = "Probability")
> legend("topright", legend = c("1/6","1/3","1/2","2/3"),
+ pch = 15 : 17, lty = 1, col = col, title = "Pr(Success)")
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Figure 3.9: Binomial distributions for k = 0, . . . , 12 successes in n = 12 trials, and four values of
p {fig:dbinom2-plot2}

3.2.2 The Poisson distribution
{sec:poisson}

The Poisson distribution gives the probability of an event occurring k = 0, 1, 2, . . . times over a
large number of independent “trials”, when the probability, p, that the event occurs on any one trial
(in time or space) is small and constant. Hence, the Poisson distribution is usually applied to the
study of rare events such as highway accidents at a particular location, deaths from horse kicks,
or defects in a well-controlled manufacturing process. Other applications include: the number of
customers contacting a call center per unit time; the number of insurance claims per unit region or
unit time; number of particles emitted from a small radioactive sample.

For the Poisson distribution, the probability function is

Pois(λ) : Pr{X = k} ≡ p(k) =
e−λ λk

k!
k = 0, 1, . . . (3.2) {eq:poisf}

where the rate parameter, λ (> 0), turns out to be the mean of the distribution. The first three
(central) moments of the Poisson distribution are:

Mean(X) = λ

Var(X) = λ

Skew(X) = λ−1/2

So, the mean and variance of the Poisson distribution are always the same, which is sometimes
used to identify a distribution as Poisson. For the binomial distribution, the mean (Np) is always
greater than the variance (Npq); for other distributions (negative binomial and geometric) the mean
is less than the variance. The Poisson distribution is always positively skewed, but skewness de-
creases as λ increases.
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The maximum likelihood estimator of the parameter λ in Eqn. (3.2) is just the mean of the
distribution,

λ̂ = x̄ =

∑
k k nk∑
k nk

. (3.3) {eq:pois-lambda}

Hence, the expected frequencies can be estimated by substituting the sample mean into Eqn. (3.2)
and multiplying by the total sample size N .

There are many useful properties of the Poisson distribution.8 Among these:

• Poisson variables have a nice reproductive property: ifX1, X2, . . . Xm are independent Poisson
variables with the same parameter λ, then their sum,

∑
Xi is a Poisson variate with parameter

mλ; if the Poisson parameters differ, the sum is still Poisson with parameter
∑
λi.

• For two or more independent Poisson variables, X1 ∼ Pois(λ1), X2 ∼ Pois(λ2), . . ., with
rate parameters λ1, λ2 . . ., the distribution of any Xi, conditional on their sum,

∑
j Xj = n, is

binomial, Bin(n, p), where p = λi/
∑
j λj .

• As λ increases, the Poisson distribution becomes increasingly symmetric, and approaches the
normal distribution N(λ, λ) with mean and variance λ as λ → ∞. The approximation is quite
good with λ > 20.

• If X ∼ Pois(λ), then
√
X converges much faster to a normal distribution N(λ, 14 ), with mean√

λ and constant variance 1
4 . Hence, the square root transformation is often recommended as a

variance stabilizing transformation for count data when classical methods (ANOVA, regression)
assuming normality are employed.

{ex:soccer}

EXAMPLE 3.9: UK Soccer scores
Table 3.8 gives the distributions of goals scored by the 20 teams in the 1995/96 season of the

Premier League of the UK Football Association as presented originally by Lee (1997), and now
available as the two-way table UKSoccer in the vcd package. Over a season each team plays each

Table 3.8: Goals scored by home and away teams in 380 games in the Premier Football League,
1995/96 season{tab:soccer1}

Home Away Team Goals
Team 0 1 2 3 4+ Total
Goals

0 27 29 10 8 2 76
1 59 53 14 12 4 142
2 28 32 14 12 4 90
3 19 14 7 4 1 45

4+ 7 8 10 2 0 27
Total 140 136 55 38 11 380

other team exactly once, so there are a total of 20 × 19 = 380 games. Because there may be an
advantage for the home team, the goals scored have been classified as “home team” goals and “away
team” goals in the table. Of interest for this example is whether the number of goals scores by home
teams and away teams follow Poisson distributions, and how this relates to the distribution of the
total number of goals scored.

If we assume that in any small interval of time there is a small, constant probability that the
home team or the away team may score a goal, the distributions of the goals scored by home teams

8See: http://en.wikipedia.org/wiki/Poisson_distribution
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(the row totals in Table 3.8) may be modeled as Pois(λH ) and the distribution of the goals scored
by away teams (the column totals) may be modeled as Pois(λA).

If the number of goals scored by the home and away teams are independent9, we would expect
that the total number of goals scored in any game would be distributed as Pois(λH + λA). These
totals are shown in Table 3.9.

Table 3.9: Total goals scored in 380 games in the Premier Football League, 1995/95 season {tab:soccer2}

Total goals 0 1 2 3 4 5 6 7
Number of games 27 88 91 73 49 31 18 3

As a preliminary check of the distributions for the home and away goals, we can determine if the
means and variances are reasonably close to each other. If so, then the total goals variable should
also have a mean and variance equal to the sum of those statistics for the home and away goals.

In the R code below, we first convert the two-way frequency table UKSoccer to a data frame in
frequency form. We use within() to convert Home and Away to numeric variables, and calculate
Total as their sum.

> data("UKSoccer", package = "vcd")
>
> soccer.df <- as.data.frame(UKSoccer, stringsAsFactors = FALSE)
> soccer.df <- within(soccer.df, {
+ Home <- as.numeric(Home) # make numeric
+ Away <- as.numeric(Away) # make numeric
+ Total <- Home + Away # total goals
+ })
> str(soccer.df)

'data.frame': 25 obs. of 4 variables:
$ Home : num 0 1 2 3 4 0 1 2 3 4 ...
$ Away : num 0 0 0 0 0 1 1 1 1 1 ...
$ Freq : num 27 59 28 19 7 29 53 32 14 8 ...
$ Total: num 0 1 2 3 4 1 2 3 4 5 ...

To calculate the mean and variance of these variables, first expand the data frame to 380 individ-
ual observations using expand.dft(). Then use apply() over the rows to calculate the mean
and variance in each column.

> soccer.df <- expand.dft(soccer.df) # expand to ungrouped form
> apply(soccer.df, 2, FUN = function(x) c(mean = mean(x), var = var(x)))

Home Away Total
mean 1.4868 1.0632 2.5500
var 1.3164 1.1728 2.6175

The means are all approximately equal to the corresponding variances. More to the point, the
variance of the Total score is approximately equal to the sum of the individual variances. Note
also there does appear to be an advantage for the home team, of nearly half a goal.

4
{ex:cyclists2}

9This question is examined visually in Chapter 5 (Example 5.5) and Chapter 6 (Example 6.11), where we find that the
answer is “basically, yes”.



78 3. Fitting and Graphing Discrete Distributions

EXAMPLE 3.10: London cycling deaths
A quick check of whether the number of deaths among London cyclists follows the Poisson

distribution can be carried out by calculating the mean and variance. The index of dispersion,
the ratio of the variance to the mean, is commonly used to quantify whether a set of observed
frequencies is more or less dispersed than a reference (Poisson) distribution.

> with(CyclingDeaths, c(mean = mean(deaths),
+ var = var(deaths),
+ ratio = mean(deaths) / var(deaths)))

mean var ratio
0.56731 0.52685 1.07679

Thus, there was an average of about 0.57 deaths per fortnight, or a bit more than 1 per month,
and no evidence for over- or underdispersion.

We can now answer the question of whether it was an extraordinary event to observe six deaths
in a two-week period, by calculating the probability of more than 5 deaths using ppois().

> mean.deaths <- mean(CyclingDeaths$deaths)
> ppois(5, mean.deaths, lower.tail = FALSE)

[1] 2.8543e-05

This probability is extremely small, so we conclude that the occurrence of six deaths was a
singular event. The interpretation of this result might indicate an increased risk to cycling in London,
and might prompt further study of road safety. 4

3.2.2.1 Calculation and visualization

For the Poisson distribution, you can generate probabilities using dpois(x, lambda) for the
numbers of events in xwith rate parameter lambda. As we did earlier for the binomial distribution,
we can calculate these for a collection of values of lambda by using expand.grid() to create
all combinations of with the values of x we wish to plot.{ex:dpois-plot}

EXAMPLE 3.11: Plotting styles for discrete distributions
In this example, we illustrate some additional styles for plotting discrete distributions, using

both lattice xyplot() and the ggplot2 package. The goal here is to visualize a collection of
Poisson distributions for varying values of λ.

We first create the 63 combinations of x = 0:20 for three values of λ, lambda = c(1,
4, 10), and use these columns as arguments to dpois(). Again, lambda is a numeric variable,
but the plotting methods are easier if this variable is converted to a factor.

> KL <- expand.grid(k = 0 : 20, lambda = c(1, 4, 10))
> pois_df <- data.frame(KL, prob = dpois(KL$k, KL$lambda))
> pois_df$lambda = factor(pois_df$lambda)
> str(pois_df)

'data.frame': 63 obs. of 3 variables:
$ k : int 0 1 2 3 4 5 6 7 8 9 ...
$ lambda: Factor w/ 3 levels "1","4","10": 1 1 1 1 1 1 1 1 1 1 ...
$ prob : num 0.3679 0.3679 0.1839 0.0613 0.0153 ...

Discrete distributions are often plotted as bar charts or in histogram-like form, as we did for
the examples in Section 3.1, rather than the line-graph form used for the binomial distribution in
Figure ??. With xyplot(), the plot style is controlled by the type argument, and the code
below uses type = c("h", "p") to get both histogram-like lines to the origin and points. As
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well, the plot formula, prob ~ k | lambda instructs xyplot() to produce a multi-panel plot,
conditioned on values of lambda. These lines produce Figure 3.10.

> library(lattice)
> xyplot(prob ~ k | lambda, data = pois_df,
+ type = c("h", "p"), pch = 16, lwd = 4, cex = 1.25, layout = c(3, 1),
+ xlab = list("Number of events (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25))
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Figure 3.10: Poisson distributions for λ = 1, 4, 10, in a multi-panel display {fig:dpois-xyplot1}

The line-graph plot style of Figure ?? has the advantage that it is easier to compare the separate
distributions in a single plot (using the groups argument) than across multiple panels (using a
conditioning formula). It has the disadvantages that (a) a proper legend is difficult to construct with
lattice, and (b) is difficult to read, because you have to visually coordinate the curves in the plot with
the values shown in the legend. Figure 3.11 solves both problems using the directlabels package.

> mycol <- palette()[2:4]
> plt <- xyplot(prob ~ k, data = pois_df, groups = lambda,
+ type = "b", pch = 15 : 17, lwd = 2, cex = 1.25, col = mycol,
+ xlab = list("Number of events (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25))
>
> library(directlabels)
> direct.label(plt, list("top.points", cex = 1.5, dl.trans(y = y + 0.1)))

Note that the plot constructed by xyplot() is saved as a ("trellis") object, plt. The function
direct.label() massages this to add the labels directly to each curve. In the second argument
above, "top.points" says to locate these at the maximum value on each curve.

Finally, we illustrate the use of ggplot2 to produce a single-panel, multi-line plot of these dis-
tributions. The basic plot uses aes(x = k, y = prob, ...) to produce a plot of prob vs.
k, assigning color and shape attributes to the values of lambda.

> library(ggplot2)
> gplt <- ggplot(pois_df,
+ aes(x = k, y = prob, colour = lambda, shape = lambda)) +
+ geom_line(size = 1) + geom_point(size = 3) +
+ xlab("Number of events (k)") +
+ ylab("Probability")
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Figure 3.11: Poisson distributions for λ = 1, 4, 10, using direct labels {fig:dpois-xyplot2}

ggplot2 allows most details of the plot to be modified using theme(). Here we use this to
move the legend inside the plot, and enlarge the axis labels and titles.

> gplt + theme(legend.position = c(0.8, 0.8)) + # manually move legend
+ theme(axis.text = element_text(size = 12),
+ axis.title = element_text(size = 14, face = "bold"))
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Figure 3.12: Poisson distributions for λ = 1, 4, 10, using ggplot{fig:dpois-ggplot2}

4

3.2.3 The negative binomial distribution
{sec:negbin}

The negative binomial distribution is a type of waiting-time distribution, but also arises in statistical
applications as a generalization of the Poisson distribution, allowing for overdispersion (variance >
mean). See Hilbe (2011) for a comprehensive treatment of negative binomial statistical models with
many applications in R.

One form of the negative binomial distribution (also called the Pascal distribution) arises when
a series of independent Bernoulli trials is observed with constant probability p of some event, and
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we ask how many non-events (failures), k, it takes to observe n successful events. For example, in
tossing one die repeatedly, we may consider the outcome “1” as a “success” (with p = 1

6 ) and ask
about the probability of observing k = 0, 1, 2, . . . failures before getting n = 3 1s.

The probability function with parameters n (a positive integer, 0 < n <∞) and p (0 < p < 1)
gives the probability that k non-events (failures) are observed before the n-th event (success), and
can be written10

NBin(n, p) : Pr{X = k} ≡ p(k) =

(
n+ k − 1

k

)
pn(1− p)k k = 0, 1, . . . ,∞ (3.4) {eq:negbinf}

This formulation makes clear that a given sequence of events involves a total of n + k trials of
which there are n successes, with probability pn, and k are failures, with probability (1 − p)k.
The binomial coefficient,

(
n+k−1

k

)
gives the number of ways to choose the k successes from the

remaining n+ k − 1 trials preceding the last success.
The first three central moments of the negative binomial distribution are:

Mean(X) = nq/p = µ

Var(X) = nq/p2

Skew(X) =
2− p
√
nq

,

where q = 1 − p. The variance of X is therefore greater than the mean, and the distribution is
always positively skewed.

A more general form of the negative binomial distribution (the Polya distribution) allows n to
take non-integer values and to be an unknown parameter. In this case, the combinatorial coefficient,(
n+k−1

k

)
in Eqn. (3.4) is calculated using the gamma function, Γ(•), a generalization of the factorial

for non-integer values, defined so that Γ(x+ 1) = x! when x is an integer.
Then the probability function Eqn. (3.4) becomes

Pr{X = k} ≡ p(k) =
Γ(n+ k)

Γ(n)Γ(k + 1)
pn(1− p)k k = 0, 1, . . . ,∞ . (3.5) {eq:negbinf2}

Greenwood and Yule (1920) developed the negative binomial distribution as a model for acci-
dent proneness or susceptibility of individuals to repeated attacks of disease. They assumed that for
any individual, i, the number of accidents or disease occurrences has a Poisson distribution with pa-
rameter λi. If individuals vary in proneness, so that the λi have a gamma distribution, the resulting
distribution is the negative binomial.

In this form, the negative binomial distribution is frequently used as an alternative to the Poisson
distribution when the assumptions of the Poisson (constant probability and independence) are not
satisfied, or when the variance of the distribution is greater than the mean (overdispersion). This
gives rise to an alternative parameterization in terms of the mean (µ) of the distribution and its
relation to the variance. From the relation of the mean and variance to the parameters n, p given
above,

Mean(X) = µ =
n(1− p)

p
=⇒ p =

n

n+ µ
(3.6)

Var(X) =
n(1− p)

p2
=⇒ Var(X) = µ+

µ2

n
(3.7)

10There are a variety of other parameterizations of the negative binomial distribution, but all of these can be converted to
the form shown here, which is relatively standard, and consistent with R. They differ in whether the parameter n relates to
the number of successes or the total number of trials, and whether the stopping criterion is defined in terms of failures or
successes. See: http://en.wikipedia.org/wiki/Negative_binomial_distribution for details on these
variations.
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This formulation allows the variance of the distribution to exceed the mean, and in these terms, the
“size” parameter n is called the dispersion parameter.11 Increasing this parameter corresponds to
less heterogeneity, variance closer to the mean, and therefore greater applicability of the Poisson
distribution.

3.2.3.1 Calculation and visualization

In R, the density (pmf), distribution (CDF), quantile and random number functions for the negative
binomial distribution are a bit special, in that the parameterization can be specified using either
(n, p) or (n, µ) forms, where µ = n(1 − p)/p. In our notation, probabilities can be calculated
using dnbinom() using the call dbinom(k, n, p) or the call dbinom(k, n, mu=), as
illustrated below:

> k <- 2
> n <- 2 : 4
> p <- 0.2
> dnbinom(k, n, p)

[1] 0.07680 0.03072 0.01024

> (mu <- n * (1 - p) / p)

[1] 8 12 16

> dnbinom(k, n, mu = mu)

[1] 0.07680 0.03072 0.01024

Thus, for the distribution with k = 2 failures and n = 2:4 successes with probability p =
0.2, the values n = 2:4 correspond to means µ = 8, 12, 16 as shown above.

As before, we can calculate these probabilities for a range of the combinations of arguments
using expand.grid(). In the example below, we allow three values for each of n and p and
calculate all probabilities for all values of k from 0 to 20. The result, nbin_df is like a 3-way,
21× 3× 3 array of prob values, but in data frame format.

> XN <- expand.grid(k = 0 : 20, n = c(2, 4, 6), p = c(0.2, 0.3, 0.4))
> nbin_df <- data.frame(XN, prob = dnbinom(XN$k, XN$n, XN$p))
> nbin_df$n <- factor(nbin_df$n)
> nbin_df$p <- factor(nbin_df$p)
> str(nbin_df)

'data.frame': 189 obs. of 4 variables:
$ k : int 0 1 2 3 4 5 6 7 8 9 ...
$ n : Factor w/ 3 levels "2","4","6": 1 1 1 1 1 1 1 1 1 1 ...
$ p : Factor w/ 3 levels "0.2","0.3","0.4": 1 1 1 1 1 1 1 1 1 1 ...
$ prob: num 0.04 0.064 0.0768 0.0819 0.0819 ...

With 9 combinations of the parameters, it is most convenient to plot these in separate panels, in
a 3 × 3 display. The formula prob ~ k | n + p in the call to xyplot() constructs plots of
prob vs. k conditioned on the combinations of n and p.

> xyplot(prob ~ k | n + p, data = nbin_df,
+ xlab = list("Number of failures (k)", cex = 1.25),
+ ylab = list("Probability", cex = 1.25),
+ type = c("h", "p"), pch = 16, lwd = 2,

11Other terms are “shape parameter,” with reference to the mixing distribution of Poissons with varying λ, “heterogeneity
parameter,” or “aggregation parameter.”
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+ strip = strip.custom(strip.names = TRUE)
+ )
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Figure 3.13: Negative binomial distributions for n = 2, 4, 6 and p = 0.2, 0.3, 0.4, using
xyplot() {fig:dnbin3}

It can be readily seen that the mean increases from left to right with n, and increases from top to
bottom with decreasing p. For these distributions, we can also calculate the theory-implied means,
µ, across the entire distributions, k = 0, 1, . . .∞, as shown below.

> n <- c(2, 4, 6)
> p <- c(0.2, 0.3, 0.4)
> NP <- outer(n, p, function(n, p) n * (1 - p) / p)
> dimnames(NP) <- list(n = n, p = p)
> NP

p
n 0.2 0.3 0.4
2 8 4.6667 3
4 16 9.3333 6
6 24 14.0000 9

3.2.4 The geometric distribution
{sec:geometric}

The special case of the negative binomial distribution when n = 1 is a geometric distribution. We
observe a series of independent trials and count the number of non-events (failures) preceding the
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first successful event. The probability that there will be k failures before the first success is given
by

Geom(p) : Pr{X = k} ≡ p(k) = p(1− p)k k = 0, 1, . . . . (3.8){eq:geomf}

For this distribution the central moments are:

Mean(X) = 1/p

Var(X) = (1− p)/p2

Skew(X) = (2− p)/
√

1− p

Note that estimation of the parameter p for the geometric distribution can be handled as the
special case of the negative binomial by fixing n = 1, so no special software is needed. Going the
other way, ifX1, X2, . . . Xn are independent geometrically distributed as Geom(p), then their sum,
Y =

∑n
j Xj is distributed as NBin(p, n).

In R, the standard set of functions for the geometric distribution are available as dgeom(x,
prob), pgeom(q, prob), qgeom(p, prob) and rgeom(n, prob) where prob repre-
sents p here. Visualization of the geometric distribution follows the pattern used earlier for other
discrete distributions.

3.2.5 The logarithmic series distribution

The logarithmic series distribution is a long-tailed distribution introduced by Fisher et al. (1943) in
connection with data on the abundance of individuals classified by species of the type shown for the
distribution of butterfly species in Table 3.5.

The probability distribution function with parameter p is given by

LogSer(p) : Pr{X = k} ≡ p(k) =
pk

−(k log(1− p))
= αpk/k k = 1, 2, . . . ,∞ , (3.9){eq:logseriesf}

where α = −1/ log(1− p) and 0 < p < 1. For this distribution, the first two central moments are:

Mean(X) = α

(
p

1− p

)
Var(X) = −p p+ log(1− p)

(1− p)2 log2(1− p)

Fisher derived the logarithmic series distribution by assuming that for a given species the number
of individuals trapped has a Poisson distribution with parameter λ = γt, where γ is a parameter of
the species (susceptibility to entrapment) and t is a parameter of the trap. If different species vary so
that the parameter γ has a gamma distribution, then the number of representatives of each species
trapped will have a negative binomial distribution. However, the observed distribution is necessarily
truncated on the left, because one cannot observe the number of species never caught (where k = 0).
The logarithmic series distribution thus arises as a limiting form of the zero-truncated negative
binomial.

Maximum likelihood estimation of the parameter p in the log-series distribution is described
by Böhning (1983), extending a simpler Newton’s method approximation by Birch (1963a). The
vcdExtra package contains the set of R functions, dlogseries(x, prob), plogseries(q,
prob), qlogseries(p, prob) and rlogseries(n, prob) where prob represents p
here.
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3.2.6 Power series family
{sec:pwrseries}

We mentioned earlier that the Poisson distribution was unique among all discrete (one parameter)
distributions, in that it is the only one whose mean and variance are equal (Kosambi, 1949). The
relation between mean and variance of discrete distributions also provides the basis for integrating
them into a general family. All of the discrete distributions described in this section are in fact
special cases of a family of discrete distributions called the power series distributions by Noack
(1950) and defined by

p(k) = a(k)θk/f(θ) k = 0, 1, . . . ,

with parameter θ > 0, where a(k) is a coefficient function depending only on k and f(θ) =∑
k a(k)θk is called the series function. The definitions of these functions are shown in Table 3.10.

Table 3.10: The Power Series family of discrete distributions
tab:pwrseries

Discrete Probability Series Series Series
Distributiion function, p(k) parameter, θ function, f(θ) coefficient, a(k)
Poisson e−λλk/k! θ = λ eθ 1/k!

Binomial
(
n
k

)
pk(1− p)n−k θ = p/(1− p) (1 + θ)n

(
n
k

)
Negative binomial

(
n+k−1

k

)
pn(1− p)k θ = (1− p) (1− θ)−k

(
n+k−1

k

)
Geometric p(1− p)k θ = (1− p) (1− θ)−k 1

Logarithmic series θk/[−k log(1− θ)] θ = θ − log(1− θ) 1/k

These relations among the discrete distribution provide the basis for graphical techniques for
diagnosing the form of discrete data described later in this chapter (Section 3.5.4).

3.3 Fitting discrete distributions
{sec:discrete-fit}

In applications to discrete data such as the examples in Section 3.1, interest is often focused on
how closely such data follow a particular distribution, such as the Poisson, binomial, or geometric
distribution. A close fit provides for interpretation in terms of the underlying mechanism for the
distribution; conversely, a bad fit can suggest the possibility for improvement by relaxing one or
more of the assumptions. We examine more detailed and nuanced methods for diagnosing and
testing discrete distributions in Section 3.4 and Section 3.5 below.

Fitting a discrete distribution involves three basic steps:

1. Estimating the parameter(s) of the distribution from the data, for example, p for the binomial,
λ for the Poisson, n and p for the negative binomial. Typically, this is carried out by max-
imum likelihood methods, or a simpler method of moments, which equates sample moments
(mean, variance, skewness) to those of the theoretical distribution, and solves for the parameter
estimates. These methods are illustrated in Section 3.3.1.

2. From this, we can calculate the fitted probabilities, p̂k that apply for the given distribution, or
equivalently, the model expected frequencies, Np̂k, where N is the total sample size.

3. Finally, we can calculate goodness-of-fit tests measuring the departure between the observed
and fitted frequencies.

Often goodness-of-fit is examined with a classical (Pearson) goodness-of-fit (GOF) chi-squared
test,
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X2 =

K∑
k=1

(nk −Np̂k)
2

Np̂k
∼ χ2

(K−s−1) , (3.10) {eq:chi2}

where there are K frequency classes, s parameters have been estimated from the data and p̂k is the
estimated probability of each basic count, under the null hypothesis that the data follows the chosen
distribution.

An alternative test statistic is the likelihood-ratio G2 statistic,

G2 =

K∑
k=1

nk log(nk/Np̂k) , (3.11){eq:g2}

when the p̂k are estimated by maximum likelihood, which also has an asymptotic χ2
(K−s−1) distri-

bution. “Asymptotic” means that these are large sample tests, meaning that the test statistic follows
the χ2 distribution increasingly well as N → ∞. A common rule of thumb is that all expected
frequencies should exceed one and that fewer than 20% should be less than 5.{ex:horsekick2}

EXAMPLE 3.12: Death by horse kick
We illustrate the basic ideas of goodness-of fit tests with the HorseKick data, where we expect

a Poisson distribution with parameter λ = mean number of deaths. As shown in Eqn. (3.3), this is
calculated as the frequency (nk) weighted mean of the k values, here, number of deaths.

In R, such one-way frequency distributions should be converted to data frames with numeric
variables. The calculation below uses weighted.mean() with the frequencies as weights, and
finds λ = 0.61 as the mean number of deaths per corps-year.

> # goodness-of-fit test
> tab <- as.data.frame(HorseKicks, stringsAsFactors = FALSE)
> colnames(tab) <- c("nDeaths", "Freq")
> str(tab)

'data.frame': 5 obs. of 2 variables:
$ nDeaths: chr "0" "1" "2" "3" ...
$ Freq : int 109 65 22 3 1

> (lambda <- weighted.mean(as.numeric(tab$nDeaths), w = tab$Freq))

[1] 0.61

From this, we can calculate the probabilities (phat) of k = 0:4 deaths, and hence the ex-
pected (exp) frequencies in a Poisson distribution.

> phat <- dpois(0 : 4, lambda = lambda)
> exp <- sum(tab$Freq) * phat
> chisq <- (tab$Freq - exp)^2 / exp
>
> GOF <- data.frame(tab, phat, exp, chisq)
> GOF

nDeaths Freq phat exp chisq
1 0 109 0.5433509 108.67017 0.0010011
2 1 65 0.3314440 66.28881 0.0250573
3 2 22 0.1010904 20.21809 0.1570484
4 3 3 0.0205551 4.11101 0.3002534
5 4 1 0.0031346 0.62693 0.2220057

Finally, the Pearson χ2 is just the sum of the chisq values and pchisq() is used to calculate
the p-value of this test statistic—the probability of obtaining this χ2 or a more extreme value if our
assumption on the underlying distribution is true.
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> sum(chisq) # chi-square value

[1] 0.70537

> pchisq(sum(chisq), df = nrow(tab) - 2, lower.tail = FALSE)

[1] 0.87194

The result, χ2
3 = 0.70537 shows an extremely good fit of these data to the Poisson distribution,

perhaps exceptionally so.12

4

3.3.1 R tools for discrete distributions
{sec:fitdistr}

In R, the function fitdistr() in the MASS package is a basic work horse for fitting a variety of
distributions by maximum likelihood and other methods, giving parameter estimates and standard
errors. Among discrete distributions, the binomial, Poisson and geometric distributions have closed-
form maximum likelihood estimates; the negative binomial distribution, parameterized by (n, µ), is
estimated iteratively by direct optimization.

These basic calculations are extended and enhanced for one-way discrete distributions in the vcd
function goodfit(), which computes the fitted values of a discrete distribution (either Poisson,
binomial or negative binomial) to the count data. If the parameters are not specified they are esti-
mated either by maximum likelihood (ML) or Minimum Chi-squared. print() and summary()
methods for the "goodfit" objects give, respectively, a table of observed and fitted frequencies, and
the Pearson and/or likelihood ratio goodness-of-fit statistics. Plotting methods for visualizing the
discrepancies between observed and fitted frequencies are described and illustrated in Section 3.3.2. {ex:saxfit}

EXAMPLE 3.13: Families in Saxony
This example uses goodfit() to fit the binomial to the distribution of the number of male

children in families of size 12 in Saxony. Note that for the binomial, both n and p are considered as
parameters, and by default n is taken as the maximum count.

> data("Saxony", package = "vcd")
> Sax_fit <- goodfit(Saxony, type = "binomial")
> unlist(Sax_fit$par) # estimated parameters

prob size
0.51922 12.00000

So, we estimate the probability of a male in these families to be p = 0.519, a value that is quite
close to the value found in Arbuthnot’s data (p = 0.517).

It is useful to know that goodfit() returns a list structure of named components which are
used by method functions for class "goodfit" objects. The print.goodfit() method prints
the table of observed and fitted frequencies. summary.goodfit() calculates and prints the
likelihood ratio χ2 GOF test when the ML estimation method is used.

> names(Sax_fit) # components of "goodfit" objects

[1] "observed" "count" "fitted" "type" "method"
[6] "df" "par"

12An exceptionally good fit occurs when the p-value for the test χ2 statistic is so high, as to suggest that something
unreasonable under random sampling might have occurred. The classic example of this is the controversy over Gregor
Mendel’s experiments of cross-breeding garden peas with various observed (phenotype) characteristics, where R. A. Fisher
(1936a) suggested that observed frequencies of combinations like (smooth/wrinkled), (green/yellow) in a 2nd generation
were uncomfortably too close to the 3 : 1 ratio predicted by genetic theory.
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> Sax_fit # print method

Observed and fitted values for binomial distribution
with parameters estimated by `ML'

count observed fitted
0 3 0.93284
1 24 12.08884
2 104 71.80317
3 286 258.47513
4 670 628.05501
5 1033 1085.21070
6 1343 1367.27936
7 1112 1265.63031
8 829 854.24665
9 478 410.01256

10 181 132.83570
11 45 26.08246
12 7 2.34727

> summary(Sax_fit) # summary method

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio 97.007 11 6.9782e-16

Note that the GOF test gives a highly significant p-value (pratically zero), indicating significant
lack of fit to the binomial distribution.13 Some further analysis of this result is explored in examples
below. 4

{ex:dicefit}

EXAMPLE 3.14: Weldon’s dice
Weldon’s dice data, explored in Example 3.3, are also expected to follow a binomial distribution,

here with p = 1
3 . However, as given in the data set WeldonDice, the frequencies for counts 10–12

were grouped as “10+”. In this case, it necessary to supply the correct value of n = 12 as the value
of the size parameter in the call to goodfit().

> data("WeldonDice", package = "vcd")
> dice_fit <- goodfit(WeldonDice, type = "binomial",
+ par = list(size = 12))
> unlist(dice_fit$par)

prob size
0.33769 12.00000

The probability of a success (a 5 or 6) is estimated as p̂ = 0.3377, not far from the theoretical
value, p = 1/3.

> print(dice_fit, digits = 0)

Observed and fitted values for binomial distribution
with parameters estimated by `ML'

13A handy rule-of-thumb is to think of the ratio of χ2/df , because, under the null hypothesis of acceptable fit,
E(χ2/df) = 1, so ratios exceeding ≈ 2.5 are troubling. Here, the ratio is 97/11 = 8.8, so the lack of fit is substan-
tial.
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count observed fitted
0 185 187
1 1149 1147
2 3265 3216
3 5475 5465
4 6114 6269
5 5194 5114
6 3067 3042
7 1331 1330
8 403 424
9 105 96

10 18 15
11 0 1
12 0 0

> summary(dice_fit)

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio 11.506 9 0.2426

Here, we find an acceptable fit for the binomial distribution. 4
{ex:HKfit}

EXAMPLE 3.15: Death by horse kick
This example reproduces the calculations done “manually” in Example 3.12 above. We fit the

Poisson distribution to the HorseKicks data by specifying type = "poisson" (actually, that
is the default for goodfit()).

> data("HorseKicks", package = "vcd")
> HK_fit <- goodfit(HorseKicks, type = "poisson")
> HK_fit$par

$lambda
[1] 0.61

> HK_fit

Observed and fitted values for poisson distribution
with parameters estimated by `ML'

count observed fitted
0 109 108.67017
1 65 66.28881
2 22 20.21809
3 3 4.11101
4 1 0.62693

The summary method uses the LR test by default, so the X^2 value reported below differs
slightly from the Pearson χ2 value shown earlier.

> summary(HK_fit)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 0.86822 3 0.83309

4
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{ex:Fedfit}

EXAMPLE 3.16: Federalist papers
In Example 3.5 we examined the distribution of the marker word “may” in blocks of text in

the Federalist Papers written by James Madison. A naive hypothesis is that these occurrences
might follow a Poisson distribution, that is, as independent occurrences with constant probability
across the 262 blocks of text. Using the same methods as above, we fit these data to the Poisson
distribution:

> data("Federalist", package = "vcd")
> Fed_fit0 <- goodfit(Federalist, type = "poisson")
> unlist(Fed_fit0$par)

lambda
0.65649

> Fed_fit0

Observed and fitted values for poisson distribution
with parameters estimated by `ML'

count observed fitted
0 156 135.891389
1 63 89.211141
2 29 29.283046
3 8 6.407995
4 4 1.051694
5 1 0.138085
6 1 0.015109

The GOF test below shows a substantial lack of fit, rejecting the assumptions of the Poisson
model.

> summary(Fed_fit0)

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)
Likelihood Ratio 25.243 5 0.00012505

Mosteller and Wallace (1963) determined that the negative binomial distribution provided a
better fit to these data than the Poisson. We can verify this as follows:

> Fed_fit1 <- goodfit(Federalist, type = "nbinomial")
> unlist(Fed_fit1$par)

size prob
1.18633 0.64376

> summary(Fed_fit1)

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 1.964 4 0.74238

Recall that the Poisson distribution assumes that the probability of a word like may appearing
in a block of text is small and constant, and that for the Poisson, E(x) = V(x) = λ. One interpre-
tation of the better fit of the negative binomial is that the use of a given word occurs with Poisson
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frequencies, but Madison varied its rate λi from one block of text to another according to a gamma
distribution, allowing the variance to be greater than the mean.

4

3.3.2 Plots of observed and fitted frequencies
{sec:fitplot}

In the examples of the last section, we saw cases where the GOF tests showed close agreement
between the observed and model-fitted frequencies, and cases where they diverged significantly, to
cause rejection of a hypothesis that the data followed the specified distribution.

What is missing from such numerical summaries is any appreciation of the details of this statis-
tical comparison. Plots of the observed and fitted frequencies can help to show both the shape of the
theoretical distribution we have fitted and the pattern of any deviations between our data and theory.

In this section we illustrate some simple plotting tools for these purposes, using the plot.goodfit()
method for "goodfit" objects.14 The left panel of Figure 3.14 shows the fit of the Poisson distribu-
tion to the Federalist papers data, using one common form of plot that is sometimes used for this
purpose. In this plot, observed frequencies are shown by bars and fitted frequencies are shown by
points, connected by a smooth (spline) curve.

Such a plot, however, is dominated by the largest frequencies, making it hard to assess the
deviations among the smaller frequencies. To make the smaller frequencies more visible, Tukey
(1977) suggest plotting the frequencies on a square-root scale, which he calls a rootogram. This
plot is shown in the right panel of Figure 3.14.

> plot(Fed_fit0, scale = "raw", type = "standing")
> plot(Fed_fit0, type = "standing")
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Figure 3.14: Plots for the Federalist Papers data, fitting the Poisson model. Each panel shows the
observed frequencies as bars and the fitted frequencies as a smooth curve. Left: raw frequencies;
right: plotted on a square root scale to emphasize smaller frequencies. {fig:Fed0-plots1}

Additional improvements over the standard plot on the scale of raw frequencies are shown in
Figure 3.15, both of which use the square root scale. The left panel moves the rootogram bars so

14Quantile-quantile (QQ) plots are a common alternative for the goal of comparing observed and expected values under
some distribution. These plots are useful for unstructured samples, but less so when we want to also see the shape of a
distribution, as is the case here.
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their tops are at the expected frequencies (giving a hanging rootogram). This has the advantage
that we can more easily judge the pattern of departures against the horizontal reference line at 0,
than against the curve.

> plot(Fed_fit0, type = "hanging", shade = TRUE)
> plot(Fed_fit0, type = "deviation", shade = TRUE)
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Figure 3.15: Plots for the Federalist Papers data, fitting the Poisson model. Left: hanging
rootogram; Right: deviation rootogram. Color reflects the sign and magnitude of the contributions
to lack-of-fit.{fig:Fed0-plots2}

A final variation is to emphasize the differences between the observed and fitted frequencies
by drawing the bars to show the gaps between the 0 line and the (observed−expected) difference
(Figure 3.15, right).

All of these plots are actually produced by the rootogram() function in vcd, the plot()
method for "goodfit" objects. The default is type = "hanging", and there are many options to
control the plot details. For example, the plots in Figure 3.15 use shade=TRUE to color the bars
according to the contribution to the Pearson chi-square.15

The plots in Figure 3.14 and Figure 3.15 used the ill-fitting Poisson model on purpose to high-
light how these plots show the departure between the observed and fitted frequencies. Figure 3.16
compares this with the negative binomial model, Fed_fit1, which we saw has a much better, and
acceptable fit.

> plot(Fed_fit0, main = "Poisson", shade = TRUE, legend = FALSE)
> plot(Fed_fit1, main = "Negative binomial", shade = TRUE, legend = FALSE)

Comparing the two plots in Figure 3.16, we can see that the Poisson model overestimates the
frequency of counts k = 1 and underestimates the larger counts for k = 4–6 occurrences. The
surprising feature here is that the greatest contribution to lack of fit for the Poisson model is the
frequency for k = 6. The deviations for the negative binomial are small and unsystematic.

Finally, Figure 3.17 shows hanging rootograms for two atrociously bad models for the data on
butterfly species in Malaya considered in Example 3.7. As we will see in Section 3.4, this long-
tailed distribution is better approximated by the logarithmic series distribution, but this distribution
is presently not handled by goodfit().

15The bipolar color scheme uses blue for positive standard Pearson residuals, (nk −Np̂k)/
√
Np̂k and red for negative

residuals, with shading intensity proportional to the categorized absolute values shown in the legend.
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Figure 3.16: Hanging rootograms for the Federalist Papers data, comparing the Poisson and nega-
tive binomial models.{fig:Fed0-Fed1}

> data("Butterfly", package = "vcd")
> But_fit1 <- goodfit(Butterfly, type = "poisson")
> But_fit2 <- goodfit(Butterfly, type = "nbinomial")
> plot(But_fit1, main = "Poisson", shade = TRUE, legend = FALSE)
> plot(But_fit2, main = "Negative binomial", shade = TRUE, legend = FALSE)
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Figure 3.17: Hanging rootograms for the Butterfly data, comparing the Poisson and negative bino-
mial models. The lack of fit for both is readily apparent. {fig:But-fit}

3.4 Diagnosing discrete distributions: Ord plots
{sec:discrete-ord}

Ideally, the general form chosen for a discrete distribution should be dictated by substantive knowl-
edge of a plausible mechanism for generating the data. When such knowledge is lacking, however,
we may not know which distribution is most appropriate for some particular set of data. In these
cases, the question is often turned around, so that we seek a distribution that fits well, and then try
to understand the mechanism in terms of aspects of the underlying probability theory (independent
trials, rare events, waiting-time to an occurrence, and so forth).

Although it is possible to fit each of several possibilities, the summary goodness-of-fit statistics
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can easily be influenced by one or two disparate cells, or additional (ignored or unknown) factors.
One simple alternative is a plot suggested by Ord (1967) which may be used to diagnose the form
of the discrete distribution.

Ord showed that a linear relationship of the form:

k p(k)

p(k − 1)
≡ k nk
nk−1

= a+ b k (3.12){eq:ord}

holds for each of the Poisson, binomial, negative binomial, and logarithmic series distributions,
and these distributions are distinguished by the signs of the intercept, a, and slope, b, as shown in
Table 3.11.

Table 3.11: Diagnostic slope and intercept for four discrete distributions. The ratios knk/nk−1
plotted against k should appear as a straight line, whose slope and intercept determine the particular
distribution.{tab:ordparm}

Slope Intercept Distribution Parameter
(b) (a) (parameter) estimate
0 + Poisson (λ) λ = a
− + Binomial (n, p) p = b/(b− 1)
+ + Negative binomial (n, p) p = 1− b
+ − Log. series (θ) θ = b

θ = −a

The slope, b, in Eqn. (3.12) is zero for the Poisson, negative for the binomial, and positive
for the negative binomial and logarithmic series distributions; the latter two are distinguished by
their intercepts. In practical applications of this idea, the details are important: how to fit the line,
and how to determine if the pattern of signs are sufficient to reasonably provide a diagnosis of the
distribution type.

One difficulty in applying this technique is that the number of points (distinct values of k) in
the Ord plot is often small, and the sampling variances of k nk/nk−1 can vary enormously. A little
reflection indicates that points where nk is small should be given less weight in determining the
slope of the line (and hence determining the form of the distribution). In applications it has been
found that using a weighted least squares fit of k nk/nk−1 on k, using weights of wk =

√
nk − 1

produces reasonably good automatic diagnosis of the form of a probability distribution. Moreover,
to judge whether a coefficient is positive or negative, a small tolerance is used; if none of the
distributions can be classified, no parameters are estimated. Caution is advised in accepting the
conclusion, because it is based on these simple heuristics.

In the vcd package this method is implemented in the Ord_plot() function. The essential
ideas are illustrated using the Butterfly data below, which produces Figure 3.18. Note that the
function returns (invisibly) the values of the intercept and slope in the weighted least squares (WLS)
regression.

> ord <- Ord_plot(Butterfly,
+ main = "Butterfly species collected in Malaya",
+ gp = gpar(cex = 1), pch = 16)
> ord

Intercept Slope
-0.70896 1.06082
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Figure 3.18: Ord plot for the Butterfly data. The slope and intercept in the plot correctly diagnoses
the log-series distribution.{fig:ordplot1}

In this plot, the black line shows the usual ordinary least squares (OLS) regression fit of fre-
quency, nk on number of occurrences, k; the red line shows the weighted least squares fit, using
weights of

√
nk − 1. In this case, the two lines are fairly close together, in regards to their intercepts

and slopes. The positive slope and negative intercept diagnoses this as a log-series distribution.
In other cases, the number of distinct points (values of k) is small, and the sampling variances

of the ratios k nk/nk−1 can vary enormously. The following examples illustrate some other distri-
butions and some of the details of the heuristics.

3.4.0.1 Ord plot examples
{ex:horsekick3}

EXAMPLE 3.17: Death by horse kick
The results below show the calculations for the horse kicks data, with the frequency ratio

k nk/nk−1 labeled y.

> data("HorseKicks", package = "vcd")
> nk <- as.vector(HorseKicks)
> k <- as.numeric(names(HorseKicks))
> nk1 <- c(NA, nk[-length(nk)])
> y <- k * nk / nk1
> weight <- sqrt(pmax(nk, 1) - 1)
> (ord_df <- data.frame(k, nk, nk1, y, weight))

k nk nk1 y weight
1 0 109 NA NA 10.3923
2 1 65 109 0.59633 8.0000
3 2 22 65 0.67692 4.5826
4 3 3 22 0.40909 1.4142
5 4 1 3 1.33333 0.0000

> coef(lm(y ~ k, weights = weight, data = ord_df))

(Intercept) k
0.656016 -0.034141

The weighted least squares line, with weights wk, has a slope (-0.03) close to zero, indicating
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the Poisson distribution.16 The estimate λ = a = .656 compares favorably with the maximum
likelihood estimate (MLE), λ = 0.610 and the value from the Poissonness plot, shown in the
following section. The call to Ord_plot() below produces Figure 3.19.

> Ord_plot(HorseKicks,
+ main = "Death by horse kicks", gp = gpar(cex = 1), pch = 16)
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Figure 3.19: Ord plot for the HorseKicks data. The plot correctly diagnoses the Poisson distribu-
tion.{fig:ordplot2}

4
{ex:madison3}

EXAMPLE 3.18: Federalist papers
Figure 3.20 (left) shows the Ord plot for the Federalist data. The slope is positive, so

either the negative binomial or log series are possible, according to Table 3.11. The intercept is
essentially zero, which is ambiguous. However, the logarithmic series requires b ≈ −a, so the
negative binomial is a better choice. Mosteller and Wallace (1963, 1984) did in fact find a reasonably
good fit to this distribution. Note that there is one apparent outlier, at k = 6, whose effect on the
OLS line is to increase the slope and decrease the intercept. 4

> Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers",
+ gp = gpar(cex = 1), pch = 16)

{ex:queues}

EXAMPLE 3.19: Women in queues
Jinkinson and Slater (1981), Hoaglin and Tukey (1985) give the frequency distribution of the

number of females observed in 100 queues of length 10 in a London Underground station, recorded
in the data set WomenQueue in vcd.

> data("WomenQueue", package = "vcd")
> WomenQueue

nWomen
0 1 2 3 4 5 6 7 8 9 10
1 3 4 23 25 19 18 5 1 1 0

16The heuristic adopted in Ord_plot() uses a tolerance of 0.1 to decide if a coefficient is negative, zero, or positive.
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Figure 3.20: Ord plots for the Federalist (left) and WomenQueue (right) data sets.{fig:ordplot3plot}

If it is assumed that people line up independently, and that men and women are equally likely
to be found in a queue (not necessarily reasonable assumptions), then the number of women out of
10 would have a (symmetric) binomial distribution with parameters n = 10 and p = 1

2 . However,
there is no real reason to expect that males and females are equally likely to be found in queues in
the London underground, so we may be interested in estimating p from the data and determining if
a binomial distribution fits.

> Ord_plot(WomenQueue, main = "Women in queues of length 10",
+ gp = gpar(cex = 1), pch = 16)

Figure 3.20 (right) shows the Ord plot for these data. The negative slope and positive intercept
clearly diagnose this distribution as binomial. The rough estimate of p̂ = b/(1−b) = 0.53 indicates
that women are slightly more prevalent than men in these data for the London underground. 4

3.4.0.2 Limitations of Ord plots

Using a single simple diagnostic plot to determine one of four common discrete distributions is
advantageous, but your enthusiasm should be dampened by several weaknesses:

• The Ord plot lacks resistance, because a single discrepant frequency affects the points nk/nk−1
for both k and k + 1.

• The sampling variance of k nk/nk−1 fluctuates widely (Hoaglin and Tukey, 1985, Jinkinson and
Slater, 1981). The use of weights wk helps, but is purely a heuristic device. The Ord_plot()
function explicitly shows both the OLS line and the WLS line, which provides some indication
of the effect of the points on the estimation of slope and intercept.

3.5 Poissonness plots and generalized distribution plots
{sec:discrete-Poissonness}

The Poissonness plot (Hoaglin, 1980) is a robust plot to sensitively determine how well a one-way
table of frequencies follows a Poisson distribution. It plots a quantity called a count metameter
against k, designed so that the result will be points along a straight line when the data follow a
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Poisson distribution. When the data deviate from a Poisson, the points will be curved. Hoaglin and
Tukey (1985) developed similar plots for other discrete distributions, including the binomial, nega-
tive binomial, and logarithmic series distributions. We first describe the features and construction of
these plots for the Poisson distribution and then (Section 3.5.4) the extension to other distributions.

3.5.1 Features of the Poissonness plot
The Poissonness plot has the following desirable features:

• Resistance: a single discrepant value of nk affects only the point at value k. (In the Ord plot it
affects each of its neighbors.)

• Comparison standard: An approximate confidence interval can be found for each point, indi-
cating its inherent variability and helping to judge whether each point is discrepant.

• Influence: Extensions of the method result in plots which show the effect of each point on the
estimate of the main parameter of the distribution (λ in the Poisson).

3.5.2 Plot construction
Assume, for some fixed λ, each observed frequency, nk equals the expected frequency, mk = Npk.
Then, setting nk = Npk = Ne−λ λk/k!, and taking logs of both sides gives

log(nk) = log N − λ+ k log λ− log k! .

This can be rearranged to a linear equation in k,

φ (nk) ≡ log

(
k! nk
N

)
= −λ+ (log λ) k . (3.13){eq:poispl}

The left side of Eqn. (3.13) is called the count metameter, and denoted φ (nk). Hence, plotting
φ(nk) against k should give a straight line of the form φ(nk) = a+ bk with

• slope = log λ
• intercept = −λ

when the observed frequencies follow a Poisson distribution. If the points in this plot are close
enough to a straight line, then an estimate of λ may be obtained from the slope b of the line, λ̂ = eb

should be reasonably close in value to the MLE of λ, λ̂ = x̄. In this case, we might as well use the
MLE as our estimate.

3.5.2.1 Leveled plot

If we have a preliminary estimate λ0 of λ, we can use this to give a new plot where the reference line
is horizontal, making comparison of the points with the line easier. In this leveled plot the vertical
coordinate φ(nk) is modified to

φ′(nk) = φ(nk) + λ0 − k log λ0 . (3.14){eq:pois-leveled}

When the data follow a Poisson distribution with parameter λ, the modified plot will have

• slope = log λ− log λ0 = log(λ/λ0)
• intercept = λ0 − λ

In the ideal case, where our estimate of λ0 is close to the true λ, the line will be approximately
horizontal at φ(nk)′ = 0. The modified plot is particularly useful in conjunction with the confidence
intervals for individual points described below.
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3.5.2.2 Confidence intervals

The goal of the Poissonness plot is to determine whether the points are “sufficiently linear” to
conclude that the Poisson distribution is adequate for the data. Confidence intervals for the points
can help you decide, and also show the relative precision of the points in these plots.

For example, when one or two points deviate from an otherwise nearly linear relation, it is
helpful to determine whether the discrepancy is consistent with chance variation. As well, we must
recognize that classes with small frequencies nk are less precise than classes with large frequencies.

Hoaglin and Tukey (1985) develop approximate confidence intervals for log(mk) for each point
in the Poissonness plot. These are calculated as

φ (n∗k)± hk (3.15) {eq:poisCI}

where the count metameter function is calculated using a modified frequency n∗k, defined as

n∗k =

 nk − .8nk − .67 n ≥ 2
1/e n = 1
undefined n = 0

and hk is the half-width of the 95% confidence interval,

hk = 1.96

√
1− p̂k

[nk − (.25p̂k + .47)
√
nk]1/2

and p̂k = nk/N .
TODO: PC: Wouldn’t a bootstrap estimate be just as effective here? And given that it’s count
data, it would cost very little extra resources to obtain. Perhaps a footnote about this metioning the
bootstrap method as another viable option

3.5.3 The distplot() function

Poissonness plots (and versions for other distributions) are produced by the function distplot()
in vcd. As with Ord_plot(), the first argument is either a vector of counts, a one-way table
of frequencies of counts or a data frame or matrix with frequencies in the first column and the
corresponding counts in the second column. Nearly all of the examples in this chapter use one-way
tables of counts.

The type argument specifies the type of distribution. For type = "poisson", specifying
a value for lambda = λ0 gives the leveled version of the plot. {ex:horsekick4}

EXAMPLE 3.20: Death by horse kick
The calculations for the Poissonness plot, including confidence intervals, are shown below for

the HorseKicks data. The call to distplot() produces the plot in the left panel of Figure 3.21.

> data("HorseKicks", package = "vcd")
> dp <- distplot(HorseKicks, type = "poisson",
+ xlab = "Number of deaths", main = "Poissonness plot: HorseKicks data")
> print(dp, digits = 4)

Counts Freq Metameter CI.center CI.width CI.lower CI.upper
1 0 109 -0.607 -0.6131 0.1305 -0.7436 -0.4827
2 1 65 -1.124 -1.1343 0.2069 -1.3412 -0.9274
3 2 22 -1.514 -1.5451 0.4169 -1.9620 -1.1281
4 3 3 -2.408 -2.6607 1.3176 -3.9783 -1.3431
5 4 1 -2.120 -3.1203 2.6887 -5.8089 -0.4316
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In this plot, the open circles show the calculated observed values of the count Metameter = φ (nk).
The smaller filled points show the centers of the confidence intervals, CI.center = φ (n∗k) (Eqn. (3.15)),
and the dashed lines show the extent of the confidence intervals.

The fitted least squares line has a slope of -0.431, which would indicate λ = e−0.431 = 0.65.
This compares well with the MLE, λ = x̄ = 0.61.

Using lambda = 0.61 as below gives the leveled version shown in the right panel of Fig-
ure 3.21.

> # leveled version, specifying lambda
> distplot(HorseKicks, type = "poisson", lambda = 0.61,
+ xlab = "Number of deaths", main = "Leveled Poissonness plot")
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Figure 3.21: Poissonness plots for the HorseKick data. Left: standard plot; right: leveled plot.
fig:distplot1

TODO: DM: In the leveled plot, the label for the slope is actually wrong, should be exp(slope + log
λ) = 0.65

In both plots the fitted line is within the confidence intervals, indicating the adequacy of the
Poisson model for these data. The widths of the intervals for k > 2 are graphic reminders that these
observations have decreasingly low precision where the counts nk are small.

4

3.5.4 Plots for other distributions
{sec:discrete-other}

As described in Section 3.2.6, the binomial, Poisson, negative binomial, geometric, and logseries
distributions are all members of the general power series family of discrete distributions. For this
family, Hoaglin and Tukey (1985) develop similar plots of a count metameter against k which appear
as a straight line when a data distribution follows a given family member.

The distributions which can be analyzed in this way are shown in Table 3.12, with the inter-
pretation given to the slope and intercept in each case. For example, for the Binomial distribution,
a “binomialness” plot is constructed by plotting log n∗k/N

(
n
k

)
against k. If the points in this plot

approximate a straight line, the slope is interpreted as log(p/(1 − p)), so the binomial parameter p
may be estimated as p = eb/(1 + eb).

Unlike the Ord plot, a different plot is required for each distribution, because the count metame-
ter, φ(nk), differs from distribution to distribution. Moreover, systematic deviation from a linear
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Table 3.12: Plot parameters for five discrete distributions. In each case the count metameter, φ(n∗k)
is plotted against k, yielding a straight line when the data follow the given distribution.{tab:distparms}

Distribution
Probability
function, p(k)

Count)
metameter, φ(n∗k)

Theoretical
slope (b)

Theoretical
intercept (a)

Poisson e−λλk/k! log(k!n∗k/N) log(λ) -λ

Binomial
(
n
k

)
pk(1− p)n−k log

(
n∗k/N

(
n
k

))
log
(

p
1−p

)
n log(1− p)

Negative bino-
mial

(
n+k−1

k

)
pn(1− p)k log

(
n∗k/N

(
n+k−1

k

))
log(1− p) n log(p)

Geometric p(1− p)k log (n∗k/N) log(1− p) log(p)

Log series θk/[−k log(1− θ)] log (kn∗k/N) log(θ) − log (− log(1− θ))
Source: adapted from Hoaglin and Tukey (1985), Table 9-15.

relationship does not indicate which distribution provides a better fit. However, the attention to
robustness, and the availability of confidence intervals and influence diagnostics make this a highly
useful tool for visualizing discrete distributions. {ex:saxony-distplot}

EXAMPLE 3.21: Families in Saxony
Our analysis in Example 3.2 and Example 3.13 of the Saxony data showed that the distribution

of male children had slightly heavier tails than the binomial, meaning the observed distribution is
overdispersed. We can see this in the goodfit() plot shown in Figure 3.22 (left), and even
more clearly in the distribution diagnostic plot produced by distplot() in the right panel of
Figure 3.22. For a binomial distribution, we call this distribution plot a “binomialness plot”.

> plot(goodfit(Saxony, type = "binomial", par = list(size=12)),
+ shade=TRUE, legend=FALSE,
+ xlab = "Number of males")
> distplot(Saxony, type = "binomial", size = 12,
+ xlab = "Number of males")

The weight of evidence is thus that, as simple as the binomial might be, it is inadequate to fully
explain the distribution of sex ratios in this large sample of families of 12 children. To understand
this data better, it is necessary to question the assumptions of the binomial (births of males are
independent Bernoulli trials with constant probability p) as a model for this birth distribution and/or
find a more adequate model.17 4

{ex:federalist-distplot}

EXAMPLE 3.22: Federalist papers
In Example 3.16 we carried out GOF tests for the Poisson and negative binomial models with

the Federalist papers data; Figure 3.16 showed the corresponding rootogram plots. Figure 3.23
compares these two using the diagnostic plots of this section. Again the Poisson shows systematic
departure from the linear relation required in the Poissonness plot, while the negative binomial
model provides an acceptable fit to these data.

17On these questions, Edwards (1958) reviews numerous other studies of these Geissler’s data, and fits a so-called β-
binomial model proposed by Skellam (1948), where p varies among families according to a β distribution. He concludes
that there is evidence that p varies between families of the same size. One suggested explanation is that family decisions to
have a further child is influenced by the balance of boys and girls among their earlier children.



102 3. Fitting and Graphing Discrete Distributions

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of males

sq
rt

(F
re

qu
en

cy
)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●

0 2 4 6 8 10 12

−9

−8.5

−8

−7.5

−7

−6.5

−6

Number of males

D
is

tr
ib

ut
io

n 
m

et
am

et
er

Binomialness plot

●

●

●

●
●

●

●
●

●

●

●

●

●

slope = 0.069
intercept = −8.41

prob : ML = 0.519
inv.logit(slope) = 0.517

Figure 3.22: Diagnostic plots for males in Saxony families. Left: goodfit() plot; right:
distplot() plot. Both plots show heavier tails than in a binomial distribution. {fig:distplot3}

> distplot(Federalist, type = "poisson", xlab = "Occurrences of 'may'")
> distplot(Federalist, type = "nbinomial", xlab = "Occurrences of 'may'")
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Figure 3.23: Diagnostic plots for the Federalist papers data. Left: Poissonness plot; right: negative
binomialness plot.{fig:distplot5}
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3.6 Fitting discrete distributions as generalized linear models?

{sec:fitglm}
In Section 3.2.6, we described how the common discrete distributions are all members of the general
power series family. This provides the basis for the generalized distribution plots described in
Section 3.5.4. Another general family of distributions—the exponential family—includes most of
the common continuous distributions: the normal, gamma, exponential, and others, and is the basis
of the class of generalized linear models (GLMs) fit by glm().

A clever approach by Lindsey and Mersch (1992), Lindsey (1995, §6.1) shows how various
discrete (and continuous) distributions can be fit to frequency data using generalized linear models
for log frequency (which are equivalent to Poisson loglinear models). The uniform, geometric,
binomial, and the Poisson distributions may all be fit easily in this way, but the idea extends to
some other distributions, such as the double binomial distribution, that allows a separate parameter
for overdispersion relative to the binomial. A clear advantage is that this method gives estimated
standard errors for the distribution parameters as well as estimated confidence intervals for fitted
probabilities.

The essential idea is that, for frequency data, any distribution in the exponential family may be
represented by a linear model for the logarithm of the cell frequency, with a Poisson distribution for
errors, otherwise known as a “Poisson loglinear regression model”. These have the form

log(Nπk) = offset + β0 + βTS(k) ,

where N is the total frequency, πk is the modeled probability of count k, S(k) is a vector of zero
or more sufficient statistics for the canonical parameters of the exponential family distribution, and
the offset term is a value which does not depend on the parameters.

Table 3.13 shows the sufficient statistics and offsets for several discrete distributions. See Lind-
sey and Mersch (1992) for further details, and definitions for the double-binomial distribution,18

and Lindsey (1995, pp. 130–133) for his analysis of the Saxony data using this distribution. Lind-
sey and Altham (1998) provide an analysis of the complete Geissler data (provided in the data set
Geissler in vcdExtra) using several different models to handle overdispersion.

Table 3.13: Poisson loglinear representations for some discrete distributions {tab:expfamily}

Distribution Sufficient statistics Offset
Geometric k

Poisson k − log(k!)

Binomial k log
(
n
k

)
Double binomial k, k log(k) + (n− k) log(n− k) log

(
n
k

)
{ex:saxony2}

EXAMPLE 3.23: Families in Saxony
The binomial distribution and the double binomial can both be fit to frequency data as a Poisson

regression via glm() using log
(
n
k

)
as an offset. First, we convert Saxony into a numeric data

frame for use with glm().

18In R, the double binomial distribution is implemented in the rmutil package, providing the standard complement of den-
sity function (ddoublebinom()), CDF (pdoublebinom()), quantiles (qdoublebinom()) and random generation
(rdoublebinom()).
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> data("Saxony", package = "vcd")
> Males <- as.numeric(names(Saxony))
> Families <- as.vector(Saxony)
> Sax.df <- data.frame(Males, Families)

To calculate the offset for glm() in R, note that choose(12,0:12) returns the binomial
coefficients, and lchoose(12,0:12) returns their logs.

> # fit binomial (12, p) as a glm
> Sax.bin <- glm(Families ~ Males, offset = lchoose(12, 0:12),
+ family = poisson, data = Sax.df)
>
> # brief model summaries
> LRstats(Sax.bin)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

Sax.bin 191 192 97 11 7e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> coef(Sax.bin)

(Intercept) Males
-0.069522 0.076898

As we have seen, this model fits badly. The parameter estimate for Males, β1 = 0.0769 is
actually estimating the logit of p, log p/(1−p), so the inverse transformation gives p̂ = exp(β1)

1+exp(β1)
=

0.5192, as we had before.
The double binomial model can be fitted as follows. The term YlogitY calculates k log(k) +

(n− k) log(n− k), the second sufficient statistic for the double binomial (see Table 3.13) fitted via
glm().

> # double binomial, (12, p, psi)
> Sax.df$YlogitY <-
+ Males * log(ifelse(Males == 0, 1, Males)) +
+ (12-Males) * log(ifelse(12-Males == 0, 1, 12-Males))
>
> Sax.dbin <- glm(Families ~ Males + YlogitY, offset = lchoose(12,0:12),
+ family = poisson, data = Sax.df)
> coef(Sax.dbin)

(Intercept) Males YlogitY
-3.096918 0.065977 0.140205

> LRstats(Sax.bin, Sax.dbin)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

Sax.bin 191 192 97.0 11 7e-16 ***
Sax.dbin 109 111 13.1 10 0.22
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the above, we can see that the double binomial model Sax.dbin with one more param-
eter is significantly better than the simple binomial and represents an adequate fit to the data. The
table below displays the fitted values and standardized residuals for both models.
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> results <- data.frame(Sax.df,
+ fit.bin = fitted(Sax.bin), res.bin = rstandard(Sax.bin),
+ fit.dbin = fitted(Sax.dbin), res.dbin = rstandard(Sax.dbin))
> print(results, digits = 2)

Males Families YlogitY fit.bin res.bin fit.dbin res.dbin
1 0 3 30 0.93 1.70 3.0 0.026
2 1 24 26 12.09 3.05 23.4 0.136
3 2 104 24 71.80 3.71 104.3 -0.036
4 3 286 23 258.48 1.87 307.8 -1.492
5 4 670 22 628.06 1.94 652.9 0.778
6 5 1033 22 1085.21 -1.87 1038.5 -0.202
7 6 1343 22 1367.28 -0.75 1264.2 2.635
8 7 1112 22 1265.63 -5.09 1185.0 -2.550
9 8 829 22 854.25 -1.03 850.1 -0.846
10 9 478 23 410.01 3.75 457.2 1.144
11 10 181 24 132.84 4.23 176.8 0.371
12 11 45 26 26.08 3.42 45.2 -0.039
13 12 7 30 2.35 2.45 6.5 0.192

Finally, Figure 3.24 shows the rootogram for the double binomial, which can be compared with
the binomial model shown in Figure 3.22. We can see that the fit is now quite good, particularly in
the tails. The positive coefficient for the term YlogitY gives additional weight in the tails.

> with(results, vcd::rootogram(Families, fit.dbin,
+ xlab = "Number of males"))
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Figure 3.24: Rootogram for the double binomial model for the Saxony data. This now fits well in
the tails of the distribution. {fig:sax-glm5}
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3.6.1 Covariates, overdispersion and excess zeros
All of the examples in this chapter are somewhat special, in that in each case the data consist only
of a one-way frequency distribution of a basic count variable. In more general and realistic settings,
there may also be one or more explanatory variables or covariates that influence the frequency
distributions of the counts. For example, in the Saxony data, the number of boys in families
of size 12 was aggregated over the years 1876–1885, and it is possible that any deviation from a
binomial distribution could be due to variation over time or unmeasured predictors (e.g., rural vs.
urban, age of parents).

This is where the generalized linear model approach introduced here (treated in detail in Chap-
ter 11), begins to shine—because it allows such covariates to be taken into account, and then ques-
tions regarding the form of the distribution pertain only to the variation of the frequencies not fitted
by the model. The next example illustrates what can go wrong when important predictors are omit-
ted from the analysis.{ex:phdpubs0}

EXAMPLE 3.24: Publications of PhD candidates
Long (1990, 1997) gave data on the number of publications by 915 doctoral candidates in bio-

chemistry in the last three years of their PhD studies, contained in the data set PhdPubs in vcdEx-
tra. The data set also includes information on gender, marital status, number of young children,
prestige of the doctoral department and number of publications by the student’s mentor. The fre-
quency distribution of number of publications by these students is shown below.

> data("PhdPubs", package = "vcdExtra")
> table(PhdPubs$articles)

0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

The naive approach, ignoring the potential predictors is just to try fitting various probability
models to this one-way distribution. Rootograms for the simpler Poisson distribution and the nega-
tive binomial that allows for overdispersion are shown in Figure 3.25.

> library(vcd)
> plot(goodfit(PhdPubs$articles), xlab = "Number of Articles",
+ main = "Poisson")
> plot(goodfit(PhdPubs$articles, type = "nbinomial"),
+ xlab = "Number of Articles", main = "Negative binomial")

From these plots it is clear that the Poisson distribution doesn’t fit well at all, because there is
a large excess of zero counts—candidates with no publications, and most of the counts of four or
more publications are larger than the Poisson model predicts. The fit of the negative binomial model
in the right panel of Figure 3.25 looks much better, except that for eight or more publications, there
is a systematic tendency of overfitting for 8–10 and underfittting for the observed counts of 12 or
more. This lack of fit is confirmed by the formal test.

> summary(goodfit(PhdPubs$articles, type = "nbinomial"))

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 31.098 12 0.0019033

The difficulty with this simple analysis is not only that it ignores the possible predictors of
publishing by these PhD candidates, but also, by doing so, it prevents a better, more nuanced ex-
planation of the phenomenon under study. This example is re-visited in Chapter 11, Example 11.1,



3.7: Chapter summary 107

Poisson

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Articles

sq
rt

(F
re

qu
en

cy
)

●

●
●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

Negative binomial

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Articles

sq
rt

(F
re

qu
en

cy
)

●
●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

Figure 3.25: Hanging rootograms for publications by PhD candidates, comparing the Poisson and
negative binomial models. The Poisson model clearly does not fit. The the negative binomial is
better, but still has significant lack of fit.{fig:phdpubs-rootogram}

where we consider generalized linear models taking potential predictors into account, as well as
extended zero-inflated models allowing special consideration of zero counts. 4

3.7 Chapter summary
{sec:ch03-summary}

• Discrete distributions typically involve basic counts of occurrences of some event occurring
with varying frequency. The ideas and methods for one-way tables described in this chapter are
building blocks for the analysis of more complex data.

• The most commonly used discrete distributions include the binomial, Poisson, negative bino-
mial, geometric, and logarithmic series distributions. Happily, these are all members of a family
called the power series distributions. Methods of fitting an observed data set to any of these dis-
tributions are described, and implemented in the goodfit() function.

• After fitting an observed distribution it is useful to plot the observed and fitted frequencies.
Several ways of making these plots are described, and implemented in the rootogram()
function.

• A heuristic graphical method for identifying which discrete distribution is most appropriate for
a given set of data involves plotting ratios knk/nk−1 against k. These plots are constructed by
the function Ord_plot().

• A more robust plot for a Poisson distribution involves plotting a count metameter, φ(nk) against
k, which gives a straight line (whose slope estimates the Poisson parameter) if the data follow
a Poisson distribution. This plot provides robust confidence intervals for individual points and
provides a means to assess the influence of individual points on the Poisson parameter. These
plots are provided by the function distplot().

• The ideas behind the Poissonness plot can be applied to the other discrete distributions.



108 3. Fitting and Graphing Discrete Distributions

3.8 Lab exercises
{sec:ch03-labs}{lab:3.1}

Exercise 3.1 The Arbuthnot data in HistData (Example 3.1) also contains the variable Ratio,
giving the ratio of male to female births.

(a) Make a plot of Ratio over Year, similar to Figure 3.1. What features stand out? Which plot
do you prefer to display the tendency for more male births?

(b) Plot the total number of christenings, Males + Females or Total (in 000s) over time.
What unusual features do you see?

{lab:3.2}

Exercise 3.2 Use the graphical methods illustrated in Section 3.2 to plot a collection of geometric
distributions for p = 0.2, 0.4, 0.6, 0.8, over a range of values of k = 0, 1, . . . 10.

(a) With xyplot(), try the different plot formats using points connected with lines, as in Fig-
ure ??, or using points and lines down to the origin, as in the panels of Figure 3.10.

(b) Also with xyplot(), produce one version of a multi-line plot in a single panel that you think
shows well how these distributions change with the probability p of success.

(c) Do the same in a multi-panel version, conditional on p.
{lab:3.3}

Exercise 3.3 Use the data set WomenQueue to:

(a) Produce plots analogous to those shown in Section 3.1 (some sort of bar graph of frequencies)
(b) Check for goodness-of-fit to the binomial distribution using the goodfit() methods de-

scribed in Section 3.3.2.
(c) Make a reasonable plot showing departure from the binomial distribution.
(d) Suggest some reasons why the number of women in queues of length 10 might depart from a

binomial distribution, Bin(n = 10, p = 1/2).
{lab:3.4}

Exercise 3.4 Continue Example 3.13 on the distribution of male children in families in Saxony by
fitting a binomial distribution, Bin(n = 12, p = 1

2 ), specifying equal probability for boys and girls.
[Hint: you need to specify both size and prob values for goodfit().]

(a) Carry out the GOF test for this fixed binomial distribution. What is the ratio of χ2/df? What
do you conclude?

(b) Test the additional lack of fit for the model Bin(n = 12, p = 1
2 ) compared to the model

Bin(n = 12, p = p̂) where p̂ is estimated from the data.
(c) Use the plot.gootfit() method to visualize these two models.

{lab:3.5}

Exercise 3.5 For the Federalist data, the examples in Section 3.3.1 and Section 3.3.2 showed
the negative binomial to provide an acceptable fit. Compare this with the simpler special case of
geometric distribution, corresponding to n = 1.

(a) Use goodfit() to fit the geometric distribution. [Hint: use type="nbinomial", but
specify size=1 as a parameter.]

(b) Compare the negative binomial and the geometric models statistically, by a likelihood-ratio
test of the difference between these two models. TODO: PC: correct me if I’m wrong, but
aren’t there models not nested? Wouldn’t information criteria therefore be more appropriate?

(c) Compare the negative binomial and the geometric models visually by hanging rootograms or
other methods.

{lab:3.6}

Exercise 3.6 Mosteller and Wallace (1963, Table 2.4) give the frequencies, nk of counts k =
0, 1, . . . of other selected marker words in 247 blocks of text known to have been written by Alexan-
der Hamilton. The data below show the occurrences of the word upon, that Hamilton used much
more than did James Madison.
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> count <- 0 : 5
> Freq <- c(129, 83, 20, 9, 5, 1)

(a) Read these data into R and construct a one-way table of frequencies of counts or a matrix or
data frame with frequencies in the first column and the corresponding counts in the second
column, suitable for use with goodfit().

(b) Fit and plot the Poisson model for these frequencies.
(c) Fit and plot the negative binomial model for these frequencies.
(d) What do you conclude?

{lab:3.7}

Exercise 3.7 The data frame Geissler in the vcdExtra package contains the complete data from
Geissler’s (1889) tabulation of family sex composition in Saxony. The table below gives the number
of boys in families of size 11.

boys 0 1 2 3 4 5 6 7 8 9 10 11
Freq 8 72 275 837 1,540 2,161 2,310 1,801 1,077 492 93 24

(a) Read these data into R.
(b) Following Example 3.13, use goodfit() to fit the binomial model and plot the results. Is

there an indication that the binomial does not fit these data?
(c) Diagnose the form of the distribution using the methods described in Section 3.4.
(d) Try fitting the negative binomial distribution, and use distplot() to diagnose whether the

negative binomial is a reasonable fit.
{lab:3.8}

Exercise 3.8 The data frame Bundesliga gives a similar data set to that for UK soccer scores
(UKSoccer) examined in Example 3.9, but over a wide range of years. The following lines calcu-
late a two-way table, BL1995, of home-team and away-team goals for the 306 games in the year
1995.

> data("Bundesliga", package = "vcd")
> BL1995 <- xtabs(~ HomeGoals + AwayGoals, data = Bundesliga,
+ subset = (Year == 1995))
> BL1995

AwayGoals
HomeGoals 0 1 2 3 4 5 6

0 26 16 13 5 0 1 0
1 19 58 20 5 4 0 1
2 27 23 20 5 1 1 1
3 14 11 10 4 2 0 0
4 3 5 3 0 0 0 0
5 4 1 0 1 0 0 0
6 1 0 0 1 0 0 0

(a) As in Example 3.9, find the one-way distributions of HomeGoals, AwayGoals and TotalGoals
= HomeGoals + AwayGoals.

(b) Use goodfit() to fit and plot the Poisson distribution to each of these. Does the Poisson
seem to provide a reasonable fit?

(c) Use distplot() to assess fit of the Poisson distribution.
(d) What circumstances of scoring goals in soccer might cause these distributions to deviate from

Poisson distributions?
{lab:3.9}

Exercise 3.9 ? Repeat the exercise above, this time using the data for all years in which there was
the standard number (306) of games, that is for Year>1965, tabulated as shown below.
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> BL <- xtabs(~ HomeGoals + AwayGoals, data = Bundesliga,
+ subset = (Year > 1965))

{lab:3.10}

Exercise 3.10 Using the data CyclingDeaths introduced in Example 3.6 and the one-way fre-
quency table CyclingDeaths.tab = table(CyclingDeaths$deaths),

(a) Make a sensible plot of the number of deaths over time. For extra credit, add a smoothed curve
(e.g., using lines(lowess(...))).

(b) Test the goodness of fit of the table CyclingDeaths.tab to a Poisson distribution statisti-
cally using goodfit().

(c) Continue this analysis using a rootogram() and distplot().
(d) Write a one-paragraph summary of the results of these analyses and your conclusions.

{lab:3.11}

Exercise 3.11 ? The one-way table, Depends, in vcdExtra and shown below gives the frequency
distribution of the number of dependencies declared in 4, 983 R packages maintained on the CRAN
distribution network on January 17, 2014. That is, there were 986 packages that had no dependen-
cies, 1, 347 packages that depended on one other package, up to 2 packages that depended on 14
other packages.

Depends 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Pkgs 986 1,347 993 685 375 298 155 65 32 19 9 4 9 4 2

(a) Make a bar plot of this distribution.
(b) Use Ord_plot() to see if this method can diagnose the form of the distribution.
(c) Try to fit a reasonable distribution to describe dependencies among R packages.

{lab:3.12}

Exercise 3.12 ? How many years does it take to get into the baseball Hall of Fame? The Lahman
package provides a complete record of historical baseball statistics from 1871 to the present. One ta-
ble, HallOfFame, records the history of players nominated to the Baseball Hall of Fame, and those
eventually inducted. The table below, calculated in help(HallOfFame, package="Lahman"),
records the distribution of the number of years taken (from first nomination) for the 109 players in
the Hall of Fame to be inducted (1936–present). Note that years==0 does not, and cannot, occur
in this table, so the distribution is restricted to positive counts. Such distributions are called zero-
truncated distributions. Such distributions are like the ordinary ones, but with the probability of
zero being zero. Thus the other probabilities are scaled up (i.e., divided by 1− Pr(Y = 0)) so they
sum to 1.

years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
inducted 46 10 8 7 8 4 2 4 6 3 3 1 4 1 2

(a) For the Poisson distribution, show that the zero-truncated probability function can be ex-
pressed in the form

Pr{X = k | k > 0}) =
1

1− e−λ
× e−λ λk

k!
k = 1, 2, . . .

(b) Show that the mean is λ/(1− exp(−λ)).
(c) Enter these data into R as a one-way table, and use goodfit() to fit the standard Poisson

distribution, as if you hadn’t encountered the problem of zero truncation.
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Two-way Contingency Tables

{ch:twoway}
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4.8 Trilinear
plots

The analysis of two-way frequency tables concerns the association between two vari-
ables. A variety of specialized graphical displays help to visualize the pattern of asso-
ciation, using area of some region to represent the frequency in a cell. Some of these
methods are focused on visualizing an odds ratio (for 2 × 2 tables), or the general pattern
of association, or the agreement between row and column categories in square tables.

4.1 Introduction
{sec:twoway-intro}

Tables are like cobwebs, like the sieve of Danaides; beautifully reticulated, orderly to
look upon, but which will hold no conclusion. Tables are abstractions, and the object a
most concrete one, so difficult to read the essence of.

From Chartism by Thomas Carlyle (1840), Chapter II, Statistics

Most methods of statistical analysis are concerned with understanding relationships or depen-
dence among variables. With categorical variables, these relationships are often studied from data
which has been summarized by a contingency table in table form or frequency form, giving the fre-
quencies of observations cross-classified by two or more such variables. As Thomas Carlyle said, it
is often difficult to appreciate the message conveyed in numerical tables.

This chapter is concerned with simple graphical methods for understanding the association be-
tween two categorical variables. Some examples are also presented which involve a third, stratifying
variable, where we wish to determine if the relationship between two primary variables is the same
or different for all levels of the stratifying variable. More general methods for fitting models and
displaying associations for three-way and larger tables are described in Chapter 5.

113



114 4. Two-way Contingency Tables

In Section 4.2, we describe briefly some numerical and statistical methods for testing whether
an association exists between two variables, and measures for quantifying the strength of this asso-
ciation. In Section 4.3 we extend these ideas to situations where the relation between two variables
is of primary interest, but there are one or more background variables to be controlled.

The main emphasis, however, is on graphical methods which help to describe the pattern of an
association between variables. Section 4.4 presents the fourfold display, designed to portray the
odds ratio in 2 × 2 tables or a set of k such tables. Sieve diagrams (Section 4.5) and association
plots (Section 4.6) are more general methods for depicting the pattern of associations in any two-
way table. When the row and column variables represent the classifications of different raters,
specialized measures and visual displays for inter-rater agreement (Section 4.7) are particularly
useful. Another specialized display, a trilinear plot or ternary plot, described in Section 4.8, is
designed for three-column frequency tables or compositional data. In order to make clear some of
the distinctions which occur in contingency table analysis, we begin with several examples.{ex:berkeley1}

EXAMPLE 4.1: Berkeley admissions
Table 4.1 shows aggregate data on applicants to graduate school at Berkeley for the six largest

departments in 1973 classified by admission and gender (Bickel et al., 1975). See UCBAdmissions
(in package datasets) for the complete data set. For such data we might wish to study whether there
is an association between admission and gender. Are male (or female) applicants more likely to be
admitted? The presence of an association might be considered as evidence of sex bias in admission
practices.

Table 4.1 is an example of the simplest kind of contingency table, a 2× 2 classification of indi-
viduals according to two dichotomous (binary) variables. For such a table, the question of whether
there is an association between admission and gender is equivalent to asking if the proportions of
males and females who are admitted to graduate school are different, or whether the difference in
proportions admitted is not zero. 4

Table 4.1: Admissions to Berkeley graduate programs{tab:berk22}

Admitted Rejected Total % Admit
Males 1198 1493 2691 44.52
Females 557 1278 1835 30.35
Total 1755 2771 4526 38.78

Although the methods for quantifying association in larger tables can be used for 2 × 2 tables,
there are specialized measures (described in Section 4.2) and graphical methods for these simpler
tables.

As we mentioned in Section 1.2.4 it is often useful to make a distinction between response, or
outcome variables, on the one hand, and possible explanatory or predictor variables on the other.
In Table 4.1, it is natural to consider admission as the outcome, and gender as the explanatory
variable. In other tables, no variable may be clearly identified as the outcome, or there may be
several response variables, giving a multivariate problem.{ex:haireye1}

EXAMPLE 4.2: Hair color and eye color
Table 4.2 shows data collected by Snee (1974) on the relation between hair color and eye color

among 592 students in a statistics course (a two-way margin of HairEyeColor).
Neither hair color nor eye color is considered a response in relation to the other; our interest

concerns whether an association exists between them. Hair color and eye color have both been
classified into four categories. Although the categories used are among the most common, they are
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Table 4.2: Hair-color eye-color data{tab:hairdat}

Hair Color
Eye
Color Black Brown Red Blond Total
Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 592

not the only categories possible.1 A common, albeit deficient, representation of such a table is a
grouped barchart, as shown in the left of Figure 4.1:

> hec <- margin.table(HairEyeColor, 2:1)
> barplot(hec, beside = TRUE, legend = TRUE)
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Figure 4.1: Two basic displays for the Hair-color Eye-color data. Left: grouped barchart; right: tile
plot. {fig:bartile}

For each hair color, a group of bars represent the corresponding eye colors, the heights being pro-
portional to the absolute frequencies. Bar graphs do not extend well to more than one dimension
since

• the graphical representation does not match the tabular data structure, complicating comparisons
with the raw data;

• it is harder to compare bars accross groups than within groups;

• by construction, the grouping suggests a conditional or causal relationship of the variables (here:

1If students had been asked to write down their hair and eye colors, it is likely that many more than four categories of
each would appear in a sample of nearly 600.
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“what is the eye color given the hair color?”, “how does eye color influence hair color?”), even
though such an interpretation may be inappropriate (as in this example);

• labeling may become increasingly complex.

A somewhat better approach is a tile plot (using tile() in vcd), as shown next to the bar plot in
Figure 4.1:

> tile(hec)

The table frequencies are represented by the area of rectangles arranged in the same tabular form as
the raw data, facilitating comparisons between tiles accross both variables (by rows or by columns),
by maintaining a one-to-one relationship to the underlying table2.

Everyday observation suggests that there probably is an association between hair color and eye
color, and we will describe tests and measures of associations for larger tables in Section 4.2.3. If,
as is suspected, hair color and eye color are associated, we would like to understand how they are
associated. The graphical methods described later in this chapter and in Chapter 5 help reveal the
pattern of associations present. 4

{ex:mental1}

EXAMPLE 4.3: Mental impairment and parents’ SES
Srole et al. (1978, p. 289) gave the data in Table 4.3 on the mental health status of a sample of

1660 young New York residents in midtown Manhattan classified by their parents’ socioeconomic
status (SES); see Mental in the vcdExtra package. These data have also been analyzed by many
authors, including Agresti (2013, §10.5.3), Goodman (1979), and Haberman (1979, p. 375).

There are six categories of SES (from 1 = “High” to 6 = “Low”), and mental health is classified
in the four categories “well”, “mild symptom formation”, “moderate symptom formation”, and “im-
paired”. It may be useful here to consider SES as explanatory and ask whether and how it predicts
mental health status as a response, that is, whether there is an association, and if so, investigate its
nature.

Table 4.3: Mental impairment and parents’ SES{tab:mental-tab}
Mental impairment

SES Well Mild Moderate Impaired
1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

> data("Mental", package = "vcdExtra")
> mental <- xtabs(Freq ~ ses + mental, data = Mental)
> spineplot(mental)

Figure 4.2 shows a spineplot of this data—basically a stacked barchart of the row percentages
of mental impairment for each SES category, the width of each bar being proportional to the overall
SES percentages.3 From this graph, it is apparant that the “well” mental state decreases with social-
economic status, while the “impaired” state increases. This pattern is more specific than overall

2This kind of display is more generally known as a fluctuation diagram (Hofmann, 2000), flexibly implemented by
function fluctile() in package extracat.

3Thus, in the more technical terms introduced in 4.2.1, this spineplot shows the conditional distribution of impairment,
given the categories of SES.
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Figure 4.2: Spineplot of the Mental data.{fig:spineplot}

association (as suspected for the hair-color eye-color data), and indeed, more powerful and focused
tests are available when we treat these variables as ordinal, as we will see in Section 4.2.4. 4

{ex:arthrit1}

EXAMPLE 4.4: Arthritis treatment
The data in Table 4.4 compares an active treatment for rheumatoid arthritis to a placebo (Koch

and Edwards, 1988), used in examples in Chapter 2 (Example 2.2). The outcome reflects whether
individuals showed no improvement, some improvement, or marked improvement. Here, the out-
come variable is an ordinal one, and it is probably important to determine if the relation between
treatment and outcome is the same for males and females. The data set is given in case form in
Arthritis (in package vcd).

Table 4.4: Arthritis treatment data {tab:arthrit}

Improvement
Treatment Sex None Some Marked Total

Active Female 6 5 16 27
Male 7 2 5 14

Placebo Female 19 7 6 32
Male 10 0 1 11

Total 42 14 28 84

This is, of course, a three-way table, with factors Treatment, Sex, and Improvement.
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If the relation between treatment and outcome is the same for both genders, an analysis of the
Treatment by Improvement table (collapsed over sex) could be carried out. Otherwise we could
perform separate analyses for men and women, or treat the combinations of treatment and sex as
four levels of a “population” variable, giving a 4 × 3 two-way table. These simplified approaches
each ignore certain information available in an analysis of the full three-way table. 4

4.2 Tests of association for two-way tables
{sec:twoway-tests}

4.2.1 Notation and terminology
{sec:twoway-notation}

To establish notation, let N = {nij} be the observed frequency table of variables A and B with
r rows and c columns, as shown in Table 4.5. In what follows, a subscript is replaced by a “+”
when summed over the corresponding variable, so ni+ =

∑
j nij gives the total frequency in row

i, n+j =
∑
i nij gives the total frequency in column j, and n++ =

∑
i

∑
j nij is the grand total;

for convenience, n++ is also symbolized by n.

Table 4.5: The R× C contingency table{tab:rbyc}

Row Column category
Category 1 2 · · · C Total
1 n11 n12 · · · n1C n1+
2 n21 n22 · · · n2C n2+
...

...
... · · ·

...
...

R nR1 nR2 · · · nRC nR+

Total n+1 n+2 · · · n+C n++

When each observation is randomly sampled from some population and classified on two cat-
egorical variables, A and B, we refer to the joint distribution of these variables, and let πij =
Pr(A = i, B = j) denote the population probability that an observation is classified in row i,
column j (or cell (ij)) in the table. Corresponding to these population joint probabilities, the cell
proportions, pij = nij/n, give the sample joint distribution.

The row totals ni+ and column totals n+j are called marginal frequencies for variablesA andB
respectively. These describe the distribution of each variable ignoring the other. For the population
probabilities, the marginal distributions are defined analogously as the row and column totals of
the joint probabilities, πi+ =

∑
j πij , and π+j =

∑
i πij . The sample marginal proportions are,

correspondingly, pi+ =
∑
j pij = ni+/n, and p+j =

∑
i pij = n+j/n.

When one variable (the column variable, B, for example) is a response variable, and the other
(A) is an explanatory variable, it is most often useful to examine the distribution of the response B
for each level of A separately. These define the conditional distributions of B, given the level of
A, and are defined for the population as πj | i = πij/πi+.

These definitions are illustrated for the Berkeley data (Table 4.1) below, using the function
CrossTable().

> Berkeley <- margin.table(UCBAdmissions, 2:1)
> library(gmodels)
> CrossTable(Berkeley, prop.chisq = FALSE, prop.c = FALSE,
+ format = "SPSS")
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Cell Contents
|-------------------------|
| Count |
| Row Percent |
| Total Percent |
|-------------------------|

Total Observations in Table: 4526

| Admit
Gender | Admitted | Rejected | Row Total |

-------------|-----------|-----------|-----------|
Male | 1198 | 1493 | 2691 |

| 44.519% | 55.481% | 59.456% |
| 26.469% | 32.987% | |

-------------|-----------|-----------|-----------|
Female | 557 | 1278 | 1835 |

| 30.354% | 69.646% | 40.544% |
| 12.307% | 28.237% | |

-------------|-----------|-----------|-----------|
Column Total | 1755 | 2771 | 4526 |
-------------|-----------|-----------|-----------|

The output shows the joint frequencies, nij , and joint sample percentages, 100 × pij , in the
first row within each table cell. The second row in each cell (“Row percent”) gives the conditional
percentage of admission or rejection, 100 × pj | i for males and females separately. The row and
column labelled “Total” give the marginal frequencies, ni+ and n+j , and marginal percentages, pi+
and p+j .

4.2.2 2 by 2 tables: Odds and odds ratios
{sec:twoway-twobytwo}

The 2 × 2 contingency table of applicants to Berkeley graduate programs in Table 4.1 may be
regarded as an example of a cross-sectional study. The total of n = 4, 526 applicants in 1973 has
been classified by both gender and admission status. Here, we would probably consider the total n to
be fixed, and the cell frequencies nij , i = 1, 2; j = 1, 2 would then represent a single multinomial
sample for the cross-classification by two binary variables, with probabilities cell pij , i = 1, 2; j =
1, 2 such that

p11 + p12 + p21 + p22 = 1 .

The basic null hypothesis of interest for a multinomial sample is that of independence. Are admis-
sion and gender independent of each other?

Alternatively, if we consider admission the response variable, and gender an explanatory vari-
able, we would treat the numbers of male and female applicants as fixed and consider the cell
frequencies to represent two independent binomial samples for a binary response. In this case, the
null hypothesis is described as that of homogeneity of the response proportions across the levels of
the explanatory variable.

Measures of association are used to quantify the strength of association between variables.
Among the many measures of association for contingency tables, the odds ratio is particularly
useful for 2 × 2 tables, and is a fundamental parameter in several graphical displays and models
described later. Other measures of strength of association for 2 × 2 tables are described in Stokes
et al. (2000, Chapter 2) and Agresti (1996, §2.2).

For a binary response, where the probability of a “success” is π, the odds of a success is defined
as

odds =
π

1− π
.
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Hence, odds = 1 corresponds to π = 0.5, or success and failure equally likely. When success is
more likely than failure π > 0.5, and the odds > 1; for instance, when π = 0.75, odds = .75/.25 =
3, so a success is three times as likely as a failure. When failure is more likely, π < 0.5, and the
odds < 1; for instance, when π = 0.25, odds = .25/.75 = 1

3 .
The odds of success thus vary multiplicatively around 1. Taking logarithms gives an equivalent

measure which varies additively around 0, called the log odds or logit:

logit(π) ≡ log(odds) = log

(
π

1− π

)
. (4.1){eq:logit}

The logit is symmetric about π = 0.5, in that logit(π) = − logit(1 − π). The following lines
calculate the odds and log odds for a range of probabilities. As you will see in Chapter 7, the logit
transformation of a probability is fundamental in logistic regression.

> p <- c(0.05, .1, .25, .50, .75, .9, .95)
> odds <- p / (1 - p)
> logodds <- log(odds)
> data.frame(p, odds, logodds)

p odds logodds
1 0.05 0.052632 -2.9444
2 0.10 0.111111 -2.1972
3 0.25 0.333333 -1.0986
4 0.50 1.000000 0.0000
5 0.75 3.000000 1.0986
6 0.90 9.000000 2.1972
7 0.95 19.000000 2.9444

A binary response for two groups gives a 2 × 2 table, with Group as the row variable, say. Let
π1 and π2 be the success probabilities for Group 1 and Group 2. The odds ratio, θ, is just the ratio
of the odds for the two groups:

odds ratio ≡ θ =
odds1
odds2

=
π1/(1− π1)

π2/(1− π2)
.

Like the odds itself, the odds ratio is always non-negative, between 0 and∞. When θ = 1, the
distributions of success and failure are the same for both groups (so π1 = π2); there is no association
between row and column variables, or the response is independent of group. When θ > 1, Group 1
has a greater success probability; when θ < 1, Group 2 has a greater success probability.

Similarly, the odds ratio may be transformed to a log scale, to give a measure which is symmetric
about 0. The log odds ratio, symbolized by ψ, is just the difference between the logits for Groups 1
and 2:

log odds ratio ≡ ψ = log(θ) = log

[
π1/(1− π1)

π2/(1− π2)

]
= logit(π1)− logit(π2) .

Independence corresponds to ψ = 0, and reversing the rows or columns of the table merely changes
the sign of ψ.

For sample data, the sample odds ratio is the ratio of the sample odds for the two groups:

θ̂ =
p1/(1− p1)

p2/(1− p2)
=
n11/n12
n21/n22

=
n11n22
n12n21

. (4.2){eq:soddsratio}

The sample estimate θ̂ in Eqn. (4.2) is the maximum likelihood estimator of the true θ. The
sampling distribution of θ̂ is asymptotically normal as n → ∞, but may be highly skewed in small
to moderate samples.
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Consequently, inference for the odds ratio is more conveniently carried out in terms of the
log odds ratio, whose sampling distribution is more closely normal, with mean ψ = log(θ), and
asymptotic standard error (ASE)

ASE log(θ) ≡ ŝ(ψ̂) =

√
1

n11
+

1

n12
+

1

n21
+

1

n22
=

√∑
i,j

n−1ij (4.3){eq:aselogtheta}

A large-sample 100(1− α)% confidence interval for log(θ) may therefore be calculated as

log(θ)± z1−α/2 ASE log(θ) = ψ̂ ± z1−α/2 ŝ(ψ̂)

where z1−α/2 is the cumulative normal quantile with 1−α/2 in the lower tail. Confidence intervals
for θ itself are obtained by exponentiating the end points of the interval for ψ = log(θ),4

exp
(
ψ̂ ± z1−α/2ŝ(ψ̂)

)
.

{ex:ucbadmissions}

EXAMPLE 4.5: Berkeley admissions
As an illustratation, we apply these formulae to the UCB Admissions data, using the loddsratio()

function in vcd, which by default calculates log-odds:

> data("UCBAdmissions")
> UCB <- margin.table(UCBAdmissions, 1:2)
> (LOR <- loddsratio(UCB))

log odds ratios for Admit and Gender

[1] 0.61035

> (OR <- loddsratio(UCB, log = FALSE))

odds ratios for Admit and Gender

[1] 1.8411

The function returns an object for which the summary() method computes the ASE and carries
out the significance test (for the log odds):

> summary(LOR)

z test of coefficients:

Estimate Std. Error z value
Admitted:Rejected/Male:Female 0.6104 0.0639 9.55

Pr(>|z|)
Admitted:Rejected/Male:Female <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly, the hypothesis of independence has to be rejected, suggesting the presence of gender bias.
confint() computes confidence intervals for (log) odds ratios:

4Note that θ̂ is 0 or∞ if any nij = 0. Haldane (1955) and Gart and Zweiful (1967) showed that improved estimators of θ
and ψ = log(θ) are obtained by replacing each nij by [nij+ 1

2
] in Eqn. (4.2) and Eqn. (4.3). This adjustment is preferred in

small samples, and required if any zero cells occur. In large samples, the effect of adding 0.5 to each cell becomes negligible.
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> confint(OR)

2.5 % 97.5 %
Admitted:Rejected/Male:Female 1.6244 2.0867

> confint(LOR)

2.5 % 97.5 %
Admitted:Rejected/Male:Female 0.48512 0.73558

Finally, we note that an exact test (based on the hypergeometric distribution) is provided by fisher.test()
(see the help page for the details):

> fisher.test(UCB)

Fisher's Exact Test for Count Data

data: UCB
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.6214 2.0912
sample estimates:
odds ratio

1.8409

In general, exact tests are to be prefered over asymptotic tests like the one described above. Note,
however, that the results are very similar in this example. 4

4.2.3 Larger tables: Overall analysis
{sec:twoway-overall}

For two-way tables overall tests of association can be carried out using assocstats(). If the data
set has more than two factors (as in the Arthritis data), the other factors will be ignored (and
collapsed) if not included when the table is constructed. This simplified analysis may be misleading
if the excluded factors interact with the factors used in the analysis.{ex:arthrit2}

EXAMPLE 4.6: Arthritis treatment
Since the main interest is in the relation between Treatment and Improved, an overall

analysis (which ignores Sex) can be carried out by creating a two-way table with xtabs() as
shown below.

> data("Arthritis", package = "vcd")
> Art <- xtabs(~ Treatment + Improved, data = Arthritis)
> Art

Improved
Treatment None Some Marked
Placebo 29 7 7
Treated 13 7 21

> round(100 * prop.table(Art, margin = 1), 2)

Improved
Treatment None Some Marked
Placebo 67.44 16.28 16.28
Treated 31.71 17.07 51.22
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The row proportions show a clear difference in the outcome for the two groups: For those given
the placebo, 67% reported no improvement; in the treated group, 51% reported marked improve-
ment. χ2 tests and measures of association are provided by assocstats() as shown below:

> assocstats(Art)

X^2 df P(> X^2)
Likelihood Ratio 13.530 2 0.0011536
Pearson 13.055 2 0.0014626

Phi-Coefficient : NA
Contingency Coeff.: 0.367
Cramer's V : 0.394

4

The measures of association are normalized variants of the χ2 statistic. Caution is needed for
interpretation since the maximum values depend on the table dimensions.

4.2.4 Tests for ordinal variables
{sec:ordinaltests}

For r × c tables, more sensitive tests than the test for general association (independence) are avail-
able if either or both of the row and column variables are ordinal. Generalized Cochran-Mantel-
Haenszel tests (Landis et al., 1978) which take the ordinal nature of a variable into account are
provided by the CMHtest() in vcdExtra. These tests are based on assigning numerical scores to
the table categories; the default (table) scores treat the levels as equally spaced. They generally have
higher power when the pattern of association is determined by the order of an ordinal variable. {ex:mental2}

EXAMPLE 4.7: Mental impairment and parents’ SES
We illustrate these tests using the data on mental impairment and SES introduced in Exam-

ple 4.3, where both variables can be considered ordinal.

> data("Mental", package = "vcdExtra")
> mental <- xtabs(Freq ~ ses + mental, data = Mental)
> assocstats(mental) # standard chisq tests

X^2 df P(> X^2)
Likelihood Ratio 47.418 15 3.1554e-05
Pearson 45.985 15 5.3458e-05

Phi-Coefficient : NA
Contingency Coeff.: 0.164
Cramer's V : 0.096

> CMHtest(mental) # CMH tests

Cochran-Mantel-Haenszel Statistics for ses by mental

AltHypothesis Chisq Df Prob
cor Nonzero correlation 37.2 1 1.09e-09
rmeans Row mean scores differ 40.3 5 1.30e-07
cmeans Col mean scores differ 40.7 3 7.70e-09
general General association 46.0 15 5.40e-05

In this data set, all four tests show a highly significant association. However, the cor test
for nonzero correlation uses only one degree of freedom, whereas the test of general association
requires 15 df. 4
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The four tests differ in the types of departure from independence they are sensitive to:

General Association When the row and column variables are both nominal (unordered) the only
alternative hypothesis of interest is that there is some association between the row and column
variables. The CMH test statistic is similar to the (Pearson) Chi-Square and Likelihood Ratio
Chi-Square in the result from assocstats(); all have (r − 1)(c− 1) df.

Row Mean Scores Differ If the column variable is ordinal, assigning scores to the column variable
produces a mean for each row. The association between row and column variables can be
expressed as a test of whether these means differ over the rows of the table, with r − 1 df. This
is analogous to the Kruskal-Wallis non-parametric test (ANOVA based on rank scores).

Column Mean Scores Differ Same as the above, assigning scores to the row variable.

Nonzero Correlation (Linear association) When both row and column variables are ordinal, we
could assign scores to both variables and compute the correlation (r), giving Spearman’s rank
correlation coefficient. The CMH χ2 is equal to (N − 1)r2, where N is the total sample size.
The test is most sensitive to a pattern where the row mean score changes linearly over the rows.

4.2.5 Sample CMH Profiles
{sec:Sample}

Two contrived examples may make the differences among these tests more apparent. Visualiza-
tions of the patterns of association reinforces the aspects to which the tests are most sensitive, and
introduces the sieve diagram described more fully in Section 4.5.

4.2.5.1 General Association

The table below exhibits a general association between variables A and B, but no difference in row
means or linear association. The row means for category j are calculated by assigning integer scores,
bi = i to the column categories, and using the corresponding frequencies of row j as weights. The
column means are obtained analogously. Figure 4.3 (left) shows the pattern of association in this
table graphically, as a sieve diagram (described in Section 4.5).

b1 b2 b3 b4 b5 Total Mean
a1 0 15 25 15 0 55 3.0
a2 5 20 5 20 5 55 3.0
a3 20 5 5 5 20 55 3.0

Total 25 40 35 40 25 165 3.0
Mean 2.8 1.6 1.4 1.6 2.8 2.1

This is reflected in the CMHtest() output shown below (cmhdemo1 contains the data shown
above).

> CMHtest(cmhdemo1)

Cochran-Mantel-Haenszel Statistics

AltHypothesis Chisq Df Prob
cor Nonzero correlation 0.0 1 1.00e+00
rmeans Row mean scores differ 0.0 2 1.00e+00
cmeans Col mean scores differ 72.2 4 7.78e-15
general General association 91.8 8 2.01e-16

The chi-square values for non-zero correlation and different row mean scores are exactly zero
because the row means are all equal. Only the general association test shows that A and B are
associated.
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General association
B

A
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a2
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b1 b2 b3 b4 b5

Linear association
B

A
a4

a3
a2

a1

b1 b2 b3 b4 b5

Figure 4.3: Sieve diagrams for two patterns of association: Left: General association; right: Linear
association{fig:cmhdemo}

4.2.5.2 Linear Association

The table below contains a weak, non-significant general association, but significant row mean
differences and linear associations. The unstructured test of general association would therefore
lead to the conclusion that no association exists, while the tests taking ordinal factors into account
would conclude otherwise. Note that the largest frequencies shift towards lower levels of B as the
level of variable A increases. See Figure 4.3 (right) for a visual representation of this pattern.

b1 b2 b3 b4 b5 Total Mean
a1 2 5 8 8 8 31 3.48
a2 2 8 8 8 5 31 3.19
a3 5 8 8 8 2 31 2.81
a4 8 8 8 5 2 31 2.52

Total 17 29 32 29 17 124 3.00
Mean 3.1 2.7 2.5 2.3 1.9 2.5

Note that the χ2-values for the row-means and non-zero correlation tests from CMHtest() are
very similar, but the correlation test is more highly significant since it is based on just one degree of
freedom. In the following example, cmhdemo2 corresponds to the table above:

> CMHtest(cmhdemo2)

Cochran-Mantel-Haenszel Statistics

AltHypothesis Chisq Df Prob
cor Nonzero correlation 10.6 1 0.00111
rmeans Row mean scores differ 10.7 3 0.01361
cmeans Col mean scores differ 11.4 4 0.02241
general General association 13.4 12 0.34064

The difference in sensitivity and power among these tests for categorical data is analogous to
the difference between general ANOVA tests and tests for linear trend (contrasts) in experimental
designs with quantitative factors: The more specific test has greater power, but is sensitive to a



126 4. Two-way Contingency Tables

narrower range of departures from the null hypothesis. The more focused tests for ordinal factors
are a better bet when we believe that the association depends on the ordered nature of the factor
levels.

4.3 Stratified analysis
{sec:twoway-strat}

An overall analysis ignores other variables (like sex), by collapsing over them. In the Arthritis
data, it is possible that the treatment is effective only for one gender, or even that the treatment has
opposite effects for men and women. If so, pooling over the ignored variable(s) can be seriously
misleading.

4.3.1 Computing strata-wise statistics
{sec:twoway-strata}

A stratified analysis controls for the effects of one or more background variables. This is similar
to the use of a blocking variable in an ANOVA design. Tests for association can be obtained by
applying a function (assocstats(), CMHtest()) over the levels of the stratifying variables.{ex:arthrit3}

EXAMPLE 4.8: Arthritis treatment
The statements below request a stratified analysis of the arthritis treatment data with CMH tests,

controlling for gender. Essentially, the analysis is carried out separately for males and females.
The table Art2 is constructed as a three-way table, with Sex as the last dimension.

> Art2 <- xtabs(~ Treatment + Improved + Sex, data = Arthritis)
> Art2

, , Sex = Female

Improved
Treatment None Some Marked
Placebo 19 7 6
Treated 6 5 16

, , Sex = Male

Improved
Treatment None Some Marked
Placebo 10 0 1
Treated 7 2 5

Both assocstats() and CMHtest() are designed for stratified tables, and use all dimen-
sions after the first two as strata.

> assocstats(Art2)

$`Sex:Female`
X^2 df P(> X^2)

Likelihood Ratio 11.731 2 0.0028362
Pearson 11.296 2 0.0035242

Phi-Coefficient : NA
Contingency Coeff.: 0.401
Cramer's V : 0.438

$`Sex:Male`
X^2 df P(> X^2)

Likelihood Ratio 5.8549 2 0.053532
Pearson 4.9067 2 0.086003
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Phi-Coefficient : NA
Contingency Coeff.: 0.405
Cramer's V : 0.443

Note that even though the strength of association (Cramer’s V) is similar in the two groups, the
χ2 tests show significance for females, but not for males. This is true even using the more powerful
CMH tests below, treating Treatment as ordinal. The reason is that there were more than twice
as many females as males in this sample.

> CMHtest(Art2)

$`Sex:Female`
Cochran-Mantel-Haenszel Statistics for Treatment by Improved
in stratum Sex:Female

AltHypothesis Chisq Df Prob
cor Nonzero correlation 10.9 1 0.000944
rmeans Row mean scores differ 10.9 1 0.000944
cmeans Col mean scores differ 11.1 2 0.003878
general General association 11.1 2 0.003878

$`Sex:Male`
Cochran-Mantel-Haenszel Statistics for Treatment by Improved
in stratum Sex:Male

AltHypothesis Chisq Df Prob
cor Nonzero correlation 3.71 1 0.0540
rmeans Row mean scores differ 3.71 1 0.0540
cmeans Col mean scores differ 4.71 2 0.0949
general General association 4.71 2 0.0949

> apply(Art2, 3, sum)

Female Male
59 25

4

4.3.2 Assessing homogeneity of association
{sec:twoway-homog}

In a stratified analysis it is often crucial to know if the association between the primary table
variables is the same over all strata. For 2 × 2 × k tables this question reduces to whether the
odds ratio is the same in all k strata. The vcd package implements Woolf’s test (Woolf, 1995) in
woolf_test() for this purpose.

For larger n-way tables, this question is equivalent to testing whether the association between
the primary variables, A and B, say, is the same for all levels of the stratifying variables, C, D, . . .. {ex:berkeley1a}

EXAMPLE 4.9: Berkeley admissions
Here we illustrate the use of Woolf’s test for the UCBAdmissions data. The test is significant,

indicating that the odds ratios cannot be considered equal across departments. We will see why
when we visualize the data by department in the next section.

> woolf_test(UCBAdmissions)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way
assoc.)

data: UCBAdmissions
X-squared = 17.902, df = 5, p-value = 0.003072
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4
{ex:arthrit4}

EXAMPLE 4.10: Arthritis treatment
For the arthritis data, homogeneity means the association between treatment and outcome (improve)

is the same for both men and women. Again, we are using woolf_test() to test if this assump-
tion holds.

> woolf_test(Art2)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way
assoc.)

data: Art2
X-squared = 0.3181, df = 1, p-value = 0.5728

Even though we found in the CMH analysis above that the association between Treatment
and Improvedwas stronger for females than males, the analysis using woolf_test() is clearly
non-significant, so we cannot reject homogeneity of association. 4

Remark

As will be discussed later in the chapter on log-linear models, in the case of a 3-way table, the hy-
pothesis of homogeneity of association among three variables A, B and C can be stated as the log-
linear model of no three-way association, [AB][AC][BC] . This notation (described in Section 9.2)
lists only the high-order association terms in a linear model for log frequency.

This hypothesis can be stated as the loglinear model,

[SexTreatment] [SexImproved] [TreatmentImproved] . (4.4){eq:STO2}

Such tests can be carried out most conveniently using loglm() in the MASS package. The
model formula uses the standard R notation ()^2 to specify all terms of order 2.

> library(MASS)
> loglm(~ (Treatment + Improved + Sex)^2, data = Art2)

Call:
loglm(formula = ~(Treatment + Improved + Sex)^2, data = Art2)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 1.7037 2 0.42663
Pearson 1.1336 2 0.56735

Consistent with the Woolf test, the interaction terms are not significant.

4.4 Fourfold display for 2 x 2 tables
{sec:twoway-fourfold}

The fourfold display is a special case of a radial diagram (or “polar area chart”) designed for the
display of 2×2 (or 2×2×k) tables (Fienberg, 1975, Friendly, 1994a,c). In this display the frequency
nij in each cell of a fourfold table is shown by a quarter circle, whose radius is proportional to√nij ,
so the area is proportional to the cell count. The fourfold display is similar to a pie chart in using
segments of a circle to show frequencies. It differs from a pie chart in that it keeps the angles of the
segments constant and varies the radius, whereas the pie chart varies the angles and keeps the radius
constant.
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The main purpose of this display is to depict the sample odds ratio, θ̂ = (n11/n12)÷(n21/n22).
An association between the variables (θ 6= 1) is shown by the tendency of diagonally opposite cells
in one direction to differ in size from those in the opposite direction, and the display uses color
or shading to show this direction. Confidence rings for the observed θ allow a visual test of the
hypothesis of independence, H0 : θ = 1. They have the property that (in a standardized display) the
rings for adjacent quadrants overlap iff the observed counts are consistent with the null hypothesis. {ex:berkeley2}

EXAMPLE 4.11: Berkeley admissions
Figure 4.4 (left) shows the basic, unstandardized fourfold display for the Berkeley admissions

data (Table 4.1). Here, the area of each quadrant is proportional to the cell frequency, shown nu-
merically in each corner. The odds ratio is proportional to the product of the areas shaded dark,
divided by the product of the areas shaded light. The sample odds ratio, Odds(Admit|Male) /
Odds(Admit|Female) is 1.84 (see Example 4.9) indicating that males were nearly twice as likely
to be admitted.

> fourfold(Berkeley, std = "ind.max") # unstandardized
> fourfold(Berkeley, margin = 1) # equating gender
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Figure 4.4: Fourfold displays for the Berkeley admission data. Left: unstandardized; right: equat-
ing the proportions of males and females {fig:berk-fourfold1}

However, it is difficult to make these visual comparisons because there are more men than
women, and because the proportions admitted and rejected are unequal. In the unstandardized
display the confidence bands have no interpretation as a test of H0 : θ = 1.

Table 4.6: Admissions to Berkeley graduate programs, Frequencies and Row Percentages {tab:berkrow}

Frequencies Row Percents
Admitted Rejected Admitted Rejected

Males 1198 1493 44.52 55.48
Females 557 1278 30.35 69.65

The data in a 2× 2 table can be standardized to make these visual comparisons easier. Table 4.6
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shows the Berkeley data with the addition of row percentages (which equate for the number of men
and women applicants) indicating the proportion of each gender accepted and rejected. We see
that 44.52% of males were admitted, while only 30.35% of females were admitted. Moreover, the
row percentages have the same odds ratio as the raw data: 44.52 × 69.65/30.35 × 55.48 = 1.84.
Figure 4.4 (right) shows the fourfold display where the area of each quarter circle is proportional to
these row percentages.

With this standardization, the confidence rings have the property that the confidence rings for
each upper quadrant will overlap with those for the quadrant below it if the odds ratio does not
differ from 1.0. (Details of the calculation of confidence rings are described in the next section.) No
similar statement can be made about the corresponding left and right quadrants, however, because
the overall rate of admission has not been standardized.

As a final step, we can standardize the data so that both table margins are equal, while preserving
the odds ratio. Each quarter circle is then drawn to have an area proportional to this standardized
cell frequency. This makes it easier to see the association between admission and sex without being
influenced by the overall admission rate or the differential tendency of males and females to apply.
With this standardization, the four quadrants will align (overlap) horizontally and vertically when
the odds ratio is 1, regardless of the marginal frequencies. The fully standardized display, which is
usually the most useful form, is shown in Figure 4.5.

> fourfold(Berkeley) # standardize both margins
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Figure 4.5: Fourfold display for Berkeley admission data with margins for gender and admission
equated. The area of each quadrant shows the standardized frequency in each cell.{fig:berk-fourfold3}

4

These displays also use color (blue) and diagonal tick marks to show the direction of positive
association. The visual interpretation (also conveyed by area) is that males are more likely to be
accepted, females more likely to be rejected.

The quadrants in Figure 4.5 do not align and the 95% confidence rings around each quadrant do
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not overlap, indicating that the odds ratio differs significantly from 1—putative evidence of gender
bias. The very narrow width of the confidence rings gives a visual indication of the precision of the
data—if we stopped here, we might feel quite confident of this conclusion.

4.4.1 Confidence rings for odds ratio
Confidence rings for the fourfold display are computed from a confidence interval for θ, whose
endpoints can each be mapped into a 2× 2 table. Each such table is then drawn in the same way as
the data.

The interval for θ is most easily found by considering the distribution of ψ̂ = log θ̂, whose
standard error may be estimated by Eqn. (4.3). Then an approximate 1 − α confidence interval for
ψ is given by

ψ̂ ± ŝ(ψ̂) z1−α/2 = {ψ̂l, ψ̂u} ,

as described in Section 4.2.2. The corresponding limits for the odds ratio θ are {exp(ψ̂l), exp(ψ̂u)}.
For the data shown in Figure 4.5, ψ̂ = log θ̂ = .6104, and ŝ(ψ̂) = 0.0639, so the 95%, lim-
its for θ are {1.624, 2.087}, as shown by the calculations below. The same result is returned by
confint() for a "loddsratio" object.

> summary(loddsratio(Berkeley))

z test of coefficients:

Estimate Std. Error z value
Male:Female/Admitted:Rejected 0.6104 0.0639 9.55

Pr(>|z|)
Male:Female/Admitted:Rejected <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> exp(.6103 + c(-1, 1) * qnorm(.975) * 0.06398)

[1] 1.6240 2.0869

> confint(loddsratio(Berkeley, log = FALSE))

2.5 % 97.5 %
Male:Female/Admitted:Rejected 1.6244 2.0867

Now consider how to find a 2 × 2 table whose frequencies correspond to the odds ratios at the
limits of the confidence interval. A table standardized to equal row and column margins can be
represented by the 2× 2 matrix with entries[

p (1− p)
(1− p) p

]
,

whose odds ratio is θ = p2/(1 − p)2. Solving for p gives p =
√
θ/(1 +

√
θ). The corresponding

frequencies can then be found by adjusting the standardized table to have the same row and column
margins as the data. The results of these computations which generate the confidence rings in
Figure 4.5 are shown in Table 4.7.

4.4.2 Stratified analysis for 2× 2× k tables
{sec:twoway-fourstrat}

In a 2 × 2 × k table, the last dimension often corresponds to “strata” or populations, and it is
typically of interest to see if the association between the first two variables is homogeneous across
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Table 4.7: Odds ratios and equivalent tables for 95% confidence rings for the Berkeley data. {tab:berkodds}

Odds Standardized Equivalent
Ratio Table Frequencies

Lower 1.624 0.560 0.440 1,167.1 587.9
limit 0.440 0.560 1,523.9 1,247.1

Data 1.841 0.576 0.424 1,198.0 557.0
0.424 0.576 1,493.0 1,278.0

Upper 2.087 0.591 0.409 1,228.4 526.6
limit 0.409 0.591 1,462.6 1,308.4

strata. For such tables, simply make one fourfold panel for each stratum. The standardization of
marginal frequencies is designed to allow easy visual comparison of the pattern of association when
the marginal frequencies vary across two or more populations.

4.4.2.1 Stratified displays
{sec:twoway-stratdisp}

The admissions data shown in Figure 4.4 and Figure 4.5 were actually obtained from six departments—
the six largest at Berkeley (Bickel et al., 1975). To determine the source of the apparent sex bias in
favor of males, we make a new plot, Figure 4.6, stratified by department.

> # fourfold display
> UCB <- aperm(UCBAdmissions, c(2, 1, 3))
> fourfold(UCB, mfrow = c(2, 3))

Surprisingly, Figure 4.6 shows that, for five of the six departments, the odds of admission is
approximately the same for both men and women applicants. Department A appears to differs
from the others, with women approximately 2.86 (= (313/19)/(512/89)) times as likely to gain
admission. This appearance is confirmed by the confidence rings, which in Figure 4.6 are joint5

95% intervals for θc, c = 1, . . . , k.
This result, which contradicts the display for the aggregate data in Figure 4.4, is a nice example

of Simpson’s paradox6, and illustrates clearly why an overall analysis of a three- (or higher-) way
table can be misleading. The resolution of this contradiction can be found in the large differences in
admission rates among departments. Men and women apply to different departments differentially,
and in these data women happen to apply in larger numbers to departments that have a low accep-
tance rate. The aggregate results are misleading because they falsely assume men and women are
equally likely to apply in each field.7

4.4.2.2 Visualization principles for complex data

An important principle in the display of large, complex data sets is controlled comparison—we
want to make comparisons against a clear standard, with other things held constant. The fourfold

5For multiple-strata plots, fourfold() by default adjusts the significance level for multiple testing, using Holm’s
(1979) method provided by p.adjust().

6Simpson’s paradox (Simpson, 1951) occurs in a three-way table, [A,B,C], when the marginal association between two
variables, A,B collapsing over C differs in direction from the partial association A,B|C = ck at the separate levels of C.
Strictly speaking, Simpson’s paradox would require that for all departments separately the odds ratio θk < 1 (which occurs
for Departments A, B, D, and F in Figure 4.6) while in the aggregate data θ > 1.

7This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to departments
that attract women applicants.
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Figure 4.6: Fourfold displays for Berkeley admissions data, stratified by department. The more
intense shading for Dept. A indicates a significant association.{fig:berk-fourfold4}

display differs from a pie chart in that it holds the angles of the segments constant and varies the
radius. An important consequence is that we can quite easily compare a series of fourfold displays
for different strata, since corresponding cells of the table are always in the same position. As a
result, an array of fourfold displays serve the goals of comparison and detection better than an array
of pie charts.

Moreover, it allows the observed frequencies to be standardized by equating either the row or
column totals, while preserving the design goal for this display—the odds ratio. In Figure 4.6, for
example, the proportion of men and women, and the proportion of accepted applicants were equated
visually in each department. This provides a clear standard which also greatly facilitates controlled
comparison.

As mentioned in the introduction, another principle is visual impact—we want the important
features of the display to be easily distinguished from the less important (Tukey, 1993). Figure 4.6
distinguishes the one department for which the odds ratio differs significantly from 1 by shading
intensity, even though the same information can be found by inspection of the confidence rings. {ex:wheeze1}

EXAMPLE 4.12: Breathlessness and wheeze in coal miners
The various ways of standardizing a collection of 2× 2 tables allows visualizing relations with

different factors (row percentages, column percentages, strata totals) controlled. However, different
kinds of graphs can speak more eloquently to other questions by focusing more directly on the odds
ratio.

Agresti (2002, Table 9.8) cites data from Ashford and Sowden (1970) on the association between
two pulmonary conditions, breathlessness and wheeze, in a large sample of coal miners. The miners
are classified into age groups, and the question treated by Agresti is whether the association between
these two symptoms is homogeneous over age. These data are available in the CoalMiners data
in vcd, a 2 × 2 × 9 frequency table. The first group, aged 20–24 has been omitted from these
analyses.
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> data("CoalMiners", package = "vcd")
> CM <- CoalMiners[, , 2 : 9]
> structable(. ~ Age, data = CM)

Breathlessness B NoB
Wheeze W NoW W NoW

Age
25-29 23 9 105 1654
30-34 54 19 177 1863
35-39 121 48 257 2357
40-44 169 54 273 1778
45-49 269 88 324 1712
50-54 404 117 245 1324
55-59 406 152 225 967
60-64 372 106 132 526

The question of interest can be addressed by displaying the odds ratio in the 2 × 2 tables with
the margins of breathlessness and wheeze equated (i.e., with the default std=’margins’ option),
which gives the graph shown in Figure 4.7. Although the panels for all age groups show an over-
whelmingly positive association between these two symptoms, one can also (by looking carefully)
see that the strength of this association declines with increasing age.

> fourfold(CM, mfcol = c(2, 4))
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Figure 4.7: Fourfold display for CoalMiners data, both margins equated{fig:coalminer1}

However, note that the pattern of change over age is somewhat subtle compared to the dominant
positive association within each panel. When the goal is to display how the odds ratio varies with a
quantitative factor such as age, it is often better to simply calculate and plot the odds ratio directly.

The loddsratio() function in vcd calculates odds ratios. By default, it returns the log odds.
Use the option log=FALSE to get the odds ratios themselves. It is easy to see that the (log) odds
ratios decline with age.

> loddsratio(CM)

log odds ratios for Breathlessness and Wheeze by Age

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
3.6953 3.3983 3.1407 3.0147 2.7820 2.9264 2.4406 2.6380

> loddsratio(CM, log = FALSE)
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odds ratios for Breathlessness and Wheeze by Age

25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64
40.256 29.914 23.119 20.383 16.152 18.660 11.480 13.985

When the analysis goal is to understand how the odds ratio varies with a stratifying factor (which
could be a quantitative variable), it is often better to plot the odds ratio directly.

The lines below use the plot() method for "oddsratio" objects. This produces a line graph
of the log odds ratio against the stratum variable, together with confidence interval error bars. In
addition, because age is a quantitative variable, we can calculate and display the fitted relation for
a linear model relating lodds to age. Here, we try using a quadratic model (poly(age, 2))
mainly to see if the trend is nonlinear.

> lor_CM <- loddsratio(CM)
> plot(lor_CM, bars=FALSE, baseline=FALSE, whiskers=.2)
>
> lor_CM_df <- as.data.frame(lor_CM)
> age <- seq(25, 60, by = 5) + 2
> lmod <- lm(LOR ~ poly(age, 2), weights = 1 / ASE^2, data = lor_CM_df)
> grid.lines(seq_along(age), fitted(lmod),
+ gp = gpar(col = "red", lwd = 2), default.units = "native")
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Figure 4.8: Log odds plot for the CoalMiners data. The smooth curve shows a quadratic fit to age. {fig:coalminer3}

In Figure 4.8, it appears that the decline in the log odds ratio levels off with increasing age. One
virtue of fitting the model in this way is that we can test the additional contribution of the quadratic
term, which turns out to be insignificant.

> summary(lmod)

Call:
lm(formula = LOR ~ poly(age, 2), data = lor_CM_df, weights = 1/ASE^2)



136 4. Two-way Contingency Tables

Weighted Residuals:
1 2 3 4 5 6 7 8

0.1617 0.0162 -0.2443 0.0627 -0.4971 1.6115 -1.5228 0.5851

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9953 0.0783 38.28 2.3e-07 ***
poly(age, 2)1 -0.9977 0.2513 -3.97 0.011 *
poly(age, 2)2 0.1768 0.2171 0.81 0.452
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.06 on 5 degrees of freedom
Multiple R-squared: 0.782,Adjusted R-squared: 0.694
F-statistic: 8.94 on 2 and 5 DF, p-value: 0.0223

4

4.5 Sieve diagrams
{sec:twoway-sieve}

The wise ones fashioned speech with their thought, sifting it as grain is sifted through a
sieve.

Buddha

For two- (and higher-) way contingency tables, the design principles of perception, detection,
and comparison (see Chapter 1) suggest that we should try to show the observed frequencies in rela-
tion to what we would expect those frequencies to be under a reasonable null model—for example,
the hypothesis that the row and column variables are unassociated.

To this end, several schemes for representing contingency tables graphically are based on the
fact that when the row and column variables are independent, the estimated expected frequencies,
mij , are products of the row and column totals (divided by the grand total).

mij =
ni+n+j
n++

.

Then, each cell can be represented by a rectangle whose area shows the observed cell frequency, nij ,
expected frequency, mij , or deviation (residual) from independence, nij − mij . Visual attributes
(color, shading) of the rectangles can be used to highlight the pattern of association.

4.5.1 Two-way tables
{sec:twoway-sieve2}

For example, for any two-way table, the expected frequencies under independence can be repre-
sented by rectangles whose widths are proportional to the total frequency in each column, n+j , and
whose heights are proportional to the total frequency in each row, ni+; the area of each rectangle is
then proportional to mij . Figure 4.9 (left) shows the expected frequencies for the hair and eye color
data (Table 4.2), calculated using independence_table() in vcd.

> haireye <- margin.table(HairEyeColor, 1:2)
> expected = independence_table(haireye)
> round(expected, 1)

Eye
Hair Brown Blue Hazel Green
Black 40.1 39.2 17.0 11.7



4.5: Sieve diagrams 137

Brown 106.3 103.9 44.9 30.9
Red 26.4 25.8 11.2 7.7
Blond 47.2 46.1 20.0 13.7
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Figure 4.9: Sieve diagrams for the HairEyeColor data. Left: expected frequencies shown in
cells as numbers and the number of boxes; right: observed frequencies shown in cells. {fig:HE-sieve}

Figure 4.9 (left) simply represents the model—what the frequencies would be if hair color and
eye color were independent—not the data. Note, however, that the rectangles are cross-ruled so
that the number of boxes in each (counting up the fractional bits) equals the expected frequency
with which the cell is labeled, and moreover, the rulings are equally spaced in all cells. Hence,
cross-ruling the cells to show the observed frequency would give a data display which implicitly
compares observed and expected frequencies as shown in Figure 4.9 (right).

Riedwyl and Schüpbach (1983, 1994) proposed a sieve diagram (later called a parquet dia-
gram) based on this principle. In this display the area of each rectangle is always proportional to
expected frequency but observed frequency is shown by the number of squares in each rectangle, as
in Figure 4.9 (right).

Hence, the difference between observed and expected frequency appears as variations in the
density of shading. Cells whose observed frequency nij exceeds the expected mij appear denser
than average. The pattern of positive and negative deviations from independence can be more easily
seen by using color, say, red for negative deviations, and blue for positive.8 {ex:haireye2}

EXAMPLE 4.13: Hair color and eye color
The sieve diagram for hair color and eye color shown in Figure 4.9 (right) can be interpreted as

follows: The pattern of color and shading shows the high frequency of blue-eyed blonds and people
with brown eyes and dark hair. People with hazel eyes are also more likely to have red or brown
hair, and those with green eyes more likely to have red or blond hair, than would be observed under
independence. 4

{ex:vision1}

EXAMPLE 4.14: Visual acuity

8Positive residuals are also shown by solid lines, negative residuals by broken lines, so that they may still be distinguished
in monochrome versions.
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In World War II, all workers in the U.K. Royal Ordnance factories were given test of visual
acuity (unaided distance vision) of their left and right eyes on a 1 (high) to 4 (low) scale. The
dataset VisualAcuity in vcd gives the results for 10,719 workers (3,242 men, 7,477 women)
aged 30–39.

Figure 4.10 shows the sieve diagram for data from the larger sample of women (Kendall and
Stuart (1961, Table 33.5), Bishop et al. (1975, p. 284)). The VisualAcuity data is a frequency
data frame and we first convert it to table form (VA), a 4× 4× 2 table to re-label the variables and
levels.

> # re-assign names/dimnames
> data("VisualAcuity", package = "vcd")
> VA <- xtabs(Freq ~ right + left + gender, data = VisualAcuity)
> dimnames(VA)[1:2] <- list(c("high", 2, 3, "low"))
> names(dimnames(VA))[1:2] <- paste(c("Right", "Left"), "eye grade")
> structable(aperm(VA))

Left eye grade high 2 3 low
gender Right eye grade
male high 821 112 85 35

2 116 494 145 27
3 72 151 583 87
low 43 34 106 331

female high 1520 266 124 66
2 234 1512 432 78
3 117 362 1772 205
low 36 82 179 492

> sieve(VA[, , "female"], shade = TRUE)

The diagonal cells show the obvious: people tend to have the same visual acuity in both eyes, and
there is strong lack of independence. The off diagonal cells show a more subtle pattern that suggests
symmetry—the cells below the diagonal are approximately equally dense as the corresponding cells
above the diagonal. Moreover, the relatively consistent pattern on the diagonals ±1,±2, . . . away
from the main diagonals suggests that the association may be explained in terms of the difference in
visual acuity between the two eyes.

These suggestions can be tested by fitting intermediate models between the null model of inde-
pendence (which fits terribly) and the saturated model (which fits perfectly), as we shall see later in
this book. A model of quasi-independence, for example (see Example 10.4 in Chapter 9) ignores
the diagonal cells and tests whether independence holds for the remainder of the table. The symme-
try model for a square table allows association, but constrains the expected frequencies above and
below the main diagonal to be equal. Such models provide a way of testing specific explanatory
models that relate to substantive hypotheses and what we observe in our visualizations. These and
other models for square tables are discussed further in Section 10.2. 4

4.5.2 Larger tables: The strucplot framework
{sec:twoway-sieve-larger}

The implementation of sieve diagrams in vcd is far more general than illustrated in the examples
above. For one thing, the sieve function has a formula method, which allows one to specify the
variables in the display as a model formula. For example, for the VisualAcuity data, a plot of
the (marginal) frequencies for left and right eye grades pooling over gender can be obtained with
the call below (this plot is not shown).

> sieve(Freq ~ right + left, data = VisualAcuity, shade = TRUE)

More importantly, sieve diagrams are just one example of the strucplot framework, a general
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Figure 4.10: Vision classification for 7477 women in Royal Ordnance factories. The high frequen-
cies in the diagonal cells indicate the main association, but a subtler pattern also appears in the
symmetric off-diagonal cells.{fig:VA-sieve2}
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system for visualizing n-way frequency tables in a hierarchical way. We describe this framework
in more detail in Section 5.3 in context of mosaic displays. For now, we just illustrate the exten-
sion of the formula method to provide for conditioning variables. In the call below, the formula
Freq ~ right + left | gender means to produce a separate block in the plot for the lev-
els of gender. The set_varnames argument relabels the variable names.

> sieve(Freq ~ right + left | gender, data = VisualAcuity,
+ shade = TRUE, set_varnames = c(right = "Right eye grade",
+ left = "Left eye grade"))
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Figure 4.11: Sieve diagram for the three-way table of VisualAcuity, conditioned on gender.{fig:VA-sieve3}

In Figure 4.11, the relative sizes of the blocks for the conditioning variable (gender) show the
much larger number of women than men in this data. Within each block, color and density of the
box rules shows the association of left and right acuity, and it appears that the pattern for men is
similar to that observed for women.

An alternative way of visualizing stratified data is a coplot or conditioning plot, which, for each
stratum, shows an appropriate display for a subset of the data. Figure 4.12 visualizes separate sieve
plots for men and women:

> cotabplot(VA, cond = "gender", panel = cotab_sieve, shade = TRUE)

The main difference to the extended sieve plots is that the distribution of the conditioning vari-
able is not shown, which basically is a lost of information, but advantageous if the distribution of
the conditioning variable(s) is highly skewed, since the partial displays of small strata will not be
distorted.

The methods described in Section 4.3.2 can be used to test the hypothesis of homogeneity of
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Figure 4.12: Conditional Sieve diagram for the three-way table of VisualAcuity, conditioned on
gender.{fig:VA-cotabsieve3}

association, and loglinear models described in Chapter 9 provide specific tests of hypotheses of
symmetry, quasi-independence and other models for structured associations.{ex:berkeley3}

EXAMPLE 4.15: Berkeley admissions
This example illustrates some additional flexibility of sieve plots with the strucplot framework,

using the Berkeley admissions data. The left panel of Figure 4.13 shows the sieve diagrams for the
relation between department and admission, conditioned by gender. It can easily be seen that (a)
overall, there were more male applicants than female; (b) there is a moderately similar pattern of
observed > expected (blue) for males and females.

> # conditioned on gender
> sieve(UCBAdmissions, shade = TRUE, condvar = 'Gender')
> # three-way table, Department first, with cell labels
> sieve(~ Dept + Admit + Gender, data = UCBAdmissions,
+ shade = TRUE, labeling = labeling_values,
+ gp_text = gpar(fontface = 2), abbreviate_labs = c(Gender = TRUE))

In the right panel of Figure 4.13, the three-way table was first permuted to make Dept the first
splitting variable. Each 2 × 2 table of Admit by Gender then appears, giving a sieve diagram
version of what we showed earlier in fourfold displays (Figure 4.6). The labeling argument is
used here to write the cell frequency in each rectangle. gp_text renders them in bold font, and
abbreviate_labs abbreviates the gender labels to avoid overplotting.

Alternatively, we can again use coplots to visualize conditioned sieve plots for this data:

> cotabplot(UCBAdmissions, cond = "Gender", panel = cotab_sieve,
+ shade = TRUE)

> cotabplot(UCBAdmissions, cond = "Dept", panel = cotab_sieve,
+ shade = TRUE, labeling = labeling_values,
+ gp_text = gpar(fontface = "bold"))
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Figure 4.13: Sieve diagrams for the three-way table of the Berkeley admissions data. Left: Admit
by Dept, conditioned on Gender; right: Dept re-ordered as the first splitting variable. {fig:berkeley-sieve}
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Figure 4.14: Conditional Sieve diagram for the three-way table of the Berkeley data, conditioned
on gender. {fig:berkeley-cotabsieve}
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Figure 4.15: Conditional Sieve diagram for the three-way table of the Berkeley data, conditioned
on department. {fig:berkeley-cotabsieve2}

Remark

Finally, for tables of more than two dimensions, there is a variety of different models for “indepen-
dence” (discussed in Chapter 9 on log-linear models), and the strucplot framework allows these to
be specified with the expected argument, either as an array of numbers conforming to the data
argument, or as a model formula for loglm().

For example, a sieve diagram may be used to determine if the association between gender and
department is the same across departments by fitting the model ~ Admit * Gender + Dept,
which says that Dept is independent of the combinations of Admit and Gender. This is done as
shown below, giving the plot in Figure 4.16.

> UCB2 <- aperm(UCBAdmissions, c(3, 2, 1))
> sieve(UCB2, shade = TRUE, expected = ~ Admit * Gender + Dept,
+ split_vertical = c(FALSE, TRUE, TRUE))

In terms of the loglinear models discussed in Chapter 5, this is equivalent to fitting the model
of joint independence, [Admit Gender][Dept] . Figure 4.16 shows the greater numbers of male
applicants in departments A and B (whose overall rate of admission is high) and greater numbers of
female applicants in the remaining departments (where the admission rate is low).

4

4.6 Association plots
{sec:twoway-assoc}

In the sieve diagram the foreground (rectangles) shows expected frequencies; deviations from inde-
pendence are shown by color and density of shading. The association plot (Cohen, 1980, Friendly,
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Figure 4.16: Sieve diagram for the Berkeley admissions data, fitting the model of joint indepen-
dence, Admit * Gender + Dept {fig:berkeley-sieve2}

1991) puts deviations from independence in the foreground: the area of each box is made propor-
tional to the (observed − expected) frequency.

For a two-way contingency table, the signed contribution to Pearson χ2 for cell i, j is

rij =
nij −mij√

mij
= Pearson residual, χ2 =

∑
i,j

r2ij (4.5){eq:Pearson-residual}

In the association plot, each cell is shown by a rectangle, having:

• (signed) height ∼ rij ,
• width =√mij ,

so, the area of each cell is proportional to the raw residual, nij −mij . The rectangles for each row
in the table are positioned relative to a baseline representing independence (rij = 0) shown by a
dotted line. Cells with observed > expected frequency rise above the line (and are colored blue);
cells that contain less than the expected frequency fall below it (and are shaded red).

> assoc(~ Hair + Eye, data = HairEyeColor, shade = TRUE)
> assoc(HairEyeColor, shade = TRUE)

Figure 4.17 (left) shows the association plot for the data on hair color and eye color. In con-
structing this plot, each rectangle is shaded according to the value of the Pearson residual from
Eqn. (4.5), using a simple scale shown in the legend, where residuals |rij | > 2 are shaded blue or
red depending on their sign, and residuals |rij | > 4 are shaded with a more saturated color.

One virtue of the association plot is that it is quite simple to interpret in terms of the pattern
of positive and negative rij values. Bertin (1981) uses similar graphics to display large complex
contingency tables. Like the sieve diagram, however, patterns of association are most apparent
when the rows and columns of the display are ordered in a sensible way.
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Figure 4.17: Association plot for the hair-color eye-color data. Left: marginal table, collapsed over
gender; right: full table.{fig:HE-assoc}

We note here that the association plot also belongs to the strucplot framework and thus extends
to higher-way tables. For example, the full HairEyeColor table is also classified by Sex. The
plot for the three-way table is shown in Figure 4.17 (right). In this plot the third table variable (Sex
here) is shown nested within the first two, allowing easy comparison of the profiles of hair and eye
color for males and females.

4.7 Observer agreement
{sec:twoway-agree}

When the row and column variables represent different observers rating the same subjects or objects,
interest is focused on observer agreement rather than mere association. In this case, measures and
tests of agreement provide a method of assessing the reliability of a subjective classification or
assessment procedure.

For example, two (or more) clinical psychologists might classify patients on a scale with cat-
egories (a) normal, (b) mildly impaired, (c) severely impaired. Or, ethologists might classify the
behavior of animals in categories of cooperation, dominance and so forth, or paleologists might clas-
sify pottery fragments according to categories of antiquity or cultural groups. As these examples
suggest, the rating categories are often ordered, but not always.

For two raters, a contingency table can be formed by classifying all the subjects/objects rated
according to the rating categories used by the two observers. In most cases, the same categories are
used by both raters, so the contingency table is square, and the entries in the diagonal cells are the
cases where the raters agree.

In this section we describe some measures of the strength of agreement and then a method for
visualizing the pattern of agreement. But first, the following examples show some typical agreement
data. {ex:sexisfun1}

EXAMPLE 4.16: Sex is fun
The SexualFun table in vcd (Agresti (1990, Table 2.10), from Hout et al. (1987)) summarizes

the responses of 91 married couples to a questionnaire item: “Sex is fun for me and my partner: (a)
Never or occasionally, (b) Fairly often, (c) Very often, (d) Almost always. ”
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> data("SexualFun", package = "vcd")
> SexualFun

Wife
Husband Never Fun Fairly Often Very Often Always fun
Never Fun 7 7 2 3
Fairly Often 2 8 3 7
Very Often 1 5 4 9
Always fun 2 8 9 14

In each row the diagonal entry is not always the largest, though it appears that the partners tend
to agree more often when either responds “Almost always”. 4

{ex:MS1}

EXAMPLE 4.17: Diagnosis of MS patients
Landis and Koch (1977) gave data on the diagnostic classification of multiple sclerosis (MS)

patients by two neurologists, one from Winnipeg and one from New Orleans. There were two
samples of patients, 149 from Winnipeg and 69 from New Orleans, and each neurologist classified
all patients into one of four diagnostic categories: (a) Certain MS, (b) Probable MS, (c) Possible
MS, (d) Doubtful, unlikely, or definitely not MS.

These data are available in MSPatients, a 4 × 4 × 2 table, as shown below. It is convenient
to show the data in separate slices for the Winnipeg and New Orleans patients:

> MSPatients[, , "Winnipeg"]

Winnipeg Neurologist
New Orleans Neurologist Certain Probable Possible Doubtful

Certain 38 5 0 1
Probable 33 11 3 0
Possible 10 14 5 6
Doubtful 3 7 3 10

> MSPatients[, , "New Orleans"]

Winnipeg Neurologist
New Orleans Neurologist Certain Probable Possible Doubtful

Certain 5 3 0 0
Probable 3 11 4 0
Possible 2 13 3 4
Doubtful 1 2 4 14

> apply(MSPatients, 3, sum) # show sample sizes

Winnipeg New Orleans
149 69

In this example, note that the distribution of degree of severity of MS may differ between the
two patient samples. As well, for a given sample, the two neurologists may be more or less strict
about the boundaries between the rating categories.

4

4.7.1 Measuring agreement
{sec:agreemeas}

In assessing the strength of agreement we usually have a more stringent criterion than in measuring
the strength of association, because observers ratings can be strongly associated without strong
agreement. For example, one rater could use a more stringent criterion and thus consistently rate
subjects one category lower (on an ordinal scale) than another rater.

More generally, measures of agreement must take account of the marginal frequencies with
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which two raters use the categories. If observers tend to use the categories with different frequency,
this will affect measures of agreement.

Here we describe some simple indices that summarize agreement with a single score (and asso-
ciated standard errors or confidence intervals). Von Eye and Mun (2006) treat this topic from the
perspective of loglinear models.

4.7.1.1 Intraclass correlation

An analysis of variance framework leads to the intraclass correlation as a measure of inter-rater
reliability, particularly when there are more than two raters. This approach is not covered here, but
various applications are described by Shrout and Fleiss (1979), and implemented in R in ICC() in
the psych package.

4.7.1.2 Cohen’s Kappa

Cohen’s kappa (κ) (Cohen, 1960, 1968) is a commonly used measure of agreement that compares
the observed agreement to agreement expected by chance if the two observer’s ratings were inde-
pendent. If pij is the probability that a randomly selected subject is rated in category i by the first
observer and in category j by the other, then the observed agreement is the sum of the diagonal
entries, Po =

∑
i pii. If the ratings were independent, this probability of agreement (by chance)

would be Pc =
∑
i pi+ p+i. Cohen’s κ is then the ratio of the difference between actual agreement

and chance agreement, Po − Pc, to the maximum value this difference could obtain:

κ =
Po − Pc
1− Pc

. (4.6) {eq:kappa}

When agreement is perfect, κ = 1; when agreement is no better than would be obtained from
statistically independent ratings, κ = 0. κ could conceivably be negative, but this rarely occurs in
practice. The minimum possible value depends on the marginal totals.

For large samples (n++), κ has an approximate normal distribution when H0 : κ = 0 is true
and its standard error (Fleiss, 1973, Fleiss et al., 1969) is given by

σ̂(κ) =
Pc + P 2

c −
∑
i pi+p+i(pi+ + p+i)

n++(1− Pc)2
.

Hence, it is common to conduct a test of H0 : κ = 0 by referring z = κ/σ̂(κ) to a unit normal
distribution. The hypothesis of agreement no better than chance is rarely of much interest, however.
It is preferable to estimate and report a confidence interval for κ.

4.7.1.3 Weighted Kappa

The original (unweighted) κ only counts strict agreement (the same category is assigned by both
observers). A weighted version of κ (Cohen, 1968) may be used when one wishes to allow for
partial agreement. For example, exact agreements might be given full weight, while a one-category
difference might be given a weight of 1/2. This typically makes sense only when the categories are
ordered, as in severity of diagnosis.

Weighted κ uses weights, 0 ≤ wij ≤ 1 for each cell in the table, with wii = 1 for the diagonal
cells. In this case Po and Pc are defined as weighted sums

Po =
∑
i

∑
j

wijpij

Pc =
∑
i

∑
j

wijpi+p+j
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and these weighted sums are used in Eqn. (4.6).
For an R × R table, two commonly-used pattern of weights are those based on equal spacing

of weights (Cicchetti and Allison, 1971) for a near-match, and Fleiss-Cohen weights (Fleiss and
Cohen, 1972), based on an inverse-square spacing,

wij = 1− |i−j|R−1 equal spacing

wij = 1− |i−j|2
(R−1)2 Fleiss-Cohen

The Fleiss-Cohen weights attach greater importance to near disagreements, as you can see below
for a 4× 4 table. These weights also provide a measure equivalent to the intraclass correlation.

Integer Spacing Inverse Square Spacing
Cicchetti Allison weights Fleiss-Cohen weights

---------------------------- ---------------------------
1 2/3 1/3 0 1 8/9 5/9 0

2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9

0 1/3 2/3 1 0 5/9 8/9 1

4.7.1.4 Computing Kappa

The function Kappa() in vcd calculates unweighted and weighted Kappa. The weights argu-
ment can be used to specify the weighting scheme as either "Equal-Spacing" or "Fleiss-Cohen".
The function returns a "Kappa" object, for which there is a confint.Kappa() method, provid-
ing confidence intervals. The summary.Kappa() method also prints the weights.

The lines below illustrate Kappa for the SexualFun data.

> Kappa(SexualFun)

value ASE z Pr(>|z|)
Unweighted 0.129 0.0686 1.89 0.05939
Weighted 0.237 0.0783 3.03 0.00244

> confint(Kappa(SexualFun))

Kappa lwr upr
Unweighted -0.0051204 0.26378
Weighted 0.0838834 0.39088

4.7.2 Observer Agreement Chart
{sec:twoway-Bangdiwala}

The observer agreement chart proposed by Bangdiwala (1985, 1987) provides a simple graphic
representation of the strength of agreement in a contingency table, and alternative measures of
strength of agreement with an intuitive interpretation. More importantly, it shows the pattern of
disagreement when agreement is less than perfect.

4.7.2.1 Construction of the basic plot

Given a k × k contingency table, the agreement chart is constructed as an n × n square, where
n = n++ is the total sample size. Black squares, each of size nii × nii, show observed agreement.
These are positioned within k larger rectangles, each of size ni+ × n+i as shown in the left panel
of Figure 4.18. Each rectangle is subdivided by the row/column frequencies nij of row i/column j,
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where cell (i, i) is filled black. The large rectangle shows the maximum possible agreement, given
the marginal totals. Thus, a visual impression of the strength of agreement is given by

B =
area of dark squares
area of rectangles

=

∑k
i n

2
ii∑k

i ni+ n+i
(4.7){eq:bangb}

When there is perfect agreement, the k rectangles determined by the marginal totals are all squares,
completely filled by the shaded squares reflecting the diagonal nii entries, and B = 1.

> agreementplot(SexualFun, main = "Unweighted", weights = 1)
> agreementplot(SexualFun, main = "Weighted")
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Figure 4.18: Agreement charts for husbands’ and wives’ sexual fun. Left: unweighted chart, show-
ing only exact agreement; right: weighted chart, using weight w1 = 8/9 for a one-step disagree-
ment. {fig:sexfun-agree}

4.7.2.2 Partial agreement

Partial agreement is allowed by including a weighted contribution from off-diagonal cells, b steps
from the main diagonal. For a given cell frequency, nij , a pattern of weights, w1, w2, . . . , wb is
applied to the cell frequencies as shown schematically below:

ni−b,i
...

ni,i−b · · · ni,i · · · ni,i+b
...

ni+b,i

⇐

wb
...

wb · · · 1 · · · wb
...
wb

These weights are incorporated in the agreement chart (right panel of Figure 4.18) by succes-
sively lighter shaded rectangles whose size is proportional to the sum of the cell frequencies, denoted
Abi, shown above. A1i allows 1-step disagreements, using weights 1 and w1; A2i includes 2-step
disagreements, etc. From this, one can define a weighted measure of agreement, Bw, analogous to



150 4. Two-way Contingency Tables

weighted κ:

Bw =
weighted sum of areas of agreement

area of rectangles
= 1−

∑k
i [ni+n+i − n2ii −

∑q
b=1 wbAbi]∑k

i ni+ n+i

where wb is the weight for Abi, the shaded area b steps away from the main diagonal, and q is the
furthest level of partial disagreement to be considered.

The function agreementplot() actually calculates both B and Bw and returns them invisi-
bly as the result of the call. The results, B = 0.146, and Bw = 0.498, indicate a stronger degree of
agreement when 1-step disagreements are included.

> B <- agreementplot(SexualFun)
> unlist(B)[1 : 2]

Bangdiwala Bangdiwala_Weighted
0.14646 0.49817

{ex:mammograms}

EXAMPLE 4.18: Mammogram ratings
The Mammograms data in vcdExtra gives a 4× 4 table of (probably contrived) ratings of 110

mammograms by two raters from Kundel and Polansky (2003), used to illustrate the calculation and
interpretation of agreement measures in this context.9

> data("Mammograms", package = "vcdExtra")
> B <- agreementplot(Mammograms, main = "Mammogram ratings")
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Figure 4.19: Agreement plot for the Mammograms data.{fig:mammograms1}

The agreement plot in Figure 4.19 shows substantial agreement among the two raters, particu-
larly when one-step disagreements are taken into account. Careful study of this graph shows that

9In practice, of course, rater agreement on severity of diagnosis from radiology images varies with many factors. See
Antonio and Crespi (2010) for a meta-analytic study concerning agreement in breast cancer diagnosis.
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the two raters more often agree exactly for the extreme categories of “Absent” and “Severe.” The
amounts of unweighted and weighted agreement are shown numerically in the B and Bw statistics.

> unlist(B)[1 : 2]

Bangdiwala Bangdiwala_Weighted
0.42721 0.83665

4

4.7.3 Observer bias in agreement
{sec:twoway-observer}

With an ordered scale, it may happen that one observer consistently tends to classify the objects into
higher or lower categories than the other, perhaps due to using stricter thresholds for the boundaries
between adjacent categories. This bias produces differences in the marginal totals, ni+, and n+i and
decreases the maximum possible agreement. While special tests exist for marginal homogeneity,
the observer agreement chart shows this directly by the relation of the dark squares to the diagonal
line: When the marginal totals are the same, the squares fall along the diagonal. The measures
of agreement, κ and B, cannot determine whether lack of agreement is due to such bias, but the
agreement chart can detect this. {ex:MS2}

EXAMPLE 4.19: Diagnosis of MS patients
Agreement charts for both patient samples in the MSPatients data are shown in Figure 4.20.

The agreementplot() function only handles two-way tables, so we use cotabplot() with
the agreementplot panel to handle the Patients stratum:

> cotabplot(MSPatients, cond = "Patients", panel = cotab_agreementplot,
+ text_gp = gpar(fontsize = 18))
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Figure 4.20: Weighted agreement charts for both patient samples in the MSPatients data. Departure
of the middle rectangles from the diagonal indicates lack of marginal homogeneity. {fig:MS-agree}
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It can be seen that, for both groups of patients, the rectangles for the two intermediate categories
lie largely below the diagonal line (representing equality). This indicates that the Winnipeg neu-
rologist tends to classify patients into more severe diagnostic categories. The departure from the
diagonal is greater for the Winnipeg patients, for whom the Winnipeg neurologist uses the two most
severe diagnostic categories very often, as can also be seen from the marginal totals printed in the
plot margins.

Nevertheless there is a reasonable amount of agreement if one-step disagreements are allowed,
as can be seen in Figure 4.20 and quantified in the Bw statistics below. The agreement charts also
serve to explain why the B measures for exact agreement are so much lower.

> agr1 <- agreementplot(MSPatients[, , "Winnipeg"])
> agr2 <- agreementplot(MSPatients[, , "New Orleans"])
> rbind(Winnipeg = unlist(agr1), NewOrleans = unlist(agr2))[, 1 : 2]

Bangdiwala Bangdiwala_Weighted
Winnipeg 0.27210 0.73808
NewOrleans 0.28537 0.82231

4

4.8 Trilinear plots
{sec:twoway-trilinear}

The trilinear plot (also called a ternary diagram or trinomial plot) is a specialized display for a
3-column contingency table or for three variables whose relative proportions are to be displayed.
Individuals may be assigned to one of three diagnostic categories, for example, or a chemical process
may yield three constituents in varying proportions, or we may look at the division of votes among
three parties in a parliamentary election. This display is useful, therefore, for both frequencies and
proportions.

Trilinear plots are featured prominently in Aitchison (1986), who describes statistical models
for this type of compositional data. Upton (1976, 1994) uses them in detailed analyses of spatial
and temporal changes in British general elections. Wainer (1996) reviews a variety of other uses
of trilinear plots and applies them to aid in understanding the distributions of students achievement
in the National Assessment of Educational Progress, making some aesthetic improvements to the
traditional form of these plots along the way.

A trilinear plot displays each observation as a point inside an equilateral triangle whose coordi-
nates correspond to the relative proportions in each column. The three vertices represent the three
extremes when 100% occurs in one of the three columns; a point in the exact center corresponds to
equal proportions of 1

3 in all three columns. In fact, each point represents the (weighted) barycenter
of the triangle, the coordinates representing weights placed at the corresponding vertices. For in-
stance, Figure 4.21 shows three points whose compositions of three variables, A, B, and C are given
in the data frame DATA below.

> library(ggtern)
> DATA <- data.frame(
+ A = c(40, 20, 10),
+ B = c(30, 60, 10),
+ C = c(30, 20, 80),
+ id = c("1", "2", "3"))
>
> aesthetic_mapping <- aes(x = C, y = A, z = B, colour = id)
> ggtern(data = DATA, mapping = aesthetic_mapping) +
+ geom_point(size = 4) +
+ theme_rgbw()

(The plot shown requires some more cosmetic parameters not shown for simplicity).
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Figure 4.21: A trilinear plot showing three points, for variables A, B, C.{fig:tripdemo2}

Note that each apex corresponds to 100% of the labeled variable, and the percentage of this
variable decrease linearly along a line to the midpoint of the opposite baseline. The grid lines in the
figure show the percentage value along each axis.

The construction of trilinear plots is described in detail in http://en.wikipedia.org/
wiki/Ternary_plot. Briefly, let P (a, b, c) represent the three components normalized so that
a+ b+ c = 1.0. If the apex corresponding to Point A in Figure 4.21 is given (x, y) coordinates of
(xA, yA) = (0, 0), and those at apex B are (xB , yB) = (100, 0), then the coordinates of apex C are
(xC , yC) = (50, 50

√
3). The cartesian coordinates (xP , yP ) of point P are then calculated as

yP = c yC

xP = yP

(
yC − yB
xC − xB

)
+

√
3

2
yC(1− a)

In R, trilinear plots are implemented in the triplot() function in the TeachingDemos pack-
age, and also in the ggtern package, an extension of the ggplot2 framework. The latter is much
more flexible, because it inherits all of the capabilities of ggplot2 for plot annotations, faceting, and
layers. In essence, the function ggtern() is just a wrapper for ggplot(...) which adds a
change in the coordinate system from cartesian (x, y) coordinates to the ternary coordinate system
with coord_tern(). {ex:lifeboat1}

EXAMPLE 4.20: Lifeboats on the Titanic
We examine the question of who survived and why in the sinking of the RMS Titanic in Sec-

tion 5.4 (Example ??), where we analyze a four-way table, Titanic, of the 2, 201 people on board
(1, 316 passengers and 885 crew), classified by Class, Sex, Age, and Survival. TODO: This
Titanic example does not yet exist in chapter 5! A related data set, Lifeboats in vcd, tabulates
the survivors according to the life boats on which they were loaded. This data sheds some additional
light on the issue of survival and provides a nice illustration of trilinear plots.
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A bit of background: after the disaster, the British Board of Trade launched several inquiries,
the most comprehensive of which resulted in the Report on the Loss of the “Titanic” (S.S.) by Lord
Mersey (Mersey, 1912).10 The data frame Lifeboats in vcd contains the data listed on p. 38 of
that report.11

Of interest here is the composition of the boats by the three categories: men, women and chil-
dren, and crew, and according to the launching of the boats from the port or starboard side. This can
be shown in a trilinear display using the following statements. The plot, shown in Figure 4.22, has
most of the points near the bottom left, corresponding to a high percentage of women and children.
We create a variable, id, used to label those boats with more than 10% male passengers. In the
ggplot2 framework, plot aesthetics such as color and shape can be mapped to variables in the
data set, and here we map these both to side of the boat.

> data("Lifeboats", package = "vcd")
> # label boats with more than 10% men
> Lifeboats$id <- ifelse(Lifeboats$men / Lifeboats$total > .1,
+ as.character(Lifeboats$boat), "")
>
> AES <- aes(x = women, y = men, z = crew, colour = side, shape = side,
+ label = id)
> ggtern(data = Lifeboats, mapping = AES) +
+ geom_text() +
+ theme_rgbw() +
+ geom_smooth(method = "lm", alpha = 0.2)
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Figure 4.22: Lifeboats on the Titanic, showing the composition of each boat. Boats with more than
10% male passengers are labeled.{fig:lifeboats1}

The resulting plot in Figure 4.22 (for which some more cosmetic parameters than shown in
the code above have been used) makes it immediately apparent that many of the boats launched
from the port side differ substantially from the starboard boats, whose passengers were almost
entirely women and children. Boat 1 had only 20% (2 out of 10) women and children, while the

10The Titanic was outfitted with 20 boats, half on each of the port and starboard sides, of which 14 were large lifeboats
with a capacity of 65, two were emergency boats designed for 40 persons, and the remaining four were collapsible boats
capable of holding 47, a total capacity of 1, 178 (considered adequate at that time). Two of the collapsible boats, lashed to
the roof of the officers quarters, were ineffectively launched and utilized as rafts after the ship sunk. The report lists the time
of launch and composition of the remaining 18 boats according to male passengers, women and children, and “men of crew”,
as reported by witnesses.

11The “data” lists a total of 854 in 18 boats, although only 712 were in fact saved. Mersey notes “it is obvious that these
figures are quite unreliable”.
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percentage for boat 3 was only 50% (25 out of 50). We highlight the difference in composition
of the boats launched from the two sides by adding seperate linear regression lines for the relation
men ~ women.

The trilinear plot scales the numbers for each observation to sum to 1.0, so differences in the
total number of people on each boat cannot be seen in Figure 4.22. The total number reported
loaded is plotted against launch time in Figure 4.23, with a separate regression line and loess
smooth fit to the data for the port and starboard sides (code again simplified for clarity):

> AES <- aes(x = launch, y = total, colour = side, label = boat)
> ggplot(data = Lifeboats, mapping = AES) +
+ geom_text() +
+ geom_smooth(method = "lm", aes(fill = side), size = 1.5) +
+ geom_smooth(method = "loess", aes(fill = side), se = FALSE,
+ size = 1.2)
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Figure 4.23: Number of people loaded on lifeboats on the Titanic vs. time of launch, by side of
boat. The plot annotations show the linear regression and loess smooth. {fig:lifeboats2}

From the linear regression lines in Figure 4.23, it seems that the rescue effort began in panic
on the port side, with relatively small numbers loaded, and (from Figure 4.22), small proportions
of women and children. But the loading regime on that side improved steadily over time. The
procedures began more efficiently on the starboard side but the numbers loaded increased only
slightly. The smoothed loess curves indicate that over time, for each side, there was still a large
variability from boat to boat.

4

4.9 Chapter summary
{sec:twoway-summary}

• A contingency table gives the frequencies of observations cross-classified by two or more cat-
egorical variables. With such data we are typically interested in testing whether associations
exist, quantifying the strength of association, and understanding the nature of the association
among these variables.

• For 2 × 2 tables, association is easily summarized in terms of the odds ratio or its logarithm.
This measure can be extended to stratified 2 × 2 × k tables, where we can also assess whether
the odds ratios are equal across strata or how they vary.
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• For R × C tables, measures and tests of general association between two categorical vari-
ables are most typically carried out using the Pearson’s chi-squared or likelihood-ratio tests
provided by assocstats(). Stratified tests controlling for one or more background vari-
ables, and tests for ordinal categories are provided by the Cochran-Mantel-Haenszel tests given
by CMHtest().

• For 2 × 2 tables, the fourfold display provides a visualization of the association between vari-
ables in terms of the odds ratio. Confidence rings provide a visual test of whether the odds
ratio differs significantly from 1. Stratified plots for 2 × 2 × k tables are also provided by
fourfold().

• Sieve diagrams and association plots provide other useful displays of the pattern of association
in R× C tables. These also extend to higher-way tables as part of the strucplot framework.

• When the row and column variables represent different observers rating the same subjects, inter-
est is focused on agreement rather than mere association. Cohen’s κ is one measure of strength
of agreement. The observer agreement chart provides a visual display of how the observers
agree and disagree.

• Another specialized display, the trilinear plot is useful for three-column frequency tables or
compositional data.

4.10 Lab exercises
{sec:twoway-lab}{lab:4.1}

Exercise 4.1 The data set fat, created below, gives a 2×2 table recording the level of cholesterol
in diet and the presence of symptoms of heart disease for a sample of 23 people.

> fat <- matrix(c(6, 4, 2, 11), 2, 2)
> dimnames(fat) <- list(diet = c("LoChol", "HiChol"),
+ disease = c("No", "Yes"))

(a) Use chisq.test(fat) to test for association between diet and disease. Is there any indi-
cation that this test may not be appropriate here?

(b) Use a fourfold display to test this association visually. Experiment with the different options
for standardizing the margins, using the margin argument to fourfold(). What evidence
is shown in different displays regarding whether the odds ratio differs significantly from 1?

(c) oddsratio(fat, log = FALSE) will give you a numerical answer. How does this
compare to your visual impression from fourfold displays?

(d) With such a small sample, Fisher’s exact test may be more reliable for statistical inference.
Use fisher.test(fat), and compare these results to what you have observed before.

(e) Write a one-paragraph summary of your findings and conclusions for this data set.
{lab:4.2}

Exercise 4.2 The data set Abortion in vcdExtra gives a 2 × 2 × 2 table of opinions regarding
abortion in relation to sex and status of the respondent. This table has the following structure:

> data("Abortion", package = "vcdExtra")
> str(Abortion)

table [1:2, 1:2, 1:2] 171 152 138 167 79 148 112 133
- attr(*, "dimnames")=List of 3
..$ Sex : chr [1:2] "Female" "Male"
..$ Status : chr [1:2] "Lo" "Hi"
..$ Support_Abortion: chr [1:2] "Yes" "No"
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(a) Taking support for abortion as the outcome variable, produce fourfold displays showing the
association with sex, stratified by status.

(b) Do the same for the association of support for abortion with status, stratified by sex.
(c) For each of the problems above, use oddsratio() to calculate the numerical values of the

odds ratio, as stratified in the question.
(d) Write a brief summary of how support for abortion depends on sex and status.

{lab:4.3}

Exercise 4.3 The JobSat table on income and job satisfaction created in Example 2.5 is con-
tained in the vcdExtra package.

(a) Carry out a standard χ2 test for association between income and job satisfaction. Is there any
indication that this test might not be appropriate? Repeat this test using simulate.p.value
= TRUE to obtain a Monte Carlo test that does not depend on large sample size. Does this
change your conclusion?

(b) Both variables are ordinal, so CMH tests may be more powerful here. Carry out that analysis.
What do you conclude?

{lab:4.4}

Exercise 4.4 The Hospital data in vcd gives a 3× 3 table relating the length of stay (in years)
of 132 long-term schizophrenic patients in two London mental hospitals with the frequency of visits
by family and friends.

(a) Carry out a χ2 test for association between the two variables.
(b) Use assocstats() to compute association statistics. How would you describe the strength

of association here?
(c) Produce an association plot for these data, with visit frequency as the vertical variable. De-

scribe the pattern of the relation you see here.
(d) Both variables can be considered ordinal, so CMHtest() may be useful here. Carry out that

analysis. Do any of the tests lead to different conclusions?
{lab:4.5}

Exercise 4.5 Continuing with the Hospital data:

(a) Try one or more of the following other functions for visualizing two-way contingency ta-
bles with this data: plot(), tile(), mosaic(), and spineplot(). [For all except
spineplot(), it is useful to include the argument shade=TRUE].

(b) Comment on the differences among these displays for understanding the relation between
visits and length of stay.

{lab:4.6}

Exercise 4.6 The two-way table Mammograms in vcdExtra gives ratings on the severity of diag-
nosis of 110 mammograms by two raters.

(a) Assess the strength of agreement between the raters using Cohen’s κ, both unweighted and
weighted.

(b) Use agreementplot() for a graphical display of agreement here.
(c) Compare the Kappa measures with the results from assocstats(). What is a reasonable

interpretation of each of these measures?
{lab:4.7}

Exercise 4.7 Agresti and Winner (1997) gave the data in Table 4.8 on the ratings of 160 movies
by the reviewers Gene Siskel and Roger Ebert for the period from April 1995 through September
1996. The rating categories were Con (“thumbs down”), Mixed, and Pro (“thumbs up”).

(a) Assess the strength of agreement between the raters using Cohen’s κ, both unweighted and
weighted.

(b) Use agreementplot() for a graphical display of agreement here.
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Table 4.8: Movie ratings by Siskel & Ebert, April 1995–September 1996. Source: Agresti and
Winner (1997) {tab:siskel-ebert}

Ebert
Con Mixed Pro Total

Con 24 8 13 45
Siskel Mixed 8 13 11 32

Pro 10 9 64 83
Total 42 30 88 160

(c) Assess the hypothesis that the ratings are symmetric around the main diagonal, using an ap-
propriate χ2 test. Hint: Symmetry for a square table T means that tij = tji for i 6= j. The
expected frequencies under the hypothesis of symmetry are the average of the off-diagonal
cells, E = (T + T T)/2.

(d) Compare the results with the output of mcnemar.test().
{lab:4.8}

Exercise 4.8 For the VisualAcuity data set:

(a) Use the code shown in the text to create the table form, VA.tab.
(b) Perform the CMH tests for this table.
(c) Use the woolf_test() described in Section 4.3.2 to test whether the association between

left and right eye acuity can be considered the same for men and women.
{lab:4.9}

Exercise 4.9 The graph in Figure 4.23 may be misleading, in that it doesn’t take into account of the
differing capacities of the 18 life boats on the Titanic, given in the variable cap in the Lifeboats
data.

(a) Calculate a new variable, pctloaded as the percentage loaded relative to the boat capacity.
(b) Produce a plot similar to Figure 4.23, showing the changes over time in this measure.
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Mosaic displays help to visualize the pattern of associations among variables in two-
way and larger tables. Extensions of this technique can reveal partial associations, marginal
associations, and shed light on the structure of loglinear models themselves.

5.1 Introduction
{sec:mosaic-intro}

Little boxes, little boxes, little boxes made of ticky-tacky;
Little boxes, little boxes, little boxes all the same.
There are red ones, and blue ones, and green ones, and yellow ones;
Little boxes, little boxes, and they all look just the same.

Pete Seeger

In Chapter 4, we described a variety of graphical techniques for visualizing the pattern of asso-
ciation in simple contingency tables. These methods are somewhat specialized for particular sizes
and shapes of tables: 2× 2 tables (fourfold display), R×C tables (tile plot, sieve diagram), square
tables (agreement charts), R× 3 tables (trilinear plots), and so forth.

This chapter describes the mosaic display and related graphical methods for n-way frequency
tables, designed to show various aspects of high-dimensional contingency tables in a hierarchical
way. These methods portray the frequencies in an n-way contingency table by a collection of rect-
angular “tiles” whose size (area) is proportional to the cell frequency. In this respect, the mosaic

159
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display is similar to the sieve diagram (Section 4.5). However, mosaic plots and related methods
described here:

• generalize more readily to n-way tables. One can usefully examine 3-way, 4-way and even
larger tables, subject to the limitations of resolution in any graph;

• are intimately connected to loglinear models, generalized linear models and generalized nonlin-
ear models for frequency data;

• provide a method for fitting a series of sequential loglinear models to the various marginal totals
of an n-way table; and

• can be used to illustrate the relations among variables which are fitted by various loglinear
models.

The basic ideas behind these graphical methods are explained for two-way tables in Section 5.2;
the strucplot framework on which these are based is described in Section 5.3. The graphical ex-
tension of mosaic plots to three-way and large tables (Section 5.4) is quite direct. However, the
details require a brief introduction to loglinear models and some terminology for different types of
“independence” in such tables, also described in this section. Mosaic methods are further extended
to all-pairwise plots in Section 5.6 and 3D plots in Section 5.7.

5.2 Two-way tables
{sec:mosaic-twoway}

The mosaic display (Friendly, 1992, 1994b, 1997, Hartigan and Kleiner, 1981, 1984) is like a
grouped barchart, where the heights (or widths) of the bars show the relative frequencies of one
variable, and widths (heights) of the sections in each bar show the conditional frequencies of the
second variable, given the first. This gives an area-proportional visualization of the frequencies
composed of tiles corresponding to the cells created by successive vertical and horizontal splits of
rectangle, representing the total frequency in the table. The construction of the mosaic display, and
what it reveals, are most easily understood for two-way tables.{ex:haireye2a}

EXAMPLE 5.1: Hair color and eye color
Consider the data shown earlier in Table 4.2, showing the relation between hair color and eye

color among students in a statistics course. The basic mosaic display for this 4 × 4 table is shown
in Figure 5.1.

> data("HairEyeColor", package = "datasets")
> haireye <- margin.table(HairEyeColor, 1 : 2)
> mosaic(haireye, labeling = labeling_values)

For such a two-way table, the mosaic in Figure 5.1 is constructed by first dividing a unit square
in proportion to the marginal totals of one variable, say, Hair color.

For these data, the marginal frequencies and proportions of Hair color are calculated below:

> (hair <- margin.table(haireye, 1))

Hair
Black Brown Red Blond
108 286 71 127

> prop.table(hair)

Hair
Black Brown Red Blond

0.18243 0.48311 0.11993 0.21453
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Figure 5.1: Basic mosaic display for hair color and eye color data. The area of each rectangle is
proportional to the observed frequency in that cell, shown as numbers.{fig:haireye-mos1}
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Figure 5.2: First step in constructing a mosaic display. Left: splitting the unit square according
to frequencies of hair color; right: shading the tiles according to residuals from a model of equal
marginal probabilities.{fig:haireye-mos4}
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These frequencies can be shown as the mosaic for the first variable (hair color), with the unit
square split according to the marginal proportions as in Figure 5.2 (left). The rectangular tiles are
then shaded to show the residuals (deviations) from a particular model as shown in the right panel
of Figure 5.2. The details of the calculations for shading are:

• The one-way table of marginal totals can be fit to a model, in this case, the (implausible) model
that all hair colors are equally probable. This model has expected frequencies mi = 592/4 =
148:

> expected <- rep(sum(hair) / 4, 4)
> names(expected) <- names(hair)
> expected

Black Brown Red Blond
148 148 148 148

• The Pearson residuals from this model, ri = (ni −mi)/
√
mi, are:

> (residuals <- (hair - expected) / sqrt(expected))

Hair
Black Brown Red Blond

-3.2880 11.3435 -6.3294 -1.7262

and these values are shown by color and shading as shown in the legend in Figure 5.3. The high
positive value for Brown hair indicates that people with brown hair are much more frequent in
this sample than the equiprobability model would predict; the large negative residual for Red
hair shows that red heads are much less common. Further details of the schemes for shading are
described below, but essentially we use increasing intensities of blue (red) for positive (negative)
residuals.

In the next step, the rectangle for each Hair color is subdivided in proportion to the relative
(conditional) frequencies of the second variable— Eye color, giving the following conditional row
proportions:

> round(addmargins(prop.table(haireye, 1), 2), 3)

Eye
Hair Brown Blue Hazel Green Sum
Black 0.630 0.185 0.139 0.046 1.000
Brown 0.416 0.294 0.189 0.101 1.000
Red 0.366 0.239 0.197 0.197 1.000
Blond 0.055 0.740 0.079 0.126 1.000

The proportions in each row determine the width of the tiles in the second mosaic display in
Figure 5.3.

• Again, the cells are shaded in relation to standardized Pearson residuals, rij = (nij−mij)/
√
mij ,

from a model. For a two-way table, the model is that Hair color and Eye color are independent in
the population from which this sample was drawn. These residuals are calculated as shown be-
low using independence_table() to calculate the expected values mij under this model
(mij = n++πi+π+j):

> exp <- independence_table(haireye)
> resids <- (haireye - exp) / sqrt(exp)
> round(resids, 2)
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Figure 5.3: Second step in constructing the mosaic display. Each rectangle for hair color is sub-
divided in proportion to the relative frequencies of eye color, and the tiles are shaded in relation to
residuals from the model of independence.{fig:haireye-mos8}

Eye
Hair Brown Blue Hazel Green
Black 4.40 -3.07 -0.48 -1.95
Brown 1.23 -1.95 1.35 -0.35
Red -0.07 -1.73 0.85 2.28
Blond -5.85 7.05 -2.23 0.61

• Thus, in Figure 5.3, the two tiles shaded deep blue correspond to the two cells, (Black, Brown)
and (Blond, Blue), whose residuals are greater than +4, indicating much greater frequency in
those cells than would be found if Hair color and Eye color were independent. The tile shaded
deep red, (Blond, Brown), corresponds to the largest negative residual = −5.85, indicating this
combination is extremely rare under the hypothesis of independence.

• The overall Pearson χ2 statistic for the independence model is just the sum of squares of the
residuals, with degrees of freedom (r − 1)× (c− 1).

> (chisq <- sum(resids ^ 2))

[1] 138.29

> (df <- prod(dim(haireye) - 1))

[1] 9

> pchisq(chisq, df, lower.tail = FALSE)

[1] 2.3253e-25
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• These results are of course identical to what chisq.test() provides. Note that the latter can
be used to retrieve the residuals:

> chisq.test(haireye)

Pearson's Chi-squared test

data: haireye
X-squared = 138.29, df = 9, p-value < 2.2e-16

> round(residuals(chisq.test(haireye)), 2)

Eye
Hair Brown Blue Hazel Green
Black 4.40 -3.07 -0.48 -1.95
Brown 1.23 -1.95 1.35 -0.35
Red -0.07 -1.73 0.85 2.28
Blond -5.85 7.05 -2.23 0.61

4

5.2.1 Shading levels

A variety of schemes for shading the tiles are available in the strucplot framework (Section 5.3),
but the simplest (and default) shading patterns for the tiles are based on the sign and magnitude of
the standardized Pearson residuals, using shades of blue for positive residuals and red for negative
residuals, and two threshold values for their magnitudes, |rij | > 2 and |rij | > 4.

Because the standardized residuals are approximately unit-normal N(0, 1) values, this corre-
sponds to highlighting cells whose residuals are individually significant at approximately the .05
and .0001 level, respectively. Other shading schemes described later provide tests of significance,
but the main purpose of highlighting cells is to draw attention to the pattern of departures of the
data from the assumed model of independence.

5.2.2 Interpretation and reordering

To interpret the association between Hair color and Eye color, consider the pattern of positive (blue)
and negative (red) tiles in the mosaic display. We interpret positive values as showing cells whose
observed frequency is substantially greater than would be found under independence; negative val-
ues indicate cells which occur less often than under independence.

The interpretation can often be enhanced by reordering the rows or columns of the two-way
table so that the residuals have an opposite corner pattern of signs. This usually helps us interpret
any systematic patterns of association in terms of the ordering of the row and column categories.

In this example, a more direct interpretation can be achieved by reordering the Eye colors as
shown in Figure 5.4. Note that in this rearrangement both hair colors and eye colors are ordered
from dark to light, suggesting an overall interpretation of the association between Hair color and
Eye color.

> # re-order Eye colors from dark to light
> haireye2 <- as.table(haireye[, c("Brown", "Hazel", "Green", "Blue")])
> mosaic(haireye2, shade = TRUE)

In general, the levels of a factor in mosaic displays are often best reordered by arranging them
according to their scores on the first (largest) correspondence analysis dimension (Friendly, 1994b);
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Figure 5.4: Two-way mosaic for Hair color and Eye color, reordered. The Eye colors were re-
ordered from dark to light, enhancing the interpretation.{fig:haireye-mos9}

see Chapter 6 for details. Friendly and Kwan (2003) use this as one example of effect ordering for
data displays, illustrated in Chapter 1.

Thus, the mosaic in Figure 5.4 shows that the association between Hair and Eye color is essen-
tially that:

• people with dark hair tend to have dark eyes,
• those with light hair tend to have light eyes
• people with red hair and hazel eyes do not quite fit this pattern

5.3 The strucplot framework
{sec:mosaic-strucplot}

Mosaic displays have much in common with sieve plots and association plots described in Chapter 4
and with related graphical methods such as doubledecker plots described later in this chapter. The
main idea is to visualize a contingency table of frequencies by “tiles” corresponding to the table
cells arranged in rectangular form. For multiway tables with more than two factors, the variables are
nested into rows and columns using recursive conditional splits, given the table margins. The result
is a “flat” representation that can be visualized in ways similar to a two-dimensional representation
of a table. The structable() function described in Section 2.5 gives the tabular version of a
strucplot. The description below follows Meyer et al. (2006), also included as a vignette, (accessible
from R as vignette("strucplot", pkg = "vcd")), in vcd.

Rather than implementing each of these methods separately, the strucplot framework in the
vcd package provides a general class of methods of which these are all instances. This framework
defines a class of conditional displays which allows for granular control of graphical appearance
aspects, including:

• the content of the tiles, e.g., observed or expected frequencies
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Figure 5.5: Components of the strucplot framework. High level functions use those at lower levels
to provide a general system for tile-based plots of frequency tables.{fig:struc}

• the split direction for each dimension, horizontal or vertical
• the graphical parameters of the tiles’ content, e.g., color or other visual attributes
• the spacing between the tiles
• the labeling of the tiles

5.3.1 Components overview
{sec:strucplot_overview}

The strucplot framework is highly modularized: Figure 5.5 shows the hierarchical relationship be-
tween the various components. For the most part, you will use directly the convenience and related
functions at the top of the diagram, but it is more convenient to describe the framework from the
bottom up.

1. On the lowest level, there are several groups of workhorse and parameter functions that directly
or indirectly influence the final appearance of the plot (see Table 5.1 for an overview). These
are examples of graphical appearance control functions (called grapcon functions). They are
created by generating functions (grapcon generators), allowing flexible parameterization and
extensibility (Figure 5.5 only shows the generators). The generator names follow the naming
convention group_foo(), where group reflects the group the generators belong to (strucplot
core, labeling, legend, shading, or spacing).

• The workhorse functions (created by struc_foo()) are labeling_foo(), and legend_foo().
These functions directly produce graphical output (i.e., “add ink to the canvas”), for labels
and legends respectively.

• The parameter functions (created by spacing_foo() and shading_foo()) com-
pute graphical parameters used by the others. The grapcon functions returned by struc_foo()
implement the core functionality, creating the tiles and their content.
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Group Grapcon generator Description
strucplot struc_assoc() core function for association plots
core struc_mosaic() core function for mosaic plots (also used for tile plots)

struc_sieve() core function for sieve plots
labeling labeling_border() border labels

labeling_cboxed() centered labels with boxes, all labels clipped,
and on top and left border

labeling_cells() cell labels
labeling_conditional() border labels for conditioning variables

and cell labels for conditioned variables
labeling_doubledecker() draws labels for doubledecker plot
labeling_lboxed() left-aligned labels with boxes
labeling_left() left-aligned border labels
labeling_left2() left-aligned border labels, all labels on top and left border
labeling_list() draws a list of labels under the plot
labeling_residuals() show residuals in cells
labeling_value() show values (observed, expected) in cells

shading shading_binary() visualizes the sign of the residuals
shading_Friendly() implements Friendly shading (based on HSV colors)
shading_hcl() shading based on HCL colors
shading_hsv() shading based on HSV colors
shading_max() shading visualizing the maximum test statistic

(based on HCL colors)
shading_sieve() implements Friendly shading customized for sieve plots

(based on HCL colors)
spacing spacing_conditional() increasing spacing for conditioning variables,

equal spacing for conditioned variables
spacing_dimequal() equal spacing for each dimension
spacing_equal() equal spacing for all dimensions
spacing_highlighting() increasing spacing, last dimension set to zero
spacing_increase() increasing spacing

legend legend_fixed() creates a fixed number of bins (similar to mosaicplot())
legend_resbased() suitable for an arbitrary number of bins

(also for continuous shadings)

Table 5.1: Available graphical appearance control (grapcon) generators in the strucplot framework{tab:grapcons}
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2. On the second level of the framework, a suitable combination of the low-level grapcon func-
tions (or, alternatively, corresponding generating functions) is passed as “hyperparameters” to
strucplot(). This central function sets up the graphical layout using grid viewports, and
coordinates the specified core, labeling, shading, and spacing functions to produce the plot.

3. On the third level, vcd provides several convenience functions such as mosaic(), sieve(),
assoc(), tile(), and doubledecker()which interface to strucplot() through sen-
sible parameter defaults and support for model formulae.

4. Finally, on the fourth level, there are “related” vcd functions (such as cotabplot() and the
pairs() methods for table objects) arranging collections of plots of the strucplot framework
into more complex displays (e.g., by means of panel functions).

5.3.2 Shading schemes
{sec:mosaic-shading}

Unlike other graphics functions in base R, the strucplot framework allows almost full control over
the graphical parameters of all plot elements. In particular, in association plots, mosaic plots, and
sieve plots, you can modify the graphical appearance of each tile individually.

Built on top of this functionality, the framework supplies a set of shading functions choosing
colors appropriate for the visualization of loglinear models. The tiles’ graphical parameters are set
using the gp argument of the functions of the strucplot framework. This argument basically expects
an object of class "gpar" whose components are arrays of the same shape (length and dimensional-
ity) as the data table.

For added generality, however, you can also supply a grapcon function that computes such
an object given a vector of residuals, or, alternatively, a generating function that takes certain argu-
ments and returns such a grapcon function (see Table 5.1). vcd provides several shading functions,
including support for both HSV and HCL colors, and the visualization of significance tests.

5.3.2.1 Specifying graphical parameters for strucplot displays

Strucplot displays in vcd are built using the grid graphics package. There are many graphical
parameters that can be set using gp = gpar(...) in a call to a high-level strucplot function.
Among these, the following are often most useful to control the drawing components:

col Color for lines and borders.
fill Color for filling rectangles, polygons, ...
alpha Alpha channel for transparency of fill color.
lty Line type for lines and borders.
lwd Line width for lines and borders.

In addition, a number of parameters control the display of text labels in these displays:

fontsize The size of text (in points)
cex Multiplier applied to fontsize
fontfamily The font family (serif, sans, mono, ...)
fontface The font face (bold, italic, ...)

See help(gpar) for a complete list and help(par) further details.
We illustrate this capability below using the Hair color and Eye color data as reordered in Fig-

ure 5.4. The following example produces a Marimekko chart, or a “poor-man’s mosaic display” as
shown in the left panel of Figure 5.6. This is essentially a divided bar chart where the eye colors
within each horizontal bar for the hair color group are all given the same color. In the example, the
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matrix fill_colors is constructed to conform to the haireye2 table, using color values that
approximate the eye colors.1

> # color by hair color
> fill_colors <- c("brown4", "#acba72", "green", "lightblue")
> (fill_colors_mat <- t(matrix(rep(fill_colors, 4), ncol = 4)))

[,1] [,2] [,3] [,4]
[1,] "brown4" "#acba72" "green" "lightblue"
[2,] "brown4" "#acba72" "green" "lightblue"
[3,] "brown4" "#acba72" "green" "lightblue"
[4,] "brown4" "#acba72" "green" "lightblue"

> mosaic(haireye2, gp = gpar(fill = fill_colors_mat, col = 0))

Note that because the hair colors and eye colors are both ordered, this shows the decreasing preva-
lence of light hair color amongst those with brown eyes and the increasing prevalence of light hare
with blue eyes.

Alternatively, for some purposes,2 we might like to use color to highlight the pattern of diagonal
cells, and the off-diagonals 1, 2, 3 steps removed. The R function toeplitz() returns such a
patterned matrix, and we can use this to calculate the fill_colors by indexing the result of the
rainbow_hcl() palette function in colorspace (generating better colors than palette()).
The code below produces the right panel in Figure 5.6.

> # toeplitz designs
> library(colorspace)
> toeplitz(1 : 4)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 1 2 3
[3,] 3 2 1 2
[4,] 4 3 2 1

> fill_colors <- rainbow_hcl(8)[1 + toeplitz(1 : 4)]
> mosaic(haireye2, gp = gpar(fill = fill_colors, col = 0))

> fill_colors <- c("brown4", "#acba72", "green", "lightblue")
> (fill_colors_mat <- t(matrix(rep(fill_colors, 4), ncol=4)))

[,1] [,2] [,3] [,4]
[1,] "brown4" "#acba72" "green" "lightblue"
[2,] "brown4" "#acba72" "green" "lightblue"
[3,] "brown4" "#acba72" "green" "lightblue"
[4,] "brown4" "#acba72" "green" "lightblue"

> mosaic(haireye2, gp = gpar(fill = fill_colors_mat, col = 0))
>
> library(colorspace)
> toeplitz(1:4)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 1 2 3
[3,] 3 2 1 2
[4,] 4 3 2 1

> fill_colors <- rainbow_hcl(8)[1+toeplitz(1:4)]
> mosaic(haireye2, gp = gpar(fill = fill_colors, col = 0))

1Actually, the fill_colors vector could directly be used since values are recycled as needed by mosaic().
2For example, this would be appropriate for a square table, showing agreement between row and column categories, as

in Section 4.7.
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Figure 5.6: Mosaic displays for the exttthaireye2 data, using custom colors to fill the tiles. Left:
Marimekko chart, using colors to reflect the eye colors; right: Toeplitz-based colors, reflecting the
diagonal strips in a square table. {fig:HE-fill}

More simply, to shade a mosaic according to the levels of one variable (typically a response
variable), you can use the highlighting arguments of mosaic(). The first call below gives a
result similar to the left panel of Figure 5.6. Alternatively, using the formula method for mosaic(),
specify the response variable as the left-hand side.

> mosaic(haireye2, highlighting = "Eye", highlighting_fill = fill_colors)
> mosaic(Eye ~ Hair, data = haireye2, highlighting_fill = fill_colors)

5.3.2.2 Residual-based shading

The important idea that differentiates mosaic and other strucplot displays from the “poor-man’s,”
Marimekko versions (Figure 5.6) often shown in other software is that rather than just using shading
color to identify the cells, we can use these attributes to show something more— residuals from
some model, whose pattern helps to explain the association between the table variables.

As described above, the strucplot framework includes a variety of shading_ functions, and
these can be customized with optional arguments. Zeileis et al. (2007) describe a general approach
to residual-based shadings for area-proportional visualizations, used in the development of the struc-
plot framework in vcd.{ex:interp}

EXAMPLE 5.2: Interpolation options
One simple thing to do is to modify the interpolate option passed to the default shading_hcl

function, as shown in Figure 5.7.

> # more shading levels
> mosaic(haireye2, shade = TRUE, gp_args = list(interpolate = 1 : 4))
>
> # continuous shading
> interp <- function(x) pmin(x / 6, 1)
> mosaic(haireye2, shade = TRUE, gp_args = list(interpolate = interp))

For the left panel of Figure 5.7, a numeric vector is passed as interpolate=1:4, defining
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Figure 5.7: Interpolation options for shading levels in mosaic displays. Left: four shading levels;
right: continuous shading.{fig:HE-interp}

the boundaries of a step function mapping the absolute values of residuals to saturation levels in the
HCL color scheme. For the right panel, a user-defined function, interp(), is created which maps
the absolute residuals to saturation values in a continuous way (up to a maximum of 6).

Note that these two interpolation schemes produce quite similar results, differing mainly in the
shading level of residuals within±1 and in the legend. In practice, the default discrete interpolation,
using cutoffs of ±2,±4 usually works quite well. 4

{ex:shading}

EXAMPLE 5.3: Shading functions
Alternatively, the names of shading functions can be passed as the gp argument, as shown below,

producing Figure 5.8. Two shading function are illustrated here:

• The left panel of Figure 5.8 uses the classical Friendly (1994b) shading scheme, shading_Friendly
with HSV colors of blue and red and default cutoffs for absolute residuals,±2,±4, correspond-
ing to interpolate = c(2, 4). In this shading scheme, all tiles use an outline color
(col) corresponding to the sign of the residual. As well, the border line type (lty) distin-
guishes positive and negative residuals, which is useful if a mosaic plot is printed in black and
white.

• The right panel uses the shading_max() function, based on the ideas of Zeileis et al. (2007)
on residual-based shadings for area-proportional visualizations. Instead of using the cut-offs 2
and 4, it employs the critical values, Mα, for the maximum absolute Pearson residual statistic,

M = max
i,j
|rij | ,

by default at α = 0.10 and 0.01.3 Only those residuals with |rij | > Mα are colored in the
plot, using two levels for Value (“lightness”) in HSV color space. Consequently, all color in

3These default significance levels were chosen because this leads to displays where fully colored cells are clearly signif-
icant (p < 0.01), cells without color are clearly non-significant (p > 0.1), and cells in between can be considered to be
weakly significant (0.01 ≤ p ≤ 0.1).
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the plot signals a significant departure from independence at 90% or 99% significance level,
respectively.4

> mosaic(haireye2, gp = shading_Friendly, legend = legend_fixed)
> set.seed(1234)
> mosaic(haireye2, gp = shading_max)
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Figure 5.8: Shading functions for mosaic displays. Left: shading_Friendly using fixed cut-
offs and the “Friendly” color scheme; right: shading_max, using a permutation-based test to
determine significance of residuals.{fig:HE-shading}

In this example, the difference between these two shading schemes is largely cosmetic, in that
the pattern of association is similar in the two panels of Figure 5.8, and the interpretation would be
the same. This is not always the case, as we will see in the next example. 4

{ex:arth-mosaic}

EXAMPLE 5.4: Arthritis treatment
This example uses the Arthritis data, illustrated earlier (Example 2.2), on the relation be-

tween treatment and outcome for rheumatoid arthritis. To confine this example to a two-way table,
we use only the (larger) female patient group.

> art <- xtabs(~ Treatment + Improved, data = Arthritis,
+ subset = Sex == "Female")
> names(dimnames(art))[2] <- "Improvement"

The calls to mosaic() below compare shading_Friendly and shading_max, giving
the plots shown in Figure 5.9.

> mosaic(art, gp = shading_Friendly, margin = c(right = 1),
+ labeling = labeling_residuals, suppress = 0, digits = 2)
> set.seed(1234)
> mosaic(art, gp = shading_max, margin = c(right = 1))

4This computation uses the vcd function coindep_test() to calculate generalized tests of (conditional) indepen-
dence by simulation from the marginal distribution of the input table under (conditional) independence. In these examples
using shading_max, the function set.seed() is used to initialize the random number generators to a given state for
reproducibility.
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Figure 5.9: Mosaic plots for the female patients in the Arthritis data. Left: Fixed shading levels
via shading_Friendly; right: shading levels determined by significant maximum residuals via
shading_max.{fig:arth-mosaic}

This data set is somewhat paradoxical, in that the standard chisq.test() for association
with these data gives a highly significant result, χ2(2) = 11.3, p = 0.0035, while the shading
pattern using shading_Friendly in the left panel of Figure 5.9 shows all residuals within ±2,
and thus unshaded.

On the other hand, the shading_max shading in the right panel of Figure 5.9 shows that
significant deviations from independence occur in the four corner cells, corresponding to more
of the treated group showing marked improvement, and more of the placebo group showing no
improvement.

Some details behind the shading_max method are shown below. The Pearson residuals for
this table are calculated as:

> residuals(chisq.test(art))

Improvement
Treatment None Some Marked
Placebo 1.47752 0.19267 -1.71734
Treated -1.60852 -0.20975 1.86960

The shading_max() function then calls coindep_test(art) to generate n = 1000
random tables with the same margins, and computes the maximum residual statistic for each. This
gives a non-parametric p-value for the test of independence, p = 0.011 shown in the legend.

> set.seed(1243)
> art_max <- coindep_test(art)
> art_max

Permutation test for conditional independence

data: art
f(x) = 1.8696, p-value = 0.011

Finally, the 0.90 and 0.99 quantiles of the simulation distribution are used as shading levels,
passed as the value of the interpolate argument.
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> art_max$qdist(c(0.90, 0.99))

90% 99%
1.2393 1.9167

4

The converse situation can also arise in practice. An overall test for association using Pearson’s
χ2 may not be significant, but the maximum residual test may highlight one or more cells worthy of
greater attention, as illustrated in the following example.{ex:soccer2}

EXAMPLE 5.5: UK Soccer scores
In Example 3.9, we examined the distribution of goals scored by the home team and the away

team in 380 games in the 1995/96 season by the 20 teams in the UK Football Association, Pre-
mier League. The analysis there focused on the distribution of the total goals scored, under the
assumption that the number of goals scored by the home team and the away team were independent.

Here, the rows and columns of the table UKSoccer are both ordered, so it is convenient and
compact to carry out all the CMH tests taking ordinality into account.

> data("UKSoccer", package = "vcd")
> CMHtest(UKSoccer)

Cochran-Mantel-Haenszel Statistics for Home by Away

AltHypothesis Chisq Df Prob
cor Nonzero correlation 1.01 1 0.315
rmeans Row mean scores differ 5.63 4 0.229
cmeans Col mean scores differ 7.42 4 0.115
general General association 18.65 16 0.287

All of these are non-significant, so that might well be the end of the story, as far as independence
of goals in home and away games is concerned. Yet, one residual, r42 = 3.08 stands out, corre-
sponding to 4 or more goals by the home team and only 2 goals by the away team, which accounts
for nearly half of the χ2(16) = 18.7 for general association.

> set.seed(1234)
> mosaic(UKSoccer, gp = shading_max, labeling = labeling_residuals, digits = 2)

This occurrence may or may not turn out to have some explanation, but at least the mosaic plot
draws it to our attention, and is consistent with the (significant) result from coindep_test().
4

5.4 Three-way and larger tables
{sec:mosaic-threeway}

The mosaic displays and other graphical methods within the strucplot framework extend quite nat-
urally to three-way and higher-way tables. The essential idea is that for the variables in a multiway
table in a given order, each successive variable is used to subdivide the tile(s) in proportion to the rel-
ative (conditional) frequencies of that variable, given all previous variables. This process continues
recursively until all table variables have been included.

For simplicity, we continue with the running example of Hair color and Eye color. Imagine that
each cell of the two-way table for Hair and Eye color is further classified by one or more addi-
tional variables—sex and level of education, for example. Then each rectangle can be subdivided
horizontally to show the proportion of males and females in that cell, and each of those horizontal
portions can be subdivided vertically to show the proportions of people at each educational level in
the hair-eye-sex group.{ex:HEC1}
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Figure 5.10: Mosaic display for UK soccer scores, highlighting one cell that stands out for further
attention{fig:UKsoccer-mosaic}

EXAMPLE 5.6: Hair color, eye color and sex
Figure 5.11 shows the mosaic for the three-way table, with Hair and Eye color groups divided

according to the proportions of Males and Females. As explained in the next section (Section 5.4.2)
there are now different models for “independence” we could investigate, not just the (mutual) inde-
pendence of all factors. Here, for example, we could examine whether the additional variable (Sex)
is independent from the joint relationship between Hair and Eye.

> HEC <- HairEyeColor[, c("Brown", "Hazel", "Green", "Blue"),]
> mosaic(HEC, rot_labels = c(right = -45))

In Figure 5.11 it is easy to see that there is no systematic association between sex and the
combinations of hair and eye color—the proportion of male/female students is roughly the same in
almost all hair/eye color groups. Yet, among blue-eyed blonds, there seems to be an overabundance
of females, and the proportion of blue-eyed males with brown hair looks also suspicious. 4

These and other hypotheses are best tested within the framework of loglinear models, allowing you
to flexibly specify various independence models for any number of variables, and analyze them
similarily to classical ANOVA models. This general topic is discussed in detail in Chapter 9. For
the present purposes, we give a short introduction in the following section.

5.4.1 A primer on loglinear models
{sec:loglinprimer}

The essential idea behind loglinear models is that the multiplicative relationships among expected
frequencies under independence (shown as areas in sieve diagrams and mosaic plots) become ad-
ditive models when expressed as models for log frequency, and we briefly explain this connection
here for two-way tables.

To see this, consider two discrete variables, A and B, with nij observations in each cell i, j
of an R × C contingency table, and use ni+ = Σjnij and n+j = Σinij for the row and column
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Figure 5.11: Three-way mosaic for Hair color, Eye color and Sex. {fig:HEC-mos1b}

marginal totals respectively. The total frequency is n++ = Σijnij . Analogously, we use mij for
the expected frequency under any model and also use a subscript + to represent summation over
that dimension.

Then, the hypothesis of independence means that the expected frequencies, mij , obey

mij =
mi+ m+j

m++
.

This multiplicative model can be transformed to an additive (linear) model by taking logarithms of
both sides:

log(mij) = log(mi+) + log(m+j)− log(m++) .

This is usually re-expressed in an equivalent form in terms of model parameters µ, λAi and λBj

log(mij) = µ+ λAi + λBj ≡ [A][B] (5.1){eq:lmain0}

Model Eqn. (5.1) asserts that the row and column variables are independent because there is no term
that depends on both A and B

In contrast, a model for a two-way table that allows an arbitrary association between the vari-
ables is the saturated model, including an additional term, λABij :

log(mij) = µ+ λAi + λBj + λABij ≡ [AB] (5.2){eq:lsat0}

Except for the difference in notation, model Eqn. (5.2) is formally the same as a two-factor
ANOVA model with an interaction, typically expressed asE(yij) = µ+αi+βj+(αβ)ij . Hence, as-
sociations between variables in loglinear models are analogous to interactions in ANOVA models.5

5The use of superscripted symbols, λAi , λ
B
j , λ

AB
ij rather than separate Greek letters is a convention in loglinear models,

and useful mainly for multiway tables.
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In contrast to ANOVA, the “main effects”, λAi and λBj are rarely of interest—a typical log-linear
analysis focuses only on the interaction (association) terms.

Models such as Eqn. (5.1) and Eqn. (5.2) are examples of hierarchical models. This means that
the model must contain all lower-order terms contained within any high-order term in the model.
Thus, the saturated model, Eqn. (5.2) contains λABij , and therefore must contain λAi and λBj . As a
result, hierarchical models may be identified by the shorthand notation which lists only the high-
order terms: model Eqn. (5.2) is denoted [AB], while model Eqn. (5.1) is [A][B].

In R, the most basic function for fitting loglinear models is loglin() in the stats package.
It is designed to work with the frequency data in table form, and a model specified in terms of the
(high-order) table margins to be fitted. For example, the independence model Eqn. (5.1) is specified
as

> loglin(mytable, margin = list(1, 2))

meaning that variables 1 and 2 are independent, whereas the saturated model Eqn. (5.2) would be
specified as

> loglin(mytable, margin = list(c(1, 2)))

The function loglm() in MASS provides a more convenient front-end to loglin() to al-
low loglinear models to be specified using a model formula. With table variables A and B, the
independence model can be fit using loglm() as

> loglm(~ A + B, data = mytable)

and the saturated model in either of the following equivalent forms:

> loglm(~ A + B + A : B, data = mytable)
> loglm(~ A * B, data = mytable)

In such model formulas, A:B indicates an interaction term λABij , while A*B is expanded to also
include the terms A + B. {ex:HEC2}

EXAMPLE 5.7: Hair color, eye color and sex
Getting back to our running example of hair and eye color, we start casting the classical test of

independence used in Section 5.2 as log-linear model analysis. Using the haireye two-way table,
the independence of Hair and Eye is equivalent to the model [Hair][Eye] and formulated in R
using loglm() as:

> loglm(~ Hair + Eye, data = haireye)

Call:
loglm(formula = ~Hair + Eye, data = haireye)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0

The output includes both the χ2 and the deviance test statistics, both significant, indicating
strong lack of fit. We now extend the analysis by including Sex, i.e., use the full HairEyeColor
data set. In the section’s introductory example, this was visualized using a mosaic plot, leading to
the hypothesis whether Hair and Eye were jointly independent of Sex. To test this formally, we
fit the corresponding model [HairEye][Sex] to the data:
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> HE_S <- loglm(~ Hair * Eye + Sex, data = HairEyeColor)
> HE_S

Call:
loglm(formula = ~Hair * Eye + Sex, data = HairEyeColor)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 19.857 15 0.17750
Pearson 19.567 15 0.18917

giving a non-significant Pearson χ2(15) = 19.567, p = 0.189. The residuals from this model could
be retrieved using

> residuals(HE_S, type = "pearson")

for further inspection. Mosaic plots can conveniently be used for this purpose, either by specify-
ing the residuals with the residuals= argument, or by providing the loglm model formula as
the expected= argument, letting mosaic() calculate them by calling loglm(). In the call to
mosaic() below, the model of joint independence is specified as expected = ~ Hair * Eye + Sex.
The strucplot labeling function labeling_residuals is used to display the residuals in the
highlighted cells.

> HEC <- HairEyeColor[, c("Brown", "Hazel", "Green", "Blue"),]
> mosaic(HEC, expected = ~ Hair * Eye + Sex,
+ labeling = labeling_residuals,
+ digits = 2, rot_labels = c(right = -45))

Although non-significant, the two largest residuals highlighted in the plot account for nearly half
(−2.152 + 2.032 = 8.74) of the lack of fit, and so are worthy of attention here. An easy (probably
facile) interpretation is that among the blue-eyed blonds, some of the females benefited from hair
products. 4

5.4.2 Fitting models
{sec:mosaic-fitting}

When three or more variables are represented in a table, we can fit several different models of
types of “independence” and display the residuals from each model. We treat these models as
null or baseline models, which may not fit the data particularly well. The deviations of observed
frequencies from expected ones, displayed by shading, will often suggest terms to be added to an
explanatory model that achieves a better fit.

For a three-way table, with variables A, B and C, some of the hypothesized models which can
be fit are described below and summarized in Table 5.2. Here we use [•] notation to list the high-
order terms in a hierarchical loglinear model; these correspond to the margins of the table which are
fitted exactly, and which translate directly into R formulas used in loglm() and mosaic(...,
expected=).

The notation [AB][AC] , for example, is shorthand for the model loglm(~ A*B + A*C) that
implies

log mijk = µ+ λAi + λBj + λCk + λABij + λACik , (5.3){eq:AB-AC}

and reproduces the {AB} and {AC} marginal subtables.6 That is, the calculated expected frequen-
cies in these margins are always equal to the corresponding observed frequencies, mij+ = nij+
and mi+k = ni+k.

In this table, A ⊥ B is read, “A is independent of B.” The independence interpretation of the

6The notation here uses curly braces, {•} to indicate a marginal subtable summed over all other variables.
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Figure 5.12: Three-way mosaic for Hair color, Eye color and Sex. Residuals from the model of
joint independence, [HE][S] are shown by shading.{fig:HEC-mos1}

model Eqn. (5.3) isB ⊥ C |A, which can be read as “B is independent of C, given (conditional on)
A.” Table 5.2 also depicts the relations among variables as an association graph, where associated
variables are connected by an edge and variables that are asserted to be independent are uncon-
nected. In mosaic-like displays, other associations present in the data will appear in the pattern of
residuals.

For a three-way table, there are four general classes of independence models illustrated in Ta-
ble 5.2, as described below.7 Not included here is the saturated model, [ABC] , which fits the
observed data exactly.

H1: Complete independence. The model of complete (mutual) independence, symbolized A ⊥
B ⊥ C, with model formula ~ A + B + C, asserts that all joint probabilities are products of
the one-way marginal probabilities:

πijk = πi++ π+j+ π++k ,

for all i, j, k in a three-way table. This corresponds to the log-linear model [A][B][C] . Fit-
ting this model puts all higher terms, and hence all association among the variables, into the
residuals.

H2: Joint independence. Another possibility is to fit the model in which variable C is jointly
independent of variables A and B, ({A,B} ⊥ C), with model formula ~ A*B + C, where

πijk = πij+ π++k .

7For H2 and H3, permutation of the variables A, B, and C gives other members of each class.
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Table 5.2: Fitted margins, model symbols and interpretations for some hypotheses for a three-way
table.{tab:hyp3way}

Hypothesis
Fitted

margins
Model
symbol

Independence
interpretation

Association
graph

H1 ni++, n+j+, n++k [A][B][C] A ⊥ B ⊥ C A B

C

H2 nij+, n++k [AB][C] (A,B) ⊥ C A B

C

H3 ni+k, n+jk [AC][BC] A ⊥ B | C A B

C

H4 nij+, ni+k, n+jk [AB][AC][BC] NA
A B

C

This corresponds to the loglinear model [AB][C] . Residuals from this model show the extent to
which variable C is related to the combinations of variables A and B but they do not show any
association between A and B, since that association is fitted exactly. For this model, variable
C is also independent of A and B in the marginal {AC} table (collapsing over B) and in the
marginal {BC}.

H3: Conditional independence. Two variables, say A and B are conditionally independent given
the third (C) if A and B are independent when we control for C, symbolized as A ⊥ B |C, and
model formula ~ A*C + B*C (or ~ (A + B) * C). This means that conditional proba-
bilities, πij|k obey

πij|k = πi+|k π+j|k ,

where πij|k = πijk/πij+, πi+|k = πi+k/πi++, and π+j|k = π+jk/π+j+. The corresponding
loglinear models is denoted [AC][BC] . When this model is fit, the mosaic display shows the
conditional associations between variables A and B, controlling for C, but does not show the
associations between A and C, or B and C.

H4: No three-way interaction. For this model, no pair is marginally or conditionally independent,
so there is no independence interpretation. Nor is there a closed-form expression for the cell
probabilities. However, the association between any two variables is the same at each level of
the third variable. The corresponding loglinear model formula is [AB][AC][BC] , indicating
that all two-way margins are fit exactly and so only the three-way association is shown in the
mosaic residuals.

{ex:HEC3}

EXAMPLE 5.8: Hair color, eye color and sex
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We continue with the analysis of the HairEyeColor data from Example 5.6 and Example 5.7.
Figure 5.12 showed the fit of the joint-independence model [HairEye][Sex], testing whether the joint
distribution of hair color and eye color is associated with sex.

Any other model fit to this table will have the same size tiles in the mosaic since the areas depend
on the observed frequencies; the residuals, and hence the shading of the tiles will differ. Figure 5.13
shows mosaics for two other models. Shading in the left panel shows residuals from the model
of mutual independence, [Hair][Eye][Sex], and so includes all sources of association among these
three variables. The right panel shows the conditional independence model, [HairSex][EyeSex] test-
ing whether, given sex, hair color and eye color are independent. Note that the pattern of residuals
here is similar to that in the two-way display, Figure 5.4, that collapsed over sex.

> abbrev <- list(abbreviate = c(FALSE, FALSE, 1))
> mosaic(HEC, expected = ~ Hair + Eye + Sex, labeling_args = abbrev,
+ main = "Model: ~ Hair + Eye + Sex")
> mosaic(HEC, expected = ~ Hair * Sex + Eye * Sex, labeling_args = abbrev,
+ main="Model: ~ Hair*Sex + Eye*Sex")
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Figure 5.13: Mosaic displays for other models fit to the data on Hair Color, Eye color and Sex.
Left: Mutual independence model; right: Conditional independence of Hair color and Eye color
given Sex. {fig:HEC-mos2}

Compared with Figure 5.12 for the joint independence model, [HairEye][Sex], it is easy to see that
both of these models fit very poorly.

We consider loglinear models in more detail in Chapter 9, but for now note that these models
are fit using loglm() in the MASS package, with the model formula given in the expected
argument. The details of these models can be seen by fitting these models explicitly, and the fit of
several models can be summarized compactly using LRstats() in vcdExtra.

> library(MASS)
> mod1 <- loglm(~ Hair + Eye + Sex, data = HEC) # mutual independence
> mod2 <- loglm(~ Hair * Sex + Eye * Sex, data = HEC) # conditional independence
> mod3 <- loglm(~ Hair * Eye + Sex, data = HEC) # joint independence
> LRstats(mod1, mod2, mod3)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)
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mod1 321 333 166.3 24 <2e-16 ***
mod2 324 344 156.7 18 <2e-16 ***
mod3 193 218 19.9 15 0.18
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Alternatively, you can get the Pearson and likelihood ratio (LR) tests for a given model using
anova(), or compare a set of models using LR tests on the difference in LR χ2 from one model
to the next, when a list of models is supplied to anova().

> anova(mod1)

Call:
loglm(formula = ~Hair + Eye + Sex, data = HEC)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 166.30 24 0
Pearson 164.92 24 0

> anova(mod1, mod2, mod3, test = "chisq")

LR tests for hierarchical log-linear models

Model 1:
~Hair + Eye + Sex
Model 2:
~Hair * Sex + Eye * Sex
Model 3:
~Hair * Eye + Sex

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 166.300 24
Model 2 156.678 18 9.6222 6 0.14149
Model 3 19.857 15 136.8213 3 0.00000
Saturated 0.000 0 19.8566 15 0.17750

4

5.5 Model and plot collections
{sec:mosaic-collections}

This section describes a few special circumstances in which a collection of mosaic plots and related
loglinear models can be used in a complementary fashion to understand the nature of associations
in three-way and larger tables.

5.5.1 Sequential plots and models
{sec:mosaic-seq}

As described in Section 5.2, we can think of the mosaic display for an n-way table as being con-
structed in stages, with the variables listed in a given order, and the unit tile decomposed recursively
as each variable is entered in turn. This process turns out to have the useful property that it provides
an additive (hierarchical) decomposition of the total association in a table, in a way analogous to
sequential fitting with Type I sum of squares in regression models.

Typically, we just view the mosaic and fit models to the full n-way table, but it is useful to
understand the connection with models for the marginal subtables, defined by summing over all
variables not yet entered. For example for a three-way table with variables, A,B,C, the marginal
subtables {A} and {AB} are calculated in the process of constructing the three-way mosaic. The
{A} marginal table can be fit to a model where the categories of variable A are equiprobable as
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shown in Figure 5.2 (or some other discrete distribution); the independence model can be fit to the
{AB} subtable as in Figure 5.2 and so forth.

This connection can be seen in the following formula that decomposes the joint cell probability
in an n-way table with variables v1, v2, . . . vn as a sequential product of conditional probabilities,

pijk`··· =

{v1v2}︷ ︸︸ ︷
pi × pj|i× pk|ij︸ ︷︷ ︸

{v1v2v3}

× p`|ijk × · · · × pn|ijk··· (5.4) {eq:seqprod}

In Eqn. (5.4), the first term corresponds to the one-way mosaic for v1, the first two terms to the
mosaic for v1 and v2, the first three terms to the mosaic for v1, v2 and v2, and so forth.

It can be shown (Friendly, 1994b) that this sequential product of probabilities corresponds to
a set of sequential models of joint independence, whose likelihood ratio G2 statistics provide an
additive decomposition of the total association, G2

[v1][v2]...[vn]
for the mutual independence model

in the full table:

G2
[v1][v2]...[vn]

= G2
[v1][v2]

+G2
[v1v2][v3]

+G2
[v1v2v3][v4]

+ · · ·+G2
[v1...vn−1][vn]

(5.5) {eq:seqgsq}

For example, for the hair-eye data, the mosaic displays for the [Hair] [Eye] marginal table (Fig-
ure 5.4) and the [HairEye] [Sex] table (Figure 5.12) can be viewed as representing the partition of
G2 shown as a table below:

Model Model symbol df G2

Marginal [Hair] [Eye] 9 146.44
Joint [Hair, Eye] [Sex] 15 19.86
Mutual [Hair] [Eye] [Sex] 24 166.30

The decomposition in this table reflecting Eqn. (5.5) is shown as a visual equation in Figure 5.14.
You can see from the shading how the two sequential submodels contribute to overall association in
the model of mutual independence.
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Figure 5.14: Visual representation of the decomposition of the G2 for mutual independence (total)
as the sum of marginal and joint independence. {fig:HEC-seq}

Although sequential models of joint independence have the nice additive property illustrated
above, other classes of sequential models are possible, and sometimes of substantive interest. The
main types of these models are illustrated in Table 5.3 for 3-, 4-, and 5- way tables, with variables
A, B, ... E. In all cases, the natural model for the one-way margin is the equiprobability model, and
that for the two-way margin is [A][B] .
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Table 5.3: Classes of sequential models for n-way tables {tab:seqmodels}

function 3-way 4-way 5-way
mutual [A] [B] [C] [A] [B] [C] [D] [A] [B] [C] [D] [E]
joint [AB] [C] [ABC] [D] [ABCE] [E]
joint (with=1) [A] [BC] [A] [BCD] [A] [BCDE]
conditional [AC] [BC] [AD] [BD] [CD] [AE] [BE] [CE] [DE]
conditional (with=1) [AB] [AC] [AB] [AC] [AD] [AB] [AC] [AD] [AE]
markov (order=1) [AB] [BC] [AB] [BC] [CD] [AB] [BC] [CD] [DE]
markov (order=2) [A] [B] [C] [ABC] [BCD] [ABC] [BCD] [CDE]
saturated [ABC] [ABCD] [ABCDE]

The vcdExtra package provides a collection of convenience functions that generate the loglinear
model formulae symbolically, as indicated in the function column. The functions mutual(),
joint(), conditional(), markov() and so forth simply generate a list of terms suitable for
a model formula for loglin(). See help(loglin-utilities) for further details.

Wrapper functions loglin2string() and loglin2formula() convert these to charac-
ter strings or model formulae respectively, for use with loglm() and mosaic()-related functions
in vcdExtra. Some examples are shown below.

> for(nf in 2 : 5) {
+ print(loglin2string(joint(nf, factors = LETTERS[1:5])))
+ }

[1] "[A] [B]"
[1] "[A,B] [C]"
[1] "[A,B,C] [D]"
[1] "[A,B,C,D] [E]"

> for(nf in 2 : 5) {
+ print(loglin2string(conditional(nf, factors = LETTERS[1:5]), sep = ""))
+ }

[1] "[A] [B]"
[1] "[AC] [BC]"
[1] "[AD] [BD] [CD]"
[1] "[AE] [BE] [CE] [DE]"

> for(nf in 2 : 5) {
+ print(loglin2formula(conditional(nf, factors = LETTERS[1:5])))
+ }

~A + B
~A:C + B:C
~A:D + B:D + C:D
~A:E + B:E + C:E + D:E

Applied to data, these functions take a table argument, and deliver the string or formula
representation of a type of model for that table:

> loglin2formula(joint(3, table = HEC))

~Hair:Eye + Sex

> loglin2string(joint(3, table = HEC))

[1] "[Hair,Eye] [Sex]"
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Their main use, however, is within higher-level functions, such as seq_loglm(), which fit
the collection of sequential models of a given type.

> HEC.mods <- seq_loglm(HEC, type = "joint")
> LRstats(HEC.mods)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

model.1 194 194 165.6 3 <2e-16 ***
model.2 241 246 146.4 9 <2e-16 ***
model.3 193 218 19.9 15 0.18
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this section we have described a variety of models which can be fit to higher-way tables,
some relations among those models, and the aspects of lack-of-fit which are revealed in the mosaic
displays. The following examples illustrate the process of model fitting, using the mosaic as an
interpretive guide to the nature of associations among the variables. In general, we start with a
minimal baseline model.8 The pattern of residuals in the mosaic will suggest associations to be
added to an adequate explanatory model. As the model achieves better fit to the data, the degree of
shading decreases, so we may think of the process of model fitting as “cleaning the mosaic.”

5.5.2 Causal models
{sec:causal}

The sequence of models of joint independence has another interpretation when the ordering of the
variables is based on a set of ordered hypotheses involving causal relationships among variables
(Goodman (1973), Fienberg (1980, §7.2)). Suppose, for example, that the causal ordering of four
variables is A → B → C → D, where the arrow means “is antecedent to.” Goodman suggests
that the conditional joint probabilities of B, C, and D given A can be characterized by a set of
recursive logit models which treat (a) B as a response to A, (b) C as a response to A and B jointly,
(c) and D as a response to A, B and C. These are equivalent to the loglinear models which we fit
as the sequential baseline models of joint independence, namely [A][B] , [AB][C] , and [ABC][D]
. The combination of these models with the marginal probabilities of A gives a characterization
of the joint probabilities of all four variables, as in Eqn. (5.4). In application, residuals from each
submodel show the associations that remain unexplained. {ex:marital1}

EXAMPLE 5.9: Marital status and pre- and extramarital sex
A study of divorce patterns in relation to premarital and extramarital sex by Thornes and Collard

(1979) reported the 24 table shown below, and included in vcd as PreSex.

> data("PreSex", package = "vcd")
> structable(Gender + PremaritalSex + ExtramaritalSex ~ MaritalStatus, PreSex)

Gender Women Men
PremaritalSex Yes No Yes No
ExtramaritalSex Yes No Yes No Yes No Yes No

MaritalStatus
Divorced 17 54 36 214 28 60 17 68
Married 4 25 4 322 11 42 4 130

These data were analysed by Agresti (2013, §6.1.7) and by Friendly (1994b, 2000), from which
this account draws. A sample of about 500 people who had petitioned for divorce, and a similar

8When one variable, R, is a response, this normally is the model of joint independence, [E1E2 . . .] [R], where
E1, E2, . . . are the explanatory variables. Better-fitting models will often include associations of the form [EiR],
[Ei Ej R] . . ..
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number of married people were asked two questions regarding their pre- and extramarital sexual
experience: (1) “Before you married your (former) husband/wife, had you ever made love with
anyone else?,” (2) “During your (former) marriage (did you) have you had any affairs or brief sexual
encounters with another man/woman?” The table variables are thus gender (G), reported premarital
(P ) and extramarital (E) sex, and current marital status (M ).

In this analysis we consider the variables in the orderG, P , E, andM , and first reorder the table
variables for convenience.

> PreSex <- aperm(PreSex, 4 : 1) # order variables G, P, E, M

That is, the first stage treats P as a response to G and examines the [Gender][Pre] mosaic to
assess whether gender has an effect on premarital sex. The second stage treats E as a response to
G and P jointly; the mosaic for [Gender, Pre] [Extra] shows whether extramarital sex is related to
either gender or premarital sex. These are shown in Figure 5.15.

> # (Gender Pre)
> mosaic(margin.table(PreSex, 1 : 2), shade = TRUE,
+ main = "Gender and Premarital Sex")
>
> ## (Gender Pre)(Extra)
> mosaic(margin.table(PreSex, 1 : 3),
+ expected = ~ Gender * PremaritalSex + ExtramaritalSex ,
+ main = "Gender*Pre + ExtramaritalSex")
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Figure 5.15: Mosaic displays for the first two marginal tables in the PreSex data. Left: Gender and
premarital sex; right: fitting the model of joint independence with extramarital sex, [GP][E]{fig:presex2}

Finally, the mosaic for [Gender, Pre, Extra] [Marital] is examined for evidence of the depen-
dence of marital status on the three previous variables jointly. As noted above, these models are
equivalent to the recursive logit models whose path diagram is G → P → E → M .9 The G2

values for these models shown below provide a decomposition of the G2 for the model of complete
independence fit to the full table.

9Agresti (2013, Figure 6.1) considers a slightly more complex, but more realistic model in which premarital sex affects
both the propensity to have extramarital sex and subsequent marital status.
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Model df G2

[G] [P] 1 75.259
[GP] [E] 3 48.929

[GPE] [M] 7 107.956
[G] [P] [E] [M] 11 232.142

The [Gender] [Pre] mosaic in the left panel of Figure 5.15 shows that men are much more likely
to report premarital sex than are women; the sample odds ratio is 3.7. We also see that women are
about twice as prevalent as men in this sample. The mosaic for the model of joint independence,
[Gender Pre] [Extra] in the right panel of Figure 5.15 shows that extramarital sex depends on gender
and premarital sex jointly. From the pattern of residuals in Figure 5.15 we see that men and women
who have reported premarital sex are far more likely to report extramarital sex than those who have
not. In this three-way marginal table, the conditional odds ratio of extramarital sex given premarital
sex is nearly the same for both genders (3.61 for men and 3.56 for women). Thus, extramarital sex
depends on premarital sex, but not on gender.

> loddsratio(margin.table(PreSex, 1 : 3), stratum = 1, log = FALSE)

odds ratios for Gender and PremaritalSex by ExtramaritalSex

Yes No
0.28269 0.28611

> ## (Gender Pre Extra)(Marital)
> mosaic(PreSex,
+ expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ + MaritalStatus,
+ main = "Gender*Pre*Extra + MaritalStatus")
> ## (GPE)(PEM)
> mosaic(PreSex,
+ expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ + MaritalStatus * PremaritalSex * ExtramaritalSex,
+ main = "G*P*E + P*E*M")

4

5.5.3 Partial association
{sec:mospart}

In a three-way (or larger) table it may be that two variables, say A and B, are associated at some
levels of the third variable, C, but not at other levels of C. More generally, we may wish to explore
whether and how the association among two (or more) variables in a contingency table varies over
the levels of the remaining variables. The term partial association refers to the association among
some variables within the levels of the other variables.

Partial association represents a useful “divide and conquer” statistical strategy: it allows you to
refine the question you want to answer for complex relations by breaking it down to smaller, easier
questions.10 It is a statistically happy fact that an answer to the larger, more complex question can
be expressed as an algebraic sum of the answers to the smaller questions, just as was the case with
sequential models of joint independence.

For concreteness, consider the case where you want to understand the relationship between
attitude toward corporal punishment of children by parents or teachers (Never, Moderate use OK)
and memory that the respondent had experienced corporal punishment as a child (Yes, No). But you

10This is an analog, for categorical data, of the ANOVA strategy for “probing interactions” by testing simple effects at the
levels of one or more of the factors involved in a two- or higher-way interaction.
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Figure 5.16: Four-way mosaics for the PreSex data. The left panel fits the model [GPE][M]. The
pattern of residuals suggests other associations with marital status. The right panel fits the model
[GPE][PEM] {fig:presex3}

also have measured other variables on the respondents, including their level of education and age
category. In this case, the question of association among all the table variables may be complex, but
we can answer a highly relevant, specialized question precisely, “is there an association between
attitude and memory, controlling for education and age?” The answer to this question can be
thought of as the sum of the answers to the simpler question of association between attitude and
memory across all combinations of the education and age categories.

A simpler version of this idea is considered first below (Example 5.10): among workers who
were laid off due to either the closure of a plant or business vs. replacement by another worker,
the (conditional) relationship of employment status (new job vs. still unemployed) and duration of
unemployment can be studied as a sum of the associations between these focal variables over the
separate tables for cause of layoff.

To make this idea precise, consider for example the model of conditional independence, A ⊥
B |C for a three-way table. This model asserts thatA andB are independent within each level ofC.
Denote the hypothesis that A and B are independent at level C(k) by A ⊥ B |C(k), k = 1, . . .K.
Then one can show (Andersen, 1991) that

G2
A⊥B |C =

K∑
k

G2
A⊥B |C(k) (5.6){eq:partial1}

That is, the overall likelihood ratioG2 for the conditional independence model with (I−1)(J−1)K
degrees of freedom is the sum of the values for the ordinary association between A and B over the
levels of C (each with (I − 1)(J − 1) degrees of freedom). The same additive relationship holds
for the Pearson χ2 statistics: χ2

A⊥B |C =
∑K
k χ

2
A⊥B |C(k).

Thus, (a) the overall G2 (χ2) may be decomposed into portions attributable to the AB associ-
ation in the layers of C, and (b) the collection of mosaic displays for the dependence of A and B
for each of the levels of C provides a natural visualization of this decomposition. These provide an
analog, for categorical data, of the conditioning plot, or coplot, that Cleveland (1993b) has shown
to be an effective display for quantitative data. See Friendly (1999a) for further details.

Mosaic and other displays in the strucplot framework for partial association can be produced in
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several different ways. One way is to use a model formula in the call to mosaic() which lists the
conditioning variables after the "|" (given) symbol, as in
~ Memory + Attitude | Age + Education. Another way is to use cotabplot().
This takes the same kind of conditioning model formula, but presents each panel for the condition-
ing variables in a separate frame within a trellis-like grid.11

{ex:employ}

EXAMPLE 5.10: Employment status data
Data from a 1974 Danish study of 1314 employees who had been laid off are given in the

data table Employment in vcd (from Andersen (1991, Table 5.12)). The workers are classified
by: (a) their employment status, on January 1, 1975 ("NewJob" or still "Unemployed), (b) the
length of their employment at the time of layoff, (c) the cause of their layoff ("Closure", etc. or
"Replaced").

> data("Employment", package = "vcd")
> structable(Employment)

EmploymentLength <1Mo 1-3Mo 3-12Mo 1-2Yr 2-5Yr >5Yr
EmploymentStatus LayoffCause
NewJob Closure 8 35 70 62 56 38

Replaced 40 85 181 85 118 56
Unemployed Closure 10 42 86 80 67 35

Replaced 24 42 41 16 27 10

In this example, it is natural to regard EmploymentStatus (variable A) as the response
variable, and EmploymentLength (B) and LayoffCause (C) as predictors. In this case, the
minimal baseline model is the joint independence model, [A] [BC], which asserts that employment
status is independent of both length and cause. This model fits quite poorly, as shown in the output
from loglm() below.

> loglm(~ EmploymentStatus + EmploymentLength * LayoffCause, data = Employment)

Call:
loglm(formula = ~EmploymentStatus + EmploymentLength * LayoffCause,

data = Employment)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 172.28 11 0
Pearson 165.70 11 0

The residuals, shown in Figure 5.17, indicate an opposite pattern for the two categories of
LayoffCause: those who were laid off as a result of a closure are more likely to be unemployed,
regardless of length of time they were employed. Workers who were replaced, however, apparently
are more likely to be employed, particularly if they were employed for 3 months or more.

> # baseline model [A][BC]
> mosaic(Employment, shade = TRUE,
+ expected = ~ EmploymentStatus + EmploymentLength * LayoffCause,
+ main = "EmploymentStatus + Length * Cause")

Beyond this baseline model, it is substantively more meaningful to consider the conditional in-
dependence model,A ⊥ B |C, (or [AC][BC] in shorthand notation), which asserts that employment
status is independent of length of employment, given the cause of layoff. We fit this model as shown
below:

11Depending on your perspective, this has the advantage of adjusting for the total frequency in each conditional panel, or
the disadvantage of ignoring these differences.
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Figure 5.17: Mosaic display for the employment status data, fitting the baseline model of joint
independence. {fig:employ-mos1}

> loglm(~ EmploymentStatus * LayoffCause + EmploymentLength * LayoffCause,
+ data = Employment)

Call:
loglm(formula = ~EmploymentStatus * LayoffCause + EmploymentLength *

LayoffCause, data = Employment)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 24.630 10 0.0060927
Pearson 26.072 10 0.0036445

This model fits far better (G2(10) = 24.63), but the lack of fit is still significant. The residuals,
shown in Figure 5.18, still suggest that the pattern of association between employment and length
is different for replaced workers and those laid off due to closure of their workplace.

> mosaic(Employment, shade = TRUE, gp_args = list(interpolate = 1 : 4),
+ expected = ~ EmploymentStatus * LayoffCause + EmploymentLength * LayoffCause,
+ main = "EmploymentStatus * Cause + Length * Cause")

To explain this result better, we can fit separate models for the partial relationship between
EmploymentStatus and EmploymentLength for the two levels of LayoffCause. In
R, with the Employment data as in table form, this is easily done using apply() over the
LayoffCause margin, giving a list containing the two loglm() models.

> mods.list <-
+ apply(Employment, "LayoffCause",
+ function(x) loglm(~ EmploymentStatus + EmploymentLength, data = x))
> mods.list

$Closure
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Figure 5.18: Mosaic display for the employment status data, fitting the model of conditional inde-
pendence, [AC][BC].{fig:employ-mos2}

Call:
loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 1.4786 5 0.91553
Pearson 1.4835 5 0.91497

$Replaced
Call:
loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 23.151 5 0.00031578
Pearson 24.589 5 0.00016727

Extracting the model fit statistics for these partial models and adding the fit statistics for the
overall model of conditional independence, [AC][BC] gives the table below, illustrating the additive
property of G2, (Eqn. (5.6)) and χ2.

Model df G2 χ2

A ⊥ B |C1 5 1.49 1.48
A ⊥ B |C2 5 23.15 24.59
A ⊥ B |C 10 24.63 26.07

One simple way to visualize these results is to call mosaic() separately for each of the layers
corresponding to LayoffCause. The result is shown in Figure 5.19.
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> mosaic(Employment[,,"Closure"], shade = TRUE, gp_args = list(interpolate = 1 : 4),
+ margin = c(right = 1), main = "Layoff: Closure")
> mosaic(Employment[,,"Replaced"], shade = TRUE, gp_args = list(interpolate = 1 : 4),
+ margin = c(right = 1), main = "Layoff: Replaced")
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Figure 5.19: Mosaic displays for the employment status data, with separate panels for cause of
layoff.{fig:employ-mos3}

The simple summary from this example is that for workers laid off due to closure of their com-
pany, length of previous employment is unrelated to whether or not they are re-employed. However,
for workers who were replaced, there is a systematic pattern: those who had been employed for three
months or less are likely to remain unemployed, while those with longer job tenure are somewhat
more likely to have found a new job. 4

The statistical methods and R techniques described above for three-way tables extend naturally
to higher-way tables, as can be seen in the next example.{ex:punish}

EXAMPLE 5.11: Corporal punishment data
Here we use the Punishment data from vcd which contains the results of a study by the

Gallup Institute in Denmark in 1979 about the attitude of a random sample of 1,456 persons towards
corporal punishment of children (Andersen, 1991, pp. 207-208). As shown below, this data set is a
frequency data frame representing a 2× 2× 3× 3 table, with table variables (a) attitude toward
use of corporal punishment (approve of “moderate” use or “no” approval) (b) memory of whether
the respondent had experienced corporal punishment as a child (yes/no); (c) education level of
respondent (elementary, secondary, high); (d) age category of respondent.

> data("Punishment", package = "vcd")
> str(Punishment)

'data.frame': 36 obs. of 5 variables:
$ Freq : num 1 3 20 2 8 4 2 6 1 26 ...
$ attitude : Factor w/ 2 levels "no","moderate": 1 1 1 1 1 1 1 1 1 1 ...
$ memory : Factor w/ 2 levels "yes","no": 1 1 1 1 1 1 1 1 1 2 ...
$ education: Factor w/ 3 levels "elementary","secondary",..: 1 1 1 2 2 2 3 3 3 1 ...
$ age : Factor w/ 3 levels "15-24","25-39",..: 1 2 3 1 2 3 1 2 3 1 ...

Of main interest here is the association between attitude toward corporal punishment as an adult
(A) and memory of corporal punishment as a child (B), controlling for age (C) and education (D);
that is, the model A ⊥ B | (C,D), or [ACD][BCD] in shorthand notation.
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As noted above, this conditional independence hypothesis can be decomposed into the 3 × 3
partial tests of A ⊥ B | (Ck, D`).

These tests and the associated graphics are somewhat easier to carry out with the data in table
form (pun) constructed below. While we’re at it, we recode the variable names and factor levels for
nicer graphical displays.

> pun <- xtabs(Freq ~ memory + attitude + age + education, data = Punishment)
> dimnames(pun) <- list(
+ Memory = c("yes", "no"),
+ Attitude = c("no", "moderate"),
+ Age = c("15-24", "25-39", "40+"),
+ Education = c("Elementary", "Secondary", "High"))

Then, the overall test of conditional independence can be carried using loglm() out as

> (mod.cond <- loglm(~ Memory * Age * Education + Attitude * Age * Education,
+ data = pun))

Call:
loglm(formula = ~Memory * Age * Education + Attitude * Age *

Education, data = pun)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 39.679 9 8.6851e-06
Pearson 34.604 9 6.9964e-05

Alternatively, coindep_test() in vcd provides tests of conditional independence of two
variables in a contingency table by simulation from the marginal permutation distribution of the
input table. The version reporting a Pearson χ2 statistic is given by

> set.seed(1071)
> coindep_test(pun, margin = c("Age", "Education"),
+ indepfun = function(x) sum(x ^ 2), aggfun = sum)

Permutation test for conditional independence

data: pun
f(x) = 34.604, p-value < 2.2e-16

These tests all show substantial association between attitude and memory of corporal punish-
ment. How can we understand and explain this?

As in Example 5.10, we can partition the overall G2 or χ2 to show the contributions to this
association from the combinations of age and education. The call to apply() below fits an inde-
pendence model for Memory and Attitude for each stratum defined by the combinations of Age
and Education, and extracts the Pearson χ2 statistics. The result is returned as a 3× 3 matrix.

> mods.list <- apply(pun, c("Age", "Education"),
+ function(x) loglm(~ Memory + Attitude, data = x)$pearson)

One visual analog of this table of χ2 statistics is a cotabplot() of the (conditional) associa-
tion of attitude and memory over the age and education cells, shown in Figure 5.20. cotabplot()
is very general, allowing a variety of functions of the residuals to be used for shading (Zeileis et al.,
2007). Here we use the (Pearson) sum of squares statistic,

∑
k,` χ

2
k,`.

> set.seed(1071)
> pun_cotab <- cotab_coindep(pun, condvars = 3 : 4, type = "mosaic",
+ varnames = FALSE, margins = c(2, 1, 1, 2),
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+ test = "sumchisq", interpolate = 1 : 2)
> cotabplot(~ Memory + Attitude | Age + Education, data =
+ pun, panel = pun_cotab)
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Figure 5.20: Conditional mosaic plot of the Punishment data for the model of conditional indepen-
dence of attitude and memory, given age and education. Shading of tiles is based on the sum of
squares statistic.{fig:punish-cond1}

Alternatively, the pattern of conditional association can be shown somewhat more directly in
a conditional mosaic plot (Figure 5.21), using the same model formula to condition on age and
education. This simply organizes the display to split on the conditioning variables first, with larger
spacings.

> mosaic(~ Memory + Attitude | Age + Education, data = pun,
+ shade = TRUE, gp_args = list(interpolate = 1 : 4))

Both Figure 5.20 and Figure 5.21 reveal that the association between attitude and memory be-
comes stronger with increasing age among those with the lowest education (first column). Among
those in the highest age group (bottom row), the strength of association decreases with increasing
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Figure 5.21: Conditional mosaic plot of the Punishment data for the model of conditional inde-
pendence of attitude and memory, given age and education. This plot explicitly shows the total
frequencies in the cells of age and education by the areas of the main blocks for these variables.{fig:punish-cond2}

education. These two displays differ in that in the cotabplot() of Figure 5.20 the marginal
frequencies of age and education are not shown, whereas in the mosaic() of Figure 5.21 they
determine the relative sizes of the tiles for the combinations of age and education.

The divide-and-conquer strategy of partial association using statistical tests and visual displays
now provides a simple, coherent explanation for this table: memory of experienced violence as a
child tends to engender a more favorable attitude toward corporal punishment as an adult, but this
association varies directly with both age and education. 4

5.6 Mosaic matrices for categorical data
{sec:mosmat}

One reason for the wide usefulness of graphs of quantitative data has been the development of
effective, general techniques for dealing with high-dimensional data sets. The scatterplot matrix
shows all pairwise (marginal) views of a set of variables in a coherent display, whose design goal
is to show the interdependence among the collection of variables as a whole. It combines multiple
views of the data into a single display which allows detection of patterns which could not readily
be discerned from a series of separate graphs. In effect, a multivariate data set in p dimensions
(variables) is shown as a collection of p(p − 1) two-dimensional scatterplots, each of which is the
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projection of the cloud of points on two of the variable axes. These ideas can be readily extended to
categorical data.

A multiway contingency table of p categorical variables, A,B,C, . . ., contains the interdepen-
dence among the collection of variables as a whole. The saturated loglinear model, [ABC . . .] fits
this interdependence perfectly, but is often too complex to describe or understand.

By summing the table over all variables except two, A and B, say, we obtain a two-variable
(marginal) table, showing the bivariate relationship between A and B, which is also a projection of
the p-variable relation into the space of two (categorical) variables. If we do this for all p(p − 1)
unordered pairs of categorical variables and display each two-variable table as a mosaic, we have a
categorical analog of the scatterplot matrix, called a mosaic matrix. Like the scatterplot matrix, the
mosaic matrix can accommodate any number of variables in principle, but in practice is limited by
the resolution of our display to three or four variables.

In R, the main implementation of this idea is in the generic function pairs(). The vcd pack-
age extends this to mosaic matrices with methods for "table" and "structable" objects. The gpairs
package provides a generalized pairs plot, with appropriate graphics for a mixture of quantitative
and categorical variables.

5.6.1 Mosaic matrices for pairwise associations
{sec:mosmatpairassoc}{ex:bartlett}

EXAMPLE 5.12: Bartlett data on plum root cuttings
The simplest example of what you can see in a mosaic matrix is provided by the 2 × 2 × 2

table used by Bartlett (1935) to illustrate a method for testing for no three-way interaction in a
contingency table (hypothesis H4 in Table 5.2).

The data set Bartlett in vcdExtra gives the result of an agricultural experiment to investi-
gate the survival of plum root cuttings (Alive) in relation to two factors: Time of planting and
the Length of the cutting. In this experiment, 240 cuttings were planted for each of the 2 × 2
combinations of these factors, and their survival (Alive, Dead) was later recorded.

> pairs(Bartlett, gp = shading_Friendly)

The mosaic matrix for these data, showing all twoway marginal relations, is shown in Fig-
ure 5.22. It can immediately be seen that Time and Length are independent by the design of the
experiment; we use gp=shading_Friendly here to emphasize this.

The top row and left column show the relation of survival to each of time of planting and cutting
length. It is easily seen that greater survival is associated with cuttings taken now (vs. spring) and
those cut long (vs. short), and the degree of association is stronger for planting time than for cutting
length. 4

{ex:marital2}

EXAMPLE 5.13: Marital status and pre- and extramarital sex
In Example 5.9 we examined a series of models relating marital status to reported premarital and

extramarital sexual activity and gender in the PreSex data. Figure 5.23 shows the mosaic matrix
for these data. The diagonal panels show the labels for the category levels as well as the one-way
marginal totals.

> data("PreSex", package = "vcd")
> pairs(PreSex, gp = shading_Friendly, gp_args = list(interpolate = 1 : 4),
+ space = 0.25)

If we view gender, premarital sex and extramarital sex as explanatory, and marital status (Di-
vorced vs. still Married) as the response, then the mosaics in row 1 (and in column 1)12 shows how

12Rows and columns in a mosaic matrix are identified as in a table or numerical matrix, with row 1, column 1 in the upper
left corner.
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Figure 5.22: Mosaic pairs plot for the Bartlett data. Each panel shows the bivariate marginal
relation between the row and column variables.{fig:bartlett-pairs}

marital status depends on each predictor marginally. The remaining panels show the relations within
the set of explanatory variables.

Thus, we see in row 1, column 4, that marital status is independent of gender (all residuals equal
zero, here), by design of the data collection. In the (1, 3) panel, we see that reported premarital sex is
more often followed by divorce, while non-report is more prevalent among those still married. The
(1, 2) panel shows a similar, but stronger relation between extramarital sex and marriage stability.
These effects pertain to the associations of P and E with marital status (M)—the terms [PM] and
[EM] in the loglinear model. We saw earlier that an interaction of P and E (the term [PEM]) is
required to fully account for these data. This effect is not displayed in Figure 5.23.

Among the background variables (the loglinear term [GPE]), the (2, 3) panel shows a strong
relation between premarital sex and subsequent extramarital sex, while the (2, 4) and (3, 4) panels
show that men are far more likely to report premarital sex than women in this sample, and also more
likely to report extramarital sex.

Even though the mosaic matrix shows only pairwise, bivariate associations, it provides an inte-
grated view of all of these together in a single display.

4
{ex:berkeley4}

EXAMPLE 5.14: Berkeley admissions
In Chapter 4 we examined the relations among the variables Admit, Gender and Department in

the Berkeley admissions data (Example 4.1, Example 4.11, Example 4.15) using fourfold displays
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Figure 5.23: Mosaic pairs plot for the PreSex data. Each panel shows the bivariate marginal relation
between the row and column variables.{fig:marital-pairs}

(Figure 4.5 and Figure 4.6) and sieve diagrams (Figure 4.13). These displays showed either a
marginal relation (e.g., Admit, Gender) or the full three-way table.

In contrast, Figure 5.24 shows all pairwise marginal relations among these variables, produced
using pairs(). Some additional arguments are used to control the details of labels for the diagonal
and off-diagonal panels.

> largs <- list(labeling = labeling_border(varnames = FALSE,
+ labels = c(T, T, F, T), alternate_labels = FALSE))
> dargs <- list(gp_varnames = gpar(fontsize = 20), offset_varnames = -1,
+ labeling = labeling_border(alternate_labels = FALSE))
> pairs(UCBAdmissions, shade = TRUE, space = 0.25,
+ diag_panel_args = dargs,
+ upper_panel_args = largs, lower_panel_args = largs)

The panel in row 2, column 1 shows that Admission and Gender are strongly associated marginally,
as we saw in Figure 4.5, and overall, males are more often admitted. The diagonally-opposite panel
(row 1, column 2) shows the same relation, splitting first by gender.13

The panels in the third column (and third row) provide the explanation for the paradoxical result

13Note that this is different than just the transpose or interchange of horizontal and vertical dimensions as in a scatterplot
matrix, because the mosaic display splits the total frequency first by the horizontal variable and then (conditionally) by the
vertical variable. The areas of all corresponding tiles are the same in each diagonally opposite pair, however, as are the
residuals shown by color and shading.
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Figure 5.24: Mosaic matrix of the UCBAdmissions data showing bivariate marginal relations{fig:berk-pairs1}

(see Figure 4.6) that, within all but department A, the likelihood of admission is equal for men and
women, yet, overall, there appears to be a bias in favor of admitting men (see Figure 4.5). The (1,
3) and (3, 1) panels show the marginal relation between Admission and Department, that is, how
admission rate varies across departments. Departments A and B have the greatest overall admission
rate, departments E and F the least. The (2, 3) and (3, 2) panels show how men and women apply
differentially to the various departments. It can be seen that men apply in much greater numbers to
departments A and B, with higher admission rates, while women apply in greater numbers to the
departments C–F, with the lowest overall rate of admission.

4

5.6.2 Generalized mosaic matrices and pairs plots
{sec:condmat}

We need not show only the marginal relation between each pair of variables in a mosaic matrix.
(Friendly, 1999b) describes the extension of this idea to conditional, partial, and other views of a
contingency table.

In pairs.table(), different panel functions can be used to specify what is displayed in the
upper, lower and diagonal panels. For the off-diagonal panels, a type argument can be used to plot
mosaics showing various kinds of independence relations:

type="pairwise" Shows bivariate marginal relations, collapsed over all other variables.
type="total" Shows mosaic plots for mutual independence.
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type="conditional" Shows mosaic plots for conditional independence given all other vari-
ables.

type="joint" Shows mosaic plots for joint independence of all pairs of variables from the
others.

{ex:berkeley4b}

EXAMPLE 5.15: Berkeley admissions
Figure 5.25 shows the generalized mosaic matrix for the UCBAdmissions data, using 3-way

mosaics for all the off-diagonal cells. The observed frequencies, of course, are the same in all these
cells. However, in the lower panels, the tiles are shaded according to models of joint independence,
while in the upper panels, they are shaded according to models of mutual independence.

> pairs(UCBAdmissions,
+ lower_panel = pairs_mosaic(type = "joint"),
+ upper_panel = pairs_mosaic(type = "total"),
+ space=0.2)
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Figure 5.25: Generalized mosaic matrix of the UCBAdmissions data. The above-diagonal plots fit
models of joint independence; below-diagonal plots fit models of mutual independence.{fig:berk-pairs2}

In this example, it is more useful to fit and display the models of conditional independence for
each pair of row, column variables given the remaining one, as shown in Figure 5.26.
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> pairs(UCBAdmissions, type = "conditional", space = 0.2)
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Figure 5.26: Generalized mosaic matrix of the UCBAdmissions data. The off-diagonal plots fit
models of conditional indpendence. {fig:berk-pairs3}

Thus, the shading in the (1,2) and (2,1) panels show the fit of the model [Admit, Dept] [Gender,
Dept], which asserts that Admission and Gender are independent, given (controlling for) Depart-
ment. Except for Department A, this model fits quite well, again indicating lack of gender bias. The
(1,3) and (3,1) panels show the relation between admission and department controlling for gender,
highlighting the differential admission rates across departments.

4

Beyond this, the framework of pairs plots can be further generalized to mixtures of quantita-
tive and categorical variables, as first described in Friendly (2003) and then in a wider context by
Emerson et al. (2013), Friendly (2013). The essential idea is to consider the combination of two
variables, each of which can be either categorical (C) or quantitative (Q), and various ways to render
that combination in a graphical display:

CC: mosaic display, sieve diagram, doubledecker plot, faceted or divided bar chart;
CQ: side-by-side boxplots, stripplots, faceted histograms, aligned density plots;
QQ: scatterplot, corrgram, data ellipses, etc.

In R some of these possibilities are provided in the gpairs package (using grid graphics and the vcd
strucplot framework), and the GGally package (an extension to ggplot2). {ex:arthritis-gpairs}
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EXAMPLE 5.16: Arthritis treatment
We illustrate these ideas with the Arthritis data using the gpairs package in Figure 5.27. In

this data, the variables Treatment, Sex and Improved are categorical, and Age is quantitative.
The call to gpairs() below reorders the variables to put the response variable Improved in row
1, column 1. Various options can be passed to mosaic() using the mosaic.pars argument.

> library(gpairs)
> data("Arthritis", package = "vcd")
> gpairs(Arthritis[,c(5, 2, 3, 4)],
+ diag.pars = list(fontsize = 20),
+ mosaic.pars = list(gp = shading_Friendly,
+ gp_args = list(interpolate = 1 : 4)))
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Figure 5.27: Generalized pairs plot of the Arthritis data. Combinations of categorical and quantita-
tive variables can be rendered in various ways.{fig:arth-gpairs}

gpairs() provides a variety of options for the CQ and QQ combinations, as well as the
diagonal cells, but only the defaults are used here. The bottom row, corresponding to Age uses
boxplots to show the distributions of age for each of the categorical variables. The last column shows
these same variables as stripplots (or “barcodes”), which show all the individual observations. In the
(1,4) and (4,1) panels, it can be seen that younger patients are more likely to report no improvement.
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The other panels in the first row (and column) show that improvement is more likely in the treated
condition and greater among women than men. 4

5.7 3D mosaics
{sec:3D}

Mosaic-like displays use the idea of recursive partitioning of a unit square to portray the frequencies
in an n-way table by the area of rectangular tiles with (x, y) coordinates. The same idea extends
naturally to a 3D graphic. This starts with a unit cube, which is successively subdivided into 3D
cuboids along (x, y, z) dimensions, and the frequency in a table cell is then represented by volume.

As in the 2D versions, each cuboid can be shaded to represent some other feature of the data,
typically the residual from some model of independence. In principle, the display can accommodate
more than 3 variables by using a sequence of split directions along the (x, y, z) axes.

One difficulty in implementing this method is that, short of using a 3D printer, the canvas for a
3D plot on a screen or printer is still projected on a two-dimensional surface, and graphical elements
(volumes, lines, text) toward the front of the view will obscure those in the back. In R, a major ad-
vance in 3D graphics is available in the rgl package, that mitigates these problems by: (a) providing
an interactive graphic window that can be zoomed and rotated manually with the mouse; (b) allow-
ing dynamic graphics under program control, for example to animate a plot or make a movie; (c)
providing control of the details of 3D rendering, including transparency of shapes, surface shading,
lighting and perspective.

The vcdExtra package implements 3D mosaics using rgl graphics. mosaic3d() provides
methods for "loglm" as well as "table" (or "structable") objects. At the time of writing, only some
features of 2D mosaics are available. {ex:bartlett-3d}

EXAMPLE 5.17: Bartlett data on plum root cuttings
In Example 5.12 we showed the mosaic matrix for the Bartlett, fitting the model of mutual

independence to show all associations among the table variables, Alive, Time of planting and
Length of cutting. Figure 5.28 shows the 3D version, produced using mosaic3d():

> mosaic3d(Bartlett)

In the view of this figure, it can be seen that cuttings are more likely to be alive when planted
Now and when cut Long. These relations can more easily be appreciated by rotating the 3D display.

4

5.8 Visualizing the structure of loglinear models
{sec:mosaic-struc}

For quantitative response data, it is easy to visualize a fitted model— for linear regression, this is
just a plot of the fitted line; for multiple regression or non-linear regression with two predictors, this
is a plot of the fitted response surface. For a categorical response variable, an analog of such plots
is provided by effect plots, described later in this book.

For contingency table data, mosaic displays can be used in a similar manner to illuminate the
relations among variables in a contingency table represented in various loglinear models, a point
described by Theus and Lauer (1999). In fact, each of the model types depicted in Table 5.2 has a
characteristic shape and structure in a mosaic display. This, in turn, leads to a clearer understanding
of the structure which appears in real data when a given model fits, the relations among the models,
and the use of mosaic displays. The essential idea is a simple extension of what we do for more
traditional models: show the expected (fitted) frequencies under a given model rather than observed
frequencies in a mosaic-like display.

To illustrate, we use some artificial data on the relations among age, sex and symptoms of some
disease shown in the 2× 2× 2 table struc below.
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Figure 5.28: 3D mosaic plot of the Bartlett data, according to the model of mutual independence. {fig:mos3d-bartlett}

> struc <- array(c(6, 10, 312, 44,
+ 37, 31, 192, 76),
+ dim = c(2, 2, 2),
+ dimnames = list(Age = c("Young", "Old"),
+ Sex = c("F", "M"),
+ Disease = c("No", "Yes"))
+ )
> struc <- as.table(struc)
> structable(struc)

Sex F M
Age Disease
Young No 6 312

Yes 37 192
Old No 10 44

Yes 31 76

First, note that there are substantial associations in this table, as shown in Figure 5.29, fitting the
(default) mutual independence model.

> mosaic(struc, shade = TRUE)

The first split by Age shows strong partial associations between Sex and Disease for both
young and old. However the residuals have an opposite pattern for young and old, suggesting a
more complex relationship among these variables.

In this section we are asking a different question: what would mosaic displays look like if
the data were in accord with simpler models? One way to do this is simply to use the expected
frequencies to construct the tiles, as in sieve diagrams. The result, in Figure 5.30, shows that the
tiles for sex and disease align for each of the age groups, but it is harder to see the relations among
all three variables in this plot.
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Figure 5.29: Mosaic display for the data on age, sex and disease. Observed frequencies are shown
in the plot, and residuals reflect departure from the model of mutual independence.{fig:struc-mos1}

> mosaic(struc, type = "expected")
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Figure 5.30: Mosaic display for the data on age, sex and disease, using expected frequencies under
mutual independence. {fig:struc-mos2}

We can visualize the model-implied relations among all variables together more easily using
mosaic matrices.
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5.8.1 Mutual independence
For example, to show the structure of a table which exactly fits the model of mutual independence,
H1, use the loglm() to find the fitted values, fit, as shown below. The function fitted()
extracts these from the "loglm" object.

> mutual <- loglm(~ Age + Sex + Disease, data = struc, fitted = TRUE)
> fit <- as.table(fitted(mutual))
> structable(fit)

Sex F M
Age Disease
Young No 34.0991 253.3077

Yes 30.7992 228.7940
Old No 10.0365 74.5567

Yes 9.0652 67.3416

These fitted frequencies then have the same one-way margins as the data in struc, but have no
two-way or higher associations. Then, pairs() for this table, using type="total" shows the
three-way mosaic for each pair of variables, giving the result in Figure 5.30. We use gp=shading_Friendly
to explicitly indicate the zero residuals in the display.

> pairs(fit, gp = shading_Friendly, type = "total")

In this figure the same data are shown in all the off-diagonal panels and the mutual independence
model was fitted in each case, but with the table variables permuted. All residuals are exactly zero
in all cells, by construction. We see that in each view, the four large tiles, corresponding to the first
two variables align, indicating that these two variable are marginally independent. For example, in
the (1,2) panel, age and sex are independent, collapsed over disease.

Moreover, comparing the top half to the bottom half in any panel we see that the divisions
by the third variable are the same for both levels of the second variable. In the (1, 2) panel, for
example, age and disease are independent for both males and females. This means that age and sex
are conditionally independent given disease (age ⊥ sex |disease).

Because this holds in all six panels, we see that mutual independence implies that all pairs of
variables are conditionally independent, given the remaining one, (X ⊥ Y |Z) for all permutations
of variables. A similar argument can be used to show that joint independence also holds, i.e.,
((X,Y ) ⊥ Z) for all permutations of variables.

Alternatively, you can also visualize these relationships interactively in a 3D mosaic using
mosaic3d() that allows you to rotate the mosaic to see all views. In Figure 5.32, all of the 3D
tiles are unshaded and you can see that the 3D unit cube has been sliced according to the marginal
frequencies.

> mosaic3d(fit)

5.8.2 Joint independence
The model of joint independence, H2 : (A,B) ⊥ C, or equivalently, the loglinear model [AB][C]
may be visualized similarly by a mosaic matrix in which the data are replaced by fitted values under
this model. We illustrate this for the model [Age Sex][Disease], calculating the fitted values in a
similar way as before.

> joint <- loglm(~ Age * Sex + Disease, data = struc, fitted = TRUE)
> fit <- as.table(fitted(joint))
> structable(fit)
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Figure 5.31: Mosaic matrix for fitted values under mutual independence. In all panels the joint
frequencies conform to the one-way margins.{fig:struc-mos3}

Figure 5.32: 3D mosaic plot of frequencies according to the model of mutual independence. The
one-way margins are slices through the unit cube.{fig:struct-mos3d1}
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Sex F M
Age Disease
Young No 22.593 264.814

Yes 20.407 239.186
Old No 21.542 63.051

Yes 19.458 56.949

The pairs.table() plot, now using simpler pairwise plots (type="pairwise"), is shown
in Figure 5.33.

> pairs(fit, gp = shading_Friendly)

Age

Young

Old

547 161

Sex

F

M

84 624

Disease

No

Yes

372 336

Figure 5.33: Mosaic matrix for fitted values under joint independence for the model [Age
Sex][Disease]{fig:struc-mos4}

This shows, in row 3 and column 3, the anticipated independence of both age and sex with
disease, collapsing over the remaining variable. The (1,2) and (2,1) panels show that age and sex
are still associated when disease is ignored.

5.9 Related visualization methods
{sec:related}

A variety of other graphical methods provide the means for visualizing relationships in multiway
frequency tables. We briefly describe a few of these here, without much detail, to give a sense of
some alternatives.
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5.9.1 Doubledecker plots
{sec:doubledecker}

Doubledecker plots visualize the the dependence of one categorical (typically binary) variable on
further categorical variables. Formally, they are mosaic plots with vertical splits for all dimensions
(predictors) except the last one, which represents the dependent variable (outcome). The last vari-
able is visualized by horizontal splits, no space between the tiles, and separate colors for the levels.

They have the advantage of making it easier to “read” the differences among the conditional
response proportions in relation to combinations of the explanatory variables. Moreover, for a
binary response, the difference in these conditional proportions for any two columns has a direct
relation to the odds ratio for a positive response in relation to those predictor levels (Hofmann,
2001).

The doubledecker() function in vcd takes a formula argument of the form R ~ E1 + E2 + ...
where R is the response variable and E1, E2, . . . are the predictors in the contingency table in array
form. The shorthand notation, R ~ . means that all variables other than R are taken as predictors,
in their order in the array. {ex:berkeley-ddecker}

EXAMPLE 5.18: Berkeley admissions
Figure 5.34 shows the doubledecker plot for the UCBAdmissions data. By default, the levels

of the response (Admit) taken in their order in the array and shaded to highlight the last level
(Rejected). We want to highlight Admitted, so we reverse this dimension in the call below.

> doubledecker(Admit ~ Dept + Gender, data=UCBAdmissions[2:1,,])

Dept
Gender

A
Male Female

B
Male Female

C
Male Female

D
Male Female

E
Male Female

F
Male Female

Admitted

Rejected

Admit

Figure 5.34: Doubledecker plot for the UCBAdmissions data {fig:berkeley-doubledecker}

In Figure 5.34, it is easy to see the effects of both Dept and Gender on Admit. Admission
rate declines across departments A–E, and within departments, the proportion admitted is roughly
the same, except for department A, where more female applicants are admitted. 4

{ex:titanic-ddecker}

EXAMPLE 5.19: Titanic data
Figure 5.35 shows the doubledecker plot for the Titanic data. The levels of the response

(Survived) are shaded in increasing grey levels, highlighting the proportions of survival.

> doubledecker(Survived ~ Class + Age + Sex, Titanic)

This order of variables makes it easiest to compare survival of men and women within each
age–class combination, but you can also see that survival of adult women decreases with class, and
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Figure 5.35: Doubledecker plot for the Titanic data {fig:titanic-doubledecker}

survival among men was greatest in first class. Some additional visualizations of these relationships
are illustrated using the next topic in Example 5.21.

4

5.9.2 Generalized odds ratios?
{sec:oddsratio}

In Example 4.12, we used fourfold displays (Figure 4.7) to analyze the odds ratio between breath-
lessness and wheeze in coal miners as a function of age. Figure 4.8 showed that a plot of the odds
ratio directly against age gave a simplified description of this 3-way relationship.

Odds ratios for 2 × 2 tables can be generalized to R × C tables in a variety of ways, and these
can also be calculated for n-way tables by treating all but the first two dimensions as strata. Plots of
these generalized odds ratios can be quite informative, perhaps more so than in the 2× 2× k case.

Consider an R × C table with frequencies nij . Then a set of (R − 1) × (C − 1) local odds
ratios, θi,j , can be calculated as the odds ratios for adjacent pairs of rows and columns as shown in
the left panel of Figure 5.9.2.

θij =
nij/ni+1,j

ni,j+1/ni+1,j+1
=
nij × ni+1,j+1

ni+1,j × ni,j+1
,

i = 1, 2, . . . , R− 1

j = 1, 2, . . . , C − 1
.

These odds ratios correspond to “profile contrasts” (or sequential contrasts or successive differ-
ences) for ordered categories. Similarly, if one row category and one column category (say, the
last) are considered baseline or reference categories, odds ratios with respect to contrasts with those
categories (Figure 5.9.2, right panel) are defined as

θij =
ni,j × nR,C
ni,C × nR,j

,
i = 1, 2, . . . , R− 1

j = 1, 2, . . . , C − 1
.

Note that all such parameterizations are equivalent, in that one can derive all other possible odds
ratios from any non-redundant set, but substance-driven contrasts will be easier to interpret.

This calculation is simple in terms of log odds ratios, because it corresponds to a contrast among
the log frequencies, with weights ±1 for the four relevant cells. For local odds ratios, these are

log(θij) =
(

1 −1 −1 1
)

log
(
nij ni+1,j ni,j+1 ni+1,j+1

)T
.

Consider an R×C ×K1 ×K2 × . . . frequency table nij···, with factors K1,K2 . . . taken as strata.
Let n = vec(nij···) be the N × 1 vectorization of the frequency table. Then, all log odds ratios and
their asymptotic covariance matrix can be calculated as:

log(θ̂) = C log(n)

S ≡ V[log(θ)] = C diag (n)−1 CT
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{fig:lor}

Figure 5.36: Generalized odds ratios for an R × C table. Left: local odds ratios for adjacent
categories. Right: odds ratios with respect to a reference category (the last). Each log odds ratio is
a contrast of the log frequencies, shown by the cell weights.

where C is an N -column matrix containing all zeros, except for two +1 elements and two −1
elements in each row that select the four cells involved in each log lodds ratio.14

The function loddsratio() in vcd calculates these values for the categories of the first
two dimensions of an n-way table, together with their asymptotic covariance matrix. Additional
dimensions are treated as strata. The as.array() and as.data.frame() methods can be
used to convert a loddsratio object to a form suitable for plotting or further analysis. {ex:punish2}

EXAMPLE 5.20: Corporal punishment data
Example 5.11 used mosaic displays to describe the relationship between attitude toward cor-

poral punishment of children in relationship to memory of having experienced that as a child and
education and age of the respondent. Given that attitude is the response, we could examine the
odds ratios among this variable and any one predictor, treating the other variables as strata. Contin-
uing the analysis of Example 5.11, we calculate log odds ratios for the association of attitude
and memory, stratified by age and education.

> data("Punishment", package="vcd")
> pun_lor <- loddsratio(Freq ~ memory + attitude | age + education, data = Punishment)

The as.data.frame()method converts this to a data frame, and adds standard errors (ASE).

> pun_lor_df <- as.data.frame(pun_lor)

The plot method for loddsratio objects conveniently plots the log odds ratio (LOR) against
the strata variables, age or education, and by default also adds error bars. The result is shown
in Figure 5.37.

> plot(pun_lor)

Compared to Figure 5.20, the differences among the age, education groups are now clear. For
respondents less than age 40, increasing education increases the association (log odds ratio) between
attitude and memory: those who remembered corporal punishment as a child are more likely to

14Some additional theory and applications of generalized odds ratios for ordered variables is given by Goodman (1983).
Hofmann (2001) describes some connections between odds ratios, loglinear models, and visual modeling using doubledecker
plots and mosaic plots.
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Figure 5.37: Log odds ratio for the association between attitude and memory of corporal punish-
ment, stratified by age and education. Error bars show ±1 standard error. {fig:pun-lor-plot}

approve of it as their education increases. This result is reversed for those over 40, where all log
odds ratios are negative: memory of corporal punishment makes it less likely to approve, and this
effect becomes stronger with increased education.

Because log odds ratios have an approximate normal distribution under the null hypothesis that
all log θij = 0, you can treat these values as data, and carry out a rough analysis of the effects of the
stratifying variables using ANOVA, with weights inversely proportional to the estimated sampling
variances.15 In the analysis shown below, we have treated age and education as ordered (numeric)
variables.

> pun_mod <- lm(LOR ~ age * education, data = pun_lor_df, weights = 1 / ASE^2)
> anova(pun_mod)

Analysis of Variance Table

Response: LOR
Df Sum Sq Mean Sq F value Pr(>F)

age 1 1.04 1.04 2.72 0.160
education 1 1.84 1.84 4.79 0.080 .
age:education 1 5.04 5.04 13.13 0.015 *
Residuals 5 1.92 0.38
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This confirms the interaction of age and education on the association between attitude and mem-
ory that we described from visual inspection of Figure 5.37. 4

15This ignores the covariances among the log odds ratios, which are not independent. A proper analysis uses generalized
least squares with a weight matrix S−1, where S = V[log(θ)] is the covariance matrix.
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{ex:titanic-lor}

EXAMPLE 5.21: Titanic data
For the Titanic, it is useful to examine the odds ratios for survival in relation to age or sex,

using the remaining variables as strata. Some preprocessing is nececessary first: This data contain
structural zeros as there were no children in the crew. Accordingly, we set the corresponding
cell entries to NA to avoid the calculation of nonsensical values. (Problems of zero frequencies in
frequency tables are discussed in more detail in Section 9.5.) Additionally, we reverse the order
of the levels so that Survived=="Yes" and Age=="Adult" are first. The values calculated
below then give the log odds of survival for an adult compared to a child in the combinations sex
and class.

> Titanic2 <- Titanic[,,2:1,2:1]
> Titanic2["Crew",,"Child",] <- NA
> titanic_lor1 <- loddsratio(~ Survived + Age | Class + Sex, data = Titanic2)
> titanic_lor1

log odds ratios for Survived and Age by Class, Sex

Sex
Class Male Female
1st -3.12102 2.342518
2nd -5.50154 -1.510269
3rd -0.66874 0.031104
Crew NA NA

Similarly, for survival and sex, we obtain the log odds ratios of survival for males versus females,
for the combinations of age and class.

> titanic_lor2 <- loddsratio(~ Survived + Sex | Class + Age, data = Titanic2)
> titanic_lor2

log odds ratios for Survived and Sex by Class, Age

Age
Class Adult Child
1st -4.1643 1.29928
2nd -4.1516 -0.16034
3rd -1.4786 -0.77879
Crew -3.0156 NA

The plots for both tables are shown in Figure 5.38.
In the left panel of Figure 5.38 you can see that the odds ratio of survival for adults relative to

children was always greater for females as compared to males, but much less so in 3rd class. In the
right panel, the odds ratio of survival for males versus females was always greater for children than
adults, again less so in 3rd class. 4

Other examples and plots for log odds ratios are shown in help(loddsratio).

5.10 Chapter summary
{sec:mosaic-summary}

• The mosaic display depicts the frequencies in a contingency table by a collection of rectangular
“tiles” whose area is proportional to the cell frequency. The residual from a specified model is
portrayed by shading the tile to show the sign and magnitude of the deviation from the model.

• For two-way tables, the tiles for the second variable align at each level of the first variable when
the two variables are independent (see Figure 5.10).
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Figure 5.38: Log odds ratio plots for the Titanic data. Left: Odds ratios for survival and age, by
sex and class. Right: for survival and sex, by age and class. Error bars show ±1 standard error. {fig:titanic-lor-plot}

• The perception and understanding of patterns of association (deviations from independence)
are enhanced by reordering the rows or columns to give the shading of the residuals a more
coherent pattern. An opposite-corner pattern “explains” the association in terms of the ordering
of the factor levels.

• For three-way and larger tables, a variety of models can be fit and visualized. Starting with a
minimal baseline model, the pattern of residuals will often suggest additional terms which must
be added to “clean the mosaic.”

• It is often useful to examine the sequential mosaic displays for the marginal subtables with the
variables in a given order. Sequential models of joint independence provide a breakdown of
the total association in the full table, and are particularly appropriate when the last variable is a
response.

• Partial association, which refers to the associations among a subset of variables, within the
levels of other variables, may be easily studied by constructing separate mosaics for the subset
variables for the levels of the other, “given” variables. These displays provide a breakdown of
a model of conditional association for the whole table, and serve as an analog of coplots for
quantitative data.

• Mosaic matrices, consisting of all pairwise plots of an n-way table, provide a way to visualize
all marginal, joint, or conditional relations simultaneously. Doubledecker plots and plots of
generalized odds ratios provide other methods to visualize n-way tables.

• The structural relations among model terms in various loglinear models themselves can also be
visualized by mosaic matrices showing the expected, rather than observed, frequencies under
different models.

• Related visualization techniques include doubledecker plots for binary response models and line
plots for generalized odds ratios.
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5.11 Lab exercises
{sec:mosaic-lab}{lab:5.1}

Exercise 5.1 The data set criminal in the package logmult gives the 4 × 5 table below of
the number of men aged 15-19 charged with a criminal case for whom charges were dropped in
Denmark from 1955–1958.

> data("criminal", package="logmult")
> criminal

Age
Year 15 16 17 18 19
1955 141 285 320 441 427
1956 144 292 342 441 396
1957 196 380 424 462 427
1958 212 424 399 442 430

(a) Use loglm() to test whether there is an association between Year and Age. Is there evi-
dence that dropping of charges in relation to age changed over the years recorded here?

(b) Use mosaic() with the option shade=TRUE to display the pattern of signs and magnitudes
of the residuals. Compare this with the result of mosaic() using “Friendly shading,” from
the option gp=shading_Friendly. Describe verbally what you see in each regarding the
pattern of association in this table.

{lab:5.2}

Exercise 5.2 The Lahman package contains comprehensive data on baseball statistics for Major
League Baseball from 1871 through 2012. For all players, the Master table records the handedness
of players, in terms of throwing (L, R) and batting (B, L, R), where B indicates “both.” The table
below was generated using the following code:

> library(Lahman)
> data("Master", package="Lahman")
> basehands <- with(Master, table(throws, bats))

Bats
Throws B L R

L 177 2640 527
R 924 1962 10442

• Use the code above, or else enter these data into a frequency table in R.
• Construct mosaic displays showing the relation of batting and throwing handedness, split first

by batting and then by throwing.
• From these displays, what can be said about players who throw with their left or right hands

in terms of their batting handedness?
{lab:5.3}

Exercise 5.3 ? A related analysis concerns differences in throwing handedness among baseball
players according to the fielding position they play. The following code calculates a such a fre-
quency table.

> library(Lahman)
> MasterFielding <- data.frame(merge(Master, Fielding, by = "playerID"))
> throwPOS <- with(MasterFielding, table(POS, throws))

(a) Make a mosaic display of throwing hand vs. fielding position.
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(b) Calculate the percentage of players throwing left-handed by position. Make a sensible graph
of this data.

(c) Re-do the mosaic display with the positions sorted by percentage of left-handers.
(d) Is there anything you can say about positions that have very few left-handed players?

{lab:5.4}

Exercise 5.4 For the Bartlett data described in Example 5.12, fit the model of no three-way
association, H4 in Table 5.2.

(a) Summarize the goodness of fit for this model, and compare to simpler models that omit one or
more of the two-way terms.

(b) Use a mosaic-like display to show the lack of fit for this model.
{lab:5.5}

Exercise 5.5 Red core disease, caused by a fungus, is not something you want if you are a straw-
berry. The data set jansen.strawberry from the agridat package gives a frequency data frame
of counts of damage from this fungus from a field experiment reported by Jansen (1990). See the
help file for details. The following lines create a a 3 × 4 × 3 table of crossings of 3 male parents
with 4 (different) female parents, recording the number of plants in four blocks of 9 or 10 plants
each showing red core disease in three ordered categories, C1, C2 or C3.

> data("jansen.strawberry", package = "agridat")
>
> dat <- jansen.strawberry
> dat <- transform(dat, category = ordered(category, levels = c('C1','C2','C3')))
> levels(dat$male) <- paste0("M", 1:3)
> levels(dat$female) <- paste0("F", 1:4)
>
> jansen.tab <- xtabs(count ~ male + female + category, data = dat)
> names(dimnames(jansen.tab)) <- c("Male parent", "Female parent",
+ "Disease category")
> ftable(jansen.tab)

(a) Use pairs(jansen.tab, shade=TRUE) to display the pairwise associations among
the three variables. Describe how disease category appears to vary with male and female
parent? Why is there no apparent association between male and female parent?

(b) As illustrated in Figure 5.6, use mosaic to prepare a 3-way mosaic plot with the tiles colored
in increasing shades of some color according to disease category. Describe the pattern of
category C3 in relation to male and female parent. (Hint: the highlighting arguments are
useful here.)

(c) With category as the response variable, the minimal model for association is [MF][C] , or
~ 1*2 + 3. Fit this model using loglm() and display the residuals from this model with
mosaic(). Describe the pattern of lack of fit of this model.

{lab:5.6}

Exercise 5.6 The data set caith in MASS gives another classic 4× 5 table tabulating hair color
and eye color, this for people in Caithness, Scotland, originally from Fisher (1940). The data is
stored as a data frame of cell frequencies, whose rows are eye colors and whose columns are hair
colors.

> data("caith", package="MASS")
> caith

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4
medium 343 84 909 412 26
dark 98 48 403 681 85
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(a) The loglm() and mosaic() functions don’t understand data in this format, so use Caith
<- as.matrix(caith) to convert to array form. Examine the result, and use names(dimnames(Caith))<-c()
to assign appropriate names to the row and column dimensions.

(b) Fit the model of independence to the resulting matrix using loglm().
(c) Calculate and display the residuals for this model.
(d) Create a mosaic display for this data.

{lab:5.7}

Exercise 5.7 The HairEyePlace data in vcdExtra gives similar data on hair color and eye
color, for both Caithness and Aberdeen as a 4× 5× 2 table.

(a) Prepare separate mosaic displays, one for each of Caithness and Aberdeen. Comment on any
difference in the pattern of residuals.

(b) Construct conditional mosaic plots, using the formula ~ Hair + Eye | Place and both
mosaic() and cotabplot(). It is probably more useful here to suppress the legend in
these plots. Comment on the difference in what is shown in the two displays.

{lab:5.8}{lab:mosaic-accident}

Exercise 5.8 Bertin (1983, p. 30–31) used a 4-way table of frequencies of traffic accident victims
in France in 1958 to illustrate his scheme for classifying data sets by numerous variables, each of
which could have various types and could be assigned to various visual attributes. His data are
contained in Accident in vcdExtra, a frequency data frame representing his 5× 2× 4× 2 table
of the variables age, result (died or injured), mode of transportation and gender.

> data("Accident", package="vcdExtra")
> str(Accident)

'data.frame': 80 obs. of 5 variables:
$ age : Ord.factor w/ 5 levels "0-9"<"10-19"<..: 5 5 5 5 5 5 5 5 5 5 ...
$ result: Factor w/ 2 levels "Died","Injured": 1 1 1 1 1 1 1 1 2 2 ...
$ mode : Factor w/ 4 levels "4-Wheeled","Bicycle",..: 4 4 2 2 3 3 1 1 4 4 ...
$ gender: Factor w/ 2 levels "Female","Male": 2 1 2 1 2 1 2 1 2 1 ...
$ Freq : int 704 378 396 56 742 78 513 253 5206 5449 ...

(a) Use loglm() to fit the model of mutual independence, Freq ~ age+mode+gender+result
to this data.

(b) Use mosaic() to produce an interpretable mosaic plot of the associations among all vari-
ables under the model of mutual independence. Try different orders of the variables in the mo-
saic. (Hint: the abbreviate component of the labeling_args argument to mosaic()
will be useful to avoid some overlap of the category labels.)

(c) Treat result ("Died" vs. "Injured") as the response variable, and fit the model
Freq ~ age*mode*gender + result that asserts independence of result from all
others jointly.

(d) Construct a mosaic display for the residual associations in this model. Which combinations of
the predictor factors are more likely to result in death?

{lab:5.9}{lab:mosaic-vietnam}

Exercise 5.9 The data set Vietnam in vcdExtra gives a 2× 5× 4 contingency table in frequency
form reflecting a survey of student opinion on the Vietnam War at the University of North Carolina
in May 1967. The table variables are sex, year in school and response, which has categories: (A)
Defeat North Vietnam by widespread bombing and land invasion; (B) Maintain the present pol-
icy; (C) De-escalate military activity, stop bombing and begin negotiations; (D) Withdraw military
forces Immediately. How does the chosen response vary with sex and year?

> data("Vietnam", package="vcdExtra")
> str(Vietnam)
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'data.frame': 40 obs. of 4 variables:
$ sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
$ year : int 1 1 1 1 2 2 2 2 3 3 ...
$ response: Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...
$ Freq : int 13 19 40 5 5 9 33 3 22 29 ...

(a) With response (R) as the outcome variable and year (Y) and sex (S) as predictors, the
minimal baseline loglinear model is the model of joint independence, [R][YS] . Fit this model,
and display it in a mosaic plot.

(b) Construct conditional mosaic plots of the response versus year separately for males and
females. Describe the associations seen here.

(c) Follow the methods shown in Example 5.10 to fit separate models of independence for the
levels of sex, and the model of conditional independence, R ⊥ Y |S. Verify that the decom-
position of G2 in Eqn. (5.6) holds for these models.

(d) Construct a useful 3-way mosaic plot of the data for the model of conditional independence.
{lab:5.10}

Exercise 5.10 Consider the models for 4-way tables shown in Table 5.3.

(a) For each model, give independence interpretation. For example, the model of mutual indepen-
dence corresponds to A ⊥ B ⊥ C ⊥ D.

(b) Use the functions shown in the table together with loglin2formula() to print the corre-
sponding model formulas for each.
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6 Corre-
spondence

Analysis

6.1
Introduction

6.2 Simple
CA

6.3
Multi-way

tables
6.4 MCA

6.5 Biplots

Correspondence analysis provides visualizations of associations in a two-way contin-
gency table in a small number of dimensions. Multiple correspondence analysis extends
this technique to n-way tables. Other graphical methods, including mosaic matrices and bi-
plots provide complementary views of loglinear models for two-way and n-way contingency
tables.

6.1 Introduction

Whenever a large sample of chaotic elements is taken in hand and marshalled in the
order of their magnitude, an unsuspected and most beautiful form of regularity proves
to have been latent all along.

Sir Francis Galton (1822–1911)

Correspondence analysis (CA) is an exploratory technique which displays the row and column
categories in a two-way contingency table as points in a graph, so that the positions of the points
represent the associations in the table. Mathematically, correspondence analysis is related to the
biplot, to canonical correlation, and to principal component analysis.

This technique finds scores for the row and column categories on a small number of dimensions
which account for the greatest proportion of the χ2 for association between the row and column
categories, just as principal components account for maximum variance of quantitative variables.
But CA does more— the scores provide a quantification of the categories, and have the property
that they maximize the correlation between the row and column variables. For graphical display
two or three dimensions are typically used to give a reduced rank approximation to the data.

219
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Correspondence analysis has a very large, multi-national literature and was rediscovered sev-
eral times in different fields and different countries. The method, in slightly different forms, is
also discussed under the names dual scaling, optimal scaling, reciprocal averaging, homogeneity
analysis, and canonical analysis of categorical data.

See Greenacre (1984) and Greenacre (2007) for an accessible introduction to CA methodology,
or Gifi (1981), Lebart et al. (1984) for a detailed treatment of the method and its applications from
the Dutch and French perspectives. Greenacre and Hastie (1987) provide an excellent discussion
of the geometric interpretation, while van der Heijden and de Leeuw (1985) and van der Heijden
et al. (1989) develop some of the relations between correspondence analysis and log-linear methods
for three-way and larger tables. Correspondence analysis is usually carried out in an exploratory,
graphical way. Goodman (1981, 1985, 1986) has developed related inferential models, the RC
model and the canonical correlation model, with close links to CA.

One simple development of CA is as follows: For a two-way table the scores for the row cat-
egories, namely X = {xim}, and column categories, Y = {yjm}, on dimension m = 1, . . . , M
are derived from a (generalized) singular value decomposition of (Pearson) residuals from inde-
pendence, expressed as dij/

√
n, to account for the largest proportion of the χ2 in a small number

of dimensions. This decomposition may be expressed as

dij√
n

=
nij −mij√
nmij

= XDλ Y
T =

M∑
m=1

λm xim yjm , (6.1){eq:cadij}

where mij is the expected frequency and where Dλ is a diagonal matrix with elements λ1 ≥ λ2 ≥
· · · ≥ λM , and M = min(I − 1, J − 1). In M dimensions, the decomposition Eqn. (6.1) is exact.
For example, an I × 3 table can be depicted exactly in two dimensions when I ≥ 3. The useful
result for visualization purposes is that a rank-d approximation in d dimensions is obtained from the
first d terms on the right side of Eqn. (6.1). The proportion of the Pearson χ2 accounted for by this
approximation is

n

d∑
m

λ2m
/
χ2 .

The quantity χ2/n =
∑
i

∑
j d

2
ij/n is called the total inertia and is identical to the measure of

association known as Pearson’s mean-square contingency, the square of the φ coefficient.
Thus, correspondence analysis is designed to show how the data deviate from expectation when

the row and column variables are independent, as in the sieve diagram, association plot and mosaic
display. However, the sieve, association and mosaic plots depict every cell in the table, and for
large tables it may be difficult to see patterns. Correspondence analysis shows only row and column
categories as points in the two (or three) dimensions which account for the greatest proportion of
deviation from independence. The pattern of the associations can then be inferred from the positions
of the row and column points.

6.2 Simple correspondence analysis
{sec:ca-simple}

6.2.1 Notation and terminology
{sec:ca-notation}

Because Correspondence analysis grew up in so many homes, the notation, formulae and terms
used to describe the method vary considerably. The notation used here generally follows Greenacre
(1984, 1997, 2007).

The descriptions here employ the following matrix and vector definitions:

• N = {nij} is the I×J contingency table with row and column totals ni+ and n+j , respectively.
The grand total n++ is also denoted by n for simplicity.
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• P = {pij} = N/n is the matrix of joint cell proportions, called the correspondence matrix.

• r =
∑
j pij = P1 is the row margin of P ; c =

∑
i pij = P T1 is the column margin. r and c

are called the row masses and column masses.

• Dr andDc are diagonal matrices with r and c on their diagonals, used as weights.

• R = D−1r P = {nij/n+j} is the matrix of row conditional probabilities, called row profiles.
Similarly, C = D−1c P T = {nij/ni+} is the matrix of column conditional probabilities or
column profiles.

• S = D
−1/2
r (P − rcT)D

−1/2
c is the matrix of standardized Pearson residuals from indepen-

dence (denoted dij in the introduction).

Two types of coordinates, X , Y for the row and column categories are defined, based on the
singular value decomposition (SVD) of S,

S = UDλV
T where UTU = V TV = I ,

and Dλ is the diagonal matrix of singular values λ1 ≥ λ2 ≥ · · · ≥ λM . U is the orthonormal
I ×M matrix of left singular vectors, and V is the J ×M matrix of right singular vectors.

The SVD of S is related to the eigenvalue–eigenvector decomposition of a square symmetric
matrix, in that SST = UD2

λU and STS = V D2
λV , so the values λ2 are the eigenvalues in both

cases and the singular vectors are the corresponding eigenvectors. In correspondence analysis, these
eigenvalues (squares of the singular values) are called the principal inertias, and are the values used
in the decomposition of the Pearson χ2 for the dimensions, χ2 = n

∑
m λ

2
m.

principal coordinates: The coordinates of the row (F ) and column (G) profiles with respect to
their own principal axes are defined so that the inertia along each axis is the corresponding
eigenvalue value, λm,

F = D−1/2r UD2
λ scaled so that F TDrF = D2

λ (6.2) {eq:pcoord1}

G = D−1/2c V D2
λ scaled so that GTDcG = D2

λ (6.3) {eq:pcoord2}

The joint plot in principal coordinates, F andG, is called the symmetric map because both row
and column profiles are overlaid in the same coordinate system.

standard coordinates: The standard coordinates (Φ,Γ) are a rescaling of the principal coordinates
to unit inertia along each axis,

Φ = D−1r U scaled so that ΦTDrΦ = I (6.4) {eq:scoord1}

Γ = D−1c V scaled so that ΓTDcΓ = I (6.5) {eq:scoord2}

These differ from the principal coordinates in Eqn. (6.2) and Eqn. (6.3) simply by the absence of
the scaling factors,D2

λ. An asymmetric map shows one set of points (say, the rows) in principal
coordinates and the other set in standard coordinates.

Thus, the weighted average of the squared principal coordinates for the rows or columns on a prin-
cipal axis equals the squared singular value, λ2 for that axis, whereas the weighted average of the
squared standard coordinates equals 1. The relative positions of the row or column points along any
axis is the same under either scaling, but the distances between points differ, because the axes are
weighted differentially in the two scalings.
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6.2.2 Geometric and statistical properties
{sec:ca-properties}

We summarize here some geometric and statistical properties of the Correspondence analysis solu-
tions which are useful in interpretation.

nested solutions: Because they use successive terms of the SVD Eqn. (6.1), correspondence anal-
ysis solutions are nested, meaning that the first two dimensions of a three-dimensional solution
will be identical to the two-dimensional solution.

centroids at the origin: In both principal coordinates and standard coordinates the points repre-
senting the row and column profiles have their centroids (weighted averages) at the origin.
Thus, in CA plots, the origin represents the (weighted) average row profile and column profile.

reciprocal averages: CA assigns scores to the row and column categories such that the column
scores are proportional to the weighted averages of the row scores, and vice-versa.

chi-square distances: In principal coordinates, the row coordinates may be shown equal to the
row profiles D−1r P , rescaled by the inverse by the square-root of the column masses, D−1/2c .
Distances between two row profiles, Ri and Ri′ are most sensibly defined as χ2 distances,
where the squared difference [Rij −Ri′j ]

2 is inversely weighted by the column frequency, to
account for the different relative frequency of the column categories. The rescaling by D−1/2c

transforms this weighted χ2 metric into ordinary Euclidean distance. The same is true of the
column principal coordinates.

interpretation of distances: In principal coordinates, the distance between two row points may
be interpreted as described above, and so may the distance between two column points. The
distance between a row and column point, however, does not have a clear distance interpretation.

residuals from independence: The distance between a row and column point do have a rough
interpretation in terms of residuals or the difference between observed and expected frequencies,
nij −mij . Two row (or column) points deviate from the origin (the average profile) when their
profile frequencies have similar values. A row point appears in a similar direction away from
the origin as a column point when nij −mij > 0, and in an opposite different direction from
that column point when the residual is negative.

Because of these differences in interpretations of distances, there are different possibilities for
graphical display. A joint display of principal coordinates for the rows and standard coordinates for
the columns (or vice-versa), sometimes called an asymmetric map is suggested by Greenacre and
Hastie (1987) and by Greenacre (1989) as the plot with the most coherent geometric interpretation
(for the points in principal coordinates) and is sometimes used in the French literature.

Another common joint display is the symmetric map of the principal coordinates in the same
plot. This is the default in the ca package described below. In the authors’ opinion, this produces
better graphical displays, because both sets of coordinates are scaled with the same weights for each
axis. Symmetric plots are used exclusively in this book, but that should not imply that these plots
are universally preferred. Another popular choice is to avoid the possibility of misinterpretation by
making separate plots of the row and column coordinates.

6.2.3 R software for correspondence analysis
{sec:ca-R}

Correspondence analysis methods for computation and plotting are available in a number of R
packages including:

MASS: corresp(); the plot method calls biplot() for a 2 factor solution, using a a sym-
metric biplot factorization that scales the row and column points by the square roots of the the
singular values. There is also a mca() function for multiple correspondence analysis.
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ca: ca(); provides 2D plots via the plot.ca() method and interactive (rgl) 3D plots via
plot3d.ca(). This package is the most comprehensive in terms of plotting options for var-
ious coordinate types, plotting supplementary points (see Section 6.3.2) and other features. It
also provides mjca() for multiple and joint correspondence analysis of higher-way tables.

FactoMineR: CA(); provides a wide variety of measures for the quality of the CA representation
and many options for graphical display

These methods also differ in terms of the types of input they accept. For example, MASS::corresp
handles matrices, data frames and "xtabs" objects, but not "table" objects. ca() is the most gen-
eral, with methods for two-way tables, matrices, data frames, and "xtabs" objects. In the following,
we largely use the ca package. {ex:haireye3}

EXAMPLE 6.1: Hair color and eye color
The script below uses the two-way table haireye from the HairEyeColor data, collapsed

over Sex. In this table, Hair colors form the rows, and Eye colors form the columns. By default,
ca() produces a 2-dimensional solution. In this example, the complete, exact solution would have
M = min((I − 1), (J − 1)) = 3 dimensions, and you could obtain this using the argument nd=3
in the call to ca().

> haireye <- margin.table(HairEyeColor, 1:2)
> library(ca)
> (haireye.ca <- ca(haireye))

Principal inertias (eigenvalues):
1 2 3

Value 0.208773 0.022227 0.002598
Percentage 89.37% 9.52% 1.11%

Rows:
Black Brown Red Blond

Mass 0.18243 0.48311 0.1199 0.2145
ChiDist 0.55119 0.15946 0.3548 0.8384
Inertia 0.05543 0.01228 0.0151 0.1508
Dim. 1 -1.10428 -0.32446 -0.2835 1.8282
Dim. 2 1.44092 -0.21911 -2.1440 0.4667

Columns:
Brown Blue Hazel Green

Mass 0.37162 0.3632 0.15710 0.10811
ChiDist 0.50049 0.5537 0.28865 0.38573
Inertia 0.09309 0.1113 0.01309 0.01608
Dim. 1 -1.07713 1.1981 -0.46529 0.35401
Dim. 2 0.59242 0.5564 -1.12278 -2.27412

In the printed output, the table labeled “Principal inertias (eigenvalues)” indicates that nearly
99% of the Pearson χ2 for association is accounted for by two dimensions, with most of that at-
tributed to the first dimension.

The summary method for "ca" objects gives a more nicely formatted display, showing a scree
plot of the eigenvalues, a portion of which is shown below.

> summary(haireye.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
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1 0.208773 89.4 89.4 **********************
2 0.022227 9.5 98.9 **
3 0.002598 1.1 100.0

-------- -----
Total: 0.233598 100.0

...

The Pearson χ2 for this table (given by chisq.test(haireye)) is 138.29. This value is n
(592) times the sum of the eigenvalues (0.2336) shown above.

The result returned by ca() can be plotted using the plot.ca()method. However, it is useful
to understand that ca() returns the CA solution in terms of standard coordinates, Φ (rowcoord)
and Γ (colcoord). We illustrate Eqn. (6.4) and Eqn. (6.5) using the components of the "ca" object
haireye.ca.

> # standard coordinates Phi (Eqn 6.4) and Gamma (Eqn 6.5)
> (Phi <- haireye.ca$rowcoord)

Dim1 Dim2 Dim3
Black -1.10428 1.44092 -1.08895
Brown -0.32446 -0.21911 0.95742
Red -0.28347 -2.14401 -1.63122
Blond 1.82823 0.46671 -0.31809

> (Gamma <- haireye.ca$colcoord)

Dim1 Dim2 Dim3
Brown -1.07713 0.59242 -0.423960
Blue 1.19806 0.55642 0.092387
Hazel -0.46529 -1.12278 1.971918
Green 0.35401 -2.27412 -1.718443

> # demonstrate orthogonality of std coordinates
> Dr <- diag(haireye.ca$rowmass)
> zapsmall(t(Phi) %*% Dr %*% Phi)

Dim1 Dim2 Dim3
Dim1 1 0 0
Dim2 0 1 0
Dim3 0 0 1

> Dc <- diag(haireye.ca$colmass)
> zapsmall(t(Gamma) %*% Dc %*% Gamma)

Dim1 Dim2 Dim3
Dim1 1 0 0
Dim2 0 1 0
Dim3 0 0 1

These standard coordinates are transformed internally within the plot function according to the
map argument, which defaults to map="symmetric", giving principal coordinates. The follow-
ing call to plot.ca() produces Figure 6.1.

> op <- par(cex=1.4, mar=c(5,4,1,2)+.1)
> res <- plot(haireye.ca)
> par(op)

For use in further customizing such plots (as we will see in the next example), the function
plot.ca() returns (invisibly)1 the coordinates for the row and column points actually plotted,
which we saved above as res:

1This uses features incorporated in the ca package, version 0.54+.
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Figure 6.1: Correspondence analysis solution for the Hair color and Eye color data{fig:ca-haireye-plot}

> res

$rows
Dim1 Dim2

Black -0.50456 0.214820
Brown -0.14825 -0.032666
Red -0.12952 -0.319642
Blond 0.83535 0.069579

$cols
Dim1 Dim2

Brown -0.49216 0.088322
Blue 0.54741 0.082954
Hazel -0.21260 -0.167391
Green 0.16175 -0.339040

It is important to understand that in CA plots (and related biplots, Section 6.5), the interpretation
of distances between points (and angles between vectors) is meaningful. In order to achieve this,
the axes in such plots must be equated, meaning that the two axes are scaled so that the number of
data units per inch are the same for both the horizontal and vertical axes, or an aspect ratio = 1.2

The interpretation of the CA plot in Figure 6.1 is then as follows:

• Dimension 1, accounting for nearly 90% of the association between hair and eye color corre-
sponds to dark (left) vs. light (right) on both variables.

• Dimension 2 largely contrasts red hair and green eyes with the remaining categories, accounting
for an additional 9.5% of the Pearson χ2.

• With equated axes, and a symmetric map, the distances between row points and distances be-
tween column points are meaningful. Along Dimension 1, the eye colors could be considered

2In base R graphics, this is achieved with the plot() option asp=1.
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roughly equally spaced, but for the hair colors, Blond is quite different in terms of its frequency
profile.

4
{ex:mental3}

EXAMPLE 6.2: Mental impairment and parents’ SES
In Example 4.3 we introduced the data set Mental, relating mental health status to parents’

SES. As in Example 4.7, we convert this to a two-way table, mental.tab to conduct a correspon-
dence analysis.

> data("Mental", package="vcdExtra")
> mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)

We calculate the CA solution, and save the result in mental.ca:

> mental.ca <- ca(mental.tab)
> summary(mental.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.026025 93.9 93.9 ***********************
2 0.001379 5.0 98.9 *
3 0.000298 1.1 100.0

-------- -----
Total: 0.027702 100.0
...

The scree plot produced by summary(mental.ca) shows that the association between men-
tal health and parents’ SES is almost entirely 1-dimensional, with 94% of the χ2 ( 45.98, with 15
df) accounted for by Dimension 1.

We then plot the solution as shown below, giving Figure 6.2. For this example, it is useful to
connect the row points and the column points by lines, to emphasize the pattern of these ordered
variables.

> op <- par(cex=1.3, mar=c(5,4,1,1)+.1)
> res <- plot(mental.ca, ylim=c(-.2, .2))
> lines(res$rows, col="blue", lty=3)
> lines(res$cols, col="red", lty=4)
> par(op)

The plot of the CA scores in Figure 6.2 shows that diagnostic mental health categories are
well-aligned with Dimension 1. The mental health scores are approximately equally spaced, except
that the two intermediate categories are a bit closer on this dimension than the extremes. The SES
categories are also aligned with Dimension 1, and approximately equally spaced, with the exception
of the highest two SES categories, whose profiles are extremely similar, suggesting that these two
categories could be collapsed.

Because both row and column categories have the same pattern on Dimension 1, we may in-
terpret the plot as showing that the profiles of both variables are ordered, and their relation can be
explained as a positive association between high parents’ SES and higher mental health status of
children. A mosaic display of these data (Exercise 6.5) would show a characteristic opposite corner
pattern of association.

From a modeling perspective, we might ask how strong is the evidence for the spacing of cate-
gories noted above. For example, we might ask whether assigning integer scores to the levels of SES
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Figure 6.2: Correspondence analysis solution for the Mental health data{fig:ca-mental-plot}

and mental impairment provides a simpler, but satisfactory account of their association. Questions
of this type can be explored in connection with loglinear models in Chapter 9.

4
{ex:victims2}

EXAMPLE 6.3: Repeat victimization
The data set RepVict in the vcd package gives a 8 × 8 table (from Fienberg (1980, Table 2-

8)) on repeat victimization for various crimes among respondents to a U.S. National Crime Survey.
A special feature of this data set is that row and column categories reflect the same crimes, so
substantial association is expected. Here we examine correspondence analysis results in a bit more
detail and also illustrate how to customize the displays created by plot(ca(...)).

> data("RepVict", package="vcd")
> victim.ca <- ca(RepVict)
> summary(victim.ca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.065456 33.8 33.8 ********
2 0.059270 30.6 64.5 ********
3 0.029592 15.3 79.8 ****
4 0.016564 8.6 88.3 **
5 0.011140 5.8 94.1 *
6 0.007587 3.9 98.0 *
7 0.003866 2.0 100.0

-------- -----
Total: 0.193474 100.0

...

The results above show that, for this 8×8 table, 7 dimensions are required for an exact solution,
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of which the first two account for 64.5% of the Pearson χ2. The lines below illustrate that the
Pearson χ2 is n times the sum of the squared singular values, n

∑
λ2i .

> chisq.test(RepVict)

Pearson's Chi-squared test

data: RepVict
X-squared = 11131, df = 49, p-value < 2.2e-16

> (chisq <- sum(RepVict) * sum(victim.ca$sv^2))

[1] 11131

The default plot produced by plot.ca(victim.ca) plots both points and labels for the row
and column categories. However, what we want to emphasize here is the relation between the same
crimes on the first and second occurrence.

To do this, we label each crime just once (using labels=c(2,0)) and connect the two points
for each crime by a line, using segments(), as shown in Figure 6.3. The addition of a legend()
makes the plot more easily readable.

> op <- par(cex=1.3, mar=c(4,4,1,1)+.1)
> res <- plot(victim.ca, labels=c(2,0))
> segments(res$rows[,1], res$rows[,2], res$cols[,1], res$cols[,2])
> legend("topleft", legend=c("First", "Second"), title="Occurrence",
+ col=c("blue", "red"), pch=16:17, bg="gray90")
> par(op)
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Figure 6.3: 2D CA solution for the repeat victimization data. Lines connect the category points for
first and second occurrence to highlight these relations.{fig:ca-victims-plot}
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In Figure 6.3 it may be seen that most of the points are extremely close for the first and second
occurrence of a crime, indicating that the row profile for a crime is very similar to its corresponding
column profile, with Rape and Pick Pocket as exceptions.

In fact, if the table was symmetric, the row and column points in Figure 6.3 would be identcal,
as can be easily demonstrated by analyzing a symmetric version.

> RVsym <- (RepVict + t(RepVict))/2
> RVsym.ca <- ca(RVsym)
> res <- plot(RVsym.ca)
> all.equal(res$rows, res$cols)

[1] TRUE

The first dimension appears to contrast crimes against the person (right) with crimes against
property (left), and it may be that the second dimension represents degree of violence associated
with each crime. The latter interpretation is consistent with the movement of Rape towards a higher
position and Pickpocket towards a lower one on this dimension.

4

6.2.4 Corespondence analysis and mosaic displays
For a two-way table, CA and mosaic displays give complementary views of the pattern of associ-
ation between the row and column variables, but both are based on the (Pearson) residuals from
independence. CA shows the row and column categories as points in a 2D (or 3D) space accounting
for the largest proportion of the Pearson χ2, while mosaics show the association by the pattern of
shading in the mosaic tiles. It is useful to compare them directly to see how associations can be
interpreted from these graphs. {ex:TV2}

EXAMPLE 6.4: TV viewing data
The data on television viewership from Hartigan and Kleiner (1984) was used as an example

of manipulating complex categorical data in Section 2.9 and shown as a three-way mosaic plot in
Figure ??. From that figure, the main association concerned how viewership across days of the
week varied by TV network, so we first collapse the TV data to a 5× 3 two-way table.

> data("TV", package="vcdExtra")
> TV2 <- margin.table(TV, c(1,3))
> TV2

Network
Day ABC CBS NBC
Monday 2847 2923 2629
Tuesday 3110 2403 2568
Wednesday 2434 1283 2212
Thursday 1766 1335 5886
Friday 2737 1479 1998

In this case, the 2D CA solution is exact, meaning that two dimensions account for 100% of the
association.

> TV.ca <- ca(TV2)
> TV.ca

Principal inertias (eigenvalues):
1 2

Value 0.081934 0.010513
Percentage 88.63% 11.37%
...
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The plot of this solution is shown in the left panel of Figure 6.4, using lines from the origin to
the category points for the networks.

> res <- plot(TV.ca)
> segments(0, 0, res$cols[,1], res$cols[,2], col="red", lwd=2)
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Figure 6.4: CA plot and mosaic display for the TV viewing data. The days of the week in the
mosaic plot were permuted according to their order in the CA solution.{fig:TV-mosaic-ca}

An analogous mosaic display, informed by the CA solution, is shown in the right panel of
Figure 6.4. Here, the days of the week are reordered according to their positions on the first CA
dimension, another example of effect ordering.

> days.order <- order(TV.ca$rowcoord[,1])
> mosaic(t(TV2[days.order,]), shade=TRUE, legend=FALSE,
+ labeling=labeling_residuals, suppress=0)

In the CA plot, you can see that the dominant dimension separates viewing on Thursday, with
the largest share of viewers watching NBC, from the other weekdays. In the mosaic plot, Thursday
stands out as the only day with a higher than expected frequency for NBC, and this is the largest
residual in the entire table. The second dimension in the CA plot separates CBS, with its’ greatest
proportion of viewers on Monday, from ABC, with greater viewership on Wednesday and Friday.

Emerson (1998, Fig. 2) gives a table listing the shows in each half-hour time slot. Could the
overall popularity of NBC on Thursday be due to Friends or Seinfeld? An answer to this and
similar questions requires analysis of the three-way table (Exercise 6.8) and model-based methods
for polytomous outcome variables described in Section 8.3.

4

6.3 Multi-way tables: Stacking and other tricks
{sec:ca-multiway}

A three- or higher-way table can be analyzed by correspondence analysis in several ways. Multiple
correspondence analysis (MCA), described in Section 6.4, is an extension of simple correspondence
analysis which analyzes simultaneously all possible two-way tables contained within a multiway
table. Another approach, described here, is called stacking or interactive coding. This is a bit of a
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Figure 6.5: Stacking approach for a three-way table. Two of the table variables are combined
interactively to form the rows of a two-way table.{fig:stacking}

trick, to force a multiway table into a two-way table for a standard correspondence analysis, but is
a useful one.

A three-way table, of size I × J ×K can be sliced into I two-way tables, each J ×K. If the
slices are concatenated vertically, the result is one two-way table, of size (I×J)×K, as illustrated
in Figure 6.5. In effect, the first two variables are treated as a single composite variable with IJ
levels, which represents the main effects and interaction between the original variables that were
combined. Van der Heijden and de Leeuw (1985) discuss this use of correspondence analysis for
multi-way tables and show how each way of slicing and stacking a contingency table corresponds
to the analysis of a specified loglinear model. Like the mosaic display, this provides another way to
visualize the relations in a loglinear model.

In particular, for the three-way table with variables A,B,C that is reshaped as a table of size
(I × J) × K, the correspondence analysis solution analyzes residuals from the log-linear model
[AB][C]. That is, for such a table, the I × J rows represent the joint combinations of variables A
and B. The expected frequencies under independence for this table are

m[ij]k =
nij+ n++k

n
(6.6) {eq:mij-k}

which are the ML estimates of expected frequencies for the log-linear model [AB][C]. The χ2 that is
decomposed by correspondence analysis is the Pearson χ2 for this log-linear model. When the table
is stacked as I × (J ×K) or J × (I ×K), correspondence analysis decomposes the residuals from
the log-linear models [A][BC] and [B][AC], respectively, as shown in Table 6.1. In this approach,
only the associations in separate [ ] terms are analysed and displayed in the correspondence analysis
maps. Van der Heijden and de Leeuw (1985) show how a generalized form of correspondence
analysis can be interpreted as decomposing the difference between two specific loglinear models,
so their approach is more general than is illustrated here.

6.3.1 Interactive coding in R
{sec:ca-interactiveR}

In the general case of an n-way table, the stacking approach is similar to that used by ftable()
and structable() in vcd as described in Section 2.5 to flatten multiway tables to a two-way,
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Table 6.1: Each way of stacking a three-way table corresponds to a loglinear model {tab:stacking}

Stacking structure Loglinear model
(I × J)×K [AB][C]
I × (J ×K) [A][BC]
J × (I ×K) [B][AC]

printable form, where some variables are assigned to the rows and the others to the columns. Both
ftable() and structable() have as.matrix() methods3 that convert their result into a
matrix suitable as input to ca().

With data in the form of a frequency data frame, you can easily create interactive coding using
interaction() or simply use paste() to join the levels of stacked variables together.

To illustrate, create a 4-way table of random Poisson counts (with constant mean, λ = 15) of
types of Pet, classified by Age, Color and Sex.

> set.seed(1234)
> dim <- c(3, 2, 2, 2)
> tab <- array(rpois(prod(dim), 15), dim=dim)
> dimnames(tab) <- list(Pet=c("dog","cat","bird"),
+ Age=c("young","old"),
+ Color=c("black", "white"),
+ Sex=c("male", "female"))

You can use ftable() to print this, with a formula that assigns Pet and Age to the columns
and Color and Sex to the rows.

> ftable(Pet + Age ~ Color + Sex, tab)

Pet dog cat bird
Age young old young old young old

Color Sex
black male 10 12 16 16 16 12

female 8 12 13 15 11 13
white male 18 11 12 18 13 20

female 13 13 16 15 12 15

Then, as.matrix() creates a matrix with the levels of the stacked variables combined with
some separator character. Using ca(pet.mat) would then calculate the CA solution for the
stacked table, analyzing only the associations in the loglinear model [Pet Age][Color Sex] .4

> (pet.mat <- as.matrix(ftable(Pet + Age ~ Color + Sex, tab), sep='.'))

Pet.Age
Color.Sex dog.young dog.old cat.young cat.old bird.young bird.old

black.male 10 12 16 16 16 12
black.female 8 12 13 15 11 13
white.male 18 11 12 18 13 20
white.female 13 13 16 15 12 15

With data in a frequency data frame, a similar result (as a frequency table), can be obtained
using interaction() as shown below. The result of xtabs() looks the same as pet.mat.

> tab.df <- as.data.frame(as.table(tab))
> tab.df <- within(tab.df,
+ {Pet.Age = interaction(Pet,Age)

3This requires at least R version 3.1.0 or vcd 1.3-2 or later.
4The result would not be at all interesting here. Why?
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+ Color.Sex = interaction(Color,Sex)
+ })
> xtabs(Freq ~ Color.Sex + Pet.Age, data=tab.df)

{ex:suicide1}

EXAMPLE 6.5: Suicide rates in Germany
To illustrate the use of correspondence analysis for the analysis for three-way tables, we use

data on suicide rates in West Germany classified by sex, age, and method of suicide used. The data,
from Heuer (1979, Table 1) have been discussed by Friendly (1991, 1994b), van der Heijden and
de Leeuw (1985) and others.

The original 2 × 17 × 9 table contains 17 age groups from 10 to 90 in 5-year steps and 9
categories of suicide method, contained in the frequency data frame Suicide in vcd, with table
variables sex, age and method. To avoid extremely small cell counts and cluttered displays, this
example uses a reduced table in which age groups are combined in the variable age.group, a
factor with 15 year intervals except for the last interval, which includes ages 70–90; the methods
“toxic gas” and “cooking gas” were collapsed (in the variable method2) giving the 2× 5× 8 table
shown in the output below. These changes do not affect the general nature of the data or conclusions
drawn from them.

In this example, we decided to stack the combinations of age and sex, giving an analysis of
the loglinear model [AgeSex][Method], to show how the age-sex categories relate to method of
suicide.

In the case of a frequency data frame, it is quite simple to join two or more factors to form
the rows of a new two-way table. Here we use paste() to form a new, composite factor, called
age_sex here, abbreviating sex for display purposes.

> data("Suicide", package="vcd")
> # interactive coding of sex and age.group
> Suicide <- within(Suicide, {
+ age_sex <- paste(age.group, toupper(substr(sex,1,1)))
+ })

Then, use xtabs() to construct the two-way table suicide.tab:

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data=Suicide)
> suicide.tab

method2
age_sex poison gas hang drown gun knife jump other
10-20 F 921 40 212 30 25 11 131 100
10-20 M 1160 335 1524 67 512 47 189 464
25-35 F 1672 113 575 139 64 41 276 263
25-35 M 2823 883 2751 213 852 139 366 775
40-50 F 2224 91 1481 354 52 80 327 305
40-50 M 2465 625 3936 247 875 183 244 534
55-65 F 2283 45 2014 679 29 103 388 296
55-65 M 1531 201 3581 207 477 154 273 294
70-90 F 1548 29 1355 501 3 74 383 106
70-90 M 938 45 2948 212 229 105 268 147

The results of the correspondence analysis of this table are shown below:

> suicide.ca <- ca(suicide.tab)
> summary(suicide.ca)

Principal inertias (eigenvalues):
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dim value % cum% scree plot
1 0.096151 57.2 57.2 **************
2 0.059692 35.5 92.6 *********
3 0.008183 4.9 97.5 *
4 0.002158 1.3 98.8
5 0.001399 0.8 99.6
6 0.000557 0.3 100.0
7 6.7e-050 0.0 100.0

-------- -----
Total: 0.168207 100.0

...

It can be seen that 92.6% of the χ2 for this model is accounted for in the first two dimensions.
Plotting these gives the display shown in Figure 6.6.

> plot(suicide.ca)

Dimension 1 (57.2%)
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Figure 6.6: 2D CA solution for the stacked [AgeSex][Method] table of the suicide data{fig:ca-suicide-plot}

Dimension 1 in the plot separates males (right) and females (left), indicating a large difference
between suicide profiles of males and females with respect to methods of suicide. The second
dimension is mostly ordered by age with younger groups at the bottom and older groups at the top.
Note also that the positions of the age groups are roughly parallel for the two sexes. Such a pattern
indicates that sex and age do not interact in this analysis.

The relation between the age–sex groups and methods of suicide can be approximately inter-
preted in terms of similar distance and direction from the origin, which represents the marginal row
and column profiles. Young males are more likely to commit suicide by gas or a gun, older males
by hanging, while young females are more likely to ingest some toxic agent and older females by
jumping or drowning. 4
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{ex:suicide2}

EXAMPLE 6.6: Suicide rates in Germany – mosaic plot
For comparison, it is useful to see how to construct a mosaic display showing the same associ-

ations for the loglinear model [AS][M ] as in the correspondence analysis plot. To do this, we first
construct the three-way table, suicide.tab3,

> suicide.tab3 <- xtabs(Freq ~ sex + age.group + method2, data=Suicide)

As discussed in Chapter 5, mosaic plots are sensitive both to the order of variables used in
successive splits, and to the order of levels within variables and are most effective when these
orders are chosen to reflect the some meaningful ordering.

In the present example, method2 is an unordered table factor, but Figure 6.6 shows that the
methods of suicide vary systematically with both sex and age, corresponding to dimensions 1 and 2
respectively. Here we choose to reorder the table according to the coordinates on Dimension 1. We
also delete the low-frequency "other" category to simplify the display.

> # methods, ordered as in the table
> suicide.ca$colnames

[1] "poison" "gas" "hang" "drown" "gun" "knife"
[7] "jump" "other"

> # order of methods on CA scores for Dim 1
> suicide.ca$colnames[order(suicide.ca$colcoord[,1])]

[1] "drown" "jump" "poison" "knife" "other" "hang"
[7] "gas" "gun"

> # reorder methods by CA scores on Dim 1
> suicide.tab3 <- suicide.tab3[, , order(suicide.ca$colcoord[,1])]
> # delete "other"
> suicide.tab3 <- suicide.tab3[,, -5]
> ftable(suicide.tab3)

method2 drown jump poison knife hang gas gun
sex age.group
male 10-20 67 189 1160 47 1524 335 512

25-35 213 366 2823 139 2751 883 852
40-50 247 244 2465 183 3936 625 875
55-65 207 273 1531 154 3581 201 477
70-90 212 268 938 105 2948 45 229

female 10-20 30 131 921 11 212 40 25
25-35 139 276 1672 41 575 113 64
40-50 354 327 2224 80 1481 91 52
55-65 679 388 2283 103 2014 45 29
70-90 501 383 1548 74 1355 29 3

To construct the mosaic display for the same model analysed by correspondence analysis, we
use the argument expected=~age.group*sex + method2 to supply the model formula.
For this large table, it is useful to tweak the labels for the method2 variable to reduce overplotting;
the labeling_args argument provides many options for customizing strucplot displays.

> library(vcdExtra)
> mosaic(suicide.tab3, shade=TRUE, legend=FALSE,
+ expected=~age.group*sex + method2,
+ labeling_args=list(abbreviate_labs=c(FALSE, FALSE, 5)),
+ rot_labels = c(0, 0, 0, 90))

This figure (Figure 6.7) again shows the prevalence of gun and gas among younger males and
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Figure 6.7: Mosaic display showing deviations from the model [AgeSex][Method] for the suicide
data {fig:ca-suicide-mosaic}

decreasing with age, whereas use of hang increases with age. For females, these three methods are
used less frequently, whereas poison, jump, and drown occur more often. You can also see that
for females the excess prevalence of these high frequency methods varies somewhat less with age
than it does for males.

4

6.3.2 Marginal tables and supplementary variables
{ca:marginal}

An n-way table in frequency form or case form is automatically collapsed over factors which are
not listed in the call to xtabs() when creating the table input for ca(). The analysis gives a
marginal model for the categorical variables which are listed.

The positions of the categories of the omitted variables may nevertheless be recovered, by treat-
ing them as supplementary variables, given as additional rows or columns in the two-way table. A
supplementary variable is ignored in finding the CA solution, but its categories are then projected
into that space. This is another useful trick to extend traditional CA to higher-way tables.

To illustrate, the code below list only the age and method2 variables, and hence produces an
analysis collapsed over sex. This ignores not only the effect of sex itself, but also all associations
of age and method with sex, which are substantial. We don’t show the ca() result or the plot yet.

> # two way, ignoring sex
> suicide.tab2 <- xtabs(Freq ~ age.group + method2, data=Suicide)
> suicide.tab2

method2
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age.group poison gas hang drown gun knife jump other
10-20 2081 375 1736 97 537 58 320 564
25-35 4495 996 3326 352 916 180 642 1038
40-50 4689 716 5417 601 927 263 571 839
55-65 3814 246 5595 886 506 257 661 590
70-90 2486 74 4303 713 232 179 651 253

> suicide.ca2 <- ca(suicide.tab2)

To treat the levels of sex as supplementary points, we calculate the two-way table of sex and
method, and append this to the suicide.tab2 as additional rows:

> # relation of sex and method
> suicide.sup <- xtabs(Freq ~ sex + method2, data=Suicide)
> suicide.tab2s <- rbind(suicide.tab2, suicide.sup)

In the call to ca(), we then indicate these last two rows as supplementary:

> suicide.ca2s <- ca(suicide.tab2s, suprow=6:7)
> summary(suicide.ca2s)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.060429 93.9 93.9 ***********************
2 0.002090 3.2 97.1 *
3 0.001479 2.3 99.4 *
4 0.000356 0.6 100.0

-------- -----
Total: 0.064354 100.0

...

This CA analysis has the same total Pearson chi-square, χ2(28) = 3422.5 as the result of
chisq.test(suicide.tab2). However, the scree plot display above shows that the associa-
tion between age and method is essentially one-dimensional, but note also that dimension 1 (“age-
method”) in this analysis has nearly the same inertia (0.0604) as the second dimension (0.0596) in
the analysis of the stacked table. We plot the CA results as shown below (see Figure 6.8), and add
a line connecting the supplementary points for sex.

> op <- par(cex=1.3, mar=c(4,4,1,1)+.1)
> res <- plot(suicide.ca2s, pch=c(16, 15, 17, 24))
> lines(res$rows[6:7,])
> par(op)

Comparing this graph with Figure 6.6, you can see that ignoring sex has collapsed the differences
between males and females which were the dominant feature of the analysis including sex. The
dominant feature in Figure 6.8 is the Dimension 1 ordering of both age and method. However, as in
Figure 6.6, the supplementary points for sex point toward the methods that are more prevalent for
females and males.

6.4 Multiple correspondence analysis
{sec:mca}

Multiple correspondence analysis (MCA) is designed to display the relationships of the categories
of two or more discrete variables, but it is best used for multiway tables where the extensions of
classical CA described in Section 6.3 do not suffice. Again, this is motivated by the desire to provide
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Figure 6.8: 2D CA solution for the [Age] [Method] marginal table. Category points for Sex are
shown as supplementary points {fig:ca-suicide-sup}

an optimal scaling of categorical variables, giving scores for the discrete variables in an n-way table
with desirable properties and which can be plotted to visualize the relations among the category
points.

The most typical development of MCA starts by defining indicator (“dummy”) variables for
each category and reexpresses the n-way contingency table in the form of a cases by variables
indicator matrix, Z. Simple correspondence analysis for a two-way table can, in fact, be derived as
the canonical correlation analysis of the indicator matrix.

Unfortunately, the generalization to more than two variables follows a somewhat different path,
so that simple CA does not turn out to be precisely a special case of MCA in some respects, partic-
ularly in the decomposition of an interpretable χ2 over the dimensions in the visual representation.

Nevertheless, MCA does provide a useful graphic portrayal of the bivariate relations among any
number of categorical variables, and has close relations to the mosaic matrix (Section 5.6). If its
limitations are understood, it is helpful in understanding large, multivariate categorical data sets, in
a similar way to the use of scatterplot matrices and dimension-reduction techniques (e.g., principal
component analysis) for quantitative data.

6.4.1 Bivariate MCA
{sec:mca-bi}

For the hair color, eye color data, the indicator matrix Z has 592 rows and 4 + 4 = 8 columns. The
columns refer to the eight categories of hair color and eye color and the rows to the 592 students in
Snee’s 1974 sample.

For simplicity, we show the calculation of the indicator matrix below in frequency form, using
model.matrix() to compute the dummy (0/1) variables for the levels of hair color (Hair1–
Hair4) and eye color (Eye1–Eye4).

> haireye.df <- cbind(
+ as.data.frame(haireye),
+ model.matrix(Freq ~ Hair + Eye, data=haireye,
+ contrasts.arg=list(Hair=diag(4), Eye=diag(4)))[,-1]
+ )
> haireye.df

Hair Eye Freq Hair1 Hair2 Hair3 Hair4 Eye1 Eye2 Eye3 Eye4
1 Black Brown 68 1 0 0 0 1 0 0 0
2 Brown Brown 119 0 1 0 0 1 0 0 0
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3 Red Brown 26 0 0 1 0 1 0 0 0
4 Blond Brown 7 0 0 0 1 1 0 0 0
5 Black Blue 20 1 0 0 0 0 1 0 0
6 Brown Blue 84 0 1 0 0 0 1 0 0
7 Red Blue 17 0 0 1 0 0 1 0 0
8 Blond Blue 94 0 0 0 1 0 1 0 0
9 Black Hazel 15 1 0 0 0 0 0 1 0
10 Brown Hazel 54 0 1 0 0 0 0 1 0
11 Red Hazel 14 0 0 1 0 0 0 1 0
12 Blond Hazel 10 0 0 0 1 0 0 1 0
13 Black Green 5 1 0 0 0 0 0 0 1
14 Brown Green 29 0 1 0 0 0 0 0 1
15 Red Green 14 0 0 1 0 0 0 0 1
16 Blond Green 16 0 0 0 1 0 0 0 1

Thus, the first row in haireye.df represents the 68 individuals having black hair (Hair1=1)
and brown eyes (Eye1=1). The indicator matrix Z is then computed by replicating the rows in
haireye.df according to the Freq value, using the function expand.dft. The result has 592
rows and 8 columns.

> Z <- expand.dft(haireye.df)[,-(1:2)]
> vnames <- c(levels(haireye.df$Hair), levels(haireye.df$Eye))
> colnames(Z) <- vnames
> dim(Z)

[1] 592 8

Note that if the indicator matrix is partitioned as Z = [Z1,Z2], corresponding to the two sets
of categories, then the contingency table is given byN = ZT

1Z2.

> (N <- t(as.matrix(Z[,1:4])) %*% as.matrix(Z[,5:8]))

Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

With this setup, MCA can be described as the application of the simple correspondence analysis
algorithm to the indicator matrix Z. This analysis would yield scores for the rows of Z (the cases),
usually not of direct interest and for the columns (the categories of both variables). As in simple CA,
each row point is the weighted average of the scores for the column categories, and each column
point is the weighted average of the scores for the row observations.5

Consequently, the point for any category is the centroid of all the observations with a response
in that category, and all observations with the same response pattern coincide. As well, the origin
reflects the weighted average of the categories for each variable. As a result, category points with
low marginal frequencies will be located further away from the origin, while categories with high
marginal frequencies will be closer to the origin. For a binary variable, the two category points
will appear on a line through the origin, with distances inversely proportional to their marginal
frequencies. {ex:haireye4}

EXAMPLE 6.7: Hair color and eye color
For expository purposes, we illustrate the analysis of the indicator matrix below for the hair

color, eye color data using ca(), rather than the function mjca() which is designed for a more
general approach to MCA.

5Note that, in principle, this use of an indicator matrix could be extended to three (or more) variables. That extension is
more easily described using an equivalent form, the Burt matrix, described in Section 6.4.2.
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> Z.ca <- ca(Z)
> res <- plot(Z.ca, what=c("none", "all"))

In the call to plot.ca, the argument what is used to suppress the display of the row points
for the cases. The plot shown in Figure 6.9 is an enhanced version of this basic plot.

Dim1 Dim2 factor levels
1 -0.94250 1.09220 Hair Black
2 -0.27693 -0.16608 Hair Brown
3 -0.24194 -1.62513 Hair Red
4 1.56039 0.35376 Hair Blond
5 -0.91933 0.44905 Eye Brown
6 1.02254 0.42176 Eye Blue
7 -0.39712 -0.85105 Eye Hazel
8 0.30215 -1.72375 Eye Green
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Figure 6.9: Correspondence analysis of the indicator matrix Z for the hair color, eye color data.
The category points are joined separately by lines for the hair color and eye color categories.{fig:mca-haireye1}

Comparing Figure 6.9 with Figure 6.1, we see that the general pattern of the hair color and eye
color categories is the same in the analysis of the contingency table (Figure 6.1) and the analysis
of the indicator matrix (Figure 6.9), except that the axes are scaled differently—the display has
been stretched along the second (vertical) dimension. The interpretation is the same: Dimension 1
reflects a dark–light ordering of both hair and eye colors, and Dimension 2 reflects something that
largely distinguishes red hair and green eyes from the other categories.

Indeed, it can be shown (Greenacre, 1984, 2007) that the two displays are identical, except for
changes in scales along the axes. There is no difference at all between the displays in standard
coordinates. Greenacre (1984, pp. 130–134) describes the precise relations between the geometries
of the two analyses.

4

Aside from the largely cosmetic difference in relative scaling of the axes, a major difference
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between analysis of the contingency table and analysis of the indicator matrix is in the decompo-
sition of principal inertia and corresponding χ2 contributions for the dimensions. The plot axes
in Figure 6.9 indicate 24.3% and 19.2% for the contributions of the two dimensions, whereas Fig-
ure 6.1 shows 89.4% and 9.5%. This difference is the basis for the more general development of
MCA methods and is reflected in the mcja() function illustrated later in this chapter. But first,
we describe a second approach to extending simple CA to the multivariate case based on the Burt
matrix.

6.4.2 The Burt matrix
{sec:mca-burt}

The same solution for the category points as in the analysis of the indicator matrix may be obtained
more simply from the so-called Burt matrix (Burt, 1950),

B = ZTZ =

[
N1 N
NT N2

]
,

where N1 and N2 are diagonal matrices containing the marginal frequencies of the two variables
(the column sums of Z1 and Z2). In this representation, the contingency table of the two variables,
N appears in the off-diagonal block,N in this equation. This calculation is shown below.

> Burt <- t(as.matrix(Z)) %*% as.matrix(Z)
> rownames(Burt) <- colnames(Burt) <- vnames
> Burt

Black Brown Red Blond Brown Blue Hazel Green
Black 108 0 0 0 68 20 15 5
Brown 0 286 0 0 119 84 54 29
Red 0 0 71 0 26 17 14 14
Blond 0 0 0 127 7 94 10 16
Brown 68 119 26 7 220 0 0 0
Blue 20 84 17 94 0 215 0 0
Hazel 15 54 14 10 0 0 93 0
Green 5 29 14 16 0 0 0 64

The standard coordinates from an analysis of the Burt matrix B are identical to those of Z.
(However, the singular values of B are the squares of those of Z.) Then, the following code, using
Burt produces the same display of the category points for hair color and eye color as shown for
the indicator matrix Z in Figure 6.9.

> Burt.ca <- ca(Burt)
> plot(Burt.ca)

6.4.3 Multivariate MCA
{sec:mca-multi}

The coding of categorical variables in an indicator matrix and the relationship to the Burt matrix
provides a direct and natural way to extend this analysis to more than two variables. If there are Q
categorical variables, and variable q has Jq categories, then the Q-way contingency table, of size
J =

∏Q
q=1 Jq = J1 × J2 × · · · × JQ, with a total of n = n++··· observations may be represented

by the partitioned (n× J) indicator matrix [Z1Z2 . . . ZQ].
Then the Burt matrix is the symmetric partitioned matrix

B = ZTZ =


N1 N12 · · · N1Q

N21 N2 · · · N2Q

...
...

. . .
...

NQ1 NQ2 · · · NQ

 , (6.7) {eq:burt}
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where again the diagonal blocks Ni contain the one-way marginal frequencies. The off-diagonal
blocksNij contain the bivariate marginal contingency tables for each pair (i, j) of variables.

Classical MCA (see, e.g., Greenacre (1984), Gower and Hand (1996)) can then be defined as a
singular value decomposition of the matrix B which produces scores for the categories of all vari-
ables so that the greatest proportion of the bivariate, pairwise associations in all blocks (including
the diagonal blocks) is accounted for in a small number of dimensions.

In this respect, MCA resembles multivariate methods for quantitative data based on the joint
bivariate correlation or covariance matrix (Σ) and there is some justification to regard the Burt
matrix as the categorical analog of Σ.6

There is a close connection between this analysis and the bivariate mosaic matrix (Section 5.6):
The mosaic matrix displays the residuals from independence for each pair of variables, and thus
provides a visual representation of the Burt matrix. The one-way margins shown (by default) in the
diagonal cells reflect the diagonal matrices Ni in Eqn. (6.7). The total amount of shading in all
the individual mosaics portrays the total pairwise associations decomposed by MCA. See Friendly
(1999a) for further details.

For interpretation of MCA plots, we note the following relations (Greenacre, 1984, §5.2):7

• The inertia contributed by a given variable increases with the number of response categories.
• The centroid of the categories for each discrete variable is at the origin of the display.
• For a particular variable, the inertia contributed by a given category increases as the marginal

frequency in that category decreases. Low frequency points therefore appear further from the
origin.

• The category points for a binary variable lie on a line through the origin. The distance of each
point to the origin is inversely related to the marginal frequency.

{ex:marital3}

EXAMPLE 6.8: Marital status and pre- and extramarital sex
The data on the relation between marital status and reported premarital and extramarital sex was

explored earlier using mosaic displays in Example 5.9 and Example 5.13.
Using the ca package, an MCA analysis of the PreSex data is carried out using mjca(). This

function typically takes a data frame in case form containing the factor variables, but converts a table
to this form. This example analyzes the Burt matrix calculated from the PreSex data, specified as
lambda="Burt"

> data("PreSex", package="vcd")
> PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M
> presex.mca <- mjca(PreSex, lambda="Burt")
> summary(presex.mca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.149930 53.6 53.6 *************
2 0.067201 24.0 77.6 ******
3 0.035396 12.6 90.2 ***
4 0.027365 9.8 100.0 **

-------- -----
Total: 0.279892 100.0

...

6For multivariate normal data, however, the mean vector and covariance matrix are sufficient statistics, so all higher-way
relations are captured in the covariance matrix. This is not true of the Burt matrix. Moreover, the covariance matrix is
typically expressed in terms of mean-centered variables, while the Burt matrix involves the marginal frequencies. A more
accurate statement is that the uncentered covariance matrix is analogous to the Burt matrix.

7This book, now out of print, is available for free download at http://www.carme-n.org/



6.4: Multiple correspondence analysis 243

The output from summary() seems to show that 77.6% of the total inertia is accounted for in
two dimensions. A basic, default plot of the MCA solution is provided by the plot() method for
"mjca" objects.

> plot(presex.mca)

This plotting method is not very flexible in terms of control of graphical parameters or the ability
to add additional annotations (labels, lines, legend) to ease interpretation. Instead, we use the plot
method to create an empty plot (with no points or labels), and return the calculated plot coordinates
(res) for the categories. A bit of processing of the coordinates provides the customized display
shown in Figure 6.10.

> # plot, but don't use point labels or points
> res <- plot(presex.mca, labels=0, pch='.', cex.lab=1.2)
>
> # extract factor names and levels
> coords <- data.frame(res$cols, presex.mca$factors)
> cols <- c("blue", "red", "brown", "black")
> nlev <- presex.mca$levels.n
>
> points(coords[,1:2], pch=rep(16:19, nlev), col=rep(cols, nlev), cex=1.2)
> text(coords[,1:2], label=coords$level, col=rep(cols, nlev), pos=3,
+ cex=1.2, xpd=TRUE)
> lines(Dim2 ~ Dim1, data=coords, subset=factor=="Gender",
+ lty=1, lwd=2, col="blue")
> lines(Dim2 ~ Dim1, data=coords, subset=factor=="PremaritalSex",
+ lty=1, lwd=2, col="red")
> lines(Dim2 ~ Dim1, data=coords, subset=factor=="ExtramaritalSex",
+ lty=1, lwd=2, col="brown")
> lines(Dim2 ~ Dim1, data=coords, subset=factor=="MaritalStatus",
+ lty=1, lwd=3, col="black")
>
> legend("bottomright", legend=c("Gender", "PreSex", "ExtraSex", "Marital"),
+ title="Factor", title.col="black",
+ col=cols, text.col=cols, pch=16:19,
+ bg="gray95", cex=1.2)

As indicated above, the category points for each factor appear on lines through the origin, with
distances inversely proportional to their marginal frequencies. For example, the categories for No
premarital and extramarital sex are much larger than the corresponding Yes categories, so the former
are positioned closer to the origin. In contrast, the categories of gender and marital status are more
nearly equal marginally.

Another aspect of interpretation of Figure 6.10 concerns the alignment of the lines for different
factors. The positions of the category points on Dimension 1 suggest that Women are less likely to
have had pre-marital and extra-marital sex and that still being married is associated with the absence
of pre- and extra-marital sex. As well, the lines for gender and marital status are nearly at right
angles, suggesting that these variables are unassociated. This interpretation is more or less correct,
but it is only approximate in this MCA scaling of the coordinate axes. An alternative scaling, based
on a biplot representation is described in Section 6.5.

If you compare the MCA result in Figure 6.10 with the mosaic matrix in Figure 5.23, you will
see that they are both showing the bivariate pairwise associations among these variables, but in
different ways. The mosaic plots show the details of marginal and joint frequencies together with
residuals from independence for each 2×2 marginal subtable. The MCA plot using the Burt matrix
summarizes each category point in terms of a 2D representation of contributions to total inertia
(association). 4

6.4.3.1 Inertia decomposition

The transition from simple CA to MCA is straight-forward in terms of the category scores derived
from the indicator matrix Z or the Burt matrix, B. It is less so in terms of the calculation of
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Figure 6.10: MCA plot of the Burt matrix for the PreSex data. The category points are joined
separately by lines for the factor variables. {fig:presex-mca-plot}

total inertia, and therefore in the chi-square values and corresponding percentages of association
accounted for in some number of dimensions.

In simple CA, the total inertia is χ2/n, and it therefore makes sense to talk of percentage of
association accounted for by each dimension. But in MCA of the indicator matrix the total inertia,∑
λ2, is simply (J −Q)/Q, because the inertia of each subtable, Zi is equal to its dimensionality,

Ji − 1, and the total inertia of an indicator matrix is the average of the inertias of its subtables.
Consequently, the average inertia per dimension is 1/Q, and it is common to interpret only those
dimensions that exceed this average (analogous to the use of 1 as a threshold for eigenvalues in
principal components analysis).

To more adequately reflect the percentage of association in MCA, Greenacre (1990), revising
an earlier proposal by Benzécri (1977), suggested the calculation of adjusted inertia, which ignores
the contributions of the diagonal blocks in the Burt matrix,

(λ?i )
2 =

[
Q

Q− 1
(λZi −

1

Q
)

]2
(6.8){eq:benzecri}

as the principal inertia due to the dimensions with (λZ)2 > 1/Q. This adjustment expresses the
contribution of each dimension as (λ?i )

2/
∑

(λ?i )
2, with the summation over only dimensions with

(λZ)2 > 1/Q.
A related method, also handled by mjca(), is joint correspondence analysis (Greenacre, 1994,

Greenacre, 2007, Chapter 19) an iterative method that replaces the diagonal blocks of the Burt
matrix with values that minimize their impact on inertia. Unlike MCA, solutions in JCA are not
nested, however.{ex:titanic2}
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EXAMPLE 6.9: Survival on the Titanic
An MCA analysis of the Titanic data is carried out using mjca() as shown below.

> titanic.mca <- mjca(Titanic)

mjca() allows different scaling methods for the contributions to inertia of the different dimen-
sions. The default (lambda="adjusted"), used here, is the adjusted inertias as in Eqn. (6.8).

> summary(titanic.mca)

Principal inertias (eigenvalues):

dim value % cum% scree plot
1 0.067655 76.8 76.8 ***********************
2 0.005386 6.1 82.9 **
3 00000000 0.0 82.9

-------- -----
Total: 0.088118
...

Using similar code to that used in Example 6.8, Figure 6.11 shows an enhanced version of the
default plot that connects the category points for each factor by lines using the result returned by the
plot() function.

In this plot, the points for each factor have the property that the sum of coordinates on each
dimension, weighted inversely by the marginal proportions, equals zero. Thus high frequency cate-
gories (e.g., Adult and Male) are close to the origin.

The first dimension is perfectly aligned with gender, and also strongly aligned with Survival.
The second dimension pertains mainly to Class and Age effects. Considering those points which
differ from the origin most similarly (in distance and direction) to the point for Survived, gives the
interpretation that survival was associated with being female or upper class or (to a lesser degree)
being a child.

4

6.5 Biplots for contingency tables
{sec:biplot}

Like correspondence analysis, the biplot (Bradu and Gabriel, 1978, Gabriel, 1971, 1980, 1981,
Gower et al., 2011) is a visualization method which uses the SVD to display a matrix in a low-
dimensional (usually 2-dimensional) space. They differ in the relationships in the data that are
portrayed, however:

• In correspondence analysis the (weighted, χ2) distances between row points and distances be-
tween column points are designed to reflect differences between the row profiles and column
profiles.

• In the biplot, on the other hand, row and column points are represented by vectors from the
origin such that the projection (inner product) of the vector ai for row i on bj for column j
approximates the data element yij ,

Y ≈ ABT ⇐⇒ yij ≈ aT
i bj . (6.9) {eq:biplot1}

Geometrically, Eqn. (6.9) may be described as approximating the data value yij by the projection
of the end point of vector ai on bj (and vice-versa), as shown in Figure 6.12.
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Figure 6.11: MCA plot of the Titanic data. The category points are joined separately by lines for
the factor variables. {fig:titanic-mca-plot}
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Figure 6.12: The scalar product of vectors of two points from the origin is the length of the projec-
tion of one vector on the other. {fig:Scalarproduct}

6.5.1 CA bilinear biplots
As in CA, there are a number of different representations of coordinates for row and column points
for a contingency table within a biplot framework. One set of connections between CA and the
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biplot can be be seen through the reconstitution formula, giving the decomposition of the corre-
spondence matrix P = N/n in terms of the standard coordinates Φ and Γ defined in Eqn. (6.4)
and Eqn. (6.5) as:

pij = ricj

(
1 +

M∑
m=1

√
λmφimγjm

)
(6.10) {eq:reconstitution1}

or, in matrix terms,
P = Dr(11T + ΦD

1/2
λ ΓT)Dc (6.11) {eq:reconstitution2}

The CA solution approximates this by a sum over d � M dimensions, or by using only the first d
(usually 2) columns of Φ and Γ.

Eqn. (6.10) can be re-written in biplot scalar form as(
pij
ricj

)
− 1 ≈

d∑
m=1

(
√
λmφim)γjm =

d∑
m=1

fimγjm (6.12) {eq:rowprincipal}

where fim = (
√
λmφim) gives the principal coordinates of the row points. The left-hand side

of Eqn. (6.12) contains the contingency ratios, pij/ricj of the observed cell probabilities to their
expected values under independence. This shows that an asymmetric CA plot of row principal
coordinates F and the column standard coordinates Γ is a biplot that approximates the deviations
of the contingency ratios from their values under independence.

In the ca package, this plot is obtained by specifying map="rowprincipal" in the call to
plot(), or map="colprincipal" to plot the column points in principal coordinates. It is
typical in such biplots to display one set of coordinates as points and the other as vectors from the
origin, as controlled by the arrows argument, so that one can interpret the data values represented
as approximated by the projections of the points on the vectors.

Two other types asymmetric “maps” are also defined with different scalings that turn out to
have better visual properties in terms of representing the relations between the row and column
categories, particularly when the strength of association (inertia) in the data is low.

• The option map="rowgab" (or map="colgab") gives a biplot form proposed by Gabriel
and Odoroff (1990) with the rows (columns) shown in principal coordinates and the columns
(rows) in standard coordinates multiplied by the mass cj (ri) of the corresponding point.

• The contribution biplot for CA (Greenacre, 2013), with the option map="rowgreen" (or
map="colgreen") provides a reconstruction of the standardized residuals from indepen-
dence, using the points in standard coordinates multiplied by the square root of the correspond-
ing masses. This has the nice visual property of showing more directly the contributions of the
vectors to the low-dimensional solution.

{ex:suicide3}

EXAMPLE 6.10: Suicide rates in Germany – biplot
To illustrate the biplot representation, we continue with the data on suicide rates in Germany

from Example 6.5 using the stacked table suicide.tab comprised of the age–sex combinations
as rows and methods of suicide as columns.

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data=Suicide)
> suicide.ca <- ca(suicide.tab)

Using this result, suicide.ca, in the call to plot() below, we use map="colgreen" and
vectors represent the methods of suicide, as shown in Figure 6.13.
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> plot(suicide.ca, map="colgreen", arrows=c(FALSE, TRUE))
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Figure 6.13: CA biplot of the suicide data using the contribution biplot scaling. Associations
between the age-sex categories and the suicide methods can be read as the projections of the points
on the vectors. The lengths of the vectors for the suicide categories reflect their contributions to this
representation in a 2D plot.{fig:ca-suicide-biplot}

The interpretation of the row points for the age–sex categories is similar to what we saw earlier
in Figure 6.6. But now, the vectors for the suicide categories reflect the contributions of those
methods to the representation of association. Thus, the methods drown, gun and gas have large
contributions, while knife, hang, and poison are relatively small. Moreover, the projections
of the points for the age–sex combinations on the method vectors reflect the standardized residuals
from independence.

The most comprehensive modern treatment of biplot methodology is the book Understanding
Biplots (Gower et al., 2011). Together with the book, they provide an R package, UBbipl, that is
capable of producing an astounding variety of high-quality plots. Unfortunately, that package is
only available on their publisher’s web site8 and you need the book to be able to use it because all
the documentation is in the book. Nevertheless, we illustrate the use of the cabipl() function to
produce the version of the CA biplot shown in Figure 6.14.

8http://www.wiley.com/legacy/wileychi/gower/material.html
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> library(UBbipl)
> cabipl(as.matrix(suicide.tab),
+ axis.col = gray(.4), ax.name.size=1,
+ ca.variant = "PearsonResA",
+ markers = FALSE,
+ row.points.size = 1.5,
+ row.points.col = rep(c("red", "blue"), 4),
+ plot.col.points = FALSE,
+ marker.col = "black", marker.size=0.8,
+ offset = c(2, 2, 0.5, 0.5),
+ offset.m = rep(-0.2, 14),
+ output=NULL)
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Figure 6.14: CA biplot of the suicide data, showing calibrated axes for the suicide methods. {fig:cabipl-suicide}

This plot uses ca.variant = "PearsonResA" to specify that the biplot is to approximate
the standardized Pearson residuals by the inner product of each row point on the vector for the
column point for the suicide methods, as also in Figure 6.13. However, Figure 6.14 represents the
methods calibrated axis lines, designed to be read as scales for the projections of the row points
(age–sex) on the methods. The UBbipl package has a huge number of options for controlling the
details of the biplot display. See (Gower et al., 2011, Ch. 2) for all the details.

4
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6.5.2 Biadditive biplots
A different use of biplots for contingency tables stems from the close analogy between additive rela-
tions for a quantitative response when there is no interaction between factors, and the multiplicative
relations for a contingency table when there is no association.

For quantitative data Bradu and Gabriel (1978) show how the biplot can be used to diagnose
additive relations among rows and columns. For example, when a two-way table is well-described
by a two-factor ANOVA model with no interaction,

yij = µ+ αi + βj + εij ⇐⇒ Y ≈ a1T + 1bT

then, the row points, ai, and the column points, bj , will fall on two straight lines at right angles
to each other in the biplot. For a contingency table, the multiplicative relations among frequencies
under independence become additive relations in terms of log frequency, and Gabriel et al. (1997)
illustrate how biplots of log frequency can be used to explore associations in two-way and three-way
tables.

That is, For a two-way table, independence, A ⊥ B, implies that ratios of frequencies should be
proportional for any two rows, i, i′ and any two columns, j, j′. Equivalently, this means that the log
odds ratio for all such sets of four cells should be zero:

A ⊥ B ⇐⇒ log θii′,jj′ = log

(
nijni′j′

ni′jnij′

)
= 0

Now, if the log frequencies have been centered by subtracting the grand mean, Gabriel et al. (1997)
show that log θii′,jj′ is approximated in the biplot (of log(nij)− log(nij))

log θii′,jj′ ≈ aT
i bj − aT

i′bj − aT
i bj′ + aT

i bj′ = (ai − ai′)T(bi − bi′)

a1

a2

b1

b2

Figure 6.15: Independence implies orthogonal vector differences in a biplot of log frequency. The
line joining a1 to a2 represents (a1 − a2). This line is perpendicular to the line (b1 − b2) under
independence.{fig:bidemo}

Therefore, this biplot criterion for independence in a two-way table is whether (ai−ai′)T(bi−
bi′) ≈ 0 for all pairs of rows, i, i′, and all pairs of columns, j, j′. But (ai − ai′) is the vector
connecting ai to ai′ and (bj − bj′) is the vector connecting bj to bj′ , as shown in Figure 6.15,
and the inner product of any two vectors equals zero iff they are orthogonal. Hence, this criterion
implies that all lines connecting pairs of row points are orthogonal to lines connecting pairs of
column points, as illustrated in Figure 6.15.{ex:soccer3}
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EXAMPLE 6.11: UK Soccer scores
We examined the data on UK Soccer scores in Example 5.5 and saw that the number of goals

scored by the home and away teams were largely independent (see Figure 5.10). This data set
provides a good test of the ability of the biplot to diagnose independence.

> data("UKSoccer", package="vcd")
> dimnames(UKSoccer) <- list(Home=paste0("H", 0:4),
+ Away=paste0("A", 0:4))

Basic biplots in R are provided by biplot() that works mainly with the result calculated by
prcomp() or princomp(). Here, we use prcomp() on the log frequencies in the UKSoccer
table, adding 1, because there is one cell with zero frequency.

> soccer.pca <- prcomp(log(UKSoccer+1), center=TRUE, scale.=FALSE)

The result is plotted using a customized plot based on biplot() as shown in Figure 6.16.

> biplot(soccer.pca, scale=0, var.axes=FALSE,
+ col=c("blue", "red"), cex=1.2, cex.lab=1.2,
+ xlab="Dimension 1", ylab="Dimension 2")
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Figure 6.16: Biplot for the biadditive representation of independence for the UK Soccer scores. The
row and column categories are independent in this plot when they appear as points on approximately
orthogonal lines. {fig:biplot-soccer-plot}

To supplement this plot and illustrate the orthogonality of row and column category points under
independence, we added horizontal and vertical lines as calculated below, using the results returned
by prcomp(). The initial version of this plot showed that two points, A2 and H2 did not align
with the others, so these were excluded from the calculations.
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> # get the row and column scores
> rscores <- soccer.pca$x[,1:2]
> cscores <- soccer.pca$rotation[,1:2]
> # means, excluding A2 and H2
> rmean <- colMeans(rscores[-3,])[2]
> cmean <- colMeans(cscores[-3,])[1]
>
> abline(h=rmean, col="blue", lwd=2)
> abline(v=cmean, col="red", lwd=2)
> abline(h=0, lty=3, col="gray")
> abline(v=0, lty=3, col="gray")

You can see that all the A points (except for A2) and all the H points (except for H2) lie along
straight lines, and these lines are indeed at right angles, signifying independence. The fact that these
straight lines are parallel to the coordinate axes is incidental, and unrelated to the independence
interpretation.

4

6.6 Chapter summary
{sec:ca-summary}

• Correspondence analysis is an exploratory technique, designed to show the row and column
categories in a two- (or three-) dimensional space. These graphical displays, and various exten-
sions, provide ways to interpret the patterns of association and explore visually the adequacy of
certain loglinear models.

• The scores assigned to the categories of each variable are optimal in several equivalent ways.
Among other properties, they maximize the (canonical) correlations between the quantified vari-
ables (weighted by cell frequencies), and make the regressions of each variable on the other most
nearly linear, for each CA dimension.

• Multi-way tables may be analyzed in several ways. In the “stacking” approach, two or more
variables may be combined interactively in the rows and/or columns of an n-way table. Simple
CA of the restructured table reveals associations between the row and column categories of the
restructured table, but hides associations between the variables combined interactively. Each
way of stacking corresponds to a particular loglinear model for the full table.

• Multiple correspondence analysis is a generalization of CA to two or more variables based on
representing the data as an indicator matrix, or the Burt matrix. The usual MCA provides an
analysis of the joint, bivariate relations between all pairs of variables.

• The biplot is a related technique for visualizing the elements of a data array by points or vectors
in a joint display of their row and column categories. A standard CA biplot represents the
contributions to lack of independence as the projection of the points for rows (or columns) on
vectors for the other categories.

• Another application of the biplot to contingency table data is described, based on analysis of
log frequency. This analysis also serves to diagnose patterns of independence and partial inde-
pendence in two-way and larger tables.

6.7 Lab exercises
{sec:ca-lab}{lab:6.1}

Exercise 6.1 The JobSat data in vcdExtra gives a 4×4 table recording job satisfaction in relation
to income.
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(a) Carry out a simple correspondence analysis on this table. How much of the inertia is accounted
for by a one-dimensional solution? How much by a two-dimensional solution?

(b) Plot the 2D CA solution. To what extent can you consider the association between job satis-
faction and income “explained” by the ordinal nature of these variables?

{lab:6.2}

Exercise 6.2 Refer to Exercise 1 in Chapter 5. Carry out a simple correspondence analysis on the
4× 5 table criminal from the logmult package.

(a) What percentages of the Pearson χ2 for association are explained by the various dimensions?
(b) Plot the 2D correspondence analysis solution. Describe the pattern of association between

year and age.
{lab:6.3}

Exercise 6.3 The data set caith in MASS gives a classic table tabulating hair color and eye color
of people in Caithness, Scotland, originally from Fisher (1940).

(a) Carry out a simple correspondence analysis on this table. How many dimensions seem neces-
sary to account for most of the association in the table?

(b) Plot the 2D solution. The interpretation of the first dimension should be obvious; is there any
interpretation for the second dimension?

{lab:6.4}

Exercise 6.4 The same data, plus a similar table for Aberdeen, are given as a three-way table as
HairEyePlace in vcdExtra.

(a) Carry out similar correspondence analysis to the last exercise for the data from Aberdeen.
Comment on any differences in the placement of the category points.

(b) Analyze the three-way table, stacked to code hair color and place interactively, i.e., for the
loglinear model [Hair Place][ Eye] . What does this show?

{lab:6.5}{lab:ca-gilby}

Exercise 6.5 The data set Gilby in vcdExtra gives a classic (but now politically incorrect) 6 ×
4 table of English school boys classified according to their clothing and their teachers rating of
“dullness” (lack of intelligence).

(a) Compute and plot a correspondence analysis for this data. Write a brief description and inter-
pretation of these results.

(b) Make an analogous mosaic plot of this table. Interpret this in relation to the correspondence
analysis plot.

{lab:6.6}

Exercise 6.6 For the mental health data analyzed in Example 6.2, construct a shaded sieve diagram
and mosaic plot. Compare these with the correspondence analysis plot shown in Figure 6.2. What
features of the data and the association between SES and mental health status are shown in each? {lab:6.7}

Exercise 6.7 Simulated data is often useful to help understand the connections between data, anal-
ysis methods and associated graphic displays. Section 6.3.1 illustrated interactive coding in R, using
a simulated 4-way table of counts of pets, classified by age, color and sex, but with no associations
because the counts had a constant Poisson mean, λ = 15.

(a) Re-do this example, but in the call to rpois(), specify a non-negative vector of Poisson
means to create some associations among the table factors.

(b) Use CA methods to determine if and how the structure you created in the data appears in the
results.

{lab:6.8}{lab:TV3}

Exercise 6.8 The TV data was analyzed using CA in Example 6.4, ignoring the variable Time.
Carry out analyses of the 3-way table, reducing the number of levels of Time to three hourly
intervals as shown below.
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> data("TV", package="vcdExtra")
> # reduce number of levels of Time
> TV.df <- as.data.frame.table(TV)
> levels(TV.df$Time) <- rep(c("8", "9", "10"), c(4, 4, 3))
> TV3 <- xtabs(Freq ~ Day + Time + Network, TV.df)
> structable(Day ~ Network + Time, TV3)

Day Monday Tuesday Wednesday Thursday Friday
Network Time
ABC 8 536 861 744 735 1119

9 1401 1205 1022 682 907
10 910 1044 668 349 711

CBS 8 1167 646 550 680 509
9 967 959 409 385 544
10 789 798 324 270 426

NBC 8 858 1090 512 1927 823
9 946 890 831 1858 590
10 825 588 869 2101 585

(a) Use the stacking approach (Section 6.3) to perform a CA of the table with Network and Time
coded interactively. You can create this using the as.matrix() method for a "structable"
object.

> TV3S <- as.matrix(structable(Day ~ Network + Time, TV3), sep=":")

(b) What loglinear model is analyzed by this approach?
(c) Plot the 2D solution. Compare this to the CA plot of the two-way table in Figure 6.4.
(d) Carry out an MCA analysis using mjca() of the three-way table TV3. Plot the 2D solution,

and compare this with both the CA plot and the solution for the stacked three-way table.
{lab:6.9}{lab:presex}

Exercise 6.9 Refer to the MCA analysis of the PreSex data in Example 6.8. Use the stacking
approach to analyze the stacked table with the combinations of premarital and extramarital sex in
the rows and the combinations of gender and marital status in the columns. As suggested in the
exercise above, you can use as.matrix(structable() to create the stacked table.

(a) What loglinear model is analyzed by this approach? Which associations are included and
which are excluded in this analysis?

(b) Plot the 2D CA solution for this analysis. You might want to draw lines connecting some of
the row points or column points to aid in interpretation.

(c) How does this analysis differ from the MCA analysis shown in Figure 6.10?
{lab:6.10}{lab:ca-vietnam}

Exercise 6.10 Refer to Exercise 5.9 for a description of the Vietnam data set in vcdExtra.

(a) Using the stacking approach, carry out a correspondence analysis corresponding to the loglin-
ear model [R][YS] , which asserts that the response is independent of the combinations of year
an sex.

(b) Construct an informative 2D plot of the solution, and interpret in terms of how the response
varies with year for males and females.

(c) Use mjca() to carry out an MCA on the three-way table. Make a useful plot of the solution
and interpret in terms of the relationship of the response to year and sex.
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This chapter introduces the modeling framework for categorical data in the simple
situation where we have a categorical response variable, often binary, and one or more
explanatory variables. A fitted model provides both statistical inference and prediction, ac-
companied by measures of uncertainty. Data visualization methods for discrete response
data must often rely on smoothing techniques, including both direct, non-parametric smooth-
ing and the implicit smoothing that results from a fitted parametric model. Diagnostic plots
help us to detect influential observations which may distort our results.

7.1 Introduction
{sec:logist-intro}

All models are wrong, but some are useful

George E. P. Box, (Box and Draper, 1987, p. 424)

Chapters 4–6 have been concerned primarily with simple, exploratory methods for studying the
relations among categorical variables and with testing hypotheses about their associations through
non-parametric tests and with overall goodness-of-fit statistics.

This chapter begins our study of model-based methods for the analysis of discrete data. These
models differ from those we have examined earlier primarily in that they consider explicitly an as-
sumed probability distribution for the observations, and make clear distinctions between the system-
atic component, which is explained by the model, and the random component, which is not. More
importantly, the model-based approach allows a compact summary of categorical data in terms of a
(hopefully) small number of parameters accompanied by measures of uncertainty (standard errors),
and the ability to estimate predicted values over the range of explanatory variables.

257
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Figure 7.1: Overview of fitting and graphing for model-based methods in R.{fig:goverview}

This model-fitting approach has several advantages: (a) Inferences for the model parameters
include both hypothesis tests and confidence intervals. (b) The former help us to assess which
explanatory variables affect the outcome; the size of the estimated parameters and the widths of their
confidence intervals help us to assess the strength and importance of these effects. (c) There are a
variety of methods for model selection, designed to help determine a favorable trade-off between
goodness-of-fit and parsimony. (d) Finally, the predicted values obtained from the model effectively
smooth the discrete responses, allow predictions for unobserved values of the explanatory variables,
and provide important means to interpret the fitted relationship graphically.

Figure 7.1 provides a visual overview of the steps for fitting and graphing with model-based
methods in R. (a) A modeling function such as glm() is applied to an input data frame. The result
is a model object containing all the information from the fitting process. (b) As is standard in R,
print() and summary()methods give, respectively, basic and detailed printed output. (c) Many
modeling functions have plot() methods that produce different types of summary and diagnostic
plots. (d) For visualizing the fitted model, most model methods provide a predict() method that
can be used to plot the fitted values from the model over the ranges of the predictors. Such plots can
be customized by the addition of points (showing the observations), lines, confidence bands, and so
forth.

In this chapter we consider models for a binary response, such as “success” or “failure”, or the
number of “successes” in a fixed number of “trials”, where we might reasonably assume a binomial
distribution for the random component. These methods extend readily to a polytomous response
with more than two outcome categories, such as improvement in therapy, with categories “none,”
“some” and “marked.”

These models can be seen as simple extensions of familiar ANOVA and regression models for
quantitative data. They are also important special cases of a more general approach, the generalized
linear model that subsumes a wide variety of families of techniques within a single, unified frame-
work. However, rather than starting at the top with the fully general version, this chapter details the
important special cases of models for discrete outcomes, beginning with binary responses.

This chapter proceeds as follows: in Section 7.2 we introduce the simple logistic regression
model for a binary response and a single quantitative predictor. This model extends directly to
models for grouped, binomial data (Section 7.2.4) and to models with any number of regressors
(Section 7.3), which can be quantitative, discrete factors and more general forms.

For interpreting and understanding the results of a fitted model, we emphasize plotting predicted
probabilities and predicted log odds in various ways, for which effect plots (Section 7.3.3) are
particularly useful for complex models.

Section 7.4 presents several case studies to highlight issues of data analysis, model building and
visualization in the context of building and interpreting multiple logistic regression models. These
focus on the combination of exploratory plots to see the data, modeling steps and graphs to interpret
a given model. Individual observations sometimes exert great influence on a fitted model. Some
measures of influence and diagnostic plots are illustrated in Section 7.5.
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7.2 The logistic regression model
{sec:logist-model}

The logistic regression model describes the relationship between a discrete outcome variable, the
“response”, and a set of explanatory variables. The response variable is often dichotomous, although
extensions to the model permit multi-category, polytomous outcomes, discussed in Chapter 8. The
explanatory variables may be continuous or (with factor variables) discrete.

For a binary response, Y , and a continuous explanatory variable, X , we may be interested in
modeling the probability of a successful outcome, which we denote π(x) ≡ Pr(Y = 1 |X = x).
That is, at a given value X = x, you can imagine that there is a binomial distribution of the
responses, Bin(π(x), nx).

The simplest naive model, called the linear probability model, supposes that this probability,
π(x) varies linearly with the value of x,

E(Y |x) = π(x) = α+ βx , (7.1) {eq:logit0}

where the notationE(Y |x) indicates that the probability π(x) represents the population conditional
average of the 1s and 0s for all observations with a fixed value of x. For binary observations, this is
simply the proportion of 1s.

Figure 7.2 illustrates the basic setup for modeling a binary outcome using the Arthritis data,
and described more fully in Example 7.1–Example 7.3. The 0/1 observations are shown as (jittered)
points. The predicted values under the linear probability model Eqn. (7.1) are shown as the red lines
in both panels. As you can see, this model cannot be right, because it predicts a probability less
than 0 for small values of Age, and would also predict probabilities greater than 1 for larger values
of Age.
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Figure 7.2: Arthritis treatment data, for the relationship of the binary response “Better” to Age,
shown as jittered points. The left panel shows the predicted values and 95% confidence envelope
under the linear probability model. The right panel shows the fitted logistic regression, together
with the simple linear regression (red) and a non-parametric (loess) smoothed curve (green). {fig:arthritis-age}

The linear probability model is also wrong because it assumes that the distribution of residuals,
Yi − π̂(xi) is normal, with mean 0 and constant variance. However, because Y is dichotomous, the
residuals are also dichotomous, and have variance π(xi)(1− π(xi)), which is maximal for π = 0.5
and decreases as π goes toward 0 or 1.
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One way around the difficulty of needing to constrain the predicted values to the interval [0, 1]
is to re-specify the model so that a transformation of π has a linear relation to x, and that transfor-
mation keeps π̂ between 0 and 1 for all x. This idea, of modeling a transformation of the response
that has desired statistical properties is one of the fundamental ones that led to the development of
generalized linear models, which we treat more fully later in Chapter 11.

A particularly convenient choice of the transformation gives the linear logistic regression model
(or linear logit model1 ) which posits a linear relation between the log odds (or logit) of this proba-
bility and x,

logit[π(x)] ≡ log

(
π(x)

1− π(x)

)
= α+ βx . (7.2){eq:logit1}

When β > 0, π(x) and the log odds increase as X increases; when β < 0 they decrease with X .
This model can also be expressed as a model for the probabilities π(x) in terms of the inverse

of the logit transformation used in Eqn. (7.2),

π(x) = logit−1[π(x)] =
1

1 + exp[−(α+ βx)]
(7.3){eq:logit1a}

This transformation uses the cumulative distribution function of the logistic distribution, Λ(p) =
1

1+exp(−p) , giving rise to the term logistic regression.2

From Eqn. (7.2) we see that the odds of a success response can be expressed as

odds(Y = 1) ≡ π(x)

1− π(x)
= exp(α+ βx) = eα(eβ)x , (7.4){eq:logit2}

which is a multiplicative model for the odds. So, under the logistic model,

• β is the change in the log odds associated with a unit increase in x. The odds are multiplied by
eβ for each unit increase in x.

• α is log odds at x = 0; eα is the odds of a favorable response at this x-value (which may not
have a reasonable interpretation if X = 0 is far from the range of the data).

It is easy to explore the relationships among probabilities, odds and log odds using R as we show
below, using the function fractions() in MASS to print the odds corresponding to probability
p as a fraction.

> library(MASS)
> p <- c(.05, .10, .25, .50, .75, .90, .95)
> data.frame(p,
+ odds=as.character(fractions(p/(1-p))),
+ logit=log(p/(1-p)))

p odds logit
1 0.05 1/19 -2.9444
2 0.10 1/9 -2.1972
3 0.25 1/3 -1.0986
4 0.50 1 0.0000
5 0.75 3 1.0986
6 0.90 9 2.1972
7 0.95 19 2.9444

1Some writers use the term logit model to refer to those using only categorical predictors; we use the terms logistic
regression and logit regression interchangeably.

2Any other cumulative probability transformation serves the purpose of constraining the probabilities to the interval [0,
1]. The cumulative normal transformation π(x) = Φ(α + βx) gives the linear probit regression model. We don’t treat
probit models here because: (a) The logistic and probit models give results so similar that it is hard to distinguish them in
practice; (b) The logistic model is simpler to interpret as a linear model for the log odds or multiplicative model for the odds.
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Thus, a probability of π = 0.25 represents an odds of 1 to 3, or 1/3, while a probability of
π = 0.75 represents an odds of 3 to 1, or 3. The logits are symmetric around 0, so logit(.25) =
− logit(.75).

Another simple way to interpret the parameter β in the logistic regression model is to consider
the relationship between the probability π(x) and x. From Eqn. (7.3) it can be shown that the fitted
curve (the blue line in Figure 7.2) has slope equal to βπ(1− π). This has a maximum value of β/4
when π = 1

2 , so taking β/4 gives a quick estimate of the maximum effect of x on the probability
scale.

In Figure 7.2 and other plots later in this chapter we try to show the binary responses (as jittered
points or a rug plot) to help you appreciate how the fitted logistic curve arises from their distribution
across the range a predictor. For didactic purposes this can be seen more readily by plotting the
conditional distributions of x | y = {0, 1} as a histogram, boxplot or density plot. The function
logi.hist.plot() in the probio package is a nice implementation of this idea (de la Cruz Rot,
2005). The call below produces Figure 7.3, and it is easy to see how increasing age produces a
greater probability of a Better response.

> with(Arthritis,
+ logi.hist.plot(Age, Better, type="hist", counts=TRUE,
+ ylabel="Probability (Better)", xlab="Age",
+ col.cur="blue", col.hist="lightblue", col.box="lightblue")
+ )
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Figure 7.3: Plot of the Arthritis treatment data, showing the conditional distributions of the 0/1
observations of the Better response by histograms and boxplots. {fig:arth-logi-hist}

7.2.1 Fitting a logistic regression model
{sec:logist-fitting}

Logistic regression models are the special case of generalized linear models fit in R using glm()
for a binary response using family=binomial. We first illustrate how simple models can be fit
and interpreted. {ex:arthrit6}

EXAMPLE 7.1: Arthritis treatment
In Chapter 4 we examined the data on treatment for rheumatoid arthritis in relation to two

categorical predictors, sex of patient and treatment. In addition, the Arthritis data gives the age
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of each patient in this study, and we focus here on the relationship between Age and the outcome,
Improved. This response variable has three categories (none, some, or marked improvement), but
for now we consider whether the patient showed any improvement at all, defining the event Better
to be some or marked improvement.

> data("Arthritis", package="vcd")
> Arthritis$Better <- as.numeric(Arthritis$Improved > "None")

The logistic regression model is fit using glm() as shown below, specifying family=binomial
for a binary response.

> arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial)

As usual for R modeling functions, the print() method for "glm" objects gives brief printed
output, while the summary() method is more verbose, and includes standard errors and hypoth-
esis tests for the model coefficients. To save some space, it is convenient to use the generic func-
tion coeftest() from the lmtest package. Then, we can use this instead of the more detailed
summary():

> library(lmtest)
> coeftest(arth.logistic)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6421 1.0732 -2.46 0.014 *
Age 0.0492 0.0194 2.54 0.011 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the output above, the parameter estimates are α = −2.642, and β = 0.0492. So, the estimated
odds of a better response are multiplied by eβ = exp(0.0492) = 1.05 for each one year increase in
age. Equivalently, you can think of this as a 5% increase per year (using 100(eβ − 1) to convert).
Over 10 years, the odds are multiplied by exp(10 × 0.0492) = 1.64, a 64% increase, a substantial
effect in the range for these data. You can do these calculations in R using the coef() method for
the "glm" object.

> exp(coef(arth.logistic))

(Intercept) Age
0.071214 1.050482

> exp(10*coef(arth.logistic)[2])

Age
1.6364

For comparison with the logistic model, we could fit the linear probability model Eqn. (7.1)
using either lm() or glm() with the default family=gaussian argument.

> arth.lm <- glm(Better ~ Age, data=Arthritis)
> coef(arth.lm)

(Intercept) Age
-0.107170 0.011379

The coefficient for age can be interpreted to indicate that the probability of a better response
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increases by 0.011 for each one year increase in age. You can compare this with the β/4 rule of
thumb, that gives 0.0492/4 = 0.0123. Even though the linear probability model is inappropriate
theoretically, you can see in Figure 7.2 (the black line) that it gives similar predicted probabilities
to those of the logistic model between age 25–75, where most of the data points are located.

4

7.2.2 Model tests for simple logistic regression
{sec:logist-tests}

There are two main types of hypothesis tests one might want to perform for a logistic regression
model. We postpone general discussion of this topic until Section 7.3, but introduce the main ideas
here using the analysis of the Arthritis data.

• The most basic test answers the question “How much better is the fitted model, logit(π) =
α + βx than the null model logit(π) = α that includes only the regression intercept?” One
answer to this question is given by the (Wald) test of the coefficient for age testing the hypothesis
H0 : β = 0 that appeared in the output from summary(arth.logistic) shown above.
The more direct test compares the deviance of the fitted model to the deviance of the null model,
and can be obtained using the anova() function:

> anova(arth.logistic, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: Better

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 83 116
Age 1 7.29 82 109 0.007 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• A second question is “How bad is this model, compared to a model (the saturated model) that
fits the data perfectly?” This is a test of the size of the residual deviance, that is given by the
function LRstats() in vcdExtra.

> library(vcdExtra)
> LRstats(arth.logistic)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

arth.logistic 113 118 109 82 0.024 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The summary of these tests is that linear logistic model Eqn. (7.2) fits significantly better than
the null model, but that model also shows significant lack of fit.

7.2.3 Plotting a binary response
{sec:logist-plotting}

It is often difficult to understand how a binary response can give rise to a smooth, continuous relation
between the predicted response, usually the probability of an event, and a continuous explanatory
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variable. Beyond this, plots of the data together with fitted models help you to interpret what these
models imply.

We illustrate two approaches below using the Arthritis data shown in Figure 7.2, first using
R base graphics, and then with the ggplot2 package that makes such graphs somewhat easier to do.

That plot, which was designed for didactic purposes, has the following features:

• It shows the data, that is, the 0/1 observations of the Better response in relation to age. To do
this effectively and avoid over-plotting, the binary responses are jittered.

• It plots the predicted (fitted) logistic regression relationship on the scale of probability, together
with a 95% confidence band.

• It also plots the predicted probabilities from the linear probability model.
• A smoothed, non-parametric regression curve for the binary observations is also added to the

plot to give some indication of possible non-linearity in the relationship of Better to age.
{ex:arthrit7}

EXAMPLE 7.2: Arthritis treatment – Plotting logistic regression with base graphics
Here we explain how plots similar to Figure 7.2 can be constructed using R base graphics.

We describe the steps needed to calculate predicted values and confidence bands and how to add
these to a basic plot. These ideas are the basis for the higher-level and more convenient plotting
methods illustrated later in this chapter (Section 7.3.2) The steps detailed below give the plot shown
in Figure 7.4.
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Figure 7.4: A version of plot of the Arthritis treatment data (Figure 7.2) produced with R base
graphics, showing logistic, linear regression and lowess fits.{fig:arthritis-age2}

First, we set up the basic plot of the jittered values of Better vs. Age, setting xlim to a
larger range than that in the data, only to emphasize where the logistic and linear probability models
diverge.

> plot(jitter(Better, .1) ~ Age, data=Arthritis,
+ xlim = c(15,85), pch=16,
+ ylab="Probability (Better)")



7.2: The logistic regression model 265

The fitted logistic curve can be obtained using the predict() method for the "glm" object
arth.logistic. For this example, we wanted to get fitted values for the range of Age from 15–
85, which is specified in the newdata argument.3 The argument type="response" gives fitted
values of the probabilities. (The default, type="link" would give predicted logits.) Standard
errors of the fitted values are not calculated by default, so we set se.fit=TRUE.

> xvalues <- seq(15, 85, 5)
> pred.logistic <- predict(arth.logistic,
+ newdata=data.frame(Age=xvalues),
+ type="response", se.fit=TRUE)

When se.fit=TRUE, the predict() function returns its result in a list, with components
fit for the fitted values and se.fit for the standard errors. From these, we can calculate 95%
pointwise prediction intervals using the standard normal approximation.

> upper <- pred.logistic$fit + 1.96 * pred.logistic$se.fit
> lower <- pred.logistic$fit - 1.96 * pred.logistic$se.fit

We can then plot the confidence band using polygon() and the fitted logistic curve using
lines. A graphics trick is used here to use a transparent color for the confidence band using
rgb(r, g, b, alpha), where alpha is the transparency value.

> polygon(c(xvalues, rev(xvalues)),
+ c(upper, rev(lower)),
+ col=rgb(0, 0, 1, .2), border=NA)
> lines(xvalues, pred.logistic$fit, lwd=4 , col="blue")

This method, using predict() for calculations and polygon() and lines() for plotting
can be used to display the predicted relationships and confidence bands under other models. Here,
we simply used abline() to plot the fitted line for the linear probability model arth.lm and
lowess() to calculate a smoothed, non-parametric curve.

> abline(arth.lm, lwd=2)
> lines(lowess(Arthritis$Age, Arthritis$Better, f=.9), col="red", lwd=2)

4
{ex:arthrit8}

EXAMPLE 7.3: Arthritis treatment – Plotting logistic regression with ggplot2
Model-based plots such as Figure 7.2 are relatively more straight-forward to produce using

ggplot2. The basic steps here are to:

• set up the plot frame with ggplot() using Age and Better as (x, y) coordinates;
• use geom_point() to plot the observations, whose positions are jittered with position_jitter();
• use stat_smooth()with method = "glm" and family = binomial to plot the pre-

dicted probability curve and confidence band. By default, stat_smooth() calculates and
plots 95% confidence bands on the response (probability) scale.

> library(ggplot2)
> # basic logistic regression plot
> gg <- ggplot(Arthritis, aes(x=Age, y=Better)) +
+ xlim(5, 95) + theme_bw() +
+ geom_point(position = position_jitter(height = 0.02, width = 0)) +
+ stat_smooth(method = "glm", family = binomial, alpha = 0.1, fill="blue",
+ size=2.5, fullrange=TRUE)

3Omitting the newdata argument would give predicted values using the linear predictors in the data used for the fitted
model. Some care needs to be taken if the predictor(s) contain missing values.
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Finally, we can add other smoothers to the plot, literally by using + to add these to the "ggplot"
object.

> # add linear model and loess smoothers
> gg <- gg + stat_smooth(method = "lm", se=FALSE,
+ size=1.2, color="black", fullrange=TRUE)
> gg <- gg + stat_smooth(method = "loess", se=FALSE,
+ span=0.95, colour="red", size=1.2)
> gg # show the plot

4

7.2.4 Grouped binomial data
{sec:logist-grouped}

A related case occurs with grouped data, where rather than binary observations, yi ∈ {0, 1} in case
form, the data is given in what is called events/trials form that records the number of successes, yi
that occurred in ni trials associated with each setting of the explanatory variable(s) xi.4 Case form,
with binary observations is the special case where ni = 1.

Data in events/trials form often arises from contingency table data with a binary response. For
example in the UCBAdmissions data, the response variable Admit with levels "Admitted",
"Rejected" could be treated in this way using the number of applicants as the number of trials.

As before, we can consider yi/ni to estimate the probability of success, πi and the distribution
of Y to be binomial, Bin(πi, ni) at each xi.

In practical applications, there are two main differences between the cases of ungrouped, case
form data and grouped, event/trials form.

• In fitting models using glm(), the model formula, response ~ terms, can be given using
a response consisting of a two-column matrix, whose columns contain the numbers of suc-
cesses yi and failures ni − yi. Alternatively, the response can be given as the proportion of
successes, yi/ni, but then it is necessary to specify the number of trials as a weight.

• In plotting the fitted model on the scale of probability, you usually have to explicitly plot the
fraction of successes, yi/ni.

{ex:nasa-temp}

EXAMPLE 7.4: Space shuttle disaster
In Example 1.2 and Example 1.10 we described the background behind the post-mortem exam-

ination of the evidence relating to the disastrous launch of the space shuttle Challenger on January
28, 1986. Here we consider a simple, but proper analysis of the data available at the time of launch.
We also use this example to illustrate some details of the fitting and plotting of grouped binomial
data. As well, we describe some of the possibilities for dealing with missing data.

The data set SpaceShuttle in vcd contains data on the failures of the O-rings in 24 NASA
launches preceding the launch of Challenger, as given by Dalal et al. (1989) and Tufte (1997) also
analysed by Lavine (1991).

Each launch used two booster rockets with a total of six O-rings, and the data set records as
nFailures the number of these that were considered damaged after the rockets were recovered
at sea. In one launch (flight # 4), the rocket was lost at sea, so the relevant response variables are
missing.

In this example, we focus on the variable nFailures as a binomial with ni = 6 trials. The
missing data for flight 4 can be handled in several ways in the call to glm()

4Alternatively, the data may record the number of successes, yi, and number of failures, ni − yi.
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> data("SpaceShuttle", package="vcd")
> shuttle.mod <- glm(cbind(nFailures, 6 - nFailures) ~ Temperature,
+ data = SpaceShuttle, na.action = na.exclude,
+ family = binomial)

Alternatively, we can add an explicit trials variable, represent the response as the proportion
nFailures/trials, and use weight = trials to indicate the total number of observa-
tions.

> SpaceShuttle$trials <- 6
> shuttle.modw <- glm(nFailures/trials ~ Temperature, weight = trials,
+ data = SpaceShuttle, na.action = na.exclude,
+ family = binomial)

These two approaches give identical results for all practical purposes:

> all.equal(coef(shuttle.mod), coef(shuttle.modw))

[1] TRUE

As before, we can test whether temperature significantly improves prediction of failure proba-
bility using anova():

> # testing, vs. null model
> anova(shuttle.mod, test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(nFailures, 6 - nFailures)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 22 24.2
Temperature 1 6.14 21 18.1 0.013 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The code below gives a ggplot2 version in Figure 7.5 of the plot we showed earlier in Exam-
ple 1.2 (Figure 1.2). The relevant details here are:

• We specify y = nFailures / trials to calculate the failure probabilities.
• Points are jittered in the call to geom_point() to prevent overplotting.
• In the call to geom_smooth(), we need to use weight = trials, just as in the call to
glm() above.

• fullrange = TRUE makes the fitted regression curve and confidence band extend across
the entire plot

> library(ggplot2)
> ggplot(SpaceShuttle, aes(x = Temperature, y = nFailures / trials)) +
+ xlim(30, 81) + theme_bw() +
+ xlab("Temperature (F)") +
+ ylab("O-Ring Failure Probability") +
+ geom_point(position=position_jitter(width=0, height=0.01),
+ aes(size = 2)) +
+ theme(legend.position="none") +
+ geom_smooth(method = "glm", family = binomial, fill="blue",
+ aes(weight = trials), fullrange = TRUE, alpha=0.2, size=2)
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Figure 7.5: Space shuttle data, with fitted logistic regression model {fig:nasa-temp-ggplot}

4

7.3 Multiple logistic regression models
{sec:logist-mult}

As is the case in classical regression, generalizing the simple logistic regression to an arbitrary
number of explanatory variables is quite straightforward. We let xi = (xi1, xi2, . . . , xip) denote
the vector of p explanatory variables for case or cluster i. Then the general logistic regression model
can be expressed as

logit(πi) ≡ log
πi

1− πi
= α+ xT

i β (7.5)

= α+ β1xi1 + β2xi2 + · · ·+ βpxip .

Equivalently, we can represent this model in terms of probabilities as the logistic transformation of
the linear predictor, ηi = α+ xT

i β,

πi = Λ(ηi) = Λ(α+ xT
i β) (7.6){eq:logistm1}

=
1

1 + exp(α+ β1xi1 + β2xi2 + · · ·+ βpxip)
.

The xs can include any of the following sorts of regressors, as in the general linear model:

• quantitative variables (e.g., age, income)
• polynomial powers of quantitative variables (e.g., age, age2, age3)
• transformations of quantitative variables (e.g., log salary)
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• factors, represented as dummy variables for qualitative predictors (e.g., P1, P2, P3 for four
political party affiliations)

• interaction terms (e.g., sex × age, or age × income)
{ex:arthrit-mult}

EXAMPLE 7.5: Arthritis treatment
We continue with the analysis of the Arthritis data, fitting a model containing the main

effects of Age, Sex and Treatment, with Better as the response. This model has the form

logit(πi) = α+ β1xi1 + β2xi2 + β2xi2

where x1 is Age and x2 and x3 are the factors representing Sex and Treatment, respectively.
Using the default (0/1) dummy coding that R uses (“treatment” contrasts against the lowest factor
level),5 they are defined as:

x2 =

{
0 if Female
1 if Male x3 =

{
0 if Placebo
1 if Treatment

In this model,

• α doesn’t have a sensible interpretation here, but formally it would be the log odds of im-
provement for a person at age x1 = 0 in the baseline or reference group with x2 = 0 and
x3 = 0—females receiving the placebo. To make the intercept interpretable, we will fit the
model centering age near the mean, by using x1 − 50 as the first regressor.

• β1 is the increment in log odds of improvement for each one-year increase in age.

• β2 is the increment in log odds for male as compared to female. Therefore, eβ2 gives the odds
of improvement for males relative to females.

• β3 is the increment in log odds for being in the treated group. eβ2 gives the odds of improvement
for the active treatment group relative to placebo.

We fit the model as follows. In glm() model formulas, “-” has a special meaning, so we use
the identity function, I(Age-50) to center age.

> arth.logistic2 <- glm(Better ~ I(Age-50) + Sex + Treatment,
+ data=Arthritis,
+ family=binomial)

The parameters defined here are incremental effects. The intercept corresponds to a baseline
group (50 year-old females given the placebo); the other parameters are incremental effects for the
other groups compared to the baseline group. Thus, when α, β1, β2 and β3 have been estimated,
the fitted logits and predicted odds at Age==50 are:

Sex Treatment Logit Odds Improved

Female Placebo α eα

Female Treated α+ β2 eα+β2

Male Placebo α+ β1 eα+β1

Male Treated α+ β1 + β2 eα+β1+β2

We first focus on the interpretation of the coefficients estimated for this model shown below.

5For factor variables with the default treatment contrasts, you can change the reference level using relevel(). In this
example, you could make male the baseline category using Arthritis$Sex <- relevel(Arthritis$Sex, ref
= "Male").
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> coeftest(arth.logistic2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5781 0.3674 -1.57 0.116
I(Age - 50) 0.0487 0.0207 2.36 0.018 *
SexMale -1.4878 0.5948 -2.50 0.012 *
TreatmentTreated 1.7598 0.5365 3.28 0.001 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To interpret these in terms of odds ratios and also find confidence intervals, just use exp() and
confint().

> exp(cbind(OddsRatio=coef(arth.logistic2),
+ confint(arth.logistic2)))

OddsRatio 2.5 % 97.5 %
(Intercept) 0.5609 0.26475 1.1323
I(Age - 50) 1.0500 1.01000 1.0963
SexMale 0.2259 0.06524 0.6891
TreatmentTreated 5.8113 2.11870 17.7266

Here,

• α = −0.578: At age 50, females given the placebo have an odds of improvement of exp(−0.578) =
0.56.

• β1 = 0.0487: Each year of age multiplies the odds of improvement by exp(0.0487) = 1.05, or
a 5% increase.

• β2 = −1.49: Males are only exp(−1.49) = 0.26 times as likely to show improvement relative
to females. (Or, females are exp(1.49) = 4.437 times more likely than males to improve.)

• β3 = 1.76: People given the active treatment are exp(1.76) = 5.8 times more likely to show
improvement compared to those given the placebo.

As you can see, the interpretation of coefficients in multiple logistic models is straightforward,
though a bit cumbersome. This becomes more difficult in larger models, particularly when there are
interactions. In these cases, you can understand (and explain) a fitted model more easily through
plots of predicted values, either on the scale of response probability or on the logit scale of the linear
predictor. We describe these methods in Section 7.3.1–Section 7.3.3 below.

4

7.3.1 Conditional plots
{sec:logist-condplots}

The simplest kind of plots display the data together with a representation of the fitted relationship
(predicted values, confidence bands) separately for subsets of the data defined by one or more of
the predictors. Such plots can show the predicted values for the response variable on the ordinate
against one chosen predictor on the abscissa, and can use multiple curves and multiple panels to
represent other predictors.

However, these plots are conditional plots, meaning that the data shown in each panel and
used in each fitted curve are limited to the subset of the observations defined by the curve and
panel variables. As well, predictors that are not shown in a given plot are effectively ignored (or
marginalized), as was the case in Figure 7.2 that showed only the effect of age in the Arthritis
data.{ex:arth-cond}
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EXAMPLE 7.6: Arthritis treatment – conditional plots
For the Arthritis data, a basic conditional plot of Better vs. Age, showing the observa-

tions as jittered points (with geom_point()) and the fitted logistic curves (with stat_smooth()
using method="glm") can be produced with ggplot2 as shown below, giving Figure 7.6.

> library(ggplot2)
> gg <- ggplot(Arthritis, aes(Age, Better, color=Treatment)) +
+ xlim(5, 95) + theme_bw() +
+ geom_point(position = position_jitter(height = 0.02, width = 0)) +
+ stat_smooth(method = "glm", family = binomial, alpha = 0.2,
+ aes(fill=Treatment), size=2.5, fullrange=TRUE)
> gg # show the plot
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Figure 7.6: Conditional plot of Arthritis data showing separate points and fitted curves stratified by
Treatment. A separate fitted curve is shown for the two treatment conditions, ignoring Sex. {fig:arth-cond1}

In this call to ggplot(), specifying color=Treatment gives different point and line colors,
but also automatically stratifies the fitted curves using the levels of this variable.

With such a plot, it is easy to add further stratifying variables in the data using facets to produce
separate panels (functions facet_wrap() or facet_grid(), with different options to control
the details). The following line further stratifies by Sex, producing Figure 7.7.

> gg + facet_wrap(~ Sex)

However, you can see from this plot how this method breaks down when the sample size is small
in some of the groups defined by the stratifying factors. The panel for males shows a paradoxical
negative relation with age for the treated group and a step function for the placebo group. The
explanation for this is shown in the two-way frequency table of the sex and treatment combinations:

> addmargins(xtabs(~Sex + Treatment, data=Arthritis), 2)

Treatment
Sex Placebo Treated Sum
Female 32 27 59
Male 11 14 25

Less than 1/3 of the sample were males, and of these only 11 were in the placebo group. glm()
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Figure 7.7: Conditional plot of Arthritis data, stratified by Treatment and Sex. The unusual patterns
in the panel for Males signals a problem with this data. {fig:arth-cond2}

cannot estimate the fitted relationship against Age here— the slope coefficient is infinite, and the
fitted probabilities are all either 0 or 1.6

4

7.3.2 Full-model plots
{sec:logist-fullplots}

For a model with two or more explanatory variables, full-model plots display the fitted response
surface for all predictors together, rather than stratified by conditioning variables. Such plots show
the predicted values for the response variable on the ordinate against one chosen predictor on the
abscissa, and can use multiple curves and multiple panels to represent other predictors.

The programming steps used to plot a fitted logistic regression with base graphics and ggplot2
in the style of earlier examples (Example 7.2, 7.2 and 7.4) become more tedious with multiple pre-
dictors. The vcd package provides the function binreg_plot() designed to plot the predicted
response surface for a binary outcome directly from a fitted model object. At the time of writing,
this function does not yet handle multiple panels or facets, but separate plots for panel variables can
be produced using the subset argument as illustrated in the next example.{ex:arth-full}

EXAMPLE 7.7: Arthritis treatment – full-model plots
This example shows how to plot the fitted main effects model using binreg_plot(). These

plots can be shown either on the logit scale (with type = "link") or the probability scale (type
= "response", the default).

This plot method is designed to use a numeric predictor (Age here) as the horizontal axis, and
show separate point symbols and curves for the levels of the combinations of factors (if any). A
basic plot on the logit scale (not included here) showing both factors (Sex, Treatment) can be
produced using:

> library(vcd)
> binreg_plot(arth.logistic2, type = "link")

With two or more factors, such plots are often easier to read when the main factor(s) to be
compared appear (Treatment here) as lines or curves within a plot, and other factors (Sex) are
shown in separate panels. Figure 7.8 does this in two plots, using the subset argument to select

6This is called complete separation, and occurs whenever the responses have no overlap on the predictor variable(s) used
in fitting the logistic regression model.
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the appropriate data and predicted values for males and females. When this is done, it is important
to include the same xlim and ylim arguments so that the scales of all plots are identical.

> binreg_plot(arth.logistic2, type = "link", subset = Sex == "Female",
+ main = "Female", xlim=c(25, 75), ylim = c(-3, 3))
> binreg_plot(arth.logistic2, type = "link", subset = Sex == "Male",
+ main = "Male", xlim=c(25, 75), ylim = c(-3, 3))
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Figure 7.8: Full-model plot of Arthritis data, showing fitted logits by Treatment and Sex. {fig:arth-binreg1}

This plot method has several nice features:

• Plotting on the logit scale shows the additive, linear effects of all predictors (parallel lines for
the combinations of Sex and Treatment).

• It provides a visual representation of the information contained in the table of coefficients.
• The choice to display Treatment within each panel makes it easier to judge the size of this

effect, compared to the effect of Sex which must be judged across the panels.
• It shows the data as points, and the fitted lines and confidence bands are restricted to the range

of the data in each. You can easily see the reason for the unusual pattern in the conditional plot
for Males shown in Figure 7.7.

• It generalizes directly to any fitted model, because the predicted values are obtained from the
model object. For example, you could easily add the interaction term Age:Sex and plot the
result.

While plots on the logit scale have a simpler form, many people find it easier to think about such
relationships in terms of probabilities, as we have done in earlier plots in this chapter. Figure 7.9
shows these plots using the default type = "response".

> binreg_plot(arth.logistic2, subset = Sex == "Female",
+ main = "Female", xlim = c(25, 75))
> binreg_plot(arth.logistic2, subset = Sex == "Male",
+ main = "Male", xlim = c(25, 75))

4
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Figure 7.9: Full-model plot of Arthritis data, showing fitted probabilities by Treatment and Sex. {fig:arth-binreg2}

7.3.3 Effect plots
{sec:logist-effplots}

For more than two variables, full-model plots of the fitted response surface can be cumbersome,
particularly when the model contains interactions or when the main substantive interest is focused
on a given main effect or interaction, controlling for all other explanatory variables. The method
of effect displays (tables and graphs), developed by John Fox (1987, 2003) and implemented in the
effects package, is a useful solution to these problems.

The idea of effect plots is quite simple but very general and handles models of arbitrary com-
plexity:7 consider a particular subset of predictors (focal predictors) we wish to visualize in a given
linear model or generalized linear model. The essence is to calculate fitted values (and standard
errors) for the model terms involving these variables and all low-order relatives (e.g., main effects
that are marginal to an interaction), as these variables are allowed to vary over their range.

All other variables are “controlled” by being fixed at typical values. For example a quantitative
covariate could be fixed at its mean or median; a factor could be fixed at equal proportions of its
levels or its proportions in the data. The result, when plotted, shows all effects of the focal predictors
and their low-order relatives, but with all other variables not included controlled or adjusted for.

More formally, assume we have fit a model with a linear predictor ηi = α + xT
i β (on the logit

scale, for logistic regression). Letting β0 = α and x0 = 1, we can rewrite this in matrix form
as η = Xβ where X is the model matrix constructed by the modeling function, such as glm().
Fitting the model gives the estimated coefficients b and its estimated covariance matrix V̂(b).

The Effect() function constructs an analogous score model matrix, X∗, where the focal
variables have been varied over their range, and all other variables represented as constant, typical
values. Using this as input (the newdata argument) to the predict() function then gives the fit-
ted values η∗ = X∗b. Standard errors used for confidence intervals are calculated by predict()
(when se.fit=TRUE) as the square roots of diag (X∗V̂(b)X∗T). Note that these ideas work
not only for glm() models, but potentially for any modeling function that has a predict() and
vcov() method.8

7Less general expression of these ideas include the use of adjusted means in analysis of covariance, and least squares
means or population marginal means (Searle et al., 1980) in analysis of variance; for example, see the lsmeans package
for classical linear models.

8For example, the effects package presently provides methods for models fit by lm() (including multivariate linear re-
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These results are calculated on the scale of the linear predictor η (logits, for logistic regression)
when the type argument to predict() is type="link" or on the response scale (probabilities,
here) when type="response". The latter makes use of the inverse transformation, Eqn. (7.6).

There are two main calculation functions in the effects package:

• Effect() takes a character vector of the names of a subset of focal predictors and con-
structs the score matrix X∗ by varying these over their ranges, while holding all other pre-
dictors constant at “typical” values. There are many options that control these calculations.
For example, xlevels can be used to specify the values of the focal predictors; typical or
given.values respectively can be used to specify either a function (mean, median) or a
list of specific typical values used for the variables that are controlled. The result is an object
of class "eff", for which there are print(), summary() and (most importantly) plot()
methods. See help(Effect) for a complete description.

• allEffects() takes a model object, and calculates the effects for each high-order term in
the model (including their low-order) relatives. Similar optional arguments control the details
of the computation. The result is an object of class "efflist".

In addition, the plotting methods for "eff" and "efflist" objects offer numerous options to control
the plot details, only a few of which are used in the examples below. For logistic regression models,
they also solve the problem of the trade-off between plots on the logit scale, that have a simple
representation in terms of additive effects, and plots on the probability scale that are usually simpler
to understand. By default, the fitted model effects are plotted on the logit scale, but the response y
axis is labeled with the corresponding probability values.

7.3.3.1 Partial residuals

We noted earlier that for discrete response data, it is usually important to display the data in some
fashion, along with the fitted relationship. Conditional and full-model plots do this by jittering the
binary values at 0 and 1 so you can see where the data exists.

The effects package takes this idea further, by allowing the display of partial residuals. Letting
r denote the vector of residuals for a given model (see Section 7.5.1 for details), the partial residuals
rj pertaining to predictor xj are defined as

rj = r + β̂jxj

These are a natural extension of residuals in simple regression to the multiple regression setting,
in that the slope of a simple regression of r on x is equal to the value of β̂j in the full multiple
regression model. {ex:arthrit-eff}

EXAMPLE 7.8: Arthritis treatment
Here we illustrate the use of the effects package with the simple main effects model which was

fit in Example 7.5. allEffects() is used to calculate the predicted probabilities of the Better
response for Age and the two factors, Sex and Treatment. Partial residuals (for quantitative
predictors) must be requested in the call to allEffects() or Effect().

> library(effects)
> arth.eff2 <- allEffects(arth.logistic2, partial.residuals=TRUE)
> names(arth.eff2)

[1] "I(Age-50)" "Sex" "Treatment"

sponse models), glm(), gls(), multinomial (multinom() in the nnet package) and proportional odds models (polr()
in MASS), polytomous latent class models (poLCA package), as well as a variety of multi-level and mixed-effects linear
models fit with lmer() from the lme4 package, or with lme() from the nlme package.
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The result, arth.eff2, is a list containing the fitted values (response probabilities, by default)
for each of the model terms. The default plot method for the "efflist" object produces one plot
for each high-order term, which are just the main effect in this model. The call below produces
Figure 7.10.

> plot(arth.eff2, rows=1, cols=3,
+ rescale.axis=FALSE, residuals.pch=15)
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Figure 7.10: Plot of all effects in the main effects model for the Arthritis data. Partial residuals and
their loess smooth are also shown for the continuous predictor, Age.{fig:arth-effplot1}

You can quite easily also produce effect plots for several predictors jointly, or full-model plots
by using all predictors in the model in a call to Effect(). For example, the

> arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)

Then plotting the result, with some options, gives the plot shown in Figure 7.11.

> plot(arth.full, multiline=TRUE, ci.style="bands",
+ colors = c("red", "blue"), lwd=3,
+ ticks=list(at=c(.05, .1,.25,.5,.75,.9, .95)),
+ key.args=list(x=.52, y=.92, columns=1), grid=TRUE)

Alternatively, we can plot these results directly on the scale of probabilities, as shown in Fig-
ure 7.12.

> plot(arth.full, multiline=TRUE, ci.style="bands", rescale.axis=FALSE,
+ colors = c("red", "blue"), lwd=3,
+ key.args=list(x=.52, y=.92, columns=1), grid=TRUE)

4

7.4 Case studies
{sec:logist-case}

The examples below take up some issues of data analysis, model building and visualization in the
context of multiple logistic regression models. We focus on the combination of exploratory plots to
see the data, modeling steps and graphs to interpret a given model.{ex:donner1}
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Figure 7.11: Full-model plot of the effects of all predictors in the main effects model for the Arthri-
tis data, plotted on the logit scale.{fig:arth-effplot2}
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Figure 7.12: Full-model plot of the effects of all predictors in the main effects model for the Arthri-
tis data, plotted on the probability scale.{fig:arth-effplot3}
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EXAMPLE 7.9: Donner Party
In Chapter 1, Example 1.3, we described the background behind the sad story of the Donner

Party, perhaps the most famous tragedy in the history of the westward settlement in the United
States. In brief, the party was stranded on the eastern side of the Sierra Nevada mountains by heavy
snow in late October, 1846, and by the time the last survivor was rescued in April, 1847, nearly
half of the members had died from famine and exposure to extreme cold. Figure 1.3 showed that
survival decreased strongly with age.

Here we consider a more detailed analysis of these data, which are contained in the data set
Donner in vcdExtra. This data set lists 90 people in the Donner Party by name, together with age,
sex, survived (0/1) and the date of death for those who died.9

> data("Donner", package="vcdExtra") # load the data
> library(car) # for some() and Anova()
> some(Donner, 8)

family age sex survived death
Breen, Peter Breen 3 Male 1 <NA>
Donner, Jacob Donner 65 Male 0 1846-12-21
Foster, Jeremiah MurFosPik 1 Male 0 1847-03-13
Graves, Nancy Graves 9 Female 1 <NA>
McCutchen, Harriet McCutchen 1 Female 0 1847-02-02
Reed, James Reed 46 Male 1 <NA>
Reinhardt, Joseph Other 30 Male 0 1846-12-21
Wolfinger, Doris FosdWolf 20 Female 1 <NA>

The main purpose of this example is to try to understand, through graphs and models, how
survival was related to age and sex. However, first, we do some data preparation and exploration.
The response variable, survived is a 0/1 integer, and it is more convenient for some purposes to
make it a factor.

> Donner$survived <- factor(Donner$survived, labels=c("no", "yes"))

Some historical accounts (Grayson, 1990) link survival in the Donner Party to kinship or family
groups, so we take a quick look at this factor here. The variable family reflects a recoding of the
last names of individuals to reduce the number of factor levels. The main families in the Donner
party were: Donner, Graves, Breen and Reed. The families of Murphy, Foster and Pike are grouped
as "MurFosPik", those of Fosdick and Wolfinger are coded as "FosdWolf", and all others as
"Other".

> xtabs(~family, data=Donner)

family
Breen Donner Eddy FosdWolf Graves Keseberg

9 14 4 4 10 4
McCutchen MurFosPik Other Reed

3 12 23 7

For the present purposes, we reduce these 10 family groups further, collapsing some of the small
families into "Other", and reordering the levels. Assigning new values to the levels() of a
factor is a convenient trick for recoding factor variables.

9Most historical sources count the number in the Donner Party at 87 or 89. An exact accounting of the members of
the Donner Party is difficult, because: (a) several people joined the party in mid-route, at Fort Bridger and in the Wasatch
Mountains; (b) several rode ahead to search for supplies and one (Charles Stanton) brought two more with him (Luis and
Salvador); (c) five people died before reaching the Sierra Nevada mountains. Donner incorporates updated information
from Kristin Johnson’s listing, http://user.xmission.com/~octa/DonnerParty/Roster.htm.
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> # collapse small families into "Other"
> fam <- Donner$family
> levels(fam)[c(3,4,6,7,9)] <- "Other"
>
> # reorder, putting Other last
> fam = factor(fam,levels(fam)[c(1, 2, 4:6, 3)])
> Donner$family <- fam
> xtabs(~family, data=Donner)

family
Breen Donner Graves MurFosPik Reed Other

9 14 10 12 7 38

xtabs() then shows the counts of survival by these family groups:

> xtabs(~survived+family, data=Donner)

family
survived Breen Donner Graves MurFosPik Reed Other

no 0 7 3 6 1 25
yes 9 7 7 6 6 13

Plotting this distribution of survival by family with a formula gives a spineplot, a special case
of the mosaic plot, or a generalization of a stacked bar plot, shown in Figure 7.13. The widths of
the bars are proportional to family size, and the shading highlights in light blue the proportion who
survived in each family.

> plot(survived ~ family, data=Donner, col=c("pink", "lightblue"))
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Figure 7.13: Spineplot of survival in the Donner Party by family. {fig:donner1-spineplot}

A generalized pairs plot (Section 5.6.2), shown in Figure 7.14 gives a visual overview of the
data. The diagonal panels here show the marginal distributions of the variables as bar plots, and
highlight the skewed distribution of age and the greater number of males than females in the party.
The boxplots and barcode plots for survived and age show that those who survived were generally
younger than those who perished.

> library(gpairs)
> library(vcd)
> gpairs(Donner[,c(4,2,3,1)],
+ diag.pars=list(fontsize=20, hist.color="gray"),
+ mosaic.pars=list(gp=shading_Friendly), outer.rot=c(45,45)
+ )
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Figure 7.14: Generalized pairs plot for the Donner data {fig:donner1-gpairs}

From an exploratory perspective, we now proceed to examine the relationship of survival to
age and sex, beginning with the kind of conditional plots we illustrated earlier (in Example 7.6).
Figure 7.15 shows a plot of survived, converted back to a 0/1 variable as required by ggplot(),
together with the binary responses as points and the fitted logistic regressions separately for males
and females.

> # basic plot: survived vs. age, colored by sex, with jittered points
> gg <- ggplot(Donner, aes(age, as.numeric(survived=="yes"), color = sex)) +
+ theme_bw() + ylab("Survived") +
+ geom_point(position = position_jitter(height = 0.02, width = 0))
> # add conditional linear logistic regressions
> gg + stat_smooth(method = "glm", family = binomial, formula = y ~ x,
+ alpha = 0.2, size = 2, aes(fill = sex))

It is easy to see that survival among women was greater that for men, perhaps narrowing the gap
among the older people, but the data gets thin towards the upper range of age.

The curves plotted in Figure 7.15 assume a linear relationship between the log odds of survival
and age (expressed as formula = y ~ x in the call to stat_smooth()). One simple way
to check whether the relationship between survival and age is non-linear is to re-do this plot, but
now allow a quadratic relationship with age, using formula = y ~ poly(x,2). The result is
shown in the left panel of Figure 7.16.

> # add conditional quadratic logistic regressions
> gg + stat_smooth(method = "glm", family = binomial, formula = y ~ poly(x,2),
+ alpha = 0.2, size = 2, aes(fill = sex))
>
> # add loess smooth
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Figure 7.15: Conditional plot of the Donner data, showing the relationship of survival to age and
sex. The smoothed curves and confidence bands show the result of fitting separate linear logistic
regressions on age for males and females.{fig:donner1-cond1}

> gg + stat_smooth(method = "loess", span=0.9, alpha = 0.2, size = 2,
+ aes(fill = sex)) + coord_cartesian(ylim = c(-.05,1.05))
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Figure 7.16: Conditional plots of the Donner data, showing the relationship of survival to age and
sex. Left: The smoothed curves and confidence bands show the result of fitting separate quadratic
logistic regressions on age for males and females. Right: Separate loess smooths are fit to the data
for males and females {fig:donner1-cond3}

This plot is quite surprising. It suggests quite different regimes relating to survival for men
and women. Among men, survival probability decreases steadily with age, at least after age 20.
For women, those in the age range 10–35 were very likely to have lived, while those over 40 were
almost all predicted to perish.

Another simple technique is to fit a non-parametric loess smooth, as shown in the right panel of
Figure 7.16.10 The curve for females is similar to that of the quadratic fit in the left panel, but the

10A technical problem with the use of the loess smoother for binary data is that it can produce fitted values outside the
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curve for males suggests that survival also has a peak around the teenage years. One lesson to be
drawn from these graphs is that a linear logistic regression, such as shown in Figure 7.16 may tell
only part of the story, and, for a binary response it is not easy to discern whether the true relationship
is linear. If it really is, all these graphs would look much more similar. As well, we usually obtain a
more realistic smoothing of the data using full-model plots or effect plots.

The suggestions from these exploratory graphs can be used to define and test some models for
survival in the Donner Party. The substantive questions of interest are:

• Is relationship the same for men and women? This is, is it necessary to allow for an interaction
of age with sex, or separate fitted curves for men and women?

• Is the relationship between survival and age well-represented in a linear logistic regression
model?

The first question is the easiest to deal with: we can simply fit a model allowing an interaction
of age (or some function of age) and sex,

survived ~ age * sex
survived ~ f(age) * sex

and compare the goodness of fit with the analogous additive, main-effects models.
From a modeling perspective, there is a wide variety of approaches for testing for non-linear

relationships. We only scratch the surface here, and only for a single quantitative predictor, x, such
as age in this example. One simple approach, illustrated in Figure 7.16 is to allow a quadratic (or
higher-power, e.g., cubic) function to describe the relationship between the log odds and x,

logit(πi) = α+ β1xi + β2x
2
i

logit(πi) = α+ β1xi + β2x
2
i + β3x

3
i

. . .

In R, these model terms can be fit using poly(x, 2), poly(x, 3) . . ., which generate or-
thogonal polynomials for the powers of x. A simple way to test for non-linearity is a likelihood
ratio test comparing the more complex model to the linear one. This method is often sufficient for
a hypothesis test, and, if the relationship truly is linear, the fitted logits and probabilities will not
differ greatly from what they would be under a linear model. A difficulty with this approach is that
polynomial models are often unrealistic, particularly for data that approach an asymptote.

Another simple approach is to use a regression spline, that fits the relationship with x in terms
of a set of piecewise polynomials, usually cubic, joined at a collection of points, called knots so that
the overall fitted relationship is smooth and continuous. See Fox (2008, §17.2) for a cogent, brief
description of these methods.

One particularly convenient method is a natural spline, implemented in the splines package in
the ns() function. This method constrains the fitted cubic spline to be linear at lower and upper
limits of x, and, for k knots, fits df = k + 1 parameters not counting the intercept. The k knots can
be conveniently chosen as k cutpoints in the percentiles of the distribution of x. For example, with
k = 1, the knot would be placed at the median, or 50th percentile; with k = 3, the knots would be
placed at the quartiles of the distribution of x; k = 0 corresponds to no knots, i.e., a simple linear
regression.

In the ns() function, you can specify the locations of knots or the number of knots with the
knots argument, but it is conceptually simpler to specify the number of degrees of freedom used in

[0–1] interval, as happens in the right panel of this figure. Kernel smoothers, such as the KernSmooth package avoid this
problem, but are not available through ggplot2.
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the spline fit. Thus, ns(x, 2) and poly(x, 2) both specify a term in x of the same complexity,
the former a natural spline with k = 1 knot and the later a quadratic function in x.

We illustrate these ideas in the remainder of this example, fitting a 2× 2 collection of models to
the Donner data corresponding to: (a) whether or not age and sex effects are additive; (b) whether
the effect is linear on the logit scale or non-linear (quadratic, here). A brief summary of each model
is given using the Anova() in the car package, providing Type II tests of each effect. As usual,
summary() would give more detailed output, including tests for individual coefficients. First, we
fit the linear models, without and with an interaction term:

> donner.mod1 <- glm(survived ~ age + sex,
+ data=Donner, family=binomial)
> Anova(donner.mod1)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

age 5.52 1 0.0188 *
sex 6.73 1 0.0095 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> donner.mod2 <- glm(survived ~ age * sex,
+ data=Donner, family=binomial)
> Anova(donner.mod2)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

age 5.52 1 0.0188 *
sex 6.73 1 0.0095 **
age:sex 0.40 1 0.5269
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The main effects of age and sex are both significant here, but the interaction term, age:sex is
not in model donner.mod2. Note that the terms tested by Anova() in donner.mod1 are a
redundant subset of those in donner.mod2.

Next, we fit non-linear models, representing the linear and non-linear trends in age by poly(age,2).11

The Anova() results for terms in both models are contained in the output from Anova(donner.mod4).

> donner.mod3 <- glm(survived ~ poly(age,2) + sex,
+ data=Donner, family=binomial)
> donner.mod4 <- glm(survived ~ poly(age,2) * sex,
+ data=Donner, family=binomial)
> Anova(donner.mod4)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

poly(age, 2) 9.91 2 0.0070 **
sex 8.09 1 0.0044 **
poly(age, 2):sex 8.93 2 0.0115 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

11Alternatively, we could use the term ns(age,2) or higher-degree polynomials or natural splines with more knots, but
we don’t do this here.
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Now, in model donner.mod4, the interaction term poly(age, 2):sex is significant, indi-
cating that the fitted quadratics for males and females differ in “shape,” meaning either their linear
(slope) or quadratic (curvature) components.

These four models address the questions posed earlier. A compact summary of these models,
giving the likelihood ratio tests of goodness of fit, together with AIC and BIC statistics are shown
below, using the LRstats() method in vcdExtra for a list of "glm" models.

> library(vcdExtra)
> LRstats(donner.mod1, donner.mod2, donner.mod3, donner.mod4)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

donner.mod1 117 125 111.1 87 0.042 *
donner.mod2 119 129 110.7 86 0.038 *
donner.mod3 115 125 106.7 86 0.064 .
donner.mod4 110 125 97.8 84 0.144
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By AIC and BIC, donner.mod4 is best, and it is also the only model with a non-significant
LR χ2 (residual deviance). Because these models comprise a 2 × 2 set of hypotheses, it is easier
to compare models by extracting the LR statistics and arranging these in a table, together with the
their row and column differences. The entries in the table below are calculated as follows.

> mods <- list(donner.mod1, donner.mod2, donner.mod3, donner.mod4)
> LR <- sapply(mods, function(x) x$deviance)
> LR <- matrix(LR, 2, 2)
> rownames(LR) <- c("additive", "non-add")
> colnames(LR) <- c("linear", "non-lin")
> LR <- cbind(LR, diff= LR[,1]-LR[,2])
> LR <- rbind(LR, diff= c(LR[1,1:2]-LR[2,1:2],NA))

linear non-linear ∆χ2 p-value
additive 111.128 106.731 4.396 0.036
non-additive 110.727 97.799 12.928 0.000
∆χ2 0.400 8.932
p-value 0.527 0.003

Thus, the answer to our questions seems to be that: (a) there is evidence that the relationship
of survival to age differs for men and women in the Donner Party; (b) these relationships are not
well-described by a linear logistic regression.

For simplicity, we used a quadratic effect, poly(age,2), to test for non-linearity here. An
alternative test of the same complexity could use a regression spline, ns(age,2), also with 2
degrees of freedom for the main effect and interaction, or allow more knots. To illustrate, we fit
two natural spline modes models with 2 and 4 df, and compare these with the quadratic model
(donner.mod4), all of which include the interaction of age and sex.

> library(splines)
> donner.mod5 <- glm(survived ~ ns(age,2) * sex, data=Donner,
+ family=binomial)
> Anova(donner.mod5)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

ns(age, 2) 9.28 2 0.0097 **
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sex 7.98 1 0.0047 **
ns(age, 2):sex 8.71 2 0.0129 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> donner.mod6 <- glm(survived ~ ns(age,4) * sex, data=Donner,
+ family=binomial)
> Anova(donner.mod6)

Analysis of Deviance Table (Type II tests)

Response: survived
LR Chisq Df Pr(>Chisq)

ns(age, 4) 22.05 4 0.0002 ***
sex 10.49 1 0.0012 **
ns(age, 4):sex 8.54 4 0.0737 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> LRstats(donner.mod4, donner.mod5, donner.mod6)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

donner.mod4 110 125 97.8 84 0.14
donner.mod5 111 126 98.7 84 0.13
donner.mod6 106 131 86.1 80 0.30

With four more parameters, donner.mod6 fits better and has a smaller AIC.
We conclude this example with an effect plot for the spline model donner.mod6 shown in

Figure 7.17. The complexity of the fitted relationships for men and women is intermediate between
the two conditional plots shown in Figure 7.16. (However, note that the fitted effects are plotted
on the logit scale in Figure 7.17 and labeled with the corresponding probabilities, whereas the
conditional plots are plotted directly on the probability scale.)

> library(effects)
> donner.eff6 <- allEffects(donner.mod6, xlevels=list(age=seq(0,50,5)))
> plot(donner.eff6, ticks=list(at=c(0.001, 0.01, 0.05, 0.1, 0.25,
+ 0.5, 0.75, 0.9, 0.95, 0.99, 0.999)))

This plot confirms that for women in the Donner Party, survival was greatest for those aged
10-30. Survival among men was overall much less and there is a hint of greater survival for men
aged 10-15.

Of course, this statistical analysis does not provide explanations for these effects, and it ignores
the personal details of the Donner Party members and the individual causes and circumstances of
death, which are generally well-documented in the historical record (Johnson, 1996). See http://
user.xmission.com/~octa/DonnerParty/ for a comprehensive collection of historical
sources.

Grayson (1990) attributes the greater survival of women of intermediate age to demographic
arguments that women are overall better able to withstand conditions of famine and extreme cold,
and high age-specific mortality rates among the youngest and oldest members of human societies.
He also concludes (without much analysis) that members with larger social and kinship networks
would be more likely to survive. 4

{ex:arrests}

EXAMPLE 7.10: Racial profiling: Arrests for marijuana possession
In the summer of 2002, the Toronto Star newspaper launched an investigation on the topic of

possible racial profiling by the Toronto police service. Through freedom of information requests,
they obtained a data base of over 600,000 arrest records on all potential charges in the period from
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Figure 7.17: Effect plot for the Donner data {fig:donner-effect}

1996–2002, the largest data bases on crime arrests and disposition ever assembled in Canada. An
initial presentation of this study was given in Example 1.4.

In order to examine the issue of racial profiling (different treatment as a function of race) they
excluded all charges such as assault, robbery, speeding and driving under the influence, where the
police have no discretion regarding the laying of a charge. They focused instead on a subset of
arrests, where the police had various options.

Among these, for people arrested for a single charge of simple possession of a small amount of
marijuana, police have the option of releasing the arrestee, with a summons (“Form 9”) to appear in
court (similar to a parking ticket), or else the person could be given harsher treatment–brought to a
police station or held in jail for a bail hearing (“Show cause”). The main question for the Toronto
Star was whether the subject’s skin color had any influence on the likelihood that the person would
be released with a summons.12

Their results, published in a week-long series of articles in December 2002, concluded that there
was strong evidence that black and white subjects were treated differently. For example, the analysis
showed that blacks were 1.5 times more likely than whites to be given harsher treatment than release
with a summons; if the subject was taken to the police station, a black was 1.6 times more likely
to be held in jail for a bail hearing. An important part of the analysis and the public debate that
ensued was to show that other variables that might account for these differences had been controlled
or adjusted for.13

The data set Arrests in the effects package gives a simplified version of the Star database,
containing records for 5226 cases of arrest on the charge of simple possession of marijuana analyzed
by the newspaper. The response variable here is released (Yes/No) and the main predictor of

12Another discretionary charge they investigated was police stops for non-moving violations under the Ontario Highway
Traffic Act, such as being pulled over for a faulty muffler or having an expired license plate renewal sticker. A disproportion-
ate rate of charges against blacks is sometimes referred to as “driving while black” (DWB). This investigation found that the
number of blacks so charged, but particularly young black males, far out-weighed their representation in the population.

13The Toronto Police Service launched a class-action libel law suit against the Toronto Star and the first author of this
book, who served as their statistical consultant, claiming damages of $5,000 for every serving police officer in the city, a
total of over 20 million dollars. The suit was thrown out of court, and the Toronto police took efforts to enhance training
programs to combat the perception of racial profiling.
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interest is skin color of the person arrested, colour (Black/White).14 A random subset of the data
set is shown below.

> library(effects)
> data("Arrests", package="effects")
> Arrests[sample(nrow(Arrests), 6),]

released colour year age sex employed citizen checks
3768 Yes Black 2000 23 Male No Yes 4
4576 Yes Black 2001 17 Male Yes Yes 0
3976 No White 2002 20 Male No Yes 3
4629 Yes White 2000 18 Male Yes Yes 1
2384 No Black 2000 19 Male Yes Yes 3
869 Yes White 2001 15 Male Yes Yes 1

Other available predictors, to be used as control variables included the year of the arrest, age
and sex of the person, and binary indicators of whether the person was employed and a citizen
of Canada. In addition, when someone is stopped by police, his/her name is checked in six police
data bases that record previous arrests, convictions, whether on parole, etc. The variable checks
records the number, 0–6, in which the person’s name appeared.

A variety of logistic models were fit to these data including all possible main effects and some
two-way interactions. To allow for possible non-linear effects of year, this variable was treated
as a factor rather than as a (linear) numeric variable, but the effects of age and checks were
reasonably linear on the logit scale. A reasonable model included the interactions of colour with
both year and age, as fit below:

> Arrests$year <- as.factor(Arrests$year)
> arrests.mod <- glm(released ~ employed + citizen + checks
+ + colour*year + colour*age,
+ family=binomial, data=Arrests)

For such models, significance tests for the model terms are best carried out using the Anova()
function in the car package that uses Type II tests ...

> library(car)
> Anova(arrests.mod)

Analysis of Deviance Table (Type II tests)

Response: released
LR Chisq Df Pr(>Chisq)

employed 72.7 1 < 2e-16 ***
citizen 25.8 1 3.8e-07 ***
checks 205.2 1 < 2e-16 ***
colour 19.6 1 9.7e-06 ***
year 6.1 5 0.29785
age 0.5 1 0.49827
colour:year 21.7 5 0.00059 ***
colour:age 13.9 1 0.00019 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The difficulty in interpreting these results from tables of coefficients can be seen in the output
below:

> coeftest(arrests.mod)

14The original data set also contained the categories Brown and Other, but these appeared with small frequencies.
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z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.34443 0.31007 1.11 0.26665
employedYes 0.73506 0.08477 8.67 < 2e-16 ***
citizenYes 0.58598 0.11377 5.15 2.6e-07 ***
checks -0.36664 0.02603 -14.08 < 2e-16 ***
colourWhite 1.21252 0.34978 3.47 0.00053 ***
year1998 -0.43118 0.26036 -1.66 0.09770 .
year1999 -0.09443 0.26154 -0.36 0.71805
year2000 -0.01090 0.25921 -0.04 0.96647
year2001 0.24306 0.26302 0.92 0.35541
year2002 0.21295 0.35328 0.60 0.54664
age 0.02873 0.00862 3.33 0.00086 ***
colourWhite:year1998 0.65196 0.31349 2.08 0.03756 *
colourWhite:year1999 0.15595 0.30704 0.51 0.61152
colourWhite:year2000 0.29575 0.30620 0.97 0.33411
colourWhite:year2001 -0.38054 0.30405 -1.25 0.21073
colourWhite:year2002 -0.61732 0.41926 -1.47 0.14091
colourWhite:age -0.03737 0.01020 -3.66 0.00025 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By direct calculation (e.g., using exp(coef(arrests.mod))) you can find that the odds
of a quick release was exp(0.735) = 2.08 times greater for someone employed, exp(0.586) = 1.80
times more likely for a Canadian citizen and exp(1.21) = 3.36 times more likely for a white than a
black person. It is much more difficult to interpret the interaction terms.

The primary question for the newspaper concerned the overall difference between the the treat-
ment of blacks and whites– the main effect of colour. We plot this as shown below, giving the
plot shown in Figure 7.18. This supports the claim by the Star because the 95% confidence limits
for blacks and whites do not overlap, and all other relevant predictors that could account for this
effect have been controlled or adjusted for.

> plot(Effect("colour", arrests.mod),
+ lwd=3, ci.style="bands", main="",
+ xlab = list("Skin color of arrestee", cex=1.25),
+ ylab = list("Probability(released)", cex=1.25)
+ )

Of course, one should be very wary of interpreting main effects when there are important in-
teractions, and the story turned out to be far more nuanced than was reported in the newspaper.
In particular, the interactions of color with with age and year provided a more complete account.
Effect plots for these interactions are shown in Figure 7.19.

> # colour x age interaction
> plot(Effect(c("colour","age"), arrests.mod),
+ lwd=3, multiline=TRUE, ci.style="bands",
+ xlab=list("Age", cex=1.25),
+ ylab=list("Probability(released)", cex=1.25),
+ key.args=list(x=.05, y=.99, cex=1.2, columns=1)
+ )
> # colour x year interaction
> plot(Effect(c("colour","year"), arrests.mod),
+ lwd=3, multiline=TRUE,
+ xlab=list("Year", cex=1.25),
+ ylab=list("Probability(released)", cex=1.25),
+ key.args=list(x=.7, y=.99, cex=1.2, columns=1)
+ )

From the left panel in Figure 7.19, it is immediately apparent that the effect of age was in
opposite directions for blacks and whites: Young blacks were indeed treated more severely than
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Figure 7.18: Effect plot for the main effect of skin color in the Arrests data.{fig:arrests-eff1}
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data.{fig:arrests-eff2}
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young whites; however for older people, blacks were treated less harshly than whites, controlling
for all other predictors.

The right panel of Figure 7.19 shows the changes over time in the treatment of blacks and whites.
It can be seen that up to the year 2000 there was strong evidence for differential treatment on these
charges, again controlling for other predictors. There was also evidence to support the claim by the
police that in the year 2001 they began training of officers to reduce racial effects in treatment.

Finally, the effects package provides a convenience function, allEffects(), that calculates
the effects for all high-order terms in a given model. The plot() method for the "efflist" object
can be used to plot individual terms selectively from a graphic menu, or plot all terms together in
one comprehensive display using ask=FALSE.

> arrests.effects <- allEffects(arrests.mod,
+ xlevels=list(age=seq(15,45,5)))
> plot(arrests.effects,
+ ylab="Probability(released)", ci.style="bands", ask=FALSE)
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Figure 7.20: Effect plot for all high-order terms in the model for the Arrests data{fig:arrests-all}

The result, shown in Figure 7.20 is a relatively compact and understandable summary of the
arrests.mod model: (a) people were more likely to be released if they were employed and
citizens. (b) each additional police check decreased the likelihood of release with a summons. (c)
the effect of skin color varied with age and year of arrest, in ways that tell a far more nuanced story
than reported in the newspaper.

Finally, another feature of this plot bears mention: by default, the scales for each effect plot are
determined separately for each effect, to maximize use of the plot region. However, you have to
read the Y scale values to judge the relative sizes of these effects. An alternative plot, using the
same scale in each subplot15 would show the relative sizes of these effects.

4

15With the effects package, you can set the ylim argument to equate the vertical range for all plots, but this should be
done on the logit scale. For this plot, ylim = plogis(c(0.5, 1)) would work.
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7.4.1 More complex models: Model selection and visualization
{sec:complex}

Models with more predictors or more complex terms (interactions, non-linear terms) present ad-
ditional challenges for model fitting, summarization, and visualization and interpretation. These
problems increase rapidly with the number of potential predictors.

A very complicated model, with many terms and interactions may fit the data at hand quite well.
However, because goodness-of-fit is optimized in the sample, terms that appear significant are less
likely to be important in a future sample, and we need to worry about inflation of Type I error rates
that accompany multiple significance tests. As well, it becomes increasingly difficult to visualize
and understand a fitted model as the model becomes increasingly complex. On the other hand, a
very simple model may omit important predictors, interactions, or non-linear relationships with the
response and give an illusion of a comfortable interpretation.

Model selection for logistic regression seeks to balance the trade-off between the competing
goals of goodness-of-fit and simplicity. A full discussion of this topic is beyond the scope of this
book, but is well treated in Agresti (2013, Chapter 6), and extensively in Harrell (2001, Chapter
10–13). Here, we illustrate some important ideas using the AIC and BIC statistics as parsimony-
adjusted measures of goodness-of-fit. These are discussed Section 9.3.2. AIC is defined as

AIC = −2 logL+ 2k

where logL is the maximized log likelihood and k is the number of parameters estimated in the
model. Better models correspond to smaller AIC. BIC is similar, but uses a penalty of log(n)k, and
so prefers smaller models as the sample size n increases. {ex:icu1}

EXAMPLE 7.11: Death in the ICU
In this example we examine briefly some aspects of logistic regression related to model selection

and graphical display with a large collection of potential predictors, including both quantitative and
discrete variables. We use data from a classic study by Lemeshow et al. (1988) of patients admitted
to an intensive care unit at Baystate Medical Center in Springfield, Massachusetts. The major goal
of this study was to develop a model to predict the probability of survival (until hospital discharge)
of these patients and to study the risk factors associated with ICU mortality. The data, contained in
the data set ICU in vcdExtra, gives the results for a sample of 200 patients that was presented in
Hosmer et al. (2013) (and earlier editions).

The ICU data set contains 22 variables of which the first, died is a factor. Among the predic-
tors, two variables (race, coma) were represented initially as 3-level factors, but then recoded to
binary variables (white, uncons).

> data("ICU", package="vcdExtra")
> names(ICU)

[1] "died" "age" "sex" "race" "service"
[6] "cancer" "renal" "infect" "cpr" "systolic"
[11] "hrtrate" "previcu" "admit" "fracture" "po2"
[16] "ph" "pco" "bic" "creatin" "coma"
[21] "white" "uncons"

> ICU <- ICU[,-c(4, 20)] # remove redundant race, coma

Removing the 3-level versions leaves 19 predictors, of which three (age, heart rate, systolic
blood pressure) are quantitative and the remainder are either binary (service, cancer) or had previ-
ously been dichotomized (e.g., ph<7.25).

As an initial step, and a basis for comparison, we fit the full model containing all 19 predictors.
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> icu.full <- glm(died ~ ., data=ICU, family=binomial)
> summary(icu.full)

Call:
glm(formula = died ~ ., family = binomial, data = ICU)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.8040 -0.5606 -0.2044 -0.0863 2.9773

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.72670 2.38551 -2.82 0.0048 **
age 0.05639 0.01862 3.03 0.0025 **
sexMale 0.63973 0.53139 1.20 0.2286
serviceSurgical -0.67352 0.60190 -1.12 0.2631
cancerYes 3.10705 1.04585 2.97 0.0030 **
renalYes -0.03571 0.80165 -0.04 0.9645
infectYes -0.20493 0.55319 -0.37 0.7110
cprYes 1.05348 1.00661 1.05 0.2953
systolic -0.01547 0.00850 -1.82 0.0686 .
hrtrate -0.00277 0.00961 -0.29 0.7732
previcuYes 1.13194 0.67145 1.69 0.0918 .
admitEmergency 3.07958 1.08158 2.85 0.0044 **
fractureYes 1.41140 1.02971 1.37 0.1705
po2<=60 0.07382 0.85704 0.09 0.9314
ph<7.25 2.35408 1.20880 1.95 0.0515 .
pco>45 -3.01844 1.25345 -2.41 0.0160 *
bic<18 -0.70928 0.90978 -0.78 0.4356
creatin>2 0.29514 1.11693 0.26 0.7916
whiteNon-white 0.56573 0.92683 0.61 0.5416
unconsYes 5.23229 1.22630 4.27 2e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 200.16 on 199 degrees of freedom
Residual deviance: 120.78 on 180 degrees of freedom
AIC: 160.8

Number of Fisher Scoring iterations: 6

You can see that a few predictors are individually significant, but many are not.
However, it is useful to carry out a simultaneous global test of H0 : β = 0 that all regres-

sion coefficients are zero. If this test is not significant, it makes little sense to use selection meth-
ods to choose individually significant predictors. For convenience, we define a simple function,
LRtest(), to calculate the likelihood ratio test from the model components.

> LRtest <- function(model)
+ c(LRchisq=(model$null.deviance - model$deviance),
+ df=(model$df.null - model$df.residual))
>
> (LR <- LRtest(icu.full))

LRchisq df
79.383 19.000

> (pvalue=1-pchisq(LR[1],LR[2]))

LRchisq
2.3754e-09
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At this point, it is tempting to examine the output from summary(icu.full) shown above
and eliminate those predictors which fail significance at some specified level such as the conven-
tional α = 0.05. This is generally a bad idea for many reasons.16

A marginally better approach is to remove non-significant variables whose coefficients have
signs that don’t make sense from the substance of the problem. For example, in the full model, both
renal (history of chronic renal failure) and infect (infection probable at ICU admission) have
negative signs, meaning that their presence decreases the odds of death. We remove those variables
using update(); as expected they make little difference.

> icu.full1 <- update(icu.full, . ~ . - renal - fracture)
> anova(icu.full1, icu.full, test="Chisq")

Analysis of Deviance Table

Model 1: died ~ age + sex + service + cancer + infect + cpr + systolic +
hrtrate + previcu + admit + po2 + ph + pco + bic + creatin +
white + uncons

Model 2: died ~ age + sex + service + cancer + renal + infect + cpr +
systolic + hrtrate + previcu + admit + fracture + po2 + ph +
pco + bic + creatin + white + uncons

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 182 122
2 180 121 2 1.7 0.43

Before proceeding to consider model selection, it is useful to get a better visual overview of the
current model than is available from a table of coefficients and significance tests. Some very useful
print(), summary() and plot() methods are available in the rsm package. Unfortunately,
these require that the logistic model is fitted with lrm() in that package rather than with glm().
We pause here to refit the same model as icu.full1 in order to show a plot of odds ratios for the
terms in this model.

> library(rms)
> dd <- datadist(ICU[,-1])
> options(datadist="dd")
> icu.lrm1 <- lrm(died ~ ., data=ICU)
> icu.lrm1 <- update(icu.lrm1, . ~ . - renal - fracture)

The summary() method for "rms" objects produces a much more detailed descriptive sum-
mary of a fitted model, and the plot() method for that summary object gives a sensible plot of
the odds ratios for the model terms together with confidence intervals, at levels (0.9, 0.95, 0.99) by
default. The following lines produce Figure 7.21.

> sum.lrm1 <- summary(icu.lrm1)
> plot(sum.lrm1, log=TRUE, main="Odds ratio for 'died'", cex=1.25,
+ col = rgb(0.1, 0.1, 0.8, alpha = c(0.3, 0.5, 0.8)))

In this plot, continuous variables are shown at the top, followed by the discrete predictors. In
each line, the range or levels of the predictors are given in the form a : b, such that the value a
corresponds to the numerator of the odds ratio plotted. Confidence intervals that don’t overlap the
vertical line for odds ratio = 1 are significant, but this graph shows those at several confidence levels,
allowing you to decide what is “significant” visually. As well, the widths of those intervals convey
the precision of these estimates.

Among several stepwise selection methods in R for "glm" models, stepAIC() in the MASS
package implements a reasonable collection of methods for forward, backward and stepwise selec-
tion using penalized AIC-like criteria that balance goodness of fit against parsimony. The method

16It ignores the facts of (a) an arbitrary cutoff value for significance, (b) the strong likelihood that chance features of the
data or outliers influence the result, (c) problems of collinearity, etc. See Harrell (2001, §4.3) for a useful discussion of these
issues.
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Odds ratio for 'died'
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Figure 7.21: Odds ratios for the terms in the model for the ICU data. Each line shows the odds
ratio for a term, together with lines for 90, 95 and 99% confidence intervals in progressively darker
shades. {fig:icu1-odds-ratios}

takes an argument, scope, which is a list of two model formulae; upper defines the largest (most
complex) model to consider and lower defines the smallest (simplest) model, e.g., lower = ~ 1
is the intercept-only model.

By default, the function produces verbose printed output showing the details of each step, but
we suppress that here to save space. It returns the final model as its result, along with an anova
component that summarises the deviance and AIC from each step.

> library(MASS)
> icu.step1 <- stepAIC(icu.full1, trace = FALSE)
> icu.step1$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
died ~ age + sex + service + cancer + infect + cpr + systolic +

hrtrate + previcu + admit + po2 + ph + pco + bic + creatin +
white + uncons

Final Model:
died ~ age + cancer + systolic + admit + ph + pco + uncons

Step Df Deviance Resid. Df Resid. Dev AIC
1 182 122.48 158.48
2 - po2 1 0.062446 183 122.54 156.54
3 - creatin 1 0.059080 184 122.60 154.60
4 - hrtrate 1 0.072371 185 122.67 152.67
5 - infect 1 0.122772 186 122.79 150.79
6 - white 1 0.334999 187 123.13 149.13
7 - service 1 0.671313 188 123.80 147.80
8 - bic 1 0.377521 189 124.18 146.18
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9 - cpr 1 1.148260 190 125.33 145.33
10 - sex 1 1.543523 191 126.87 144.87
11 - previcu 1 1.569976 192 128.44 144.44

Alternatively, we can use the BIC criterion, by specifying k=log(n), which generally will select
a smaller model when the sample size is reasonably large.

> icu.step2 <- stepAIC(icu.full, trace = FALSE, k=log(200))
> icu.step2$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
died ~ age + sex + service + cancer + renal + infect + cpr +

systolic + hrtrate + previcu + admit + fracture + po2 + ph +
pco + bic + creatin + white + uncons

Final Model:
died ~ age + cancer + admit + uncons

Step Df Deviance Resid. Df Resid. Dev AIC
1 180 120.78 226.74
2 - renal 1 0.0019881 181 120.78 221.45
3 - po2 1 0.0067968 182 120.79 216.16
4 - creatin 1 0.0621463 183 120.85 210.92
5 - hrtrate 1 0.0658870 184 120.92 205.69
6 - infect 1 0.2033221 185 121.12 200.59
7 - white 1 0.3673180 186 121.49 195.66
8 - bic 1 0.6002993 187 122.09 190.96
9 - service 1 0.7676303 188 122.85 186.43
10 - fracture 1 1.3245086 189 124.18 182.46
11 - cpr 1 1.1482598 190 125.33 178.31
12 - sex 1 1.5435228 191 126.87 174.55
13 - previcu 1 1.5699762 192 128.44 170.83
14 - ph 1 4.4412370 193 132.88 169.97
15 - pco 1 2.7302934 194 135.61 167.40
16 - systolic 1 3.5231028 195 139.13 165.63

This model differs from model icu.step1 selected using AIC in the last three steps, that also
removed ph, pco and systolic.

> coeftest(icu.step2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.8698 1.3188 -5.21 1.9e-07 ***
age 0.0372 0.0128 2.91 0.00360 **
cancerYes 2.0971 0.8385 2.50 0.01238 *
admitEmergency 3.1022 0.9186 3.38 0.00073 ***
unconsYes 3.7055 0.8765 4.23 2.4e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These two models are nested, so we can compare them directly using a likelihood ratio test from
anova().
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> anova(icu.step2, icu.step1, test="Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ age + cancer + systolic + admit + ph + pco + uncons
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
2 192 128 3 10.7 0.013 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The larger model is significantly better by this test, but the smaller model is simpler to interpret.
We retain these both as “candidate models” to be explored furth, but for ease in this example, we do
so using the smaller model, icu.step2.

Another important step is to check for non-linearity of quantitative predictors such as age and
interactions among the predictors. This is easy to do using update() and anova() as shown
below. First, allow a non-linear term in age, and all two-way interactions of the binary predictors.

> icu.glm3 <- update(icu.step2, . ~ . -age + ns(age,3) + (cancer+admit+uncons)^2)
> anova(icu.step2, icu.glm3, test="Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ cancer + admit + uncons + ns(age, 3) + cancer:admit +

cancer:uncons + admit:uncons
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
2 191 135 4 3.73 0.44

Next, we can check for interactions with age:

> icu.glm4 <- update(icu.step2, . ~ . + age*(cancer+admit+uncons))
> anova(icu.step2, icu.glm4, test="Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ age + cancer + admit + uncons + age:cancer + age:admit +

age:uncons
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
2 192 134 3 5.37 0.15

None of these additional terms have much effect. 4

So, we will tentatively adopt the simple main effects model, icu.step2, and consider how to
visualize and interpret this result.{ex:icu1a}

EXAMPLE 7.12: Death in the ICU – Visualization
One interesting display is a nomogram that shows how values on the various predictors translate

into a predicted value of the log odds, and the relative strengths of their effects on this prediction.
This kind of plot is shown in Figure 7.22, produced using nomogram() in the rms package as
follows. It only works with models fit using lrm(), so we have to refit this model.
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> icu.lrm2 <- lrm(died ~ age + cancer + admit + uncons, data=ICU)
> plot(nomogram(icu.lrm2), cex.var=1.2, lplabel="Log odds death")

Points
0 10 20 30 40 50 60 70 80 90 100

age
10 20 30 40 50 60 70 80 90 100

cancer
No

Yes

admit
Elective

Emergency

uncons
No

Yes

Total Points
0 50 100 150 200 250 300

Log odds death
−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

●

Figure 7.22: Nomogram for predicted values in the simple main effects model for the ICU data.
Each predictor is scaled in relation to its effect on the outcome in terms of “points”, 0–100. Adding
the points for a given case gives total points that have a direct translation to log odds. The marked
points show the prediction for someone of age 60, admitted to the emergency ward and unconscious. {fig:icu-nomogram}

In this nomogram, each predictor is scaled according to the size of its effect on a common scale
of 0–100 “points.” A representative observation is shown by the marked points, corresponding to
a person of age 60, without cancer, who was admitted to emergency and was unconscious at that
time. Adding the points associated with each variable value gives the result shown on the scale
of total points. For this observation, the result is 50 + 0 + 84 + 100 = 234, for which the scale
of log odds at the bottom gives a predicted logit of 2.2, or a predicted probability of death of
1/(1 + exp(−2.2)) = 0.90.

This leaves us with the problem of how to visualize the fitted model compactly and comprehen-
sively. Multi-panel full-model plots and effect plots, as we have used them, are somewhat unwieldy
with four or more predictors if we want to view all effects simultaneously because it becomes more
difficult to make comparisons across multiple panels (particularly if the vertical scales differ).

One way to reduce the visual complexity of such graphs is to combine some predictors that
would otherwise be shown in separate panels into a recoding that can be shown as multiple curves
for their combinations in fewer panels. In general, this can be done by combining some predictors
interactively; for example with sex and education as factors, their combinations, M:Hi, M:Lo, etc.
could be used to define a new variable, group used as the curves in one plot, rather than separate
panels. This, in fact, is precisely what binreg_plot() does when there are two or more factors
to be shown in a given plot.

In this case, because age is continuous, it makes sense to plot fitted values against age.17 With
cancer, admit and uncons as binary factors associated with risk of death, it is also convenient

17By default, binreg_plot() uses the first numeric predictor as the horizontal variable.
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for plotting to represent them in a way that reflects the level assiciated with higher risk. We do this
by recoding their levels using "-" for low risk.

> levels(ICU$cancer) <- c("-", "Cancer")
> levels(ICU$admit) <- c("-","Emerg")
> levels(ICU$uncons) <- c("-","Uncons")
>
> icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
+ data = ICU, family = binomial)

Then, binreg_plot() is called as follows, giving the plot shown in Figure 7.23. Such multi-
line graphs are more easily read with direct labels on the lines rather than a legend, so the legend
is suppressed, and the lines are labeled using labels = TRUE. Points along the fitted lines are
shown when point_size>0.

> binreg_plot(icu.glm2, type = "link", conf_level=0.68,
+ legend = FALSE,
+ labels = TRUE, labels_just = c("right", "bottom"),
+ cex = 0, point_size = 0.8, pch=15:17,
+ ylab = "Log odds (died)",
+ ylim = c(-7, 4))
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Figure 7.23: Fitted log odds of death in the ICU data for the model icu.glm2. Each line shows
the relationship with age, for patients having various combinations of risk factors and 1 standard
error confidence bands.{fig:icu1-binreg-plot}

From Figure 7.23, it is apparent that the log odds of mortality increases with age in all cases.
Relative to the line labeled "-:-:-" (no risk factors) mortality is higher when any of these risk
factors are present, particularly when the patient is admitted to Emergency; it is highest when the
patient is also unconscious at admission. The vertical gaps between lines that share a common risk
(e.g., Cancer, CancerEmerg) indicate the additional increment from one more risk.
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Finally, the plotted points show the number and age distribution of these various combinations.
The greatest number of patients have only Emerg as a risk factor and only one patient was uncon-
scious with no other risk.

Before concluding that this model provides an adequate description of the data, we should exam-
ine whether any individual cases are unduly influencing the predicted results, and more importantly,
the choice of variables in the model. We examine this question in Section 7.5 where we return to
these data (Example 7.14).

4

7.5 Influence and diagnostic plots
{sec:logist-infl}

In ordinary least squares (OLS) regression, measures of influence (leverage, Cook’s D, DFBETAs,
etc.) and associated plots help you to determine whether individual cases (or cells in grouped
data) have undue impact on the fitted regression model and the coefficients of individual predictors.
Analogs of most of these measures have been suggested for logistic regression and generalized
linear models. Pregibon (1981) provided the theoretical basis for these methods, exploiting the
relationship between logistic models and weighted least squares. Some additional problems occur
in practical applications to logistic regression because the response is discrete, and because the
leave-one-out diagnostics are more difficult to compute, but the ideas are essentially the same.

7.5.1 Residuals and leverage
{sec:logist-resids}

As in ordinary least squares regression, the influence (actual impact) of an observation in logistic
models depends multiplicatively on its residual (disagreement between yi and ŷi) and its leverage
(how unusual xi is in the space of the explanatory variables). A conceptual formula is

Influence = Leverage× Residual

This multiplicative definition implies that a case is influential to the extent that it is both poorly fit
and has unusual values of the predictors.

7.5.1.1 Residuals

In logistic regression, the simple raw residual is just ei ≡ yi − p̂i, where p̂i = 1/[1 + exp(−xT
i b)].

The Pearson and deviance residuals are more useful for identifying poorly fitted observations,
and are components of overall goodness-of-fit statistics. The (raw) Pearson residual is defined as

ri ≡
ei√

p̂i(1− p̂i)
(7.7) {eq:reschi}

and the Pearson chi-square is therefore χ2 =
∑
r2i . The deviance residual is

gi ≡ ±−2[yi log p̂i + (1− yi) log(1− p̂i)]1/2 (7.8) {eq:resdev}

where the sign of gi is the same as that of ei. Likewise, the sum of squares of the deviance residuals
gives the overall deviance, G2 = −2 logL(b) =

∑
g2i .

When yi is a binomial count based on ni trials (grouped data), the Pearson residuals Eqn. (7.7)
then become

ri ≡
yi − nip̂i√
nip̂i(1− p̂i)

with similar modifications made to Eqn. (7.8).
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In R, residuals() is the generic function for obtaining (raw) residuals from a model fitted
with glm() (or lm()). However standardized residuals, given by rstandard(), and studen-
tized residuals, provided by rstudent() are often more useful because they rescale the residuals
to have unit variance. They use, respectively, an overall estimate, σ̂2 of error variance, and the
leave-one-out estimate, σ̂2

(−i), omitting the ith observation; the studentized version is usually to be
preferred in model diagnostics because it also accounts for the impact of the observation on residual
variance.

7.5.1.2 Leverage

Leverage measures the potential impact of an individual case on the results, which is directly pro-
portional to how far an individual case is from the centroid in the space of the predictors. Leverage
is defined as the diagonal elements, hii, of the “Hat” matrix,H ,

H = X?(X?TX?)
−1
X?T

where X? = V 1/2X , and V = diag [p̂(1− p̂)]. As in OLS, leverage values are between 0 and 1,
and a leverage value, hii > {2 or 3}k/n is considered “large”; here, k = p + 1 is the number of
coefficients including the intercept and n is the number of cases. In OLS, however, the hat values
depend only on the Xs, whereas in logistic regression, they also depend on the dependent variable
values and the fitted probabilities (throughV ). As a result, an observation may be extremely unusual
on the predictors, yet not have a large hat value, if the fitted probability is near 0 or 1. The function
hatvalues() calculates these values for a fitted "glm" model object.

7.5.2 Influence diagnostics
{sec:logist-infldiag}

Influence measures assess the effect that deleting an observation has on the regression parameters,
fitted values, or the goodness-of-fit statistics. In OLS, these measures can be computed exactly from
a single regression. In logistic regression, the exact effect of deletion requires refitting the model
with each observation deleted in turn, a time-intensive computation. Consequently, Pregibon (1981)
showed how analogous deletion diagnostics may be approximated by performing one additional step
of the iterative procedure. Most modern implementations of these methods for generalized linear
models follow Williams (1987).

The simplest measure of influence of observation i is the standardized change in the coefficient
for each variable due to omitting that observation, termed DFBETAs. From the relation (Pregibon,
1981, p. 716)

b− b(−i) = (XTV X)−1xi(yi − p̂i)/(1− hii) ,

the estimated standardized change in the coefficient for variable j is

DFBETAij ≡
b(−i)j − bj
σ̂(bj)

, (7.9){eq:dfbeta}

where σ̂(bj) is the estimated standard error of bj . With k regressors, there are k + 1 sets of DF-
BETAs, which makes their examination burdensome. Graphical displays ease this burden, as do
various summary measures considered below.

The most widely used summary of the overall influence of observation i on the estimated re-
gression coefficients is Cook’s distance, which measures the average squared distance between b
for all the data and b(−i) estimated without observation i. It is defined as

Ci ≡ (b− b(−i))TXTV X (b− b(−i))/kσ̂2 .
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However, Pregibon (1981) showed that Ci could be calculated simply as

Ci =
r2i hii

k(1− hii)2
, (7.10){eq:cookd2}

where ri = yi− p̂i/
√
vii(1− hii) is the ith standardized Pearson residual and vii is the ith diagonal

element of V . Rules of thumb for noticeably “large” values of Cook’s D are only rough indicators,
and designed so that only “noteworthy” observations are nominated as unusually influential. One
common cutoff for an observation to be treated as influential is Ci > 1. Others refer the values of
Ci to a χ2

k or Fk,n−k distribution.
Another commonly used summary statistic of overall influence is the DFFITS statistic, a stan-

dardized measure of the difference between the predicted value ŷi using all the data and the predicted
value ŷ(−i) calculated omitting the ith observation.

DFFITSi =
ŷi − ŷ(−i)
σ̂(−i)

√
hii

,

where σ̂(−i) is the estimated standard error with the ith observation deleted. For computation,
DFFITS can be expressed in terms of the standardized Pearson residual and leverage as

DFFITSi = ri

√
hii

(1− hii)
vii
v(−ii)

. (7.11) {eq:dffits}

From Eqn. (7.10) and Eqn. (7.11) it can be shown that Cook’s distance is nearly the square of
DFFITS divided by k,

Ci =
v2(−ii)

v2ii

DFFITS2
i

k
. (7.12) {eq:cook-dffits}

Noteworthy values of DFFITS are often nominated by the rule-of-thumb DFFITSi > 2 or 3
√
k/n− k.

In R, these influence measures are calculated for a fitted "glm" model using cooks.distance()
and dffits(). A convenience function, influence.measures() gives a tabular display
showing the DFBETAij for each model variable, DFFITS, Cook’s distances and the diagonal el-
ements of the hat matrix. Cases which are influential with respect to any of these measures are
marked with an asterisk.18

Beyond printed output of these numerical summaries, plots of these measures can shed light on
potential problems due to influential or other noteworthy cases. By highlighting them, such plots
provide the opportunity to determine if and how any of these affect your conclusions, or to take
some corrective action.

A basic collection of diagnostic plots is provided by the plot() method for a "glm" model
object. The car package contains a variety of other functions for model diagnostic plots. We
illustrate some of these in the examples below. {ex:donner2}

EXAMPLE 7.13: Donner Party
This example re-visits the data on the Donner Party examined in Example 7.9. For illustrative

purposes, we consider the influence measures and diagnostic plots for one specific model, the model
donner.mod3, that included a quadratic effect of age and a main effect of sex, but no interaction.

The simplest overview of the adequacy of a fitted model is provided by the plot() method
for a "glm" (or "lm") object. This function can produce up to six different plots that can be plotted
individually or selected (using the argument which) and composed into a single overview figure
using par(mfrow=c(rows,cols)) as shown below.

18See help(influence.measures) for the description of all of these functions for residuals, leverage and influence
diagnostics in generalized linear models.
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It is useful to see the entire collection because, by default, only four are plotted (which=
c(1:3,5)) and this selection (sometimes called the regression quartet of diagnostic plots) is
tuned more to classical linear models for quantitative data. Important feature of these plots are that
(a) plot annotations are added to each showing trends or expected behaviour under the assumptions
of a fitted model; (b) noteworthy observations are labeled individually.

> caption = list("(1) Residuals vs Fitted",
+ "(2) Normal Q-Q",
+ "(3) Scale-Location",
+ "(4) Cook's distance",
+ "(5) Residuals vs Leverage",
+ expression("(6) Cook's dist vs Leverage "
+ * h[ii] / (1 - h[ii])))
> op <- par(mfrow=c(3,2), mar=c(4,4,2,1)+.1, cex.lab=1.2, cex=1)
> plot(donner.mod3, which=1:6, caption=caption)
> par(op)

The six plots, corresponding to the values of which, shown in Figure 7.24 for the donner.mod3
model are:

1. a plot of residuals against fitted values. In a classical linear model, this plot should appear
unstructured (random around the zero line), but for logistic regression there will always be two
sequences of points, corresponding to the 0/1 observations.

2. a normal Q-Q plot of ordered residuals vs. the corresponding quantiles of the gaussian distribu-
tion. In a classical linear model, all points should follow the dotted reference line, but this will
rarely hold for logistic regression models.

3. a Scale-Location plot of
√
|residuals| against fitted values, with a loess smoothed curve showing

the trend for variance of the residual to change with the predicted value. This is useful to detect
non-constant residual variance in classical models, but in logistic regression, you will almost
always see a U-shaped pattern corresponding to the fact that the variance around the fitted value
is a function of

√
p̂i(1− p̂i).

4. an index plot of Cook’s distances versus observation numbers, with the largest id.n values
labeled.

5. a plot of residuals against leverages, showing contours of Cook’s distances. Among all of
these plots, this is probably the most useful for assessment of influence in both classical and
generalized linear models. The function influencePlot() in car provides a better version
of this plot, using the size of a bubble symbol to also show Cook’s distance directly.

6. a plot of Cook’s distances against leverage/(1-leverage). In this plot contours of standardized
residuals that are equal in magnitude are lines through the origin, and labeled with their absolute
values. Consequently, more influential observations appear toward the top.

In all these plots, three observations are labeled as noteworthy, by one criterion or another with a
default number given by id.n=3. Plotting just the residual-leverage graph (which=5) with some
additional annotations to show the conventional cutoff values gives Figure 7.25.

> op <- par(mar=c(5,4,4,2)+.1)
> plot(donner.mod3, which=5, cex.id=1, cook.levels=c(0.25, 0.5), id.n=3)
> abline(h=c(-2, 2), col="gray")
> k <- length(coef(donner.mod3))
> n <- nrow(Donner)
> abline(v=c(2, 3)*k/n, col="gray")
> text(x=c(2, 3)*k/n, y=-2.3, c("2k/n", "3k/n"))
> par(op)

Details of all the diagnostic measures for a given model including the DFBETAs for individual
coefficients can be obtained using influence.measures. This can be useful for custom plots
not provided elsewhere (see Example 7.14).
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Figure 7.24: Diagnostic plots for a glm object, using the fitted model donner.mod3 for the
Donner Party data. Each plot shows some additional annotations or smoothed curves and labels
observations considered noteworthy in terms of influence.{fig:donner2-plot}
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Figure 7.25: Residual vs. Leverage plot for the Donner data model. Horizontal and vertical refer-
ence lines show typical cutoff values for noteworthy residuals and leverage.{fig:donner2-plot5}

> infl <- influence.measures(donner.mod3)
> names(infl)

[1] "infmat" "is.inf" "call"

The summary() method for the "infl" object prints those observations considered noteworthy
on one or more of these statistics, as indicated by a "*" next to the value.

> summary(infl)

Potentially influential observations of
glm(formula = survived ~ poly(age, 2) + sex, family = binomial, data = Donner) :

dfb.1_ dfb.p(,2)1 dfb.p(,2)2 dfb.sxMl dffit cov.r cook.d hat
Breen, Patrick 0.08 0.65 0.56 0.23 0.69_* 0.93 0.32 0.09
Donner, Elizabeth -0.26 -0.34 -0.22 0.12 -0.40 1.15_* 0.03 0.14_*
Graves, Elizabeth C. -0.24 -0.37 -0.26 0.10 -0.42 1.20_* 0.03 0.16_*

The function influencePlot() in the car package gives a similar plot, but uses the size
(area) of the plotting symbol to also show the value of Cook’s D as shown in Figure 7.26. Like
other diagnostic plots in car, it is considerably more general than illustrated here, because it allows
for different id.methods to label noteworthy points, including id.method="identify" for
interactive point identification by clicking with the mouse. The id.n argument works differently
than with plot(), because it selects the most extreme id.n observations on each of the studen-
tized residual, hat value and Cook’s D, and labels all of these.

> op <- par(mar=c(5,4,1,1)+.1, cex.lab=1.2)
> library(car)
> res <- influencePlot(donner.mod3, id.col="blue", scale=8, id.n=2)
> text(x=c(2, 3)*k/n, y=-1.8, c("2k/n", "3k/n"), cex=1.2)

Conveniently, influencePlot() returns a data frame containing the influence statistics for
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Figure 7.26: Influence plot (residual vs. leverage) for the Donner data model, showing Cook’s D
as the size of the bubble symbol. Horizontal and vertical reference lines show typical cutoff values
for noteworthy residuals and leverage.{fig:donner2-inflplot}

the points identified in the plot (res in the call above). We can combine this with the data values
to help learn why these points are considered influential.

> # show data together with diagnostics for influential cases
> idx <- which(rownames(Donner) %in% rownames(res))
> cbind(Donner[idx,2:4], res)

age sex survived StudRes Hat CookD
Breen, Patrick 51 Male yes 2.501 0.09148 0.5688
Donner, Elizabeth 45 Female no -1.114 0.13541 0.1846
Graves, Elizabeth C. 47 Female no -1.019 0.16322 0.1849
Reed, James 46 Male yes 2.098 0.08162 0.3790

We can see that Patrick Breen and James Reed19 are unusual because they were both older men
who survived, and have large positive residuals; Breen is the most influential by Cook’s D, but this
value is not excessively large. The two women were among the older women who died. They are
selected here because they have the largest hat values, meaning they are unusual in terms of the
distribution of age and sex, but they are not particularly influential in terms of Cook’s D.

A related graphical display is the collection of index plots provided by influenceIndexPlot()
in car, which plots various influence diagnostics against the observation numbers in the data. The
id.n argument here works to label that number of the most extreme observations individually for
each measure plotted. The following call produces Figure 7.27.

> influenceIndexPlot(donner.mod3, vars=c("Cook", "Studentized", "hat"),
+ id.n=4)

In our opinion, separate index plots are often less useful than combined plots such as the

19Breen and Reed, both born in Ireland, were the leaders of their family groups. Among others, both kept detailed diaries
of their experiences, from which most of the historical record derives. Reed was also the leader of two relief parties sent out
to find rescue or supplies over the high Sierra mountains, so it is all the more remarkable that he survived.
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Figure 7.27: Index plots of influence measures for the Donner data model. The four most extreme
observations on each measure are labeled. {fig:donner2-indexinfl}

leverage-influence plot that shows residuals, leverage and Cook’s D together. However, the car
version in Figure 7.27 does that too, and allows us to consider how unusual the labeled observations
are both individually and in combination.

4
{ex:icu2}

EXAMPLE 7.14: Death in the ICU
In Example 7.11 we examined several models to account for death in the ICU data set. We

continue this analysis here, with a focus on the simple main effects model, icu.glm2, for which
the fitted logits were shown in Figure ??. For ease of reference, we restate that model here:

> icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
+ data=ICU , family=binomial)

The plot of residual vs. leverage for this model is shown in Figure 7.28.

> library(car)
> res <- influencePlot(icu.glm2, id.col="red", scale=8, id.cex=1.5, id.n=3)

Details for the cases identified in the figure are shown below, again using rownames(res) to
select the relevant observations from the ICU data.

> idx <- which(rownames(ICU) %in% rownames(res))
> cbind(ICU[idx,c("died", "age", "cancer", "admit", "uncons")], res)

died age cancer admit uncons StudRes Hat CookD
84 No 59 - Emerg Uncons -2.258 0.06781 0.3626
371 No 46 Cancer Emerg - -1.277 0.16408 0.2210
766 No 31 Cancer Emerg - -1.028 0.17062 0.1719
881 No 89 - Emerg Uncons -2.718 0.03081 0.4106



7.5: Influence and diagnostic plots 307

0.00 0.05 0.10 0.15 0.20 0.25 0.30

−
2

−
1

0
1

2

Hat−Values

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

84

371
766

881

127

208

380

Figure 7.28: Influence plot for the main effects model for the ICU data{fig:icu2-inflplot}

127 Yes 19 - Emerg - 2.565 0.01679 0.2724
208 Yes 70 - - Uncons 1.662 0.29537 0.4568
380 Yes 20 - Emerg - 2.548 0.01672 0.2668

None of the cases are particularly influential on the model coefficients overall: the largest Cook’s
D is only 0.45 for case 208. This observation also has the largest hat value. It is unusual on
the predictors in this sample: a 70 year old man without cancer, admitted on an elective basis,
who nonetheless died. However, this case is also highly unusual in having been unconscious on
admission for an elective procedure, and signals that there might have been a coding error or other
anomaly for this observation.

Another noteworthy observation identified here is case 881, an 89 year old male, admitted un-
conscious as an emergency; this case is poorly predicted because he survived. Similarly, two other
cases (127, 380) with large studentized residuals are poorly predicted because they died, although
they were young, did not have cancer, and conscious at admission. However, these cases have rel-
atively small Cook’s D values. From this evidence we might conclude that, case 208 bears further
scrutiny, but none of these cases greatly affects the model, its coefficients, or interpretation.

For comparison with Figure 7.28, the related index plot of these measures is shown in Fig-
ure 7.29.

> influenceIndexPlot(icu.glm2, vars=c("Cook", "Studentized", "hat"), id.n=4)

Cook’s D and DFFITS are overall measures of the total influence that cases have on the re-
gression coefficients and fitted values respectively. It might be that some cases have a large impact
on some individual regression coefficients, but don’t appear particularly unusual in these aggregate
measures.

One way to study this is to make plots of the DFBETAij statistics. Such plots are not available
(as far as we know) in R packages, but it is not hard to construct them from the result returned
by influence.measures(). To do this, we select the appropriate columns from the infmat
component returned by that function.
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Figure 7.29: Index plots of influence measures for the ICU data model. The four most extreme
observations on each measure are labeled. {fig:icu2-infl-index}

> infl <- influence.measures(icu.glm2)
> dfbetas <- data.frame(infl$infmat[,2:5])
> colnames(dfbetas) <- c("dfb.age", "dfb.cancer", "dfb.admit", "dfb.uncons")
> head(dfbetas)

dfb.age dfb.cancer dfb.admit dfb.uncons
8 0.047340 0.013418 0.004067 0.009254
12 0.018988 0.018412 -0.004174 0.018106
14 -0.001051 0.014882 0.026278 0.005555
28 0.031562 0.018424 -0.001511 0.016640
32 -0.164084 0.003788 -0.036505 0.023488
38 -0.021525 0.016539 -0.011937 0.020803

To illustrate this idea, plotting an individual column of dfbetas using type = "h" gives
an index plot against the observation number. This is shown in Figure 7.30 for the impact on the
coefficient for age. The lines and points are colored blue or red according to whether the patient
lived or died. Observations for which the |DFBETAage| > 0.2 (an arbitrary value) are labeled.

> cols=ifelse (ICU$died=="Yes", "red", "blue")
> op <- par(mar=c(5,5,1,1)+.1)
> plot(dfbetas[,1], type = "h", col=cols,
+ xlab="Observation index",
+ ylab=expression(Delta * beta[Age]),
+ cex.lab=1.3)
> points(dfbetas[,1], col=cols)
> # label some points
> big <- abs(dfbetas[,1]) > .25
> idx <- 1:nrow(dfbetas)
> text(idx[big], dfbetas[big,1], label=rownames(dfbetas)[big],
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+ cex=0.9, pos=ifelse(dfbetas[big,1]>0, 3, 1),
+ xpd=TRUE)
> abline(h=c(-.25, 0, .25), col="gray")
> par(op)
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Figure 7.30: Index plot for DFBETA (Age) in the ICU data model. The observations are colored
blue or red according to whether the patient lived or died. {fig:icu2-dbage}

None of the labeled points here are a cause for concern, since the standardized DFBETAs are all
relatively small. However, the plot shows that patients who died have generally larger impacts on
this coefficient.

An alternative to individual index plots is a scatterplot matrix, that shows the pairwise changes
in the regression coefficients for the various predictors. Here we use scatterplotMatrix()
from car that offers features for additional plot annotations, including identifying the most unusual
points in each pairwise plot. In each off-diagonal panel, a 95% data ellipse and linear regression line
helps to show the marginal relationship between the two measures and highlight why the labeled
points are atypical in each plot.20

> scatterplotMatrix(dfbetas, smooth=FALSE, id.n=2,
+ ellipse=TRUE, levels=0.95, robust=FALSE,
+ diagonal="histogram",
+ groups=ICU$died, col=c("blue", "red"))

4

7.5.3 Other diagnostic plots?
{sec:logist-partial}

The graphical methods described in this section are relatively straight-forward indicators of the ade-
quacy of a particular model, with a specified set of predictors, each expressed in a given way. More
sophisticated methods have also been proposed, which focus on the need to include a particular
predictor and whether its relationship is linear. These include the component-plus-residual plot,

20This plot uses the id.method="mahal"method to label the most extreme observations according to the Mahalanobis
distance of each point from the centroid in the plot.
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Figure 7.31: Scatterplot matrix for DFBETAs from the model for the ICU data. Those who lived
or died are shown with blue circles and red triangles, respectively. The diagonal panels show his-
tograms of each variable. {fig:icu2-dbscatmat}

the added-variable plot, and the constructed variable plot, which are all analogous to techniques
developed in OLS.

7.5.3.1 Component-plus-residual plots
{sec:component-plus-residual}

The component-plus-residual plot (also called a partial residual plot) proposed originally by Larsen
and McCleary (1972) is designed to show whether a given quantitative predictor, xj , included lin-
early in the model, actually shows a nonlinear relation, requiring transformation. The essential idea
is to move the linear term for xj back into the residual, by calculating the partial residuals,

r?j = r + βjxj

Then, a plot of r?j against xj will have the same slope, βj , as the full model including it among
other predictors. However, any non-linear trend will be shown in the pattern of the points, usually
aided by a smoothed non-parametric curve.

As adapted to logistic regression by Landwehr et al. (1984), the partial residual for variable xj
is defined as

r?j = V −1r + βjxj
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The partial residual plot is then a plot of r?j against xj , possibly with the addition of a smoothed
lowess curve (Fowlkes, 1987) and a linear regression line to aid interpretation. The linear regression
of the partial residuals on xj has the same slope, βj , as in the full model.

If xj affects the binary response linearly, the plot should be approximately linear with a slope
approximately equal to βj . A nonlinear plot suggests that xj needs to be transformed, and the shape
of the relation gives a rough guide to the required transformation. For example, a parabolic shape
would suggest a term in x2

j . These plots complement the conditional data plots described earlier
(Section 7.3.1), and are most useful when there several quantitative predictors, so that it is more
convenient and sensible to examine their relationships individually.

The car package implements these plots in the crPlots() and crPlot() functions. They
also work for models with factor predictors (using parallel boxplots for the factor levels) but not for
those with interaction terms. {ex:donner3}

EXAMPLE 7.15: Donner Party
In Example 7.13, we fit several models for the Donner Party data, and we recall two here to

illustrate component-plus-residual plots. Both assert additive effects of age and sex, but the model
donner.mod3 allows a quadratic effect of age.

> donner.mod1 <- glm(survived ~ age + sex, data=Donner, family=binomial)
> donner.mod3 <- glm(survived ~ poly(age,2) + sex, data=Donner, family=binomial)

Had we not made exploratory plots earlier (Example 7.13), and naively fit only the linear model
in age, donner.mod1, we could use crPlots() to check for a non-linear relationship of sur-
vival with age as follows, giving Figure 7.32.

> crPlots(donner.mod1, ~age, id.n=2)
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Figure 7.32: Component-plus-residual plot for the simple additive linear model, donner.mod1.
The dashed red line shows the slope of age in the full model; the smoothed green curve shows a
loess fit with span = 0.5. {fig:donner-cr1}

The smoothed loess curve in this plot closely resembles the trend we saw in the conditional plot
for age by sex (Figure 7.16), suggesting the need to include a non-linear term for age. The points
identified in this plot, by default, are those with either the most extreme x values (giving them high
leverage) or the largest absolute Pearson residuals in the full model. The four structured bands of
points in the plot correspond to the combinations of sex and survival.
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For comparison, you can see the result of allowing for a non-linear relationship in age in a
partial residual plot for the model donner.mod.3 that includes the effect poly(age, 2) for
age. Note that the syntax of the crPlots() function requires that you specify a term in the model,
rather than just a predictor variable.

> crPlots(donner.mod3, ~poly(age,2), id.n=2)
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Figure 7.33: Component-plus-residual plot for the non-linear additive model, donner.mod3{fig:donner-cr2}

Except possibly at the extreme right, this plot (Figure 7.33) shows no indication of a non-linear
relationship.

4

7.5.3.2 Added-variable plots

Added-variable plots (Cook and Weisberg, 1999, Wang, 1985) (also called partial-regression plots)
are another important tool for diagnosing problems in logistic regression and other linear or gen-
eralized linear models. These are essentially plots, for each xi, of an adjusted response, y?i =
y | othersi, against an adjusted predictor, x?i = xi | othersi, where othersi = X /∈ xi ≡ X(−i)

indicates all other predictors excluding xi. As such, they show the conditional relationship between
the response and the predictor xi, controlling for, or adjusting for, all other predictors. Here, y?i and
x?i represent respectively the residuals from the regressions of y and xi on all the other xs excluding
xi.

It might seem from this description that each added-variable plot requires two additional aux-
iliary logistic regressions to calculate the residuals y?i and x?i . However, Wang (1985) showed
that the added-variable plot may be constructed by following the logistic regression for the model
y ∼X(−i) with one weighted least squares regression of xi onX(−i) to find the residual part, x?i ,
of x not predicted by the other regressors.

Let r be the vector of Pearson residuals from the initial logistic fit of y on the variables inX(−i),
and let H and V = diag [p̂(1 − p̂)] be the hat matrix and V matrix from this analysis. Then, the
added-variable plot is a scatterplot of the residuals r against the xi-residuals,

x?i = (I −H)V 1/2x .

There are several important uses of added-variable plots:
First, marginal plots of the response variable y against the predictor variables xi can conceal
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or misrepresent the relationships in a model including several predictors together due to correla-
tions or associations among the predictors. This problem is compounded by the fact that graphical
methods for discrete responses (boxplots, mosaic plots) cannot easily show influential observa-
tions or non-linear relationships. Added-variable plots solve this problem by plotting the residuals,
y?i = y | othersi, which are less discrete than the marginal responses in y.

Second, the numerical measures and graphical methods for detecting influential observations
described earlier in this section are based on the idea of single-case deletion, comparing coefficients
or fitted values for the full data, with those that result from deleting each case in turn. Yet, it is
well-known (Lawrance, 1995), that sets of two (or more) observations can have joint influence,
that greatly exceeds their individual influential. Similarly, the influence of one discrepant point can
be offset by another influential point in an opposite direction, a phenomenon called masking. The
main cases of joint influence are illustrated in Figure 7.34. Added-variable plots, showing the partial
regression for one predictor controlling all others can make such cases visually apparent.
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Figure 7.34: Jointly influential points in regression models. In each panel, the thick black line
shows the regression of y on x using all the data points. The solid purple line shows the regression
deleting both the red and blue points and the broken and dotted lines show the regression retaining
only the point in its color in addition to the constant gray points. (a) Two points whose joint influence
enhance each other; (b) two points where the influence of one is masked by that of the other; (c)
two points whose combined influence greatly exceeds the effect of either one individually. {fig:joint}

Finally, given a tentative model using predictors x, the added-variable plot for another regressor,
z can provide a useful visual assessment of its additional contribution. An overall test could be based
on the difference inG2 for the enlarged model logit(p) = Xβ+γz, compared to the reduced model
logit(p) = Xβ. But the added-variable plot shows whether the evidence for including z is spread
throughout the sample or confined to a small subset of observations. The regressor z may be a new
explanatory variable, or a higher-order term for variable(s) already in the model.

The car package implements these plots with the function avPlot() for a single term and
avPlots() for all terms in a linear or generalized linear model, as shown in the example(s) be-
low. See http://www.datavis.ca/gallery/animation/duncanAV/ for an animated
graphic showing the transition between a marginal plot of the relationship of y to x and the added-
variable plot of y? to x? for the case of multiple linear regression with a quantitative response. {ex:donner4}

EXAMPLE 7.16: Donner Party
The simple additive model donner.mod1 for the Donner Party data can be used to illustrate

some features of added-variable plots. In the call to avPlots() below, we use color the plotting
symbol to distinguish those who survived vs. died, shape to distinguish men from women.

> col <- ifelse(Donner$survived=="yes", "blue", "red")
> pch <- ifelse(Donner$sex=="Male", 16, 17)
> avPlots(donner.mod1, id.n=2, col=col, pch=pch, col.lines="darkgreen")
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Figure 7.35: Added-variable plots for age (left) and sex (right) in the Donner Party main effects
model. Those who survived are shown in blue; those who died in red. Men are plotted with filled
circles; women with filled triangles. {fig:donner4-avp}

These plots have the following properties:

1. The slope in the simple regression of y?i on x?i is the same as the partial coefficient βi in the
full multiple regression model including both predictors here (or all predictors in general).

2. The residuals from this regression line are the same as the residuals in the full model.

3. Because the response, survived, is binary, the vertical axis y?age in the left panel for age is
the part of the logit for survival that cannot be predicted from sex. Similarly, the vertical axis
in the right panel is the part of survival that cannot be predicted from age. This property allows
the clusters of points corresponding to discrete variables to be seen more readily, particularly if
they are distinguished by visual attributes such as color and shape, as in Figure 7.35.

4
{ex:icu3}

EXAMPLE 7.17: Death in the ICU
We illustrate some of the uses of added-variable plots using the main effects model, icu.glm2,

predicting death in the ICU from the variables age, cancer, admit and uncons.
To see why marginal plots of the discrete response against each predictor are often unrevealing

for the purpose of model assessment, consider the collection of plots in Figure 7.36 showing the
default plots (spineplots) for the factor response, died against each predictor. These show the
marginal distribution of each predictor by the widths of the bars, and highlight the proportion who
died by color. Such plots are useful for some purposes, but not for assessing the adequacy of the
fitted model.

> op <- par(mfrow=c(2,2), mar=c(4,4,1,2.5)+.1, cex.lab=1.4)
> plot(died ~ age, data=ICU, col=c("lightblue", "red"))
> plot(died ~ cancer, data=ICU, col=c("lightblue", "red"))
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> plot(died ~ admit, data=ICU, col=c("lightblue", "red"))
> plot(died ~ uncons, data=ICU, col=c("lightblue", "red"))
> par(op)
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Figure 7.36: Marginal plots of the response died against each of the predictors in the model
icu.glm2 for the ICU data {fig:icu3-marginal}

The added-variable plot for this model is shown in Figure 7.37. In each plot, the solid red line
shows the partial slope, βj for the focal predictor, controlling for all others.

> pch <- ifelse(ICU$died=="No", 1, 2)
> avPlots(icu.glm2, id.n=2, pch=pch, cex.lab=1.3)

The labeled points in each panel use the default id.method for avPlots(), selecting those
with either large absolute model residuals or extreme x?i residuals, given all other predictors. Cases
127 and 881, identified earlier as influential stand out in all these plots.

Next, we illustrate the use of added-variable plots for checking the effect of influential observa-
tions on the decision to include an additional predictor in some given model. In the analysis of the
ICU data using model selection methods, the variable systolic (systolic blood pressure at ad-
mission) was nominated by several different procedures. Here we take a closer look at the evidence
for inclusion of this variable in a predictive model. We fit a new model adding systolic to the
others and test the improvement with a likelihood ratio test:

> icu.glm2a <- glm(died ~ age + cancer + admit + uncons + systolic,
+ data=ICU, family=binomial)
> anova(icu.glm2, icu.glm2a, test="Chisq")

Analysis of Deviance Table

Model 1: died ~ age + cancer + admit + uncons
Model 2: died ~ age + cancer + admit + uncons + systolic
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 195 139
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Added−Variable Plots

Figure 7.37: Added-variable plots for the predictors in the model for the ICU data. Those who died
and survived are shown by triangles (4) and circles (©) respectively. {fig:icu3-avp1}

2 194 136 1 3.52 0.061 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, the addition of systolic blood pressure is nearly significant at the conventional α = 0.05
level. The added-variable plot for this variable in Figure 7.38 shows the strength of evidence for its
contribution, above and beyond the other variables in the model, as well as the partial leverage and
influence of individual points.

> avPlot(icu.glm2a, "systolic", id.n=3, pch=pch)

In this plot, cases 331 and 921 have high partial leverage, but they are not influential. Case
84, however, has high leverage and a large residual, so is possibly influential on the evidence for
inclusion of systolic in the model. Note also that the partial regression line in this plot nicely
separates nearly all the patients who died from those who survived.

4

7.6 Chapter summary
{sec:ch07-summary}

• Model-based methods for categorical data provide confidence intervals for parameters and pre-
dicted values for observed and unobserved values of the explanatory variables. Graphical dis-
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Figure 7.38: added-variable plot for the effect of adding systolic blood pressure to the main effects
model for the ICU data.{fig:icu3-avp2}

plays of predicted values help us to interpret the fitted relations by smoothing a discrete re-
sponse.

• The logistic regression model (Section 7.2) describes the relationship between a categorical
response variable, usually dichotomous, and a set of one or more quantitative or discrete ex-
planatory variables (Section 7.3) It is conceptually convenient to specify this model as a linear
model predicting the log odds (or logit) of the probability of a success from the explanatory
variables.

• The relationship between a discrete response and a quantitative predictor may be explored
graphically by plotting the binary observations against the predictor with some smoothed curve(s),
either parametric or non-parametric, possibly stratified by other predictors.

• For both quantitative and discrete predictors, the results of a logistic regression are most easily
interpreted from full-model plots of the fitted values against the predictors, either on the scale of
predicted probabilities or log odds (Section 7.3.2). In these plots, confidence intervals provide
a visual indication of the precision of the predicted results.

• When there are multiple predictors and/or higher-order interaction terms, effect plots (Sec-
tion 7.3.3) provide an important method for constructing simplified displays, focusing on the
higher-order terms in a given model.

• Influence diagnostics (Section 7.5) assess the impact of individual cases or groups on the fitted
model, predicted values, and the coefficients of individual predictors. Among other displays,
plots of residuals against leverage showing Cook’s D are often most useful.

• Other diagnostic plots (Section 7.5.3) include component-plus-residual plots, that are useful
for detecting non-linear relationships for a quantitative predictor, and added-variable plots, that
show the partial relations of the response to a given predictor, controlling or adjusting for all
other predictors.
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• Polytomous responses may be handled in several ways as extensions of binary logistic regres-
sion (Section ??): (a) The proportional odds model (Section 8.1) is simple and convenient, but
its validity depends on an assumption of equal slopes for adjacent-category logits. (b) Nested
dichotomies (Section 8.2) among the response categories give a set of models which may be re-
garded as a single, combined model for the polytomous response. (c) Generalized logit models
(Section 8.3) may be used to construct models comparing any pair of categories.

7.7 Lab exercises
{sec:ch07-exercises}

{lab:7.1}

Exercise 7.1 Arbuthnot’s data on the sex ratio of births in London was examined in Example 3.1.
Use a binomial logistic regression model to assess whether the proportion of male births varied with
the variables Year, Plague and Mortality in the Arbuthnot data set. Produce effect plots
for the terms in this model. What do you conclude?

{lab:7.2}

Exercise 7.2 For the Donner Party data in Donner, examine Grayson’s 1990 claim that survival
in the Donner Party was also mediated by the size of the family unit. This takes some care, because
the family variable in the Donner data is a simplified grouping based on the person’s name and
known alliances among families from the historical record. Use the following code to compute a
family.size variable from each individual’s last name:

> data("Donner", package="vcdExtra")
> Donner$survived <- factor(Donner$survived, labels=c("no", "yes"))
> # use last name for family
> lame <- strsplit(rownames(Donner), ",")
> lame <- sapply(lame, function(x) x[[1]])
> Donner$family.size <- as.vector(table(lname)[lname])

(a) Choose one of the models (donner.mod4, donner.mod6) from Example 7.9 that include
the interaction of age and sex and non-linear terms in age. Fit a new model that adds a main
effect of family.size. What do you conclude about Grayson’s claim?

(b) Produce an effect plot for this model.
(c) Continue, by examining whether the effect of family size can be taken as linear, or whether a

non-linear term should be added.
{lab:7.3}

Exercise 7.3 Use component+residual plots (Section 7.5.3) to examine the additive model for the
ICU data given by

> icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
+ data=ICU, family=binomial)

(a) What do you conclude about the linearity of the (partial) relationship between age and death
in this model?

(b) An alternative strategy is to allow some non-linear relation for age in the model using a
quadratic (or cubic) term like poly(age, 2) (or poly(age, 3)) in the model formula.
Do these models provide evidence for a non-linear effect of age on death in the ICU?

{lab:7.4}

Exercise 7.4 Explore the use of other marginal and conditional plots to display the relationships
among the variables predicting death in the ICU in the model icu.glm2. For example, you might
begin with a marginal gpairs() plot showing all bivariate marginal relations, something like this:
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> library(gpairs)
> gpairs(ICU[,c("died", "age", "cancer", "admit", "uncons")],
+ diag.pars=list(fontsize=16, hist.color="lightgray"),
+ mosaic.pars=list(gp=shading_Friendly,
+ gp_args=list(interpolate=1:4)))

{lab:7.5}{lab:caesar-logist}

Exercise 7.5 The data set Caesar in vcdExtra gives a 3 × 23 frequency table classifying 251
women who gave birth by Caesarian section by Infection (three levels: none, Type 1, Type2)
and Risk, whether Antibioticswere used and whether the Caesarian section was Planned or
not. Infection is a natural response variable. In this exercise, consider only the binary outcome
of infection vs. no infection.

> data("Caesar", package="vcdExtra")
> Caesar.df <- as.data.frame(Caesar)
> Caesar.df$Infect <- as.numeric(Caesar.df$Infection %in% c("Type 1", "Type 2"))

(a) Fit the main-effects logit model for the binary response Infect. Note that with the data in the
form of a frequency data frame you will need to use weights=Freq in the call to glm().
(It might also be convenient to reorder the levels of the factors so that "No" is the baseline
level for each.)

(b) Use summary() or car::Anova() to test the terms in this model.
(c) Interpret the coefficients in the fitted model in terms of their effect on the odds of infection.
(d) Make one or more effects plots for this model, showing separate terms, or their combinations.

{lab:7.6}

Exercise 7.6 The data set birthwt in the MASS package gives data on 189 babies born at
Baystate Medical Center, Springfield, MA during 1986. The quantitative response is bwt (birth
weight in grams), and this is also recorded as low, a binary variable corresponding to bwt <
2500 (2.5 Kg). The goal is to study how this varies with the available predictor variables. The
variables are all recorded as numeric, so in R it may be helpful to convert some of these into factors
and possibly collapse some low frequency categories. The code below is just an example of how
you might do this for some variables.

> data("birthwt", package="MASS")
> birthwt <- within(birthwt, {
+ race <- factor(race, labels = c("white", "black", "other"))
+ ptd <- factor(ptl > 0) # premature labors
+ ftv <- factor(ftv) # physician visits
+ levels(ftv)[-(1:2)] <- "2+"
+ smoke <- factor(smoke>0)
+ ht <- factor(ht>0)
+ ui <- factor(ui>0)
+ })

(a) Make some exploratory plots showing how low birth weight varies with each of the available
predictors. In some cases, it will probably be helpful to add some sort of smoothed summary
curves or lines.

(b) Fit several logistic regression models predicting low birth weight from these predictors, with
the goal of explaining this phenomenon adequately, yet simply.

(c) Use some graphical displays to convey your findings.
{lab:7.7}

Exercise 7.7 Refer to Exercise 5.8 for a description of the Accident data. The interest here is to
model the probability that an accident resulted in death rather than injury from the predictors age,
mode and gender. With glm(), and the data in the form of a frequency table, you can use the
argument weight=Freq to take cell frequency into account.
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(a) Fit the main effects model, result=="Died" ~ age + mode + gender. Use car::Anova()
to assess the model terms.

(b) Fit the model that allows all two-way interactions. Use anova() to test whether this model
is significantly better than the main effects model.

(c) Fit the model that also allows the three-way interaction of all factors. Does this offer any
improvement over the two-way model?

(d) Interpret the results of the analysis using effect plots for the two-way model, separately for
each of the model terms. Describe verbally the nature of the age*gender effect. Which
mode of transportation leads to greatest risk of death?
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8
Polytomous
Responses

8.1 Ordinal
response

8.2 Nested
dichotomies

8.3
Generalized
logit model

This chapter generalizes logistic regression models for a binary response to handle
a multi-category (polytomous) response. Different models are available depending on
whether the response categories are nominal or ordinal. Visualization methods for such
models are mostly straight-forward extensions of those used for binary responses.

Polytomous response data arise when the outcome variable, Y , takes on m > 2 discrete values.
For example, (a) patients may record that their improvement after treatment is “none,” “some” or
“marked;” (b) high school students may choose a general, vocational or academic program; (c)
women’s labor force participation may be recorded in a survey as not working outside the home,
working part-time, or working full-time; (d) Canadian voters may express a preference for the
Conservative, Liberal, NDP, Green party. These response categories may be considered ordered, as
in case (a), or simply nominal, as in case (d), and sometimes the response can arguably be treated
in either way, as in cases (b) and (c).

In this situation, there are several different ways to model the response probabilities. Let
πij ≡ πj (xi) be the probability of response j for case or group i, given the predictors xi. Be-
cause

∑
j πij = 1, only m − 1 of these probabilities are independent. The essential idea here is

to construct a model for the polytomous (or multinomial) response composed of m − 1 logit com-
parisons among the response categories in a similar way to how factors are treated in the predictor
variables.

The simplest approach uses the proportional odds model, described in Section 8.1. This model
applies only when the response is ordinal (as in improvement after therapy) and an additional as-
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sumption (the proportional odds assumption) holds. This model can be fit using polr() in the
MASS package, lrm() in the rms package, and vglm() in VGAM.

However, if the response is purely nominal (e.g., vote Conservative, Liberal, NDP, Green), or if
the proportional odds assumption is untenable, another particularly simple strategy is to fit separate
models to a set of m − 1 nested dichotomies derived from the polytomous response (described in
Section 8.2). This method allows you to resolve the differences among the m response categories
into independent statistical questions (similar to orthogonal contrasts in ANOVA). For example, for
women’s labor force participation, it might be substantively interesting to contrast not working vs.
(part-time and full-time) and then part-time vs. full-time for women who are working. You fit such
nested dichotomies by running the m− 1 binary logit models and combining the statistical results.

The most general approach is the generalized logit model, also called the multinomial logit
model, described in Section 8.3. This model fits simultaneously the m − 1 simple logit models
against a baseline or reference category, for example, the last category, m. With a 3-category
response, there are two generalized logits, Li1 = log(πi1/πi3) and Li2 = log(πi2/πi3), contrasting
response categories 1 and 2 against category 3. In this approach, it doesn’t matter which response
category is chosen as the baseline, because all pairwise comparisons can be recovered from whatever
is estimated. This model is conveniently fitted using multinom() in nnet.

8.1 Ordinal Response: Proportional Odds Model
{sec:ordinal}

For an ordered response Y , with categories j = 1, 2, . . .m, the ordinal nature of the response can
be taken into account by forming logits based on the m − 1 adjacent category cutpoints between
successive categories. That is, if the cumulative probabilities are

Pr(Y ≤ j |x) = π1(x) + π2(x) + · · ·πj(x) ,

then the cumulative logit for category j is defined as

Lj ≡ logit[Pr(Y ≤ j |x)] = log
Pr(Y ≤ j |x)

Pr(Y > j |x)
= log

Pr(Y ≤ j |x)

1− Pr(Y ≤ j |x)
(8.1){eq:cumlogit}

for j = 1, 2, . . .m− 1.
In our running example of responses to arthritis treatment, the actual response variable is Improved,

with ordered levels "None" < "Some" < "Marked". In this case, the cumulative logits would
be defined as

L1 = log
π1(x)

π2(x) + π3(x)
= logit ( None vs. [Some or Marked] )

L2 = log
π1(x) + π2(x)

π3(x)
= logit ( [None or Some] vs. Marked) ,

where x represents the predictors (sex, treatment and age).
The proportional odds model (PO) (McCullagh, 1980) proposes a simple and parsimonious

account of these effects, where the predictors in (x) are constrained to have the same slopes for all
cumulative logits,

Lj = αj + xTβ j = 1, . . . ,m− 1 . (8.2){eq:propodds}

That is, the effect of the predictor xi is the same, βi, for all cumulative logits. The cumulative logits
differ only in their intercepts. In this formulation, the {αj} increase with j, because Pr(Y ≤ j |x)
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Figure 8.1: Proportional odds model for an ordinal response. The model assumes equal slopes for
the cumulative response logits. Left: logit scale; right: probability scale.{fig:podds}

increases with j for fixed x.1 Figure 8.1 portrays the PO model for a single quantitative predictor x
with m = 4 response categories.

The name “proportional odds” stems from the fact that under Eqn. (8.2), for fixed x, the cumu-
lative log odds (logits) for categories j and j′ are constant, (αj − αj′), so the odds, exp(αj − αj′)
have a constant ratio, or are proportional. Similarly, the ratio of the cumulative odds of making a
response Y ≤ j at values of the predictors x = x1 are exp((x1 − x2)Tβ) times the odds of this
response at x = x2, so the log cumulative odds ratio is proportional to the difference between x1

and x2.

8.1.1 Latent variable interpretation
For a binary response, an alternative motivation for logistic regression regards the relation of the
observed Y as arising from a continuous, unobserved, (latent) response variable, ξ representing the
propensity for a “success” (1) rather than “failure” (0). The latent response is assumed to be linearly
related to the predictors x according to

ξi = α+ xT
i β + εi = α+ β1xi1 + · · ·+ βpxip + εi (8.3) {eq:latent}

However, we can only observe Yi = 1 when ξi passes some threshold, that with some convenient
scaling can be taken as ξi > 0 =⇒ Yi = 1.2

The latent variable motivation extends directly to an ordinal response under the PO model. We
now assume that there is a set of m− 1 thresholds, α1 < α2 < · · · < αm−1 for the latent variable
ξi in Eqn. (8.3) and we observe

Yi = j if αj−1 < ξi ≤ αj ,

with appropriate modifications to the inequalities at the end points.

1Some authors and some software describe the PO model in terms of logit[Pr(Y > j |x)], so the signs and order of the
intercepts, αj are reversed.

2The latent variable derivation of logistic regression (and the related probit model) was fundamental in the history of
statistical methods for discrete response outcomes. An early example was Thurstone’s (1927) Law of comparative judgment
designed to account for psychological preference by assuming an underlying latent continuum of “hedonic values.” Similarly,
the probit model arose from does-response studies in toxicology (Bliss, 1934, Finney, 1947) where the number killed by
some chemical agent was related to its’ type, dose or concentration. The idea of a latent variable was also at the heart of the
development of factor analysis TODO: citation? and latent class analysis (Lazarsfeld, 1950, 1954) was developed to treat
the problem of classifying individuals into discrete latent classes from fallible measurements. See Bollen (2002) for a useful
overview of latent variable models in the social sciences.
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E(ξ) = α + βx

Figure 8.2: Latent variable representation of the proportional odds model for m = 4 response
categories and a single quantitative predictor, x. Source: Adapted from Fox (2008, Fig 14.10),
using code provided by John Fox. {fig:latent}

This is illustrated in Figure 8.2 for a response with m = 4 ordered categories and a single
quantitative predictor, x. The observable response Y categories are shown on the right vertical
axis, and the corresponding latent continuous variable ξ on the left axis together with the thresholds
α1, α2, α3. The (conditional) logistic distribution of ξ is shown at two values of x, and the shaded
areas under the curve give the conditional probabilities Pr(Y = 4 |xi) for the two values x1 and
x2.

8.1.2 Fitting the proportional odds model
As mentioned earlier, there are a number of different R packages that provide facilities for fitting the
PO model. These have somewhat different capabilities for reporting results, testing hypotheses and
plotting, so we generally use polr() in the MASS package, except where other packages offer
greater convenience.

Unless the response variable has numeric values, it is important to ensure that it has been defined
as an ordered factor (using ordered()). In the Arthritis data, the response, Improved was
setup this way, as we can check by printing some of the values.3

> data("Arthritis", package="vcd")
> head(Arthritis$Improved, 8)

[1] Some None None Marked Marked Marked None Marked
Levels: None < Some < Marked

We fit the main effects model for the ordinal response using polr() as shown below. We
also specify Hess=TRUE to have the function return the observed information matrix (called the
Hessian), that is used in other operations to calculate standard errors.

> library(MASS)
> arth.polr <- polr(Improved ~ Sex + Treatment + Age,
+ data=Arthritis, Hess=TRUE)
> summary(arth.polr)

3As an unordered factor, the levels would be treated as ordered alphabetically, i.e., Marked, None, Some.
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Call:
polr(formula = Improved ~ Sex + Treatment + Age, data = Arthritis,

Hess = TRUE)

Coefficients:
Value Std. Error t value

SexMale -1.2517 0.5464 -2.29
TreatmentTreated 1.7453 0.4759 3.67
Age 0.0382 0.0184 2.07

Intercepts:
Value Std. Error t value

None|Some 2.532 1.057 2.395
Some|Marked 3.431 1.091 3.144

Residual Deviance: 145.46
AIC: 155.46

The output from the summary() method, shown above, gives the estimated coefficients (β)
and intercepts (αj) labeled by the cutpoint on the ordinal response. It provides standard errors and
t-values (βi/SE(βi)), but no significance tests or p-values. The car::Anova() method gives the
appropriate tests.

> library(car)
> Anova(arth.polr)

Analysis of Deviance Table (Type II tests)

Response: Improved
LR Chisq Df Pr(>Chisq)

Sex 5.69 1 0.01708 *
Treatment 14.71 1 0.00013 ***
Age 4.57 1 0.03251 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.1.3 Testing the proportional odds assumption
The simplicity of the PO model is achieved only when the proportional odds model holds for a
given data set. In essence, a test of this assumption involves a contrast between the PO model and
a generalized logit NPO model that allows different effects (slopes) of the predictors across the
response categories:

PO : Lj = αj + xTβ j = 1, . . . ,m− 1 (8.4) {eq:po}

NPO : Lj = αj + xTβj j = 1, . . . ,m− 1 (8.5) {eq:npo}

The most general test involves fitting both models and testing the difference in the residual
deviance by a likelihood ratio test or using some other measure (such as AIC) for model comparison.
The PO model (Eqn. (8.4)) has (m − 1) + p parameters, while the NPO model (Eqn. (8.5)) has
(m − 1)(1 + p) = m(1 + p) parameters, which may be difficult to fit if this is large relative to
the number of observations. An intermediate model, the partial proportional odds model (Peterson
and Harrell, 1990) allows one subset of predictors, xpo, to satisfy the proportional odds assumption
(equal slopes), while the remaining predictors xnpo have slopes varying with the response level:

PPO : Lj = αj + xT
poβ + xT

npoβj j = 1, . . . ,m− 1 . (8.6) {eq:ppo}

In R, the PO and NPO models can be readily contrasted by fitting them both using vglm() in
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the VGAM package. This defines the cumulative family of models and allows a parallel
option. With parallel=TRUE, this is equivalent to the polr() model, except that the signs of
the coefficients are reversed.

> library(VGAM)
> arth.po <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
+ family = cumulative(parallel=TRUE))
> arth.po

Call:
vglm(formula = Improved ~ Sex + Treatment + Age, family = cumulative(parallel = TRUE),

data = Arthritis)

Coefficients:
(Intercept):1 (Intercept):2 SexMale

2.531990 3.430988 1.251671
TreatmentTreated Age

-1.745304 -0.038163

Degrees of Freedom: 168 Total; 163 Residual
Residual deviance: 145.46
Log-likelihood: -72.729

The more general NPO model can be fit using parallel=FALSE.

> arth.npo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
+ family = cumulative(parallel=FALSE))
> arth.npo

Call:
vglm(formula = Improved ~ Sex + Treatment + Age, family = cumulative(parallel = FALSE),

data = Arthritis)

Coefficients:
(Intercept):1 (Intercept):2 SexMale:1

2.618539 3.431175 1.509827
SexMale:2 TreatmentTreated:1 TreatmentTreated:2
0.866434 -1.836929 -1.704011

Age:1 Age:2
-0.040866 -0.037294

Degrees of Freedom: 168 Total; 160 Residual
Residual deviance: 143.57
Log-likelihood: -71.787

The VGAM package defines a coef() method that can print the coefficients in a more readable
matrix form giving the category cutpoints:

> coef(arth.po, matrix=TRUE)

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) 2.531990 3.430988
SexMale 1.251671 1.251671
TreatmentTreated -1.745304 -1.745304
Age -0.038163 -0.038163

> coef(arth.npo, matrix=TRUE)

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) 2.618539 3.431175
SexMale 1.509827 0.866434
TreatmentTreated -1.836929 -1.704011
Age -0.040866 -0.037294
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In most cases, nested models can be tested using an anova() method, but the VGAM pack-
age has not implemented this for "vglm" objects. Instead, it provides an analogous function,
lrtest():

> VGAM::lrtest(arth.npo, arth.po)

Likelihood ratio test

Model 1: Improved ~ Sex + Treatment + Age
Model 2: Improved ~ Sex + Treatment + Age
#Df LogLik Df Chisq Pr(>Chisq)

1 160 -71.8
2 163 -72.7 3 1.88 0.6

The LR test can be also calculated as “manually” shown below using the difference in residual
deviance for the two models.

> tab <- cbind(
+ Deviance = c(deviance(arth.npo), deviance(arth.po)),
+ df = c(df.residual(arth.npo), df.residual(arth.po))
+ )
> tab <- rbind(tab, diff(tab))
> rownames(tab) <- c("GenLogit", "PropOdds", "LR test")
> tab <- cbind(tab, pvalue=1-pchisq(tab[,1], tab[,2]))
> tab

Deviance df pvalue
GenLogit 143.5741 160 0.81966
PropOdds 145.4579 163 0.83435
LR test 1.8838 3 0.59686

The vglm() can also fit partial proportional odds models, by specifying a formula giving the
terms for which the PO assumption should be taken as TRUE or FALSE. Here we illustrate this using
parallel=FALSE ~ Sex, to fit separate slopes for males and females, but parallel lines for the
other predictors. The same model would be fit using parallel=TRUE ~ Treatment + Age.

> arth.ppo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
+ family = cumulative(parallel=FALSE ~ Sex))
> coef(arth.ppo, matrix=TRUE)

logit(P[Y<=1]) logit(P[Y<=2])
(Intercept) 2.542452 3.615561
SexMale 1.483336 0.867362
TreatmentTreated -1.775742 -1.775742
Age -0.039622 -0.039622

8.1.4 Graphical assessment of proportional odds
There are several graphical methods for visual assessment of the proportional odds assumption.
These are all marginal methods, in that they treat the predictors one at a time. However, that
provides one means to determine if a partial proportional odds model might be more appropriate.
Harrell’s 2001, Ch. 13-14 Regression Modeling Strategies and the corresponding rms package
provide an authoritative treatment and methods in R.

One simple idea is to plot the conditional mean or expected valueE(X |Y ) of a given predictor,
X , at each level of the ordered response Y . If the response behaves ordinally in relation to X , these
means should be strictly increasing or decreasing with Y . For comparison, one can also plot the
estimated conditional means Ê(X |Y = j) under the fitted PO model X as the only predictor. If
the PO assumption holds for this X , the model-mean curve should be close to the data mean curve.
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> library(rms)
> arth.po2 <- lrm(Improved ~ Sex + Treatment + Age, data=Arthritis)
> arth.po2

Logistic Regression Model

lrm(formula = Improved ~ Sex + Treatment + Age, data = Arthritis)

Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes

Obs 84 LR chi2 24.46 R2 0.291 C 0.750
None 42 d.f. 3 g 1.335 Dxy 0.500
Some 14 Pr(> chi2) <0.0001 gr 3.801 gamma 0.503
Marked 28 gp 0.280 tau-a 0.309
max |deriv| 1e-07 Brier 0.187

Coef S.E. Wald Z Pr(>|Z|)
y>=Some -2.5320 1.0570 -2.40 0.0166
y>=Marked -3.4310 1.0911 -3.14 0.0017
Sex=Male -1.2517 0.5464 -2.29 0.0220
Treatment=Treated 1.7453 0.4759 3.67 0.0002
Age 0.0382 0.0184 2.07 0.0382

The plot of conditionalX means is produced using the plot.xmean.ordinaly() as shown
below. It produces one marginal panel for each predictor in the model. For categorical predictors, it
plots only the overall most frequent category. The resulting plot is shown in Figure 8.3.

> op <- par(mfrow=c(1,3))
> plot.xmean.ordinaly(Improved ~ Sex + Treatment + Age, data=Arthritis,
+ lwd=2, pch=16, subn=FALSE)
> par(op)
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Figure 8.3: Visual assessment of ordinality and the proportional odds assumption for predictors
in the Arthritis data. Solid lines connect the stratified means of X given Y. Dashed lines show the
estimated expected value of X given Y=j if the proportional odds model holds for X.{fig:arth-rmsplot}

In Figure 8.3, there is some evidence that the effect of Sex is non-monotonic and the means
differ from their model-implied values under the PO assumption. The effect of Treatment looks
good by this method, and the effect of Age hints that the upper two categories may not be well-
distinguished as an ordinal response.

Of course, this example has only a modest total sample size, and this method only examines the
marginal effects of the predictors. Nevertheless, it is a useful supplement to the statistical methods
described earlier.
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8.1.5 Visualizing results for the proportional odds model
{sec:vis-propodds}

Results from the PO model (and other models for polytomous responses) can be graphed using the
same ideas and methods shown earlier for a binary or binomial response. In particular, full-model
plots (described earlier in Section 7.3.2) and effect plots (Section 7.3.3) are still very helpful.

But now there is the additional complication that the response variable has m > 2 levels and
so needs to be represented by m − 1 curves or panels in addition to those related to the predictor
variables.

8.1.6 Full-model plots
{sec:po-fullplots}

For full-model plots, we continue the idea of appending the fitted response probabilities (or log-
its) to the data frame and plotting these in relation to the predictors. The predict() method
returns the highest probability category label by default (with type="class"), so to get the fitted
probabilities you have to ask for type="probs", as shown below.

> arth.fitp <- cbind(Arthritis,
+ predict(arth.polr, type="probs"))
> head(arth.fitp)

ID Treatment Sex Age Improved None Some Marked
1 57 Treated Male 27 Some 0.73262 0.13806 0.12932
2 46 Treated Male 29 None 0.71740 0.14443 0.13816
3 77 Treated Male 30 None 0.70960 0.14763 0.14277
4 17 Treated Male 32 Marked 0.69363 0.15400 0.15237
5 36 Treated Male 46 Marked 0.57025 0.19504 0.23471
6 23 Treated Male 58 Marked 0.45634 0.21713 0.32653

For plotting, it is most convenient to reshape these from wide to long format using melt() in
the reshape2 package. The response category is named Level.

> library(reshape2)
> plotdat <- melt(arth.fitp,
+ id.vars = c("Sex", "Treatment", "Age", "Improved"),
+ measure.vars=c("None", "Some", "Marked"),
+ variable.name = "Level",
+ value.name = "Probability")
> ## view first few rows
> head(plotdat)

Sex Treatment Age Improved Level Probability
1 Male Treated 27 Some None 0.73262
2 Male Treated 29 None None 0.71740
3 Male Treated 30 None None 0.70960
4 Male Treated 32 Marked None 0.69363
5 Male Treated 46 Marked None 0.57025
6 Male Treated 58 Marked None 0.45634

We can now plot Probability against Age, using Level to assign different colors to the
lines for the response categories. facet_grid() is used to split the plot into separate panels by
Sex and Treatment. In this example, the directlabels package is also used replace the default
legend created by ggplot() with category labels on the curves themselves, which is easier to
read.

> library(ggplot2)
> library(directlabels)
> gg <- ggplot(plotdat, aes(x = Age, y = Probability, colour = Level)) +
+ geom_line(size=2.5) + theme_bw() + xlim(10,80) +
+ geom_point(color="black", size=1.5) +
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+ facet_grid(Sex ~ Treatment,
+ labeller = function(x, y) sprintf("%s = %s", x, y)
+ )
> direct.label(gg)
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Figure 8.4: Predicted probabilities for the proportional odds model fit to the Arthritis data{fig:arth-polr1}

Although we now have three response curves in each panel, this plot is relatively easy to un-
derstand: (a) In each panel, the probability of no improvement decreases with age, while that for
marked improvement increases. (b) It is easy to compare the placebo and treated groups in each
row, showing that no improvement decreases, while marked improvement increases with the active
treatment. (On the other hand, this layout makes it harder to compare panels vertically for males and
females in each condition.) (c) The points show where the observations are located in each panel;
so, we can see that the data is quite thin for males given the placebo.4

8.1.7 Effect plots
{sec:po-effplots}

For PO models fit using polr(), the effects package provides two different styles for plotting
a given effect. By default, curves are plotted in separate panels for the different response levels
of a given effect, together with confidence bands for predicted probabilities. This form provides
confidence bands and rug plots for the observations, but the default vertical arrangement of the

4One way to improve (pun intended) this graph would be to show the points on the lines only for the actual level of
Improve for each observation.
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panels makes it harder to compare the trends for the different response levels. The alternative
stacked format shows the changes in response level more directly, but doesn’t provide confidence
bands.

Figure 8.5 shows these two styles for the main effect of Age in the proportional odds model,
arth.polr fit earlier.

> library(effects)
> plot(Effect("Age", arth.polr))
> plot(Effect("Age", arth.polr), style='stacked',
+ key.args=list(x=.55, y=.9))
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Figure 8.5: Effect plots for the effect of Age in the proportional odds model for the Arthritis data.
Left: responses shown in separate panels. Right: responses shown in stacked format {fig:arth-po-eff1}

Even though this model includes only main effects, you can still plot the higher-order effects
for more focal predictors in a coherent display. Figure 8.6 shows the predicted probabilities for all
three predictors together. Again, visual comparison is easier horizontally for placebo versus treated
groups, but you can also see that the prevalence of marked improvement is greater for females than
for males.

> plot(Effect(c("Treatment", "Sex", "Age"), arth.polr),
+ style="stacked", key.arg=list(x=.8, y=.9))

Finally, the latent variable interpretation of the PO model provides for simpler plots on the logit
scale. Figure 8.7 shows this plot for the effects of Treatment and Age (collapsed over Sex)
produced with the argument latent=TRUE to Effect(). In this plot, there is a single line
in each panel for the effect (slope) of Age on the log odds. The dashed horizontal lines give the
thresholds between the adjacent response categories corresponding to the intercepts.

> plot(Effect(c("Treatment", "Age"), arth.polr, latent=TRUE), lwd=3)
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Treatment*Sex*Age effect plot
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Figure 8.6: Effect plot for the effects of Treatment, Sex and Age in the Arthritis data. {fig:arth-po-eff2}
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8.2 Nested dichotomies
{sec:nested}

The method of nested dichotomies provides another simple way to analyse a polytomous response
in the framework of logistic regression (or other generalized linear models). This method does not
require an ordinal response or special software. Instead, it uses the familiar binary logistic model
and fits m − 1 separate models for each of a hierarchically nested set of comparisons among the
response categories.

Taken together, this set of models for the dichotomies comprises a complete model for the
polytomous response. As well, these models are statistically independent, so test statistics such as
G2 or Wald tests can be added to give overall tests for the full polytomy.

For example, the response categories Y = {1,2,3,4} could be divided first as {1,2} vs. {3,4}, as
shown in the left side of Figure 8.8. Then these two dichotomies could be divided as {1} vs. {2},
and {3} vs. {4}. Alternatively, these response categories could be divided as shown in the right side
of Figure 8.8: first, {1} vs. {2,3,4}, then {2} vs {3,4}, and finally {3} vs. {4}.

Figure 8.8: Nested dichotomies. The boxes show two different ways a four-category response can
be represented as three nested dichotomies. Adapted from Fox (2008). {fig:nested2}

Such models make the most sense when there are substantive reasons for considering the re-
sponse categories in terms of such dichotomies. Two examples are shown in Figure 8.9.

• For the Arthritis data, it is sensible to consider one dichotomy (“better”), with logit L1,
between the categories of "None" compared to "Some" or "Marked". A second dichotomy,
with logit L2, would then distinguish between the some and marked response categories.

• For a second case where patients are classified into m = 4 psychiatric diagnostic categories,
the first dichotomy, with logit L1 distinguishes those considered normal from all others given
a clinical diagnosis. Two other dichotomies are defined to further divide the non-normal cate-
gories.

Then, consider the separate logit models for these m− 1 dichotomies, with different intercepts
αj and slopes βj for each dichotomy,

L1 = α1 + xTβ1

L2 = α2 + xTβ2

... =
...

Lm−1 = αm−1 + xTβm−1

{ex:wlfpart1}

EXAMPLE 8.1: Women’s labor force participation
The data set Womenlf in the car package gives the result of a 1977 Canadian survey. It contains
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Figure 8.9: Examples of nested dichotomies and the corresponding logits {fig:nested1}

data for 263 married women of age 21–30 who indicated their working status (outside the home)
as not working, working part time or working full time, together with their husband’s income and
a binary indicator of whether they had one or more young children in their household. (Another
variable, region of Canada, had no effects in these analyses, and is not examined here.) This example
follows Fox and Weisberg (2011, §5.8).

> library(car) # for data and Anova()
> data("Womenlf", package="car")
> some(Womenlf)

partic hincome children region
7 not.work 15 present Ontario
29 not.work 17 present Prairie
45 parttime 5 present Ontario
82 parttime 15 present Ontario
91 not.work 35 absent Ontario
97 not.work 17 present Ontario
129 parttime 13 present Prairie
138 not.work 13 present Ontario
175 fulltime 9 absent Ontario
200 fulltime 11 absent Quebec

In this example, it makes sense to consider a first dichotomy (working) between women who
are not working, vs. those who are (full time or part time). A second dichotomy (fulltime)
contrasts full time work vs. part time work, among those women who are working at least part time.
These two binary variables are created in the data frame using the recode() function from the
car package.

> # create dichotomies
> Womenlf <- within(Womenlf,{
+ working <- recode(partic, " 'not.work' = 'no'; else = 'yes' ")
+ fulltime <- recode(partic,
+ " 'fulltime' = 'yes'; 'parttime' = 'no'; 'not.work' = NA")})
> some(Womenlf)

partic hincome children region fulltime working
81 fulltime 13 absent Ontario yes yes
96 not.work 17 present Ontario <NA> no
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97 not.work 17 present Ontario <NA> no
115 parttime 13 present Prairie no yes
123 fulltime 9 absent Ontario yes yes
131 parttime 19 present Ontario no yes
153 not.work 5 absent BC <NA> no
190 not.work 23 present BC <NA> no
248 not.work 23 absent Quebec <NA> no
255 fulltime 11 absent Quebec yes yes

The tables below show how the response partic relates to the recoded binary variables,
working and fulltime. Note that the fulltime variable is recoded to NA for women who
are not working.

> with(Womenlf, table(partic, working))

working
partic no yes
fulltime 0 66
not.work 155 0
parttime 0 42

> with(Womenlf, table(partic, fulltime, useNA="ifany"))

fulltime
partic no yes <NA>
fulltime 0 66 0
not.work 0 0 155
parttime 42 0 0

We proceed to fit two separate binary logistic regression models for the derived dichotomous
variables. For the working dichotomy, we get the following results:

> mod.working <- glm(working ~ hincome + children, family=binomial,
+ data=Womenlf)
> summary(mod.working)

Call:
glm(formula = working ~ hincome + children, family = binomial,

data = Womenlf)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.677 -0.865 -0.777 0.929 1.997

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3358 0.3838 3.48 0.0005 ***
hincome -0.0423 0.0198 -2.14 0.0324 *
childrenpresent -1.5756 0.2923 -5.39 7e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 356.15 on 262 degrees of freedom
Residual deviance: 319.73 on 260 degrees of freedom
AIC: 325.7

Number of Fisher Scoring iterations: 4

And, similarly for the fulltime dichotomy:
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> mod.fulltime <- glm(fulltime ~ hincome + children, family=binomial,
+ data=Womenlf)
> summary(mod.fulltime)

Call:
glm(formula = fulltime ~ hincome + children, family = binomial,

data = Womenlf)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.405 -0.868 0.395 0.621 1.764

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.4778 0.7671 4.53 5.8e-06 ***
hincome -0.1073 0.0392 -2.74 0.0061 **
childrenpresent -2.6515 0.5411 -4.90 9.6e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 144.34 on 107 degrees of freedom
Residual deviance: 104.49 on 105 degrees of freedom
(155 observations deleted due to missingness)

AIC: 110.5

Number of Fisher Scoring iterations: 5

Although these were fit separately, we can view this as a combined model for the three-level
response, with the following coefficients:

> cbind(working=coef(mod.working), fulltime=coef(mod.fulltime))

working fulltime
(Intercept) 1.335830 3.47777
hincome -0.042308 -0.10727
childrenpresent -1.575648 -2.65146

Writing these out as equations for the logits, we have:

L1 = log
Pr(working)

Pr(notworking)
= 1.336− 0.042 hincome− 1.576 children (8.7){eq:wlf-logits}

L2 = log
Pr(fulltime)

Pr(parttime)
= 3.478− 0.1072 hincome− 2.652 children (8.8)

For both dichotomies, increasing income of the husband and the presence of young children de-
crease the log odds of a greater level of work. However, for those women who are working the
effects of husband’s income and and children are greater on the choice between full time and part
time work than they are for all women on the choice between working and not working.

As we mentioned above, the use of nested dichotomies implies that the models fit to the separate
dichotomies are statistically independent. Thus, we can additively combine χ2 statistics and degrees
of freedom to give overall tests for the polytomous response.

For example, here we define a function, LRtest() to calculate the likelihood ratio test of the
hypothesis H0 : β = 0 for all predictors simultaneously. We then use this to display these tests for
each sub-model, as well as the combined model based on the sums of the test statistic and degrees
of freedom.
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> LRtest <- function(model)
+ c(LRchisq=(model$null.deviance - model$deviance),
+ df=(model$df.null - model$df.residual))
> tab <- rbind(working=LRtest(mod.working),
+ fulltime=LRtest(mod.fulltime))
> tab <- rbind(tab, All = colSums(tab))
> tab <- cbind(tab, pvalue = 1- pchisq(tab[,1], tab[,2]))
> tab

LRchisq df pvalue
working 36.418 2 1.2355e-08
fulltime 39.847 2 2.2252e-09
All 76.265 4 1.1102e-15

Similarly, you can carry out tests of individual predictors, H0 : βi = 0 for the polytomy by
adding the separate χ2s from Anova().

> Anova(mod.working)

Analysis of Deviance Table (Type II tests)

Response: working
LR Chisq Df Pr(>Chisq)

hincome 4.82637 1 0.028028 *
children 31.32288 1 2.1849e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> Anova(mod.fulltime)

Analysis of Deviance Table (Type II tests)

Response: fulltime
LR Chisq Df Pr(>Chisq)

hincome 8.9813 1 0.0027275 **
children 32.1363 1 1.4373e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For example, the test for husband’s income gives χ2 = 4.826 + 8.981 = 13.807 with 2 df.
As before, you can plot the fitted values from such models, either on the logit scale (for the

separate logit equations) or in terms of probabilities for the various responses. The general idea is
the same: obtain the fitted values from predict() using data frame containing the values of the
predictors. However, now we have to combine these for each of the sub-models.

We calculate these values below, on both the logit scale and the response scale of probabili-
ties. The newdata argument to predict() is constructed as the combinations of values for
hincome and children.5

> predictors <- expand.grid(hincome=1:50,
+ children=c('absent', 'present'))
> fit <- data.frame(predictors,
+ p.working = predict(mod.working, predictors, type='response'),
+ p.fulltime = predict(mod.fulltime, predictors, type='response'),
+ l.working = predict(mod.working, predictors, type='link'),
+ l.fulltime = predict(mod.fulltime, predictors, type='link')
+ )
> print(some(fit, 5), digits=3)

hincome children p.working p.fulltime l.working l.fulltime

5Alternatively, using the predictor values in the Womenlf data would give the fitted values for the cases in the data, and
allow a more data-centric plot as shown in Figure 8.4.
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6 6 absent 0.747 0.9445 1.082 2.834
8 8 absent 0.731 0.9321 0.997 2.620
39 39 absent 0.422 0.3306 -0.314 -0.706
68 18 present 0.269 0.2489 -1.001 -1.105
88 38 present 0.136 0.0373 -1.848 -3.250

One wrinkle here is that the probabilities for working full time and part time are conditional on
working. We calculate the unconditional probabilities as shown below and choose to display the
probability of not working as the complement of working.

> fit <- within(fit, {
+ full <- p.working * p.fulltime
+ part <- p.working * (1 - p.fulltime)
+ not <- 1 - p.working
+ })

Plotting these fitted values using ggplot2 would require reshaping the fit data frame from
wide to long format. Instead, we use R base graphics to produce plots of the probabilities and log
odds. This method doesn’t automatically give plots in separate panels, so a for-loop is used to
generate panels for the levels of children. We set up an empty plot frame (type="n") for each
panel and then use lines() to plot the fitted probabilities. Using par(mfrow=c(1,2)) places
these plots in two side-by-side panels in a single display. The lines below give the plot shown in
Figure 8.10.

> op <- par(mfrow=c(1,2), mar=c(5,4,4,1)+.1)
> Hinc <- 1:max(fit$hincome)
> for ( kids in c("absent", "present") ) {
+ dat <- subset(fit, children==kids)
+ plot( range(Hinc), c(0,1), type="n", cex.lab=1.25,
+ xlab="Husband's Income", ylab='Fitted Probability',
+ main = paste("Children", kids))
+ lines(Hinc, dat$not, lwd=3, col="black", lty=1)
+ lines(Hinc, dat$part, lwd=3, col="blue", lty=2)
+ lines(Hinc, dat$full, lwd=3, col="red", lty=5)
+ if (kids=="absent") {
+ legend("topright", lty=c(1,2,5), lwd=3, col=c("black", "blue", "red"),
+ legend=c('not working', 'part-time', 'full-time'))
+ }
+ }
> par(op)

We can see how that the decision not to work outside the home increases strongly with husband’s
income, and is higher when there are children present. As well, among working women, the decision
to work full time as opposed to part time decreases strongly with husband’s income, and is less likely
with young children.

Similarly, we plot the fitted logits for the two dichotomies in l.working and l.fulltime
as shown below, giving Figure 8.11.

> op <- par(mfrow=c(1,2), mar=c(5,4,1,1)+.1)
> for ( kids in c("absent", "present") ) {
+ dat <- subset(fit, children==kids)
+ plot( range(Hinc), c(-4,5), type="n", cex.lab=1.25,
+ xlab="Husband's Income", ylab='Fitted log odds')
+ lines(Hinc, dat$l.working, lwd=3, col="black", lty=1)
+ lines(Hinc, dat$l.fulltime, lwd=3, col="blue", lty=2)
+ text(25, 4.5, paste("Children", kids), cex=1.4)
+ if (kids=="absent") {
+ legend("bottomleft", lty=1:2, lwd=3, col=c("black", "blue"),
+ legend=c('working', 'full-time'))
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Figure 8.10: Fitted probabilities from the models for nested dichotomies fit to the data on women’s
labor force participation.{fig:wlf-fitted-prob}

+ }
+ }
> par(op)
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Figure 8.11: Fitted log odds from the models for nested dichotomies fit to the data on women’s
labor force participation. {fig:wlf-fitted-logit}

This is essentially a graph of the fitted equations for L1 and L2 shown in Eqn. (8.7). It shows
how the choice of full time work as opposed to part time depends more strongly on husband’s
income among women who are working than does the choice of working at all among all women.
It also illustrates why the proportional odds assumption would not be reasonable for this data: that
would require equal slopes for the two lines within each panel.
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8.3 Generalized logit model
{sec:genlogit}

The generalized logit (or multinomial logit) approach models the probabilities of the m response
categories directly as a set of m − 1 logits. These compare each of the first m − 1 categories to
the last category, which serves as the baseline.6 The logits for any other pair of categories can be
retrieved from the m− 1 fitted ones.

When there are p predictors, x1, x2, . . . , xp, which may be quantitative or categorical, the gen-
eralized logit model expresses the logits as

Ljm ≡ log
πij
πim

= β0j + β1j xi1 + β2j xi2 + · · ·+ βkj xip j = 1, . . . ,m− 1

= xi
Tβj (8.9){eq:glogit1}

Thus, there is one set of fitted coefficients, βj for each response category except the last. Each
coefficient, βhj , gives the effect, for a unit change in the predictor xh, on the log odds that an
observation had a response in category Y = j, as opposed to category Y = m.

The probabilities themselves can be expressed as

πij =
exp(xi

Tβj)

1 +
∑m−1
`=1 exp(xiTβj)

j = 1, 2, . . .m− 1

πim = 1−
m−1∑
i=1

πij for Y = m

Parameters in the m − 1 equations Eqn. (8.9) can be used to determine the probabilities or the
predicted log odds for any pair of response categories by subtraction. For instance, for an arbitrary
pair of categories, a and b, and two predictors, x1 and x2,

Lab = log
πia/πim
πib/πim

= log
πia
πim
− log

πib
πim

= (β0a − β0b) + (β1a − β1b)xi1 + (β2a − β2b)xi2

For example, the coefficient for xi1 in Lab is just (β1a − β1b). Similarly, the predicted logit for any
pair of categories can be calculated as

L̂ab = L̂am − L̂bm .

The generalized logit model can be fit most conveniently in R using the function multinom()
in the nnet package and the effects package has a set of methods for "multinom" models. These
models can also be fit using VGAM and the mlogit package.{ex:wlfpart2}

EXAMPLE 8.2: Women’s labor force participation
To illustrate this method, we fit the generalized logit model to the women’s labor force par-

ticipation data as explained below. The response, partic is a character factor, and, by default
multinom() treats these in alphabetical order and uses the first level as the baseline category.

6When the response is a factor, any category can be selected as the baseline level using relevel().
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> levels(Womenlf$partic)

[1] "fulltime" "not.work" "parttime"

Although the multinomial model does not depend on the baseline category, it makes interpreta-
tion easier to choose "not.work" as the reference level, which we do with relevel().7

> # choose not working as baseline category
> Womenlf$partic <- relevel(Womenlf$partic, ref="not.work")

We fit the main effects model for husband’s income and children as follows. As we did with
polr() (Section 8.1), specifying Hess=TRUE saves the Hessian and facilitates calculation of
standard errors and hypothesis tests.

> library(nnet)
> wlf.multinom <- multinom(partic ~ hincome + children,
+ data=Womenlf, Hess=TRUE)

# weights: 12 (6 variable)
initial value 288.935032
iter 10 value 211.454772
final value 211.440963
converged

The summary() method for "multinom" objects doesn’t calculate test statistics for the esti-
mated coefficients by default. The option Wald=TRUE produces Wald z-test statistics, calculated
as z = β/SE(β).

> summary(wlf.multinom, Wald=TRUE)

Call:
multinom(formula = partic ~ hincome + children, data = Womenlf,

Hess = TRUE)

Coefficients:
(Intercept) hincome childrenpresent

fulltime 1.9828 -0.0972321 -2.558605
parttime -1.4323 0.0068938 0.021456

Std. Errors:
(Intercept) hincome childrenpresent

fulltime 0.48418 0.028096 0.36220
parttime 0.59246 0.023455 0.46904

Value/SE (Wald statistics):
(Intercept) hincome childrenpresent

fulltime 4.0953 -3.46071 -7.064070
parttime -2.4176 0.29392 0.045744

Residual Deviance: 422.88
AIC: 434.88

Notice that the coefficients, their standard errors and the Wald test z values are printed in separate
tables. The first line in each table pertains to the logit comparing full time work with the not working
reference level; the second line compares part time work against not working.

For those who like p-values for significance tests, you can calculate these from the results re-
turned by the summary() method in the Wald.ratios component, using the standard normal
asymptotic approximation:

7Alternatively, we could declare partic an ordered factor, using ordered().
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> stats <- summary(wlf.multinom, Wald=TRUE)
> z <- stats$Wald.ratios
> p <- 2 * (1 - pnorm(abs(z)))
> zapsmall(p)

(Intercept) hincome childrenpresent
fulltime 0.00004 0.00054 0.00000
parttime 0.01562 0.76882 0.96351

The interpretation of these tests is that both husband’s income and presence of children have
highly significant effects on the comparison of working full time as opposed to not working, while
neither of these predictors are significant for the comparison of working part time vs. not working.

So far, we have assumed that the effects of husband’s income and presence of young children
are additive on the log odds scale. We can test this assumption by allowing an interaction of those
effects and testing it for significance.

> wlf.multinom2 <- multinom(partic ~ hincome * children,
+ data=Womenlf, Hess=TRUE)

# weights: 15 (8 variable)
initial value 288.935032
iter 10 value 210.797079
final value 210.714841
converged

> Anova(wlf.multinom2)

Analysis of Deviance Table (Type II tests)

Response: partic
LR Chisq Df Pr(>Chisq)

hincome 15.2 2 0.00051 ***
children 63.6 2 1.6e-14 ***
hincome:children 1.5 2 0.48378
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test for the interaction term, hincome:children is not significant, so we can abandon this
model.

Full model plots of the fitted values can be plotted as shown earlier in Example 8.1: obtain the
fitted values over a grid of the predictors and plot these.

> predictors <- expand.grid(hincome=1:50,
+ children=c('absent', 'present'))
> fit <- data.frame(predictors,
+ predict(wlf.multinom, predictors, type='probs')
+ )

Plotting these fitted values gives the plot shown in Figure 8.12.

> op <- par(mfrow=c(1,2), mar=c(5,4,4,1)+.1)
> Hinc <- 1:max(fit$hincome)
> for ( kids in c("absent", "present") ) {
+ dat <- subset(fit, children==kids)
+ plot( range(Hinc), c(0,1), type="n", cex.lab=1.25,
+ xlab="Husband's Income", ylab='Fitted Probability',
+ main = paste("Children", kids))
+ lines(Hinc, dat$not.work, lwd=3, col="black", lty=1)
+ lines(Hinc, dat$parttime, lwd=3, col="blue", lty=2)
+ lines(Hinc, dat$fulltime, lwd=3, col="red", lty=5)
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+ if (kids=="absent") {
+ legend("topright", lty=c(1,2,5), lwd=3, col=c("black", "blue", "red"),
+ legend=c('not working', 'part-time', 'full-time'))
+ }
+ }
> par(op)
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Figure 8.12: Fitted probabilities from the generalized logit model fit to the data on women’s labor
force participation. {fig:wlf-multi-prob}

The results shown in this plot are roughly similar to those obtained from the nested dichotomy
models, graphed in Figure 8.10. However, the predicted probabilities of not working under the
generalized logit model rise more steeply with husband’s income for women with no children and
level off sooner for women with young children.

The effects package has special methods for "multinom" models. It treats the response levels in
the order given by levels(), so before plotting we use ordered() to arrange levels in their nat-
ural order. The update() method provides a simple way to get a new fitted model; in the call, the
model formula . ~ .means to fit the same model as before, i.e., partic ~ hincome + children.

> levels(Womenlf$partic)

[1] "not.work" "fulltime" "parttime"

> Womenlf$partic <- ordered(Womenlf$partic,
+ levels=c('not.work', 'parttime', 'fulltime'))
> wlf.multinom <- update(wlf.multinom, . ~ .)

# weights: 12 (6 variable)
initial value 288.935032
iter 10 value 211.454772
final value 211.440963
converged

As illustrated earlier, you can use plot(allEffects(model), ...) to plot all the high-
order terms in the model, either with separate curves for each response level (style="lines")
or as cumulative filled polygons (style="stacked"). Here, we simply plot the effects for the
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combinations of husband’s income and children in stacked style, giving a plot (Figure 8.13) that is
analogous to the full-model plot shown in Figure 8.12.

> plot(Effect(c("hincome", "children"), wlf.multinom),
+ style="stacked", key.args=list(x=.05, y=.9))
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Figure 8.13: Effect plot for the probabilities of not working and working part time and full time
from the generalized logit model fit to the women’s labor force data.{fig:wlf-multi-effect}

4

8.4 Chapter summary
{sec:ch07b-summary}

• Polytomous responses may be handled in several ways as extensions of binary logistic regres-
sion. These methods require different fitting functions in R, however the graphical methods for
plotting results are relatively straight-forward extensions of those used for binary responses.

• The proportional odds model (Section 8.1) is simple and convenient, but its validity depends on
an assumption of equal slopes for adjacent-category logits.

• Nested dichotomies (Section 8.2) among the response categories give a set of models which may
be regarded as a single, combined model for the polytomous response.

• Generalized logit models (Section 8.3) may be used to construct models comparing any pair of
categories.

8.5 Lab exercises
{sec:ch07b-exercises}{lab:8.1}

Exercise 8.1 For the women’s labor force participation data (Womenlf) the response variable,
partic, can be treated as ordinal by using

> Womenlf$partic <- ordered(Womenlf$partic,
+ levels=c('not.work', 'parttime', 'fulltime'))
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Use the methods in Section 8.1 to test whether the proportional odds model holds for these data.
{lab:8.2}

Exercise 8.2 The data set housing in the MASS package gives a 3×3×4×2 table in frequency
form relating (a) satisfaction (Sat) of residents with their housing (High, Medium, Low), (b) per-
ceived degree of influence (Infl) they have on the management of the property (High, Medium,
Low), (c) Type of rental (Tower, Atrium, Apartment, Terrace), and (d) contact (Cont) residents
have with other residents (Low, High). Consider satisfaction as the ordinal response variable.

(a) Fit the proportional odds model with additive (main) effects of housing type, influence in
management and contact with neighbors to this data. (Hint: Using polr(), with the data in
frequency form, you need to use the weights argument to supply the Freq variable.)

(b) Investigate whether any of the two-factor interactions among Infl, Type and Cont add
substantially to goodness of fit of this model. (Hint: use stepAIC(), with the scope formula
~ .^2 and direction="forward".)

(c) For your chosen model from the previous step, use the methods of Section 8.1.5 to plot the
probabilities of the categories of satisfaction.

(d) Write a brief summary these analyses, interpreting how satisfaction with housing depends on
the predictor variables.

{lab:8.3}

Exercise 8.3 The data TV on television viewing was analyzed using correspondence analysis in
Example 6.4, ignoring the variable Time and extended in Exercise 6.8. Treating Network as a
three-level response variable, fit a generalized logit model (Section 8.3) to explain the variation in
viewing in relation to Day and Time. The TV data is a three-way table, so you will need to convert
it to a frequency data frame first.

> data("TV", package="vcdExtra")
> TV.df <- as.data.frame.table(TV)

(a) Fit the main-effects model, Network ~ Day + Time with multinom(). Note that you
will have to supply the weights argument because each row of TV.df represents the number
of viewers in the Freq variable.

(b) Prepare an effects plot for the fitted probabilities in this model.
(c) Interpret these results in comparison to the correspondence analysis analysis in Example 6.4.

{lab:8.4}{lab:logist-vietnam}

Exercise 8.4 Refer to Exercise 5.9 for a description of the Vietnam data set in vcdExtra. The
goal here is to fit models for the polytomous response varialble in relation to year and sex.

(a) Fit the proportional odds model to these data, allowing an interaction of year and sex.
(b) Is there evidence that the proportional odds assumption does not hold for this data set? Use

the methods described in Section 8.1 to assess this.
(c) Fit the multinomial logistic model, also allowing an interaction. Use car::Anova() to assess

the model terms.
(d) Produce an effect plot for this model and describe the nature of the interaction.
(e) Fit the simpler multinomial model in which there is no effect of year for females and the effect

of year is linear for males (on the logit scale). Test whether this model is significantly worse
than the general multinomial model with interaction.
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9
Loglinear and Logit Models for
Contingency Tables

{ch:loglin}

9 Loglinear
Models

9.1
Introduction

9.2
Loglinear
models

9.3 Fitting
and testing

9.4
Equivalent

logit models

9.5 Zero
frequencies

This chapter extends the model-building approach to loglinear and logit models. These
comprise another special case of generalized linear models designed for contingency ta-
bles of frequencies. They are most easily interpreted through visualizations, including
mosaic displays and effect plots of associated logit models.

9.1 Introduction
{sec:loglin-intro}

Tables are like cobwebs, like the sieve of Danaides; beautifully reticulated, orderly to
look upon, but which will hold no conclusion. Tables are abstractions, and the object a
most concrete one, so difficult to read the essence of.

From Chartism by Thomas Carlyle (1840), Chapter II, Statistics

The chapter continues the modeling framework begun in Chapter 7, and takes up the case of
loglinear models for contingency tables of frequencies, when all variables are discrete, another spe-
cial case of generalized linear models. These models provide a comprehensive scheme to describe
and understand the associations among two or more categorical variables. Whereas logistic re-
gression models focus on the prediction of one response factor, loglinear models treat all variables
symmetrically, and attempt to model all important associations among them.

In this sense, loglinear models are analogous to a correlation analysis of continuous variables,

347
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where the goal is to determine the patterns of dependence and independence among a set of vari-
ables. When one variable is a response and the others are explanatory, certain loglinear models
are equivalent to logistic models for that response. Such models are also particularly useful when
there are two or more response variables, a case that would require a multivariate version of the
generalized linear model, for which the current theory and implementations are thin at best.

Chapter 5 and Chapter 6 introduced some basic aspects of loglinear models in connection with
mosaic displays and correspondence analysis. In this chapter, the focus is on fitting and interpreting
loglinear models. The usual analyses, with loglm() and glm() present the results in terms of
tables of parameter estimates. Particularly for larger tables, it becomes difficult to understand the
nature of these associations from tables of parameter estimates. Instead, we emphasize plots of
observed and predicted frequencies, probabilities or log odds (when there are one or more response
variables), as well as mosaic and other displays for interpreting a given model. We also illustrate
how mosaic displays and correspondence analysis plots may be used in a complementary way to the
usual numerical summaries, to provide additional insights into the data.

Section 9.2 gives a brief overview of loglinear models in relation to the more familiar ANOVA
and regression models for quantitative data. Methods and software for fitting these models are
discussed in Section 9.3. When one variable is a response, logit models for that response provide
a simpler, but equivalent means for interpreting and graphing results of loglinear models, as we
describe in Section 9.4. In Section 9.5 we consider problems that arise in sparce contingency tables
containing cells with frequencies of zero.

9.2 Loglinear models for frequencies
{sec:loglin-counts}

Loglinear models have been developed from two formally distinct, but related perspectives. The
first is a discrete analog of familiar ANOVA models for quantitative data, where the multiplicative
relations among joint and marginal probabilities are transformed into an additive one by transform-
ing the counts to logarithms. The second is an analog of regression models, where the log of the cell
frequency is modeled as a linear function of discrete predictors, with a random component often
taken as the Poisson distribution and called Poisson regression; this approach is treated in more
detail as generalized linear models for count data in Chapter 11.

9.2.1 Loglinear models as ANOVA models for frequencies

For two discrete variables, A and B, suppose we have a multinomial sample of nij observations
in each cell i, j of an I × J contingency table. To ease notation, we replace a subscript by + to
represent summation over that dimension, so that ni+ = Σjnij , n+j = Σinij , and n++ = Σijnij .

Let πij be the joint probabilities in the table, and let mij = n++πij be the expected cell fre-
quencies under any model. Conditional on the observed total count, n++, each count has a Poisson
distribution, with mean mij . Any loglinear model may be expressed as a linear model for the
logmij . For example, the hypothesis of independence means that the expected frequencies, mij ,
obey

mij =
mi+ m+j

m++
.

This multiplicative model can be transformed to an additive (linear) model by taking logarithms
of both sides:

log(mij) = log(mi+) + log(m+j)− log(m++) ,

which is usually expressed in an equivalent form in terms of model parameters,

log(mij) = µ+ λAi + λBj (9.1){eq:lmain}
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where µ is a function of the total sample size, λAi is the “main effect” for variable A, λAi = log πi+−∑
k(log πk+)/I , and λBj is the “main effect” for variable B, λBj = log π+j −

∑
k(log π+k)/J .

Model Eqn. (9.1) is called the loglinear independence model for a two-way table.
In this model, there are 1+I+J parameters, but only (I−1)+(J−1) are separately estimable.

Hence, the typical ANOVA sum-to-zero restrictions are usually applied to the parameters:
I∑
i

λAi =

J∑
j

λBj = 0 .

These “main effects” in loglinear models pertain to differences among the marginal probabilities of
a variable (which are usually not of direct interest).

Other restrictions to make the parameters identifiable are also used. Setting the first values, λA1
and λB1 to zero (the default in glm()), defines λAi = log πi+ − log π1+, and λBj = log π+j −
log π+1, as deviations from the first, reference category, but these parameterizations are otherwise
identical. For modeling functions in R (lm(), glm(), etc.) the reference category parameteri-
zation is obtained using contr.treatment(), while the sum-to-zero constraints are obtained
with contr.sum().

Model Eqn. (9.1) asserts that the row and column variables are independent. For a two-way
table, a model that allows an arbitrary association between the variables is the saturated model,
including an additional term, λABij :

log(mij) = µ+ λAi + λBj + λABij , (9.2) {eq:lsat}

where again, restrictions must be imposed for estimation:
I∑
i

λAi = 0,

J∑
j

λBj = 0,

I∑
i

λABij =

J∑
j

λABij = 0 . (9.3) {eq:lrestrict}

There are thus I−1 linearly independent λAi row parameters, J−1 linearly independent λBj column
parameters, and (I − 1)(J − 1) linearly independent λABij association parameters. This model is
called the saturated model because the number of parameters in µ, λAi , λBj , and λABij is equal to the
number of frequencies in the two-way table,

1
(µ)

+ I − 1
(λA

i
)

+ J − 1
(λB

j
)

+ (I − 1)(J − 1)
(λAB

ij
)

= IJ
(nij)

The association parameters λABij express the departures from independence, so large absolute values
pertain to cells that differ from the independence model.

Except for the difference in notation, model Eqn. (9.2) is formally the same as a two-factor
ANOVA model with an interaction, typically expressed as E(yij) = µ+αi + βj + (αβ)ij . Hence,
associations between variables in loglinear models are analogous to interactions in ANOVA models.
The use of superscripted symbols, λAi , λ

B
j , λ

AB
ij rather than separate Greek letters is a convention in

loglinear models, and useful mainly for multiway tables.
Models such as Eqn. (9.1) and Eqn. (9.2) are examples of hierarchical models. This means that

the model must contain all lower-order terms contained within any high-order term in the model.
Thus, the saturated model, Eqn. (9.2) contains λABij , and therefore must contain λAi and λBj . As a
result, hierarchical models may be identified by the shorthand notation which lists only the high-
order terms: model Eqn. (9.2) is denoted [AB], while model Eqn. (9.1) is [A][B].

9.2.2 Loglinear models for three-way tables
{sec:loglin-3way}

Loglinear models for three-way contingency tables were described briefly in Section 5.4.2. Each
type of model allows associations among different sets of variables and each has a different inde-
pendence interpretation, as illustrated in Table 5.2.
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For a three-way table, the saturated model, denoted [ABC] is

log mijk = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk + λABCijk . (9.4) {eq:lsat3}

This model allows all variables to be associated; Eqn. (9.4) fits the data perfectly because the number
of independent parameters equals the number of table cells. Two-way terms, such as λABij pertain
to the conditional association between pairs of factors, controlling for the remaining variable. The
presence of the three-way term, λABCijk , means that the partial association (conditional odds ratio)
between any pair varies over the levels of the third variable.

Omitting the three-way term in Model Eqn. (9.4) gives the model [AB][AC][BC],

log mijk = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk , (9.5){eq:lno3way}

in which all pairs are conditionally dependent given the remaining one. For any pair, the conditional
odds ratios are the same at all levels of the remaining variable, so this model is often called the
homogeneous association model.

The interpretation of terms in this model may be illustrated using the Berkeley admissions data
(Example 4.11 and Example 4.15), for which the factors are Admit, Gender, and Department, in a
2× 2× 6 table. In the homogeneous association model,

log mijk = µ+ λAi + λDj + λGk + λADij + λAGik + λDGjk , (9.6){eq:berk1}

the λ-parameters have the following interpretations:

• The main effects, λAi , λ
D
j and λGk pertain to differences in the one-way marginal probabilities.

Thus λDj relates to differences in the total number of applicants to these departments, while λGk
relates to the differences in the overall numbers of men and women applicants.

• λADij describes the conditional association between admission and department, that is different
admission rates across departments (controlling for gender).

• λAGik relates to the conditional association between admission and gender, controlling for de-
partment. This term, if significant, might be interpreted as indicating gender-bias in admissions.

• λDGjk , the association between department and gender, indicates whether males and females
apply differentially across departments.

As we discussed earlier (Section 5.4), loglinear models for three-way (and larger) tables often
have an interpretation in terms of various types of independence relations illustrated in Table 5.2.
The model Eqn. (9.5) has no such interpretation, however the smaller model [AC][BC] can be
interpreted as asserting that A and B are (conditionally) independent controlling for C; this inde-
pendence interpretation is symbolized as A ⊥ B |C. Similarly, the model [AB][C] asserts that A
andB are jointly independent of C: (A,B) ⊥ C, while the model [A][B][C] is the model of mutual
(complete) independence, A ⊥ B ⊥ C.

9.2.3 Loglinear models as GLMs for frequencies
{sec:loglin-glms}

In the GLM approach, a loglinear model may be cast in the form of a regression model for logm,
where the table cells are reshaped to a column vector. One advantage is that models for tables of
any size and structure may be expressed in a compact form.

For a contingency table of variablesA,B,C, · · ·, withN = I×J×K×· · · cells, let n denote a
column vector of the observed counts arranged in standard order, and letm denote a similar vector
of the expected frequencies under some model. Then any loglinear model may be expressed in the
form

logm = Xβ ,
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where X is a known design or model matrix and β is a column vector containing the unknown λ
parameters.

For example, for a 2×2 table, the saturated model Eqn. (9.2) with the usual zero-sum constraints
Eqn. (9.3) can be represented as

log


m11

m12

m21

m22

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




µ
λA1
λB1
λAB11


Note that only the linearly independent parameters are represented here. λA2 = −λA1 , because
λA1 + λA2 = 0, and λB2 = −λB1 , because λB1 + λB2 = 0, and so forth.

An additional substantial advantage of the GLM formulation is that it makes it easier to express
models with ordinal or quantitative variables. glm(), with a model formula of the form Freq ~ .
involving factors A,B, . . . and quantitative variables x1, x2, . . ., constructs the model matrix X
from the terms given in the formula. A factor withK levels gives rise toK−1 columns for its main
effect and sets of K − 1 columns in each interaction effect. A quantitative predictor, say x1 (with a
linear effect) creates a single column with its values and interactions with other terms are calculated
at the products of the columns for the main effects.

The parameterization for factors is controlled by the contrasts assigned to a given factor (if any),
or by the general contrasts option, that gives the contrast functions used for unordered and
ordered factors:

> options("contrasts")

$contrasts
unordered ordered

"contr.treatment" "contr.poly"

This says that, by default, unordered factors use the baseline (first) reference-level parameteriza-
tion, while ordered factors are given a parameterization based on orthogonal polynomials, allowing
linear, quadratic, ... effects, assuming integer-spacing of the factor levels.

9.3 Fitting and testing loglinear models
{sec:loglin-fitting}

For a given table, possible loglinear models range from the baseline model of mutual independence,
[A][B][C][. . .] to the saturated model, [ABC . . .] that fits the observed frequencies perfectly, but
offers no simpler description or interpretation than the data itself.

Fitting a loglinear model is usually a process of deciding which association terms are large
enough (“significantly different from zero”) to warrant inclusion in a model to explain the observed
frequencies. Terms which are excluded from the model go into the residual or error term, which
reflects the overall badness-of-fit of the model. The usual goal of loglinear modeling is to find a
small model (few association terms) which nonetheless achieves a reasonable fit (small residuals).

9.3.1 Model fitting functions
{sec:loglin-functions}

In R, the most basic function for fitting loglinear models is loglin() in the stats package. This
uses the classical iterative proportional fitting (IPF) algorithm described in Haberman (1972) and
Fienberg (1980, §3.4). It is designed to work with the frequency data in table form, and a model
specified in terms of the (high-order) table margins to be fitted. For example, the model Eqn. (9.5)
of homogenous association for a three-way table is specified as
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> loglin(mytable, margin=list(c(1, 2), c(1, 3), c(2, 3)))

The function loglm() in MASS provides a more convenient front-end to loglin() to allow
loglinear models to be specified using a model formula. With table variables A, B and C, the same
model can be fit using loglm() as

> loglm(~ (A + B + C)^2, data=mytable)

When the data is a frequency data frame with frequencies in Freq, for example, the result of
mydf <- as.data.frame(mytable), you can also use a two-sided formula:

> loglm(Freq ~ (A + B + C)^2, data=mydf)

As implied in Section 9.2.3, loglinear models can also be fit using glm(), using family=poisson
which constructs the model for log(Freq). The same model is fit with glm() as:

> glm(Freq ~ (A + B + C)^2, data=mydf, family=poisson)

While all of these fit equivalent models, the details of the printed output, model objects, and
available methods differ, as indicated in some of the examples that follow.

It should be noted that both the loglin()/loglm() methods based on iterative proportional
fitting, and the glm() approach using the Poisson model for log frequency give maximum like-
lihood estimates, m̂, of the expected frequencies, as long as all observed frequencies n are all
positive. Some special considerations when there cells with zero frequencies are described in Sec-
tion 9.5.

9.3.2 Goodness-of-fit tests
{sec:loglin-goodfit}

For an n-way table, global goodness-of-fit tests for a loglinear model attempt to answer the question
“How well does the model reproduce the observed frequencies?” That is, how close are the fitted
frequencies estimated under the model to those of the saturated model or the data?

To avoid multiple subscripts for an n-way table, let n = n1, n2, . . . , nN denote the observed
frequencies in a table with N cells, and corresponding fitted frequencies m̂ = m̂1, m̂2, . . . , m̂N

according to a particular loglinear model. The standard goodness-of-fit statistics are sums over the
cells of measures of the difference between the n and m̂.

The most commonly used are the familiar Pearson chi-square,

X2 =

N∑
i

(ni − m̂i)
2

m̂i
, (9.7){eq:pchi}

and the likelihood-ratio G2 or deviance statistic,

G2 = 2

N∑
i

ni log

(
ni
m̂i

)
. (9.8){eq:pgsq}

Both of these statistics have asymptotic χ2 distributions (as Σn→∞), reasonably well-approximated
when all expected frequencies are large.1 The (residual) degrees of freedom are the number of cells

1Except in bizarre or borderline cases, these tests provide the same conclusions when expected frequencies are at least
moderate (all m̂ > 5). However, G2 approaches the theoretical chi-squared distribution more slowly than does χ2, and the
approximation may be poor when the average cell frequency is less than 5.
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(N ) minus the number of estimated parameters. The likelihood-ratio test can also be expressed as
twice the difference in log-likelihoods under saturated and fitted models,

G2 = 2 log

[
L(n;n)

L(m̂;n)

]
= 2[logL(n;n)− logL(m̂;n)] ,

where L(n;n) is the likelihood for the saturated model and L(m̂;n) is the corresponding maxi-
mized likelihood for the fitted model.

In practice such global tests are less useful for comparing competing models. You may find
that several different models have an acceptable fit or, sadly, that none do (usually because you are
“blessed” with a large sample size). It is then helpful to compare competing models directly, and
two strategies are particularly useful in these cases.

First, the likelihood-ratio G2 statistic has the property in that one can compare two nested mod-
els by their difference in G2 statistics, which has a χ2 distribution on the difference in degrees of
freedom. Two models, M1 and M2, are nested when one, say, M2, is a special case of the other.
That is, model M2 (with ν2 residual df) contains a subset of the parameters of M1 (with ν1 residual
df), the remaining ones being effectively set to zero. Model M2 is therefore more restrictive and
cannot fit the data better than the more general model M1, i.e., G2(M2) ≥ G2(M2). The least
restrictive of all models, with G2 = 0 and ν = 0 df is the saturated model for which m̂ = n.

Assuming that the less restrictive model M1 fits, the difference in G2,

∆G2 ≡ G2(M2 |M1) = G2(M2)−G2(M1) (9.9) {eq:gsqnest1}

= 2
∑
i

ni log(m̂i1/m̂i2) (9.10) {eq:gsqnest2}

has a chi-squared distribution with df = ν2 − ν1. The last equality Eqn. (9.10) follows from substi-
tuting in Eqn. (9.8).

Rearranging terms in Eqn. (9.9), we see that we can partition the G2(M2) into two terms,

G2(M2) = G2(M1) +G2(M2 |M1) .

The first term measures the difference between the data and the more general model M1. If this
model fits, the second term measures the additional lack of fit imposed by the more restrictive
model. In addition to providing a more focused test, G2(M2 |M1) also follows the chi-squared
distribution more closely when some {mi} are small (Agresti, 2013, §10.6.3).

Alternatively, a second strategy uses other measures that combine goodness-of-fit with model
parsimony and may also be used to compare non-nested models. The statistics described below are
all cast in the form of badness-of-fit relative to degrees of freedom, so that smaller values reflect
“better” models.

The simplest idea (Goodman, 1971) is to use G2/df (or χ2/df ), which has an asymptotic ex-
pected value of 1 for a good-fitting model. This type of measure is not routinely reported by R
software, but is easy to calculate from output.

The Akaike Information Criterion (AIC) statistic (Akaike, 1973) is a very general criterion
for model selection with maximum likelihood estimation, based on the idea of maximizing the
information provided by a fitted model. AIC is defined generally as

AIC = −2 logL+ 2k

where logL is the maximized log likelihood and k is the number of parameters estimated in the
model. Better models correspond to smaller AIC. For loglinear models, minimizing AIC is equiva-
lent to minimizing

AIC? = G2 − 2 ν ,
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where ν is the residual df, but the values of AIC and AIC? differ by an arbitrary constant. This form
is easier to calculate by hand from the output of any modeling function if AIC is not reported, or an
AIC() method is not available.

A third statistic of this type is the Bayesian Information Criterion (BIC) due to Schwartz (1978)
and Raftery (1986),

BIC = G2 − log(n) ν ,

where n is the total sample size. Both AIC and BIC penalize the fit statistic for increasing number of
parameters. BIC also penalizes the fit directly with (log) sample size, and so expresses a preference
for less complex models than AIC as the sample size increases.

9.3.3 Residuals for loglinear models
{sec:loglin-residuals}

Test statistics such as G2 can determine whether a model has significant lack of fit, and model
comparison tests using ∆G2 = G2(M2 |M1) can assess whether the extra term(s) in model M1

significantly improves the model fit. Beyond these tests, the pattern of residuals for individual cells
offers important clues regarding the nature of lack of fit and can help suggests associations that
could be accounted for better.

As with logistic regression models (Section 7.5.1), several types of residuals are available for
loglinear models. For cell i in the vector form of the contingency table, the raw residual is simply
the difference between the observed and fitted frequencies, ei = ni − m̂i.

The Pearson residual is the square root of the contribution of the cell to the Pearson χ2,

ri =
ni − m̂i√

m̂i

(9.11){eq:reschi2}

Similarly, the deviance residual can be defined as

gi = sign(ni − m̂i)
√

2ni log(ni/m̂i)− 2(ni − m̂i) (9.12){eq:resdev2}

Both of these attempt to standardize the distribution of the residuals to a standard normal,
N(0, 1) form. However, as pointed out by Haberman (1973), the asymptotic variance of these
is less than one (with average value df/N ) but, worse— the variance decreases with m̂i. That
is, residuals for cells with small expected frequencies have larger sampling variance, as might be
expected.

Consequently, Haberman suggested dividing the Pearson residual by its estimated standard error,
giving what are often called adjusted residuals. When loglinear models are fit using the GLM
approach, the adjustment may be calculated using the leverage (“hat value”), hi to give appropriately
standardized residuals,

r?i = ri/
√

1− hi
g?i = gi/

√
1− hi

These standardized versions are generally preferable, particularly for visualizing model lack of fit
using mosaic displays. The reason for preferring adjusted residuals is illustrated in Figure 9.1, a plot
of the factors,

√
1− hi, determining the standard errors of the residuals against the fitted values, m̂i,

in the model for the UCBAdmissions data described in Example 9.2 below. The values shown in
this plot are calculated as:

> berkeley <- as.data.frame(UCBAdmissions)
> berk.glm1 <- glm(Freq ~ Dept * (Gender+Admit), data=berkeley, family="poisson")
> fit <- fitted(berk.glm1)
> hat <- hatvalues(berk.glm1)
> stderr <- sqrt(1-hat)
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Figure 9.1: Standard errors of residuals,
√

1− hi decrease with expected frequencies. This plot
shows why ordinary Pearson and deviance residuals may be misleading. The symbol size in the
plot is proportional to leverage, hi. Labels abbreviate Department, Gender and Admit, colored by
Admit.{fig:stres-plot}

In R, raw, Pearson and deviance residuals may be obtained using residuals(model, type=),
where type is one of "raw", "pearson" and "deviance". Standardized (adjusted) residuals
can be calculated using rstandard(model, type=), for type="pearson" and type="deviance"
versions.

9.3.4 Using loglm()
{loglin-loglin}

Here we illustrate the basics of fitting loglinear models using loglm(). As indicated in Sec-
tion 9.3.1, the model to be fitted is specified by a model formula involving the table variables. The
MASS package provides a coef() method for "loglm" objects that extracts the estimated param-
eters and a residuals() method that calculates various types of residuals according to a type
argument, one of "deviance", "pearson", "response". vcd and vcdExtra provide a
variety of plotting methods, including assoc(), sieve(), mosaic() and mosaic3d() for
"loglm" objects. {ex:berkeley5}

EXAMPLE 9.1: Berkeley admissions
The UCBAdmissions on admissions to the six largest graduate departments at U.C. Berke-

ley was examined using graphical methods in Chapter 4 (Example 4.15) and in Chapter 5 (Exam-
ple 5.14). We can fit and compare several loglinear models as shown below.

The model of mutual independence, [A][D][G], is not substantively reasonable here, because the
association of Dept and Gender should be taken into account to control for these variables, but we
show it here to illustrate the form of the printed output, giving the Pearson χ2 and likelihood-ratio
G2 tests of goodness of fit, as well as some optional arguments for saving additional components in
the result.
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> data("UCBAdmissions")
> library(MASS)
> berk.loglm0 <- loglm(~ Dept + Gender + Admit, data=UCBAdmissions,
+ param=TRUE, fitted=TRUE)
> berk.loglm0

Call:
loglm(formula = ~Dept + Gender + Admit, data = UCBAdmissions,

param = TRUE, fitted = TRUE)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 2097.7 16 0
Pearson 2000.3 16 0

The argument param=TRUE stores the estimated parameters in the loglinear model and fitted=TRUE
stores the fitted frequencies m̂ijk. The fitted frequencies can be extracted from the model object us-
ing fitted().

> structable(Dept ~ Admit+Gender, fitted(berk.loglm0))

Dept A B C D E F
Admit Gender
Admitted Male 215.10 134.87 211.64 182.59 134.64 164.61

Female 146.68 91.97 144.32 124.51 91.81 112.25
Rejected Male 339.63 212.95 334.17 288.30 212.59 259.91

Female 231.59 145.21 227.87 196.59 144.96 177.23

Similarly, you can extract the estimated parameters with coef(berk.loglm0), and the Pear-
son residuals with residuals(berk.loglm0, type="pearson").

Next, consider the model of conditional independence of gender and admission given depart-
ment, [AD][GD] that allows associations of admission with department and gender with depart-
ment.

> # conditional independence in UCB admissions data
> berk.loglm1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
> berk.loglm1

Call:
loglm(formula = ~Dept * (Gender + Admit), data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 21.736 6 0.0013520
Pearson 19.938 6 0.0028402

Finally for this example, the model of homogeneous association, [AD][AG][GD] can be fit as
follows.2

> berk.loglm2 <-loglm(~(Admit + Dept + Gender)^2, data=UCBAdmissions)
> berk.loglm2

Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 20.204 5 0.0011441
Pearson 18.823 5 0.0020740

2It is useful to note here that the added term [AG] allows a general association of admission with gender (controlling for
department). A significance test for this term, or for model berk.loglm2 against berk.loglm1 is a proper test for the
assertion of gender bias in admissions.
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Neither of these models fits particularly well, as judged by the goodness-of-fit Pearson χ2 and
likelihood-ratio G2 test against the saturated model. The anova() method for a nested collection
of "loglm" models gives a series of likelihood-ratio tests of the difference, ∆G2 between each
sequential pair of models according to Eqn. (9.9).

> anova(berk.loglm0, berk.loglm1, berk.loglm2, test="Chisq")

LR tests for hierarchical log-linear models

Model 1:
~Dept + Gender + Admit
Model 2:
~Dept * (Gender + Admit)
Model 3:
~(Admit + Dept + Gender)^2

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 2097.671 16
Model 2 21.736 6 2075.9357 10 0.00000
Model 3 20.204 5 1.5312 1 0.21593
Saturated 0.000 0 20.2043 5 0.00114

The conclusion from these results is that the model berk.loglm1 is not much worse than
model berk.loglm2, but there is still significant lack-of-fit. The next example, using glm(),
shows how to visualize the lack of fit and account for it.

4

9.3.5 Using glm()
{sec:loglin-glm}

Loglinear models fit with glm() require the data in a data frame in frequency form, for example
as produced by as.data.frame() from a table. The model formula expresses the model for the
frequency variable, and uses family=poisson to specify the error distribution. More general
distributions for frequency data are discussed in Chapter 11. {ex:berkeley6}

EXAMPLE 9.2: Berkeley admissions
For the 2× 2× 6 UCBAdmissions table, first transform this to a frequency data frame:

> berkeley <- as.data.frame(UCBAdmissions)
> head(berkeley)

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207

Then, the model of conditional independence corresponding to berk.loglm1 can be fit using
glm() as shown below.

> berk.glm1 <- glm(Freq ~ Dept * (Gender+Admit),
+ data=berkeley, family="poisson")

Similarly, the all two-way model of homogeneous association is fit using
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> berk.glm2 <- glm(Freq ~ (Dept + Gender + Admit)^2,
+ data=berkeley, family="poisson")

These models are equivalent to those fit using loglm() in Example 9.1. We get the same
residual G2 as before, and the likelihood-ratio test of ∆G2 given by anova() gives the same
result, that the model berk.glm2 offers no significant improvement over model berk.glm1.

> anova(berk.glm1, berk.glm2, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ Dept * (Gender + Admit)
Model 2: Freq ~ (Dept + Gender + Admit)^2
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 21.7
2 5 20.2 1 1.53 0.22

Among other advantages of using glm() as opposed to loglm() is that an anova() method
is available for individual "glm" models, giving significance tests of the contributions of each term
in the model, as opposed to the tests for individual coefficients provided by summary().3

> anova(berk.glm1, test="Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: Freq

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 23 2650
Dept 5 160 18 2491 <2e-16 ***
Gender 1 163 17 2328 <2e-16 ***
Admit 1 230 16 2098 <2e-16 ***
Dept:Gender 5 1221 11 877 <2e-16 ***
Dept:Admit 5 855 6 22 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We proceed to consider what is wrong with these models and how they can be improved. A
mosaic display can help diagnose the reason(s) for lack of fit of these models. We focus here on the
model [AD][GD] that allows an association between gender and department (i.e., men and women
apply at different rates to departments).

The mosaic() method for "glm" objects in vcdExtra provides a residuals_type argu-
ment, allowing residuals_type="rstandard" for standardized residuals. The formula
argument here pertains to the order of the variables in the mosaic, not a model formula.

> library(vcdExtra)
> mosaic(berk.glm1, shade=TRUE, formula=~Admit+Dept+Gender,
+ residuals_type="rstandard", labeling=labeling_residuals,
+ main="Model: [AdmitDept][GenderDept]")

3Unfortunately, in the historical development of R, the anova() methods for linear and generalized linear models
provide only sequential (“Type I”) tests that are computationally easy, but useful only under special circumstances. The car
package provides an analogous Anova() method that gives more generally useful partial (“Type II”) tests for the additional
contribution of each term beyond the others, taking marginal relations into account.
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Figure 9.2: Mosaic display for the model [AD][GD], showing standardized residuals for the cell
contributions to G2{fig:berk-glm1-mosaic}

The mosaic display, shown in Figure 9.2, indicates that this model fits well (residuals are small)
except in Department A. This suggests a model which allows an association between Admission
and Gender in Department A only,

log mijk = µ+ λAi + λDj + λGk + λADij + λDGjk + I(j = 1)λAGik , (9.13) {eq:berk2}

where the indicator function I(j = 1) equals 1 for Department A (j = 1) and is zero otherwise. This
model asserts that Admission and Gender are conditionally independent, given Department, except
in Department A. It has one more parameter than the conditional independence model, [AD][GD],
and forces perfect fit in the four cells for Department A.

Model Eqn. (9.13) may be fit with glm() by constructing a variable equal to the interaction of
gender and admit with a dummy variable having the value 1 for Department A and 0 for other
departments.

> berkeley <- within(berkeley,
+ dept1AG <- (Dept=='A')*(Gender=='Female')*(Admit=='Admitted'))
> head(berkeley)

Admit Gender Dept Freq dept1AG
1 Admitted Male A 512 0
2 Rejected Male A 313 0
3 Admitted Female A 89 1
4 Rejected Female A 19 0
5 Admitted Male B 353 0
6 Rejected Male B 207 0

Fitting this model with the extra term dept1AG gives berk.glm3
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> berk.glm3 <- glm(Freq ~ Dept * (Gender+Admit) + dept1AG,
+ data=berkeley, family="poisson")

This model does indeed fit well, and represents a substantial improvement over model berk.glm1:

> vcdExtra::LRstats(berk.glm3)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

berk.glm3 200 222 2.68 5 0.75

> anova(berk.glm1, berk.glm3, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ Dept * (Gender + Admit)
Model 2: Freq ~ Dept * (Gender + Admit) + dept1AG
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 21.74
2 5 2.68 1 19.1 1.3e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The parameter estimate for the dept1AG term, λ̂AGik = 1.052 may be interpreted as the log odds
ratio of admission for females as compared to males in Dept. A. The odds ratio is exp(1.052) =
2.86, the same as the value calculated from the raw data (see Section 4.4.2).

> coef(berk.glm3)[["dept1AG"]]

[1] 1.0521

> exp(coef(berk.glm3)[["dept1AG"]])

[1] 2.8636

Finally, Figure 9.3 shows the mosaic for this revised model. The absence of shading indicates a
well-fitting model.

> mosaic(berk.glm3, shade=TRUE, formula=~Admit+Dept+Gender,
+ residuals_type="rstandard", labeling=labeling_residuals,
+ main="Model: [DeptGender][DeptAdmit] + DeptA*[GA]")

4

9.4 Equivalent logit models
{sec:loglin-logit}

Because loglinear models are formulated as models for the log (expected) frequency, they make
no distinction between response and explanatory variables. In effect, they treat all variables as
responses and describe their associations.

Logit (logistic regression) models, on the other hand, describe how the log odds for one variable
depends on other, explanatory variables. There is a close connection between the two: When there
is a response variable, each logit model for that response is equivalent to a loglinear model.

This relationship often provides a simpler way to formulate and test the model, and to plot and
interpret the fitted results. Even when there is no response variable, the logit representation for one
variable helps to interpret a loglinear model in terms of odds ratios. The price paid for this simplicity
is that associations among the explanatory variables are not expressed in the model.
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Figure 9.3: Mosaic display for the model berk.glm3, allowing an association of gender and
admission in Department A. This model now fits the data well.{fig:berk-glm3-mosaic}

Consider, for example, the model of homogeneous association, [AB][AC][BC], Eqn. (9.5) for
a three-way table, and let variable C be a binary response. Under this model, the logit for variable
C is

Lij = log

(
πij|1

πij|2

)
= log

(
mij1

mij2

)
= log(mij1)− log(mij2) .

Substituting from Eqn. (9.5), all terms which do not involve variable C cancel, and we are left with

Lij = log(mij1/mij2) = (λC1 − λC2 ) + (λACi1 − λACi2 ) + (λBCj1 − λBCj2 )

= 2λC1 + 2λACi1 + 2λBCj1 , (9.14) {eq:logitab1}

because all λ terms sum to zero. We are interested in how these logits depend on A and B, so
we can simplify the notation by replacing the λ parameters with more familiar ones, α = 2λC1 ,
βAi = 2λACi1 , etc., which express this relation more directly,

Lij = α+ βAi + βBj . (9.15) {eq:logitab2}

In the logit model Eqn. (9.15), the response, C, is affected by both A and B, which have additive
effects on the log odds of response category C1 compared to C2. The terms βAi and βBj correspond
directly to [AC] and [BC] in the loglinear model Eqn. (9.5). The association among the explanatory
variables, [AB] is assumed in the logit model, but this model provides no explicit representation of
that association. The logit model Eqn. (9.14) is equivalent to the loglinear model [AB][AC][BC]
in goodness-of-fit and fitted values, and parameters in the two models correspond directly.
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Table 9.1: Equivalent loglinear and logit models for a three-way table, with C as a binary response
variable. {tab:loglin-logit}

Loglinear model Logit model Logit formula
[AB][C] α C ~ 1
[AB][AC] α+ βAi C ~ A
[AB][BC] α+ βBj C ~ B
[AB][AC][BC] α+ βAi + βBj C ~ A + B
[ABC] α+ βAi + βBj + βABij C ~ A * B

Table 9.1 shows the equivalent relationships between all loglinear and logit models for a three-
way table when variable C is a binary response. Each model necessarily includes the [AB] associa-
tion involving the predictor variables. The most basic model, [AB][C], is the intercept-only model,
asserting constant odds for variable C. The saturated loglinear model [ABC], allows an interaction
in the effects of A and B on C, meaning that the AC association or odds ratio varies with B.

More generally, when there is a binary response variable, say R, and one or more explanatory
variables, A,B,C, . . ., any logit model for R has an equivalent loglinear form. Every term in the
logit model, such as βACik , corresponds to an association of those factors with R, that is, [ACR] in
the equivalent loglinear model.

The equivalent loglinear model must also include all associations among the explanatory factors,
the term [ABC . . .]. Conversely, any loglinear model which includes all associations among the
explanatory variables has an equivalent logit form. When the response factor has more than two
categories, models for generalized logits (Section 8.3) also have an equivalent loglinear form.{ex:berkeley7}

EXAMPLE 9.3: Berkeley admissions
The homogeneous association model, [AD][AG][DG] did not fit the UCBAdmissions data

very well, and we saw that the term [AG] was unnecessary. Nevertheless, it is instructive to consider
the equivalent logit model. We illustrate the features of the logit model which lead to the same
conclusions and simplified interpretation from graphical displays.

Because Admission is a binary response variable, model Eqn. (9.6) is equivalent to the logit
model,

Lij = log

(
mAdmit(ij)

mReject(ij)

)
= α+ βDept

i + βGender
j . (9.16){eq:berk3}

That is, the logit model Eqn. (9.16) asserts that department and gender have additive effects on the
log odds of admission. A significance test for the term βGender

j here is equivalent to the test of the
[AG] term for gender bias in the loglinear model. The observed log odds of admission here can be
calculated as:

> (obs <- log(UCBAdmissions[1,,] / UCBAdmissions[2,,]))

Dept
Gender A B C D E F
Male 0.4921 0.5337 -0.5355 -0.704 -0.957 -2.770
Female 1.5442 0.7538 -0.6604 -0.622 -1.157 -2.581

With the data in the form of the frequency data frame berkeley we used in Example 9.2, the
logit model Eqn. (9.16) can be fit using glm() as shown below. In the model formula, the binary
response is Admit=="Admitted". The weights argument gives the frequency, Freq in each
table cell.4

4Using weights gives the same fitted values, but not the same LR tests for model fit.
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> berk.logit2 <- glm(Admit=="Admitted" ~ Dept + Gender,
+ data=berkeley, weights=Freq, family="binomial")
> summary(berk.logit2)

Call:
glm(formula = Admit == "Admitted" ~ Dept + Gender, family = "binomial",

data = berkeley, weights = Freq)

Deviance Residuals:
Min 1Q Median 3Q Max

-25.342 -13.058 -0.163 16.017 21.320

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5821 0.0690 8.44 <2e-16 ***
DeptB -0.0434 0.1098 -0.40 0.69
DeptC -1.2626 0.1066 -11.84 <2e-16 ***
DeptD -1.2946 0.1058 -12.23 <2e-16 ***
DeptE -1.7393 0.1261 -13.79 <2e-16 ***
DeptF -3.3065 0.1700 -19.45 <2e-16 ***
GenderFemale 0.0999 0.0808 1.24 0.22
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6044.3 on 23 degrees of freedom
Residual deviance: 5187.5 on 17 degrees of freedom
AIC: 5201

Number of Fisher Scoring iterations: 6

As in logistic regression models, parameter estimates may be interpreted as increments in the
log odds, or exp(β) may be interpreted as the multiple of the odds associated with the explanatory
categories. Because glm() uses a baseline category parameterization (by default) the coefficients
of the first category of Dept and Gender are set to zero. You can see from the summary()
output that the coefficients for the departments decline steadily from A–F.5 The coefficient βGender

F =
0.0999 for females indicates that, overall, women were exp(0.0999) = 1.105 times as likely as male
applicants to be admitted to graduate school at U.C. Berkeley, a 10% advantage.

Similarly, the logit model equivalent of the loglinear model Eqn. (9.13) berk.glm3 containing
the extra 1 df term for an effect of gender in Department A is

Lij = α+ βDept
i + I(j = 1)βGender . (9.17) {eq:berk4}

This model can be fit as follows:

> berkeley <- within(berkeley,
+ dept1AG <- (Dept=='A')*(Gender=='Female'))
> berk.logit3 <- glm(Admit=="Admitted" ~ Dept + Gender + dept1AG,
+ data=berkeley, weights=Freq, family="binomial")

In contrast to the tests for individual coefficients, the Anova()method in the car package gives
likelihood-ratio tests of the terms in a model. As mentioned earlier, this provides partial (“Type II”)
tests for the additional contribution of each term beyond all others.

5In fact, the departments were labeled A–F in decreasing order of rate of admission.
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> library(car)
> Anova(berk.logit2)

Analysis of Deviance Table (Type II tests)

Response: Admit == "Admitted"
LR Chisq Df Pr(>Chisq)

Dept 763.4 5 <2e-16 ***
Gender 1.5 1 0.216
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> Anova(berk.logit3)

Analysis of Deviance Table (Type II tests)

Response: Admit == "Admitted"
LR Chisq Df Pr(>Chisq)

Dept 646.7 5 < 2e-16 ***
Gender 0.1 1 0.724
dept1AG 17.6 1 2.66e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plotting logit models

Logit models are easier to interpret than the corresponding loglinear models because there are fewer
parameters, and because these parameters pertain to the odds of a response category rather than to
cell frequency. Nevertheless, interpretation is often easier still from a graph than from the parameter
values.

The simple interpretation of these logit models can be seen by plotting the logits for a given
model. To do that, it is necessary to construct a data frame containing the observed (obs) and fitted
(fit) for the combinations of gender and department.

> pred2 <- cbind(berkeley[,1:3], fit=predict(berk.logit2))
> pred2 <- cbind(subset(pred2, Admit=="Admitted"), obs=as.vector(obs))
> head(pred2)

Admit Gender Dept fit obs
1 Admitted Male A 0.58205 0.49212
3 Admitted Female A 0.68192 1.54420
5 Admitted Male B 0.53865 0.53375
7 Admitted Female B 0.63852 0.75377
9 Admitted Male C -0.68055 -0.53552
11 Admitted Female C -0.58068 -0.66044

In this form, these results can be plotted as a line plot of the fitted logits vs. department, with
separate curves for males and females, and adding points to show the observed values. Here, we use
ggplot2 as shown below, with the aes() arguments group=Gender, color=Gender. This
produces the left panel in Figure 9.4. The same steps for the model berk.logit3 gives the right
panel in this figure. The observed logits, of course, are the same in both plots.

> library(ggplot2)
> ggplot(pred2, aes(x=Dept, y=fit, group=Gender, color=Gender)) +
+ geom_line(size=1.2) +
+ geom_point(aes(x=Dept, y=obs, group=Gender, color=Gender), size=4) +
+ ylab("Log odds (Admitted)") + theme_bw() +
+ theme(legend.position=c(.8, .9),
+ legend.title=element_text(size=14),
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+ legend.text=element_text(size=14))
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Figure 9.4: Observed (points) and fitted (lines) log odds of admissions in the logit models for the
UCBAdmissions data. Left: the logit model Eqn. (9.16) corresponding to the loglinear model
[AD] [AG] [DG]. Right: the logit model Eqn. (9.17), allowing only a 1 df term for Department A. {fig:berk-logit}

The effects seen in our earlier analyses (Examples 5.14, 5.15 and 9.2) may all be observed in
these plots. In the left panel of Figure 9.4, corresponding to the loglinear model [AD][AG][DG], the
effect of gender, βGender

j , in the equivalent logit model is shown by the constant separation between
the two curves. From the plot we see that this effect is very small (and nonsignificant). In the
right panel, corresponding to the logit model Eqn. (9.17), there is no effect of gender on admission,
except in department A, where the extra parameter allows perfect fit.

4

9.5 Zero frequencies
{sec:loglin-zeros}

Cells with frequencies of zero create problems for loglinear and logit models. For loglinear models,
most of the derivations of expected frequencies by maximum likelihood and other quantities that
depend on these (e.g., G2 tests) assume that all nijk··· > 0. In analogous logit models, the observed
log odds (e.g., for a three-way table), log(nij1/nij2), will be undefined if either frequency is zero.

Zero frequencies may occur in contingency tables for two different reasons:

• structural zeros (also called fixed zeros) will occur when it is impossible to observe values for
some combinations of the variables. For these cases we should have m̂i = 0 wherever ni = 0.
For example, suppose we have three different methods of contacting people at risk for some
obscure genetically inherited disease: newspaper advertisement, telephone campaign, and radio
appeal. If each person contacted in any way is classified dichotomously by the three methods
of contact, there can never be a non-zero frequency in the ‘No-No-No’ cell.6 Similarly, in a
tabulation of seniors by gender and health concerns, there can never be males citing menopause

6Yet, if we fit an unsaturated model, expected frequencies may be estimated for all cells, and provide a means to estimate
the total number at risk in the population. See Lindsey (1995, Section 5.4).
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or females citing prostate cancer. Square tables, such as wins and losses for sporting teams often
have structural zeros in the main diagonal.

• sampling zeros (also called random zeros) occur when the total size of the sample is not large
enough in relation to the probabilities in each of the cells to assure that someone will be observed
in every cell. Here, it is permissible to have m̂i > 0 when ni = 0. This problem increases with
the number of table variables. For example, in a European survey of religious affiliation, gen-
der and occupation, we may not happen to observe any female Muslim vineyard-workers in
France, although such individuals surely exist in the population. Even when zero frequencies
do not occur, tables with many cells relative to the total frequency tend to produce small ex-
pected frequencies in at least some cells, which tends to make the G2 statistics for model fit and
likelihood-ratio statistics for individual terms unreliable.

Following Birch (1963b), Haberman (1974) and many others (e.g., Bishop et al., 1975) identified
conditions under which the maximum likelihood estimate for a given loglinear model does not exist,
meaning that the algorithms used in loglin() and glm() do not converge to a solution. The
problem depends on the number and locations of the zero cells, but not on the size of the frequencies
in the remaining cells. Fienberg and Rinaldo (2007) give a historical overview of the problem and
current approaches and Agresti (2013, §10.6) gives a compact summary.

In R, the mechanism to handle structural zeros in the IPF approach of loglin() and loglm()
is to supply the argument start, giving a table conforming to the data, containing values of 0 in
the locations of the zero cells, and non-zero elsewhere.7 In the glm() approach, the argument
subset=Freq > 0 can be used to remove the cells with zero frequencies from the data, or else,
zero frequencies can be set to NA. This usually provides the correct degrees of freedom, however
some estimated coefficients may be infinite.

For a complete table, the residual degrees of freedom are determined as

df = # of cells− # of fitted parameters

For tables with structural zeros, an analogous general formula is

df = (# cells− # of parameters)− (# zero cells− # of NA parameters) (9.18){eq:dfzeros}

where NA parameters refers to parameters that cannot be estimated due to zero marginal totals in
the model formula.

In contrast, sampling zeros are often handled by some modification of the data frequencies to
ensure all non-zero cells. Some suggestions are:

• Add a small positive quantity (0.5 is often recommended) to every cell in the contingency table
(Goodman, 1970), as is often done in calculating empirical log odds (Example 10.9); this simple
approach over-smooths the data for unsaturated models, and should be deprecated, although
widely used in practice.

• Replace sampling zeros by some small number, typically 10−10 or smaller (Agresti, 1990).
• Add a small quantity, like 0.1, to all zero cells, sampling or structural (Evers and Namboordiri,

1977).

In complex, sparse tables, a sensitivity analysis, comparing different approaches can help determine
if the substantive conclusions vary with the approach to zero cells.{ex:health}

7If structural zeros are present, the calculation of degrees of freedom may not be correct. loglm() deducts one degree
of freedom for each structural zero, but cannot make allowance for patterns of zeros based on the fitted margins that lead to
gains in degrees of freedom due to smaller dimension in the parameter space. loglin() makes no such correction.
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EXAMPLE 9.4: Health concerns of teenagers
Fienberg (1980, Table 8-3) presented a classic example of structural zeros in the analysis of

the 4 × 2 × 2 table shown in Table 9.2. The data come from a survey of health concerns among
teenagers, originally from Brunswick (1971). Among the health concerns, the two zero entries for
menstrual problems among males are clearly structural zeros and there therefore one structural zero
in the concern by gender marginal table. As usual, we abbreviate the table variables concern, age,
gender by their initial letters, C, A, G below.

Table 9.2: Results from a survey of teenagers, regarding their health concerns. Two cells with
structural zeros are highlighted. Source: Fienberg (1980, Table 8-3) {tab:health}

Health Gender: Male Female
Concerns Age: 12-15 16-17 12-15 16-17
sex, reproduction 4 2 9 7
menstrual problems 0 0 4 8
how healthy I am 42 7 19 10
nothing 57 20 71 21

The Health data is created as a frequency data frame as follows.

> Health <- expand.grid(concerns = c("sex", "menstrual",
+ "healthy", "nothing"),
+ age = c("12-15", "16-17"),
+ gender = c("M", "F"))
> Health$Freq <- c(4, 0, 42, 57, 2, 0, 7, 20,
+ 9, 4, 19, 71, 7, 8, 10, 21)

In this form, we first use glm() to fit two small models, neither of which involves the {CG}
margin. Model health.glm0 is the model of mutual independence, [C][A][G]. Model health.glm1
is the model of joint independence, [C][AG], allowing an association between age and gender, but
neither with concern. As noted above, the argument subset=(Freq>0) is used to eliminate the
structural zero cells.

> health.glm0 <-glm(Freq ~ concerns + age + gender, data=Health,
+ subset=(Freq>0), family=poisson)
> health.glm1 <-glm(Freq ~ concerns + age * gender, data=Health,
+ subset=(Freq>0), family=poisson)

Neither of these fits the data well. To conserve space, we show only the results of the G2 tests
for model fit.

> vcdExtra::LRstats(health.glm0, health.glm1)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

health.glm0 100.7 105 27.7 8 0.00053 ***
health.glm1 99.9 104 24.9 7 0.00080 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To see why, Figure 9.5 shows the mosaic display for model health.glm1, [C][AG]. Note
that mosaic() takes care to make cells of zero frequency more visible by marking them with a
small “o”, as these have an area of zero.
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> mosaic(health.glm1, ~concerns+age+gender, residuals_type="rstandard")
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Figure 9.5: Mosaic display for the Health data, model health.glm1{fig:health-mosaic}

This suggests that there are important associations at least between concern and gender ([CG])
and between concern and age ([CA]). These are incorporated into the next model:

> health.glm2 <-glm(Freq ~ concerns*gender + concerns*age, data=Health,
+ subset=(Freq>0), family=poisson)
> vcdExtra::LRstats(health.glm2)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

health.glm2 87.7 94.7 4.66 3 0.2

The degrees of freedom are correct here. Eqn. (9.18), with 2 zero cells and 1 NA parameter due
to the zero in the {CG} margin gives df = (16 − 12) − (2 − 1) = 3. The loss of one estimable
parameter can be seen in the output from summary.

> summary(health.glm2)

Call:
glm(formula = Freq ~ concerns * gender + concerns * age, family = poisson,

data = Health, subset = (Freq > 0))

Deviance Residuals:
1 3 4 5 7 8 9 10 11 12

0.236 0.585 -0.173 -0.300 -1.202 0.302 -0.149 0.000 -0.795 0.158
13 14 15 16

0.176 0.000 1.348 -0.282

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.266 0.445 2.84 0.0045 **
concernsmenstrual -0.860 0.586 -1.47 0.1425
concernshealthy 2.380 0.471 5.05 4.4e-07 ***
concernsnothing 2.800 0.462 6.07 1.3e-09 ***
genderF 0.981 0.479 2.05 0.0405 *
age16-17 -0.368 0.434 -0.85 0.3964
concernsmenstrual:genderF NA NA NA NA
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concernshealthy:genderF -1.505 0.533 -2.82 0.0047 **
concernsnothing:genderF -0.803 0.503 -1.60 0.1105
concernsmenstrual:age16-17 1.061 0.750 1.41 0.1574
concernshealthy:age16-17 -0.910 0.513 -1.77 0.0761 .
concernsnothing:age16-17 -0.771 0.469 -1.64 0.1005
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 252.4670 on 13 degrees of freedom
Residual deviance: 4.6611 on 3 degrees of freedom
AIC: 87.66

Number of Fisher Scoring iterations: 4

In contrast, loglm() reports the degrees of freedom incorrectly for models containing zeros in
any fitted margin. For use with loglm(), we convert it to a 4× 2× table.

> health.tab <- xtabs(Freq ~ concerns + age + gender, data = Health)

The same three models are fitted with loglm() as shown below. The locations of the positive
frequencies are marked in the array nonzeros and supplied as the value of the start argument.

> nonzeros <- ifelse(health.tab>0, 1, 0)
> health.loglm0 <- loglm(~ concerns + age + gender,
+ data = health.tab, start = nonzeros)
> health.loglm1 <- loglm(~ concerns + age * gender,
+ data = health.tab, start = nonzeros)
> # df is wrong
> health.loglm2 <- loglm(~ concerns*gender + concerns*age,
+ data = health.tab, start = nonzeros)
> LRstats(health.loglm0, health.loglm1, health.loglm2)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

health.loglm0 104.7 111 27.74 8 0.00053 ***
health.loglm1 103.9 111 24.89 7 0.00080 ***
health.loglm2 93.7 104 4.66 2 0.09724 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results agree with those of glm(), except for the degrees of freedom for the last model.
4

9.6 Chapter summary
{sec:loglin-summary}

• Loglinear models provide a comprehensive scheme to describe and understand the associations
among two or more categorical variables. It is helpful to think of these as discrete analogs of
ANOVA models, or of regression models, where the log of cell frequency is modelled as a linear
function of predictors.

• Loglinear models typically make no distinction between response and explanatory variables.
When one variable is a response, however, any logit model for that response has an equiva-
lent loglinear model. The logit form is usually simpler to formulate and test, and plots of the
observed and fitted logits are easier to interpret.

• In all these cases, the interplay between graphing and fitting is important in arriving at an un-
derstanding of the relationships among variables and an adequate descriptive model which is
faithful to the details of the data.
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• Cells with zero frequencies create problems for estimation and testing hypotheses in loglinear
models. Different methods are available to handle structural zeros and sampling zeros.

9.7 Lab exercises
{sec:loglin-lab}{lab:9.1}

Exercise 9.1 Consider the data set DaytonSurvey (described in Example 2.6), giving results of
a survey of use of alcohol (A), cigarettes (C) and marijuana (M) among high school seniors. For this
exercise, ignore the variables sex and race, by working with the marginal table Dayton.ACM, a
2× 2× 2 table in frequency data frame form.

> Dayton.ACM <- aggregate(Freq ~ cigarette + alcohol + marijuana,
+ data=DaytonSurvey, FUN=sum)

(a) Use loglm() to fit the model of mutual independence, [A][C][M]
(b) Prepare mosaic display(s) for associations among these variables. Give a verbal description of

the association between cigarette and alcohol use.
(c) Use fourfold() to produce fourfold plots for each pair of variables, AC, AM and CM,

stratified by the remaining one. Describe these associations verbally.
{lab:9.2}

Exercise 9.2 Continue the analysis of the DaytonSurvey data by fitting the following models:

(a) Joint independence, [AC][M]
(b) Conditional independence, [AM][CM]
(c) Homogeneous association, [AC][AM][CM]
(d) Prepare a table giving the goodness-of-fit tests for these models, as well as the model of

mutual independence, [A][C][M] , and the saturated model, [ACM] . Hint: anova() and
LRstats() are useful here. Which model appears to give the most reasonable fit?

{lab:9.3}{lab:caesar-loglin}

Exercise 9.3 The data set Caesar in vcdExtra gives a 3 × 23 frequency table classifying 251
women who gave birth by Caesarian section by Infection (three levels: none, Type 1, Type2)
and Risk, whether Antibiotics were used and whether the Caesarian section was Planned
or not. Infection is a natural response variable, but the table has quite a few zeros.

(a) Use structable() and mosaic() to see the locations of the zero cells in this table.
(b) Use loglm() to fit the baseline model [I][ RAP] . Is there any problem due to zero cells

indicated in the output?
(c) For the purpose of this excercise, treat all the zero cells as sampling zeros by adding 0.5 to all

cells, e.g., Caesar1 <- Caesar + 0.5. Refit the baseline model.
(d) Now fit a “main effects” model [IR][ IA][ IP][ RAP] that allows associations of Infection

with each of the predictors.

TODO: Add more exercises

> #detach(package:corrplot)
> detach(package:VGAM)
> #detach(package:logmult)
> #remove(list=objects(pattern="\\.tab|\\.df|\\.fit"))
> .locals$ch08 <- setdiff(ls(), .globals)
> #.locals$ch08
> remove(list=.locals$ch08[sapply(.locals$ch08,function(n){!is.function(get(n))})])
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Loglinear models have special forms to represent additional structure in the variables
in contingency tables. Models for ordinal factors allow a more parsimonious description of
associations. Models for square tables allow a wide range of specific models for the rela-
tionship between variables with the same categories. Another extended class of models
arise when there two or more response variables.

The universe is built on a plan the profound symmetry of which is somehow present in
the inner structure of our intellect.

Paul Valery, 1871–1945

This chapter extends the analysis of loglinear models to some important special cases allowing
us to represent additional structure in the variables in contingency tables in a way that provides a
more parsimonious description of associations than available from models for general association.
One class of such simplified models (Section 10.1) occurs when one or more of the explanatory
variables are ordinal, and discrete levels might be replaced by numerical values.

Models for square tables (Section 10.2), with the same row and column categories comprise an-
other special case giving simpler descriptions than the saturated model of general association. These
important special cases are extended to three-way and higher-dimensional tables in Section 10.3.

Finally, Section 10.4 describes some methods for dealing with situations where there are several
response variables, and it is useful to understand both the marginal relations of the responses with
the predictors as well as how their association varies with the predictors.

371
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10.1 Models for ordinal variables
{sec:loglin-ordinal}

Standard loglinear models treat all classification variables as nominal, unordered factors. In these
models, all statistical tests are identical and parameter estimates are equivalent if the categories
of any of the table variable are reordered. Yet we have seen that the ordering of categories often
provides important information about the nature of associations and we showed (Section 4.2.4) that
non-parametric tests which take into account the ordered nature of a factor are more powerful.

Correspondence analysis plots (Chapter 6) make it easy to see the relationships between ordinal
variables, because the method assigns quantitative scores to the table variables which maximally
account for their association. As we saw for the hair-eye color data (Figure 6.1) and the mental
impairment data (Figure 6.2), an association can be interpreted in terms of ordered categories when
the points for two factors are ordered similarly, usually along the first CA dimension.

Similarly, in a mosaic display, an ordered associative effect is seen when the residuals have an
opposite-corner pattern of positive and negative signs and magnitudes (e.g., for the hair-eye color
data, Figure 5.4). In these cases loglinear and logit models which use the ordered nature of the
factors offer several advantages.

• Because they are more focused, tests which use the ordinal structure of the table variables are
more powerful when the association varies systematically with the ordered values of a factor.

• Because they consume fewer degrees of freedom, we can fit unsaturated models where the
corresponding model for nominal factors would be saturated. In a two-way table, for example,
a variety of models for ordinal factors may be proposed which are intermediate between the
independence model and the saturated model.

• Parameter estimates from these models are fewer in number, are easier to interpret, and quan-
tify the nature of effects better than corresponding quantities in models for nominal factors.
Estimating fewer parameters typically gives smaller standard errors.

These advantages are analogous to the use of tests for trends or polynomial contrasts in ANOVA
models. More importantly, in some research areas in the social sciences (where categorical data is
commonplace), models for ordinal variables have proved crucial in theory construction and debates,
giving more precise tests of hypotheses than available from less focused or descriptive methods
(Agresti, 1984).

10.1.1 Loglinear models for ordinal variables
{sec:loglin-ordlog}

For a two-way table, when either the row variable or the column variable, or both, are ordinal,
one simplification comes from assigning ordered scores, a = {ai}, a1 ≤ a2 ≤ · · · aI , and/or
b = {bj}, b1 ≤ b2 ≤ · · · bJ to the categories so that the ordinal relations are necessarily included in
the model. Typically, equally spaced scores are used, for example, integer scores, {ai} = i, or the
zero-sum equivalent, {ai} = i− (I + 1)/2 (e.g., {ai} = {−1, 0, 1} for I = 3).

Using such scores gives simple interpretations of the association parameters in terms of local
odds ratios for adjacent 2× 2 subtables,

θij =
mij mi+1,j+1

mi,j+1 mi+1,j
, (10.1){eq:loddsratios}

which is the odds ratio for pairs of adjacent rows and adjacent columns.
When both variables are assigned scores, this gives the linear-by-linear model (L× L)

log(mij) = µ+ λAi + λBj + γ aibj . (10.2){eq:linlin}

Because the scores a and b are fixed, this model has only one extra parameter, γ, compared to the
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independence model, which is the special case, γ = 0. In contrast, the saturated model, allowing
general association λABij uses (I − 1)(J − 1) additional parameters.

The terms γaibj in Eqn. (10.2) describe a pattern of association where deviations from inde-
pendence increase linearly with ai and bj in opposite directions towards the opposite corners of the
table, as we have often observed in mosaic displays.

In the linear-by-linear association model, the local log odds ratios are

log(θij) = γ(ai+1 − ai)(bj+1 − bj) ,

which reduces to
log(θij) = γ

for integer-spaced scores, so γ is the common local log odds ratio. As a result, the linear-by-linear
model is sometimes called the uniform association model (Goodman, 1979).

Generalizations of the linear-by-linear model result when only one variable is assigned scores.
In the row effects model (R), the row variable, A, is treated as nominal, while the column variable,
B, is assigned ordered scores {bj}. The loglinear model is then

log(mij) = µ+ λAi + λBj + αibj , (10.3) {eq:roweff}

where the αi parameters are the row effects. An additional constraint,
∑
i αi = 0 or α1 = 0 is

imposed, so that model Eqn. (10.3) has only (I−1) more parameters than the independence model.
The linear-by-linear model is the special case where the row effects are equally spaced, and the
independence model is the special case where all αi = 0.

The row-effects model Eqn. (10.3) also has a simple odds ratio interpretation. The local log
odds ratio for adjacent pairs of rows and columns is

log(θij) = αi+1 − αi ,

which is constant for all pairs of adjacent columns. Plots of the local log odds ratio against i would
appear as a set of parallel curves.

In the analogous column effects model (C), (J − 1) linearly independent column effect pa-
rameters βj are estimated for the column variable, while fixed scores {ai} are assigned to the row
variable. It is also possible to fit a row plus column effects model (R+C), that assigns specified
scores to both the rows and column variables.

Nesting relationships among these models and others described in Section 10.1.2 are shown in
Figure 10.1. Any set of models connected by a path can be directly compared with likelihood-ratio
tests of the form G2(M2|M1).

In R, the L × L, row effects and column effects models can all be fit using glm() simply by
replacing the appropriate table factor variable(s) with their as.numeric() equivalents. {ex:mental4}

EXAMPLE 10.1: Mental impairment and parents’ SES
The Mental data on the mental health status of young New York residents in relation to their

parents’ socioeconomic status was examined in Example 4.7 using CMH tests for ordinal associ-
ation and in Example 6.2 using correspondence analysis. Figure 6.2 showed that nearly all of the
association in the table was accounted for by a single dimension along which both factors were
ordered, consistent with the view that mental health increased in relation to parents’ SES.

Because these models provide their interpretations in terms of local odds ratios, Eqn. (10.1), it is
helpful to see these values for the observed data, corresponding to the saturated model. The values
log(θij) are calculated by loddsratio() in vcdExtra, with the data in table form.

> (mental.tab <- xtabs(Freq ~ mental+ses, data=Mental))
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Figure 10.1: Nesting relationships among some association models for an I×J table specifying the
association parameters, λijAB . Model 0 is the independence model. Formulas near the boxes give
the number of identifiable association parameters. Arrows point from one nested model to another
that is a more general version. {fig:assoc-models}

ses
mental 1 2 3 4 5 6
Well 64 57 57 72 36 21
Mild 94 94 105 141 97 71
Moderate 58 54 65 77 54 54
Impaired 46 40 60 94 78 71

> loddsratio(mental.tab)

log odds ratios for mental and ses

ses
mental 1:2 2:3 3:4 4:5 5:6
Well:Mild 0.1158 0.1107 0.0612 0.3191 0.227
Mild:Moderate -0.0715 0.0747 -0.1254 0.0192 0.312
Moderate:Impaired -0.0683 0.2201 0.2795 0.1682 -0.094
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0.1

0.14

0.19
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0.32
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Mild:Moderate

Moderate:Impaired

Figure 10.2: Shaded-square plot of the local odds ratios in the Mental data.{fig:mental-lorplot}

A simple plot of these values, using area- and color-proportional shaded squares is shown in
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Figure 10.2. This plot is drawn using the corrplot package. It is easy to see that most of the local
odds ratios are mildly positive.

> M <- as.matrix(loddsratio(mental.tab))
> library(corrplot)
> corrplot(M, method="square", is.corr=FALSE,
+ tl.col="black", tl.srt=0, tl.offset=1)

For comparison with the L× L model fitted below, the mean local log odds ratio is 0.103.

> mean(loddsratio(mental.tab)$coefficients)

[1] 0.10323

As a baseline, we first fit the independence model (testing H0 : log(θij) = 0) with glm(). As
expected, this model fits quite badly, with G2 (15) = 47.418.

> indep <- glm(Freq ~ mental + ses,
+ family = poisson, data = Mental)
> vcdExtra::LRstats(indep)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

indep 210 220 47.4 15 3.2e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The mosaic display of standardized residuals from this model is shown in Figure 10.3. The
argument labeling=labeling_residuals is used to show the numerical values in the cells
with absolute values greater than suppress=1.

> long.labels <- list(set_varnames = c(mental="Mental Health Status",
+ ses="Parent SES"))
> mosaic(indep,
+ gp=shading_Friendly,
+ residuals_type="rstandard",
+ labeling_args = long.labels,
+ labeling=labeling_residuals, suppress=1,
+ main="Mental health data: Independence")

This figure shows the classic opposite-corner pattern of the signs and magnitudes of the residuals
that would arise if the association between mental health and SES was could be explained by the
ordinal relation of these factors using one of the L× L, R or C models.

To fit such ordinal models, you can use as.numeric() on a factor variable to assign integer
scores, or assign other values if integer spacing is not appropriate.

> Cscore <- as.numeric(Mental$ses)
> Rscore <- as.numeric(Mental$mental)

Then, the L × L, R and C models can be fit as follows, using update(), where beyond the
main effects of mental and ses, their association is represented as the interaction of the numeric
score(s) or factor(s), as appropriate in each case.

> linlin <- update(indep, . ~ . + Rscore:Cscore)
> roweff <- update(indep, . ~ . + mental:Cscore)
> coleff <- update(indep, . ~ . + Rscore:ses)

Goodness-of-fit tests for these models are shown below. They show that all of the L×L, R and
C models are acceptable in terms of the likelihood-ratio G2. The L×L model, with only one more
parameter than the independence model is judged the best by both AIC and BIC.
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Figure 10.3: Mosaic display of the independence model for the mental health data. {fig:mental-indep}

> vcdExtra::LRstats(indep, linlin, roweff, coleff)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

indep 209.6 220.2 47.42 15 3.16e-05 ***
linlin 174.1 185.8 9.90 14 0.770
roweff 174.4 188.6 6.28 12 0.901
coleff 179.0 195.5 6.83 10 0.741
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In cases where such overall tests are unclear, you can carry out tests of nested sets of models
using anova(), giving tests of ∆G2.

> anova(indep, linlin, roweff, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ mental + ses
Model 2: Freq ~ mental + ses + Rscore:Cscore
Model 3: Freq ~ mental + ses + mental:Cscore
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15 47.4
2 14 9.9 1 37.5 9e-10 ***
3 12 6.3 2 3.6 0.16
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> anova(indep, linlin, coleff, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ mental + ses
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Model 2: Freq ~ mental + ses + Rscore:Cscore
Model 3: Freq ~ mental + ses + ses:Rscore
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15 47.4
2 14 9.9 1 37.5 9e-10 ***
3 10 6.8 4 3.1 0.55
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Under the L × L model, the estimate of the coefficient of Rscore:Cscore is γ̂ = 0.0907
(s.e.=0.015) with unit-spaced scores, as shown below.

> # interpret linlin association parameter
> coef(linlin)[["Rscore:Cscore"]]

[1] 0.090687

> exp(coef(linlin)[["Rscore:Cscore"]])

[1] 1.0949

This corresponds to a local odds ratio, θ̂ij = exp(0.0907) = 1.095. This single number describes
the association succinctly: each step down the socioeconomic scale increases the odds of being
classified one step poorer in mental health by 9.5%.

4

10.1.2 Log-multiplicative (RC) models
{sec:RCmodels}

The association models described above are all more parsimonious and easier to interpret than the
saturated model. However, they depend on assigning fixed and possibly arbitrary scores to the
variable categories. A generalization of the L× L model that treats both row and column scores as
parameters is the row-and-column effects model (RC(1)) suggested by Goodman (1979),

log(mij) = µ+ λAi + λBj + γ αiβj , (10.4) {eq:RC1}

where γ,α and β comprise additional parameters to be estimated beyond the independence model.1

This model has a close connection with correspondence analysis (Goodman, 1985), where the es-
timated scores α and β are analogous to correspondence analysis scores on a first dimension.2 γ,
called the intrinsic association coefficient is analogous to the same parameter in the L× L model.

For identifiability and interpretation it is necessary to impose some normalization constraints
on the α and β. An unweighted, unit standardized solution forces

∑
i αi =

∑
j βj = 0 and∑

i α
2
i =

∑
j β

2
j = 1. Alternatively, and more akin to correspondence analysis solutions, the

marginally weighted solution uses the marginal probabilities πi+ of the row variable and π+j of the
columns as weights. ∑

i

αiπi+ =
∑
j

βjπ+j = 0 (10.5) {eq:RC-constraints}

∑
i

α2
iπi+ =

∑
j

β2
jπ+j = 1

1In contrast to the R, C and R+C models, RC models do not assume that the categories are appropriately ordered because
the category scores are estimated from the data.

2However, when estimated by maximum likelihood, the RC(1) model allows likelihood-ratio tests of parameters and
model fit, AIC and BIC statistics, and methods for estimating standard errors of the parameters. Such model-based methods
are not available for correspondence analysis.
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Goodman (1986) generalized this to multiple bilinear terms of the form γk αikβjk, with M
terms (the RC(M) model) and showed that all associations in the saturated model could be expressed
exactly as

λABij =

M∑
k=1

γk αikβjk M = min (I − 1, J − 1) . (10.6) {eq:RCm}

In practice, models with fewer terms usually suffice. For example, an RC(2) model with two mul-
tiplicative terms is analogous to a two-dimensional correspondence analysis solution. In addition
to the normalization constraints for the RC(1) model, parameters in an RC(M) model must satisfy
the additional constraints that the (possibly weighted) scores for distinct dimensions are orthogonal
(uncorrelated), similar to correspondence analysis solutions.

The RC model is not a loglinear model because it contains a multiplicative term in the parame-
ters. This model and a wide variety of other nonlinear models for categorical data can be fit using
gnm() in the gnm package. This provides the basic machinery for extending glm() models to
nonlinear terms, quite generally. The function rc() in the logmult package uses gnm() for fitting,
and offers greater convenience in normalizing the category scores, calculating standard errors and
plotting.{ex:mental5}

EXAMPLE 10.2: Mental impairment and parents’ SES
The gnm package provides a number of functions that can be used in model formulas for non-

linear association terms. Among these, Mult() expresses a multiplicative association in terms of
two (or more) factors. The RC(1) model for factors A, B uses Mult(A,B) for the association
term in Eqn. (10.4). Multiple multiplicative RC terms, as in Eqn. (10.6) can be expressed using
instances(Mult(A,B), m).

To illustrate, we fit the RC(1) and RC(2) models to the Mental data using gnm(). In this
table, both factors are ordered, but we don’t want to use the default polynomial contrasts, so we set
their contrast attributes to treatment.

> library(gnm)
> Mental$mental <- C(Mental$mental, treatment)
> Mental$ses <- C(Mental$ses, treatment)
> RC1 <- gnm(Freq ~ mental + ses + Mult(mental, ses),
+ family = poisson, data = Mental, verbose=FALSE)
> RC2 <- gnm(Freq ~ mental + ses + instances(Mult(mental, ses),2),
+ family = poisson, data = Mental, verbose=FALSE)

For comparison with the loglinear association models fit in Example 10.1 we show the G2

goodness of fit tests for all these models. The ordinal loglinear models and the RC models all fit
well, with the L× L model preferred on the basis of parsimony by AIC and BIC.

> vcdExtra::LRstats(indep, linlin, roweff, coleff, RC1, RC2)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

indep 209.6 220.2 47.42 15 3.16e-05 ***
linlin 174.1 185.8 9.90 14 0.770
roweff 174.4 188.6 6.28 12 0.901
coleff 179.0 195.5 6.83 10 0.741
RC1 179.7 198.6 3.57 8 0.894
RC2 186.7 211.4 0.52 3 0.914
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The substantive difference between the L × L model and the RC(1) model is whether the cat-
egories of mental health status and SES can be interpreted as equally spaced along some latent
continua, versus the alternative that category spacing is unequal. We can test this directly using
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the likelihood-ratio test, G2(L× L |RC(1)) Similarly, model RC1 is nested within model RC2, so
G2(RC(1) |RC(2)) gives a direct test of the need for a second dimension.

> anova(linlin, RC1, RC2, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ mental + ses + Rscore:Cscore
Model 2: Freq ~ mental + ses + Mult(mental, ses)
Model 3: Freq ~ mental + ses + Mult(mental, ses, inst = 1) + Mult(mental,

ses, inst = 2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 14 9.90
2 8 3.57 6 6.32 0.39
3 3 0.52 5 3.05 0.69

We see that estimated scores for the categories in the model RC1 do not provide a significantly
better fit, and there is even less evidence for a second dimension of category parameters in the RC2
model.

Nevertheless, for cases where RC models do provide some advantage, it is useful to know how
to visualize the estimated category parameters. The key to this is the function getContrasts()
which computes contrasts or scaled contrasts for a set of (non-eliminated) parameters from a "gnm"
model, together with standard errors for the estimated contrasts following the methods of Firth
(2003), Firth and Menezes (2004). The details are explained in help(getContrasts) and in
vignette("gnmOverview") that comes with the gnm package.

The coefficients in the marginally-weighted solution Eqn. (10.5) can be obtained as follows.

> rowProbs <- with(Mental, tapply(Freq, mental, sum) / sum(Freq))
> colProbs <- with(Mental, tapply(Freq, ses, sum) / sum(Freq))
> mu <- getContrasts(RC1, pickCoef(RC1, "[.]mental"),
+ ref = rowProbs, scaleWeights = rowProbs)
> nu <- getContrasts(RC1, pickCoef(RC1, "[.]ses"),
+ ref = colProbs, scaleWeights = colProbs)

In our notation, the coefficients α and β can be extracted as the qvframe component of the
"qv" object returned by getContrasts().

> (alpha <- mu$qvframe)

Estimate Std. Error
Mult(., ses).mentalWell 1.67378 0.19043
Mult(., ses).mentalMild 0.14009 0.20018
Mult(., ses).mentalModerate -0.13669 0.27948
Mult(., ses).mentalImpaired -1.41055 0.17418

> (beta <- nu$qvframe)

Estimate Std. Error
Mult(mental, .).ses1 1.111360 0.29921
Mult(mental, .).ses2 1.120459 0.31422
Mult(mental, .).ses3 0.370752 0.31915
Mult(mental, .).ses4 -0.027006 0.27328
Mult(mental, .).ses5 -1.009480 0.31470
Mult(mental, .).ses6 -1.816647 0.28095

For plotting this RC(1) solution for the scaled category scores together with their estimated
standard errors, a dotchart(), shown in Figure 10.4 provides a reasonable visualization.

To create this plot, first combine the row and column scores in a data frame, and add columns
lower, upper corresponding to ±1 standard error (or some other multiple).
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Figure 10.4: Dotchart of the scaled category scores for the RC(1) model fit the mental health data.
Error bars show ±1 standard error. {fig:mental-RC1}

> scores <- rbind(alpha, beta)
> scores <- cbind(scores,
+ factor=c(rep("mental", 4), rep("ses", 6)) )
> rownames(scores) <- c(levels(Mental$mental), levels(Mental$ses))
> scores$lower <- scores[,1]-scores[,2]
> scores$upper <- scores[,1]+scores[,2]
> scores

Estimate Std. Error factor lower upper
Well 1.674 0.190 mental 1.4834 1.864
Mild 0.140 0.200 mental -0.0601 0.340
Moderate -0.137 0.279 mental -0.4162 0.143
Impaired -1.411 0.174 mental -1.5847 -1.236
1 1.111 0.299 ses 0.8121 1.411
2 1.120 0.314 ses 0.8062 1.435
3 0.371 0.319 ses 0.0516 0.690
4 -0.027 0.273 ses -0.3003 0.246
5 -1.009 0.315 ses -1.3242 -0.695
6 -1.817 0.281 ses -2.0976 -1.536

The dotchart shown in Figure 10.4 is then a plot of Estimate, grouped by factor, with
arrows showing the range of lower to upper for each parameter.

> with(scores, {
+ dotchart(Estimate, groups=factor, labels=rownames(scores),
+ cex=1.2, pch=16, xlab="RC1 Score",
+ xlim=c(min(lower), max(upper)))
+ arrows(lower, c(8+(1:4), 1:6), upper, c(8+(1:4), 1:6),
+ col="red", angle=90, length=.05, code=3, lwd=2)
+ })

In this plot, the main substantive difference from the L×L model is in the spacing of the lowest
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two categories of ses and the middle two categories of mental which are not seen to differ in the
RC1 model.

The coefficients in the RC2model can also be plotted (in a 2D plot) by extracting the coefficients
from the "gnm" object and reshaping them to 2-column matrices. The function pickCoef() is
handy here to get the indices of a subset of parameters by matching a pattern in their names. TODO:
Maybe delete some of this, in favor of using logmult.

> alpha <- coef(RC2)[pickCoef(RC2, "[.]mental")]
> alpha <- matrix(alpha, ncol=2)
> rownames(alpha) <- levels(Mental$mental)
> colnames(alpha) <- c("Dim1", "Dim2")
> alpha

Dim1 Dim2
Well 0.497610 -0.192275
Mild 0.042652 -0.039651
Moderate 0.127071 0.208333
Impaired -0.505584 -0.012349

> beta <- coef(RC2)[pickCoef(RC2, "[.]ses")]
> beta <- matrix(beta, ncol=2)
> rownames(beta) <- levels(Mental$ses)
> colnames(beta) <- c("Dim1", "Dim2")
> beta

Dim1 Dim2
1 0.547607 -0.167775
2 0.574184 -0.082320
3 0.205737 0.078252
4 -0.087662 -0.349440
5 -0.502335 0.059357
6 -0.758785 1.233043

The simple, unweighted scaling to mean 0, variance 1 can be obtained with scale():

> alpha <- scale(alpha)
> beta <- scale(beta)

Alternatively, the marginal-weighted scaling of Eqn. (10.5) is obtained by centering at the weighted
mean and dividing by the weighted sum of squares. We use this scaling here.

> alpha <- apply(alpha, 2, function(x) x - sum(x*rowProbs))
> alpha <- apply(alpha, 2, function(x) x/sqrt(sum(x^2 * rowProbs)))
> beta <- apply(beta, 2, function(x) x - sum(x*colProbs))
> beta <- apply(beta, 2, function(x) x/sqrt(sum(x^2 * colProbs)))

To plot these category scores, first combine them into a single data frame,

> scores <- data.frame(rbind(alpha,beta))
> scores$factor <- c(rep("mental", 4), rep("ses", 6))
> scores$probs <- c(rowProbs, colProbs)
> scores

Dim1 Dim2 factor probs
Well 1.4526 -1.4241 mental 0.185
Mild 0.0783 -0.2484 mental 0.363
Moderate 0.3333 1.6618 mental 0.218
Impaired -1.5777 -0.0381 mental 0.234
1 1.1509 -0.4849 ses 0.158
2 1.2075 -0.3067 ses 0.148
3 0.4230 0.0282 ses 0.173
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4 -0.2017 -0.8638 ses 0.231
5 -1.0847 -0.0112 ses 0.160
6 -1.6307 2.4368 ses 0.131
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Figure 10.5: Scaled category scores for the RC(2) model fit the mental health data.{fig:mental-RC2}

Then, we use xyplot() to plot the scores on Dim2 against Dim1, with separate lines and
colors for the two factors. The resulting plot is shown in Figure 10.5.

> library(lattice)
> xyplot(Dim2 ~ Dim1, groups=factor, data=scores, type="b",
+ cex=1.3, pch=16, lwd=2, aspect="iso",
+ panel=function(x, y, ...) {
+ panel.xyplot(x, y, ...)
+ panel.text(x=x, y=y, labels=rownames(scores), pos=1, cex=1.2)
+ panel.abline(h=0, col="gray")
+ panel.abline(v=0, col="gray")
+ }
+ )

The patterns of the row and column category scores here are quite similar to the 2D correspon-
dence analysis solution shown in Figure 6.2. The main difference is in the relative scaling of the
axes. In Figure 10.5, the variances of the two dimensions are equated; in the correspondence analy-
sis plot, the axes are scaled in relation to their contributions to Pearson χ2, allowing an interpretation
of distance between points in terms of χ2-distance.

4

10.1.2.1 Using logmult

From the previous example, you can see that it takes a fair bit of work to extract the coefficients
from "gnm" objects and carry out the scaling necessary for informative plots. Much of this effort is
now performed by the logmult package with several convenience functions that do the heavy lifting.
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rc() fits the class of RC(M) models, allowing an argument nd to specify the number of dimen-
sions, and also providing for standard errors estimated using jackknife and bootstrap meth-
ods (Milan and Whittaker, 1995), which are computationally intensive. For square tables, a
symmetric argument constrains the row and column scores to be equal, and a diagonal
option fits parameters for each diagonal cell, providing for models of quasi-independence and
quasi-symmetry (see Section 10.2).

It returns an object of class "rc" with the components of the "gnm" object. An assoc compo-
nent is also returned, containing the normalized association parameters for the categories.

rcL() fits extensions of RC models to tables with multiple layers, called RC(M)-L models by
Wong (2010).

plot.rc() is a plot method for visualizing scores for RC(M) models in two selected dimensions.
Among other options, it can plot confidence ellipses for the category scores, using the estimated
covariance matrix (assuming a normal distribution of the category scores). The plot method
returns (invisibly) the coordinates of the scores as plotted, facilitating additional plot annotation.

{ex:mental6}

EXAMPLE 10.3: Mental impairment and parents’ SES
Here we use rc() to estimate the RC(1) and RC(2) models for the Mental data. In contrast to

gnm(), which has a formula interface for a data argument, rc() requires the input in the form
of a two-way table, given here as mental.tab.

> library(logmult)
> rc1 <- rc(mental.tab, verbose=FALSE, weighting="marginal",
+ se="jackknife")
> rc2 <- rc(mental.tab, verbose=FALSE, weighting="marginal", nd=2,
+ se="jackknife")

The option weighting="marginal" gives the marginally-weighted solution and se="jackknife"
estimates the covariance matrix using the leave-one-out jackknife.3

A plot of the scaled category scores similar to Figure 10.5, with 1 standard error confidence
ellipses (making them comparable to the 1D solution shown in Figure 10.4) but no connecting lines
can then be easily produced with the plot() method for "rc" objects.

> coords <- plot(rc2, conf.ellipses=0.68, cex=1.5, rev.axes=c(TRUE, FALSE))

The orientation of the axes is arbitrary in RC(M) models, so the horizontal axis is reversed here to
conform with Figure 10.5.

This produces (in Figure 10.6) a symmetric biplot in which the scaled coordinates of points for
rows (αik) and columns (βjk) on both axes are the product of normalized scores and the square root
of the intrinsic association coefficient (γk) corresponding to each dimension.

Such plots can be customized using the category coordinates (coords) returned by the plot()
method. As in other biplots, joining the row and column points by lines (sorted by the first dimen-
sion) makes it easier to see their relationships across the two dimensions. The following code draws
the lines shown in Figure 10.6.

> scores <- rbind(coords$row, coords$col)
> lines(scores[1:4,], col="blue", lwd=2)
> lines(scores[-(1:4),], col="red", lwd=2)

3Becker and Clogg (1989) recommend using unweighted solutions, weighting="none" (they call them “uniformly
weighted”) to preserve independence of inferences about association and marginal effects and estimates of the intrinsic
association parameters, γk . That choice makes very little difference in the plots for this example, but the γk parameters are
affected considerably.
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Figure 10.6: Scaled category scores for the RC(2) model fit and plotted using the logmult pack-
age. The 68% confidence ellipses correspond to bivariate ±1 confidence intervals for the category
parameters. {fig:mental-logmult-rc2}

We saw earlier that there was not strong evidence supporting the need for a second RC dimension
to describe the relationship between mental health and SES. This is apparent in the sizes of the
confidence ellipses, which overlap much more along Dimension 2 than Dimension 1. 4

10.2 Square tables
{sec:loglin-square}

Square tables, where the row and column variables have the same categories comprise an important
special case for loglinear models that can account for associations more parsimoniously than the
saturated model. Some examples are the data on visual acuity in Example 4.14, categorical ratings of
therapy clients by two observers, and mobility tables, tracking the occupational categories between
generations in the same families or migration tables, giving movement of people between regions.
The latter topics has been important in sociological and geographic research and has spurred the
development of a wide range of specialized loglinear models for this purpose.

10.2.1 Quasi-independence, symmetry, quasi-symmetry and topolog-
ical models

{sec:sq-quasi}
In many square tables, such as the Vision data, independence is not a credible hypothesis because
the diagonal cells, representing equal values of the row and column variables tend to be very large
and often contribute most of the lack of fit. A substantively more interesting hypothesis is whether
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the table exhibits independence, ignoring the diagonal cells. This leads to what is called the quasi-
independence model, that specifies independence only in the off-diagonal cells.

For a two-way table, quasi-independence can be expressed as

πij = πi+π+j for i 6= j

or in loglinear form as
logmij = µ+ λAi + λBj + δiI(i = j) .

This model effectively adds one parameter, δi, for each main diagonal cell which fits those frequen-
cies perfectly.

Another hypothesis of substantive interest for square tables, particularly those concerning oc-
cupational and geographical mobility is that the joint distribution of row and column variables is
symmetric, that is, πij = πji for all i 6= j. For example, this symmetry model (S) asserts that sons
are as likely to move from their father’s occupation i to another, j, as the reverse. This form of
symmetry is quite strong, because it also implies marginal homogeneity (MH), that the marginal
probabilities of the row and column variables are equal, πi+ =

∑
j πij =

∑
j πji = π+i for all i.

To separate marginal homogeneity from symmetry of the association terms per se, the model of
quasi-symmetry (QS) uses the standard main-effect terms in the loglinear model,

logmij = µ+ λAi + λBj + λij , (10.7) {eq:quasi-symm}

where λij = λji. It can be shown (Caussinus, 1966) that

symmetry = quasi-symmetry + marginal homogeneity
G2(S) = G2(QS) +G2(MH)

where G2(MH) is defined by the likelihood-ratio test of the difference between the S and QS
models,

G2(MH) ≡ G2(S |QS) = G2(S)−G2(QS) . (10.8) {eq:mh}

The gnm package provides several model building convenience functions that facilitate fitting
these and related models:

• Diag(row, col, ...) constructs a diagonals association factor for two (or more) factors
with integer levels where the original factors are equal, and "." otherwise.

• Symm(row, col, ...) constructs an association factor giving equal levels to sets of sym-
metric cells. The QS model is specified using Diag() + Symm().

• Topo(row, col, ..., spec) creates an association factor for two or more factors, as
specified by an array of levels, which may be arbitrarily structured. Both Diag() and Symm()
factors are special cases of Topo().

The factor levels representing these association effects for a 4×4 table are shown below by their
unique values in each array.

Diag4×4 =

 1 . . .
. 2 . .
. . 3 .
. . . 4

 Symm4×4 =

 11 12 13 14
12 22 23 24
13 23 33 34
14 24 34 44

 Topo4×4 =

 2 3 4 4
3 3 4 4
4 4 5 5
4 4 5 1


{ex:vision-glm}

EXAMPLE 10.4: Visual acuity
Example 4.14 presented the data on tests of visual acuity in the left and right eyes of a large

sample of women working in the Royal Ordnance factories in World War II. A sieve diagram
(Figure 4.10) showed that, as expected, most women had the same acuity in both eyes, but the
off-diagonal cells had a pattern suggesting some form of symmetry.

The data set VisualAcuity contains data for both men and women in frequency form and
for this example we subset this to include only the 4× 4 table for women.
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> data("VisualAcuity", package="vcd")
> women <- subset(VisualAcuity, gender=="female", select=-gender)

The four basic models of independence, quasi-independence, symmetry and quasi-symmetry
for square tables are fit as shown below. We use update() to highlight the relations among these
models in two pairs.

> #library(vcdExtra)
> indep <- glm(Freq ~ right + left, data = women, family = poisson)
> quasi <- update(indep, . ~ . + Diag(right, left))
>
> symm <- glm(Freq ~ Symm(right, left), data = women, family = poisson)
> qsymm <- update(symm, . ~ right + left + .)

The brief summary of goodness of fit of these models below shows that the QS model fits
reasonably well, but none of the others do by likelihood-ratio tests or AIC or BIC.

> vcdExtra::LRstats(indep, quasi, symm, qsymm)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

indep 6803 6808 6672 9 <2e-16 ***
quasi 338 347 199 5 <2e-16 ***
symm 157 164 19 6 0.0038 **
qsymm 151 161 7 3 0.0638 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Beyond just saying that the QS model fits best, the reasons why it does can be seen in mosaic
displays. Figure 10.7 compares the mosaics for the models of quasi-independence (accounting only
for the diagonal cells) and quasi-symmetry (also accounting for symmetry). It can be seen in the
left panel that the non-diagonal associations are largely symmetric, and also that when they differ,
visual acuity in the two eyes are most likely to differ by only one eye grade.

> labs <- c("High", "2", "3", "Low")
> largs <- list(set_varnames = c(right="Right eye grade",
+ left="Left eye grade"),
+ set_labels=list(right=labs, left=labs))
> mosaic(quasi, ~right + left, residuals_type="rstandard",
+ gp=shading_Friendly,
+ labeling_args=largs,
+ main="Quasi-Independence (women)")
> mosaic(qsymm, ~right + left, residuals_type="rstandard",
+ gp=shading_Friendly,
+ labeling_args=largs,
+ main="Quasi-Symmetry (women)")

Finally, as usual, anova() can be used to carry out specific tests of nested models. For exam-
ple, the test of marginal homogeneity Eqn. (10.8) compares models S and QS and shows here that
the marginal probabilities for the left and right eyes differ.

> anova(symm, qsymm, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ Symm(right, left)
Model 2: Freq ~ right + left + Symm(right, left)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 19.25
2 3 7.27 3 12 0.0075 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



10.2: Square tables 387

−9.7

−4.0

−2.0

 0.0

 2.0

 4.0

 8.5
rstandard

Quasi−Independence (women)

Left eye grade

R
ig

ht
 e

ye
 g

ra
de

Lo
w

3
2

H
ig

h

High 2 3 Low

−2

 0

 2
rstandard

Quasi−Symmetry (women)

Left eye grade

R
ig

ht
 e

ye
 g

ra
de

Lo
w

3
2

H
ig

h

High 2 3 Low

Figure 10.7: Mosaic displays comparing the models of quasi-independence and quasi-symmetry
for visual acuity in women.{fig:vision-mosaics}

4
{ex:hauser1}

EXAMPLE 10.5: Hauser’s occupational mobility table
The data Hauser79 in vcdExtra, from Hauser (1979), gives a 5 × 5 table in frequency form

cross-classifying 19,912 individuals in the United States by father’s occupation and son’s first oc-
cupation. The occupational categories are represented by abbreviations, of Upper Non-Manual
(UpNM), Lower Non-Manual (LoNM), Upper Manual (UpM), Lower Manual (LoM) and Farm. These
data were also analysed by Powers and Xie (2008).

> data("Hauser79", package="vcdExtra")
> structable(~Father+Son, data=Hauser79)

Son UpNM LoNM UpM LoM Farm
Father
UpNM 1414 521 302 643 40
LoNM 724 524 254 703 48
UpM 798 648 856 1676 108
LoM 756 914 771 3325 237
Farm 409 357 441 1611 1832

Before fitting any models, it is useful to calculate and plot the observed local log odds ratios,
as we did in Example 10.1 to see the patterns in the data that need to be accounted for. These are
calculated using loddsratio().

> hauser.tab <- xtabs(Freq ~ Father+Son, data=Hauser79)
> (lor.hauser <- loddsratio(hauser.tab))

log odds ratios for Father and Son

Son
Father UpNM:LoNM LoNM:UpM UpM:LoM LoM:Farm
UpNM:LoNM 0.67513 -0.17883 0.26230 0.093109
LoNM:UpM 0.11508 1.00254 -0.34613 -0.057878
UpM:LoM 0.39801 -0.44852 0.78964 0.100869
LoM:Farm -0.32577 0.38145 -0.16597 2.769718
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This 4× 4 table is graphed using matplot(), giving Figure 10.8.

> matplot(as.matrix(lor.hauser), type='b', lwd=2,
+ ylab='Local log odds ratio',
+ xlab="Son's status comparisons",
+ xaxt='n', cex.lab=1.2,
+ xlim=c(1,4.5), ylim=c(-.5,3)
+ )
> abline(h=0, col='gray') # independence
> abline(h=mean(lor.hauser$coefficients)) # mean
> axis(side=1, at=1:4, labels=colnames(lor.hauser))
> text(4, as.matrix(lor.hauser)[4,], rownames(lor.hauser),
+ pos=4, col=1:4, xpd=TRUE, cex=1.2)
> text(4, 3, "Father's status", cex=1.2)
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Figure 10.8: Plot of observed local log odds ratios in the Hauser79 data. The gray horizontal line
at zero shows local independence; the black horizontal line shows the mean.{fig:hauser-lor-plot}

Amonst the features here, you can see that there is a tendency for the odds ratio contrasting
fathers in the non-manual categories (UpNM:LoNM) to decline with the adjacent comparisons of
their sons’ occupations. As well, the 2×2 table for fathers and sons in the LoM:Farm stands out as
deserving some attention. These observed features will be smoothed by fitting models, as described
below. For additional interpretation, you can always construct similar plots of the log odds ratios
using the fitted() values from any of the models described below.

We begin by fitting the independence model and the quasi-independence model, where the diag-
onal parameters in the latter are specified as Diag(Father,Son). As expected, given the large
frequencies in the diagonal cells, the quasi-independence model is a considerable improvement, but
the fit is still very poor.

> hauser.indep <- gnm(Freq ~ Father + Son, data=Hauser79, family=poisson)
> hauser.quasi <- update(hauser.indep, ~ . + Diag(Father,Son))
> vcdExtra::LRstats(hauser.indep, hauser.quasi)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)
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hauser.indep 6391 6402 6170 16 <2e-16 ***
hauser.quasi 914 931 683 11 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The pattern of associations can be seen in the mosaic displays for both models, shown in Fig-
ure 10.9.

> mosaic(hauser.indep, ~Father+Son, main="Independence model",
+ gp=shading_Friendly)
> mosaic(hauser.quasi, ~Father+Son, main="Quasi-independence model",
+ gp=shading_Friendly)

−18

 −4
  0
  4

 57

Pearson
residuals:

Independence model

Son

Fa
th

er
Fa

rm
Lo

M
U

pM
Lo

N
M

U
pN

M

UpNM LoNM UpM LoM Farm

−7.7

−4.0

−2.0

 0.0

 2.0

 4.0

15.0

Pearson
residuals:

Quasi−independence model

Son

Fa
th

er
Fa

rm
Lo

M
U

pM
Lo

N
M

U
pN

M

UpNM LoNM UpM LoM Farm

Figure 10.9: Mosaic displays for the Hauser79 data. Left: independence model; right:quasi-
independence model. {fig:hauser-mosaic1}

The mosaic for quasi-independence shows an approximately symmetric pattern of residuals, so
we proceed to add Symm(Father,Son) to the model to specify quasi-symmetry.

> hauser.qsymm <- update(hauser.indep,
+ ~ . + Diag(Father,Son) + Symm(Father,Son))
> vcdExtra::LRstats(hauser.qsymm)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

hauser.qsymm 268 291 27.4 6 0.00012 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This model represents a huge improvement in goodness of fit. With such a large sample size,
it might be considered an acceptable fit. The remaining lack of fit is shown in the mosaic for this
model, Figure 10.10.

> mosaic(hauser.qsymm, ~Father+Son, main="Quasi-symmetry model",
+ gp=shading_Friendly, residuals_type="rstandard")

The cells with the largest lack of symmetry (using standardized residuals) are those for the upper
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Figure 10.10: Mosaic display for the model of quasi-symmetry fit to the Hauser79 data. {fig:hauser-mosaic2}

and lower non-manual occupations, where the son of an upper manual worker is less likely to move
to lower non-manual work than the reverse.

For cases like this involving structured associations in square tables, Hauser (1979) developed
the more general idea of grouping the row and column categories into levels of an association
factor based on similar values of residuals or local odds ratios observed from the independence
model. Such models are called topological models or levels models, which are implemented in the
Topo().

To illustrate, Hauser suggested the following matrix of levels to account for the pattern of as-
sociations seen in Figure 10.9. The coding here takes the diagonal cell for the Farm category as
the reference cell. Four other parameters are assigned by the numbers 2–5 to account for lack of
independence.

> levels <- matrix(c(
+ 2, 4, 5, 5, 5,
+ 3, 4, 5, 5, 5,
+ 5, 5, 5, 5, 5,
+ 5, 5, 5, 4, 4,
+ 5, 5, 5, 4, 1
+ ), 5, 5, byrow=TRUE)

This models is fit using Topo() as shown below. It also provides a huge improvement over the
independence model, with 4 additional parameters.

> hauser.topo <- update(hauser.indep, ~ . + Topo(Father, Son, spec=levels))
> vcdExtra::LRstats(hauser.topo)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

hauser.topo 295 311 66.6 12 1.4e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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As with other models fit using gnm(), you can extract the coefficients for particular terms using
pickCoef().

> as.vector((coef(hauser.topo)[pickCoef(hauser.topo, "Topo")]))

[1] -1.8128 -2.4973 -2.8035 -3.4026

The models fit in this example are summarized below. Note that AIC prefers the quasi-symmetry
model, hauser.quasi, while, because of the large sample size, BIC prefers the topological
model, hauser.topo.

> vcdExtra::LRstats(hauser.indep, hauser.quasi, hauser.qsymm, hauser.topo)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

hauser.indep 6391 6402 6170 16 < 2e-16 ***
hauser.quasi 914 931 683 11 < 2e-16 ***
hauser.qsymm 268 291 27 6 0.00012 ***
hauser.topo 295 311 67 12 1.4e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4

10.2.2 Ordinal square tables
{sec:sq-ordinal}

The theory presented in Section 10.2.1 treats the row and column variables as nominal. In many
instances, such as Example 10.5, the variable categories are also ordered, yet these models do not
exploit their ordinal nature. In such cases, the models such as uniform association (L × L), row
effects, RC and others discussed in Section 10.1 can be combined with terms for quasi-independence
and symmetry of the remaining associations.

For example, the L × L model Eqn. (10.2) of uniform association applies directly to square
tables, and, for square tables, can also be amended to include a diagonals term, Diag(), giving
a model of quasi-uniform association. In this model, all adjacent 2 × 2 sub-tables not involving
diagonal cells have a common local odds ratio.

A related model is the crossings model (Goodman, 1972). This hypothesizes that there are
different difficulty parameters for crossing from one category to the next, and that the associations
between categories decreases with their separation. In the crossings model for an I × I table, there
are I − 1 crossings parameters, ν1, ν2, . . . , νI−1. The association parameters, λABij have the form
of the product of the intervening ν parameters,

λABij =



k=i−1∏
k=j

νk : i > j

k=j−1∏
k=i

νk : i < j

This model can also be cast in quasi form, by addition of a Diag term to fit the main diagonal cells.
See Powers and Xie (2008, §4.4.7) for further details of this model. The Crossings() function
in vcdExtra implements such crossings terms. {ex:hauser2}

EXAMPLE 10.6: Hauser’s occupational mobility table
Without much comment or detail, for reference we first fit some of the ordinal models to the

Hauser79 data: Uniform association (L× L), row effects, and the RC(1) model.
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> Fscore <- as.numeric(Hauser79$Father) # numeric scores
> Sscore <- as.numeric(Hauser79$Son) # numeric scores
>
> # uniform association
> hauser.UA <- update(hauser.indep, ~ . + Fscore*Sscore)
> # row effects model
> hauser.roweff <- update(hauser.indep, ~ . + Father*Sscore)
> # RC model
> hauser.RC <- update(hauser.indep, ~ . + Mult(Father, Son), verbose=FALSE)

All of these fit very poorly, yet they are all substantial improvements over the independence
model.

> vcdExtra::LRstats(hauser.indep, hauser.UA, hauser.roweff, hauser.RC)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

hauser.indep 6391 6402 6170 16 <2e-16 ***
hauser.UA 2503 2516 2281 15 <2e-16 ***
hauser.roweff 2309 2325 2080 12 <2e-16 ***
hauser.RC 920 940 685 9 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The L×L model, hauser.UA might be improved by ignoring the diagonals, and, indeed it is.

> hauser.UAdiag <- update(hauser.UA, ~ . + Diag(Father,Son))
> anova(hauser.UA, hauser.UAdiag, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ Father + Son + Fscore + Sscore + Fscore:Sscore
Model 2: Freq ~ Father + Son + Fscore + Sscore + Fscore:Sscore + Diag(Father,

Son)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 15 2281
2 10 73 5 2208 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this model, the estimated common local log odds ratio— the coefficient for the linear-by-
linear term Fscore:Sscore is

> coef(hauser.UAdiag)[["Fscore:Sscore"]]

[1] 0.1584

For comparisons not involving the diagonal cells, each step down the scale of occupational cate-
gories for the father multiplies the odds that the son will also be in one lower category by exp(0.158) =
1.172, an increase of 17%.

The crossings model, with and without the diagonal cells can be fit as follows:

> hauser.CR <- update(hauser.indep, ~ . + Crossings(Father,Son))
> hauser.CRdiag <- update(hauser.CR, ~ . + Diag(Father,Son))
> vcdExtra::LRstats(hauser.CR, hauser.CRdiag)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

hauser.CR 319 334 89.9 12 5.1e-14 ***
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hauser.CRdiag 299 318 64.2 9 2.0e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The quasi-crossings model hauser.CRdiag has a reasonable G2 fit statistic, and its interpre-
tation and lack of fit is worth exploring further. The crossings coefficients ν can be extracted as
follows.

> nu <- coef(hauser.CRdiag)[pickCoef(hauser.CRdiag, "Crossings")]
> names(nu) <- gsub("Crossings(Father, Son)C", "nu", names(nu), fixed=TRUE)
> nu

nu1 nu2 nu3 nu4
-0.42275 -0.38768 -0.27500 -1.40244

They indicate the steps between adjacent categories in terms of the barriers for a son moving to a
lower occupational category. The numerically largest gap separates the lower non-manual category
from farming.

In contrast to the UAdiag model, the quasi-crossing model with diagonal terms implies that
all 2 × 2 off-diagonal sub-tables are independent, i.e., the local odds ratios are all equal to 1.0.
The reasons for lack of fit of this model can be seen in the corresponding mosaic display, shown in
Figure 10.11

> mosaic(hauser.CRdiag, ~Father+Son,
+ gp=shading_Friendly, residuals_type="rstandard",
+ main="Crossings() + Diag()")
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Figure 10.11: Mosaic display for the quasi-crossings model fit to the Hauser79 data. {fig:hauser-mosaic3}

It can be seen that lack of fit for this model is largely concentrated in the lower triangle, where the
father’s occupation is lower than that of his son.

In this example and the last, we have fit quite a few different models to the Hauser (1979) data.
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In presentations, articles and books it is common to summarize such a collection in a table, sorted
by G2, degrees of freedom, AIC or BIC, to show their ordering along some metric. For instance,
here we collect all the models fit in Example 10.5 and this example in a glmlist() and sort in
decreasing order of BIC to show model fit by this measure.

> modlist <- glmlist(hauser.indep, hauser.roweff, hauser.UA, hauser.UAdiag,
+ hauser.quasi, hauser.qsymm, hauser.topo,
+ hauser.RC, hauser.CR, hauser.CRdiag)
> LRstats(modlist, sortby="BIC")

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

hauser.indep 6391 6402 6170 16 < 2e-16 ***
hauser.UA 2503 2516 2281 15 < 2e-16 ***
hauser.roweff 2309 2325 2080 12 < 2e-16 ***
hauser.RC 920 940 685 9 < 2e-16 ***
hauser.quasi 914 931 683 11 < 2e-16 ***
hauser.CR 319 334 90 12 5.1e-14 ***
hauser.UAdiag 306 324 73 10 1.2e-11 ***
hauser.CRdiag 299 318 64 9 2.0e-10 ***
hauser.topo 295 311 67 12 1.4e-09 ***
hauser.qsymm 268 291 27 6 0.00012 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When there are more than just a few models, a more useful display is a model comparison plot
of measures like G2/df , AIC or BIC against degrees of freedom. For example, Figure 10.12 plots
BIC against Df from the result of LRstats(). Because interest is focused on the smallest values
of BIC and these values span a large range, BIC is shown on the log scale using log="y".

> sumry <- LRstats(modlist)
> mods <- substring(rownames(sumry),8)
> with(sumry, {
+ plot(Df, BIC, cex=1.3, pch=19,
+ xlab='Degrees of freedom', ylab='BIC (log scale)',
+ log="y", cex.lab=1.2)
+ pos <- ifelse(mods=="UAdiag", 1, 3)
+ text(Df, BIC+55, mods, pos=pos, col='red', xpd=TRUE, , cex=1.2)
+ })

Compared with the sorted tabular display shown above, such a plot sorts the models both by a
measure of fit and by model complexity (degrees of freedom). Figure 10.12 shows that the quasi-
symmetry model is best by BIC, but also shows that the next four best models by this measure
are quite similar in terms of BIC. Similar plots for AIC and G2/df show that the model of quasi-
symmetry is favored by these measures.

4

10.3 Three-way and higher-dimensional tables
{sec:loglin-ord3way}

The models and methods for ordinal factors and square tables described in Section 10.1 and Sec-
tion 10.2 extend readily to multidimensional tables with these properties for some of the fac-
tors. In three-way tables, these models provide a more parsimonious account than the saturated
model, [ABC], and also allow simpler models than the general model of homogeneous associa-
tion, [AB][AC][BC] using scores for ordinal factors or terms for symmetry and diagonal factors in
square layers.

For example, consider the case where all three factors are ordinal and the model of homoge-
neous association [AB][AC][BC] fits poorly. In this case we can generalize the model of uniform
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Figure 10.12: Model comparison plot for the models fit to the Hauser79 data{fig:hauser-sumry-plot}

association by assigning scores a, b and c and model the three-way association, λABCijk as

λABCijk = γaibjck

with only one more parameter. This gives the model of uniform interaction (or homogeneous
uniform association)

log(mijk) = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk + γaibjck . (10.9) {eq:uni-inter}

This model posits that (with equally spaced scores) all local odds ratios θijk in adjacent rows,
columns and layers are constant,

log(θijk) = γ ∀ i, j, k

The homogeneous association model is the special case of log θijk = γ = 0.
A less restricted model of heterogeneous uniform association retains the linear-by-linear form

of association for factors A and B, but allows the strength of this association to vary over layers, C,
representing λABCijk as

λABCijk = (γ + γk)aibj

with the constraint
∑
k γk = 0. This model is equivalent to fitting separate models of uniform

association at each level k of factor C and gives estimates of the conditional local log odds ratios,
log θij(k) = γ + γk.

Following the development in Section 10.1 there is a large class of other models for ordinal
factors (see Figure 10.1), where not all factors are assigned scores. For three-way tables, these can
be represented in homogeneous form when the two-way association of A and B is the same for all
levels of C, or in a heterogeneous form, when it varies over C.

Similarly, the models for square tables described in Section 10.2 extend to three-way tables
with several layers (strata), allowing both homogeneous and heterogeneous terms for diagonals and
symmetry describing the AB association over levels of C. {ex:vision-glm2}
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EXAMPLE 10.7: Visual acuity
We continue the analysis of the VisualAcuity data, but now consider the three-way, 4 ×

4 × 2 table comprising both men and women. The main questions here are whether the pattern
of quasi-symmetry observed in the analysis for women also pertains to men and whether there is
heterogeneity of the association between right, left acuity across gender.

A useful first step for n-dimensional tables is to consider the models composed of all 1-way,
2-way, . . . n-way terms as a quick overview. The function Kway() in vcdExtra package does this
automatically, returning a "glmlist" object containing the fitted models.4

> vis.kway <-Kway(Freq ~ right + left + gender, data=VisualAcuity)
> vcdExtra::LRstats(vis.kway)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

kway.0 13857 13858 13631 31 < 2e-16 ***
kway.1 9925 9937 9686 24 < 2e-16 ***
kway.2 298 332 28 9 0.00079 ***
kway.3 287 334 0 0 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This shows that the model of homogeneous association kway.2 ([RL][RG][LG]) does not fit
well, but it doesn’t account for diagonal agreement or symmetry to simplify the associations.

As a basis for comparison, we first fit the simple models of quasi-independence and quasi-
symmetry that do not involve gender, asserting the same pattern of diagonal and off-diagonal
cells for males and females.

> vis.indep <- glm(Freq ~ right + left + gender, data = VisualAcuity,
+ family=poisson)
> vis.quasi <- update(vis.indep, . ~ . + Diag(right, left))
> vis.qsymm <- update(vis.indep, . ~ . + Diag(right, left) + Symm(right, left))
>
> LRstats(vis.indep, vis.quasi, vis.qsymm)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

vis.indep 9925 9937 9686 24 <2e-16 ***
vis.quasi 696 714 449 20 <2e-16 ***
vis.qsymm 435 456 184 18 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model of homogeneous quasi-symmetry fits quite badly, even worse than the all two-way
association model. We can see why in the mosaic for this model, shown in Figure 10.13.

> mosaic(vis.qsymm, ~ gender + right + left, condvars="gender",
+ residuals_type="rstandard", gp=shading_Friendly,
+ labeling_args=largs,
+ main="Homogeneous quasi-symmetry")

It can be seen in Figure 10.13 that the pattern of residuals for men and women are nearly com-
pletely opposite in the upper and lower portions of the plot: men have positive residuals in the same
right, left cells where women have negative residuals, and vice-versa. In particular, the diago-
nal cells of both tables have large absolute residuals, because the term Diag(right, left) fits
a common set of diagonals for both men and women.

We can correct for this by allowing separate diagonal and symmetry terms, given as interactions
of gender with Diag() and Symm().

4For completeness, this also fits the 0-way model, corresponding to logmijk... = µ, or the model formula Freq ∼ 1.
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Figure 10.13: Mosaic display for the model of homogeneous quasi-symmetry fit to the VisualAcu-
ity data.{fig:vision2-qsymm}

> vis.hetdiag <- update(vis.indep, . ~ . + gender*Diag(right, left) +
+ Symm(right, left))
> vis.hetqsymm <- update(vis.indep, . ~ . + gender*Diag(right, left) +
+ gender*Symm(right, left))
> LRstats(vis.qsymm, vis.hetdiag, vis.hetqsymm)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

vis.qsymm 435 456 183.7 18 < 2e-16 ***
vis.hetdiag 312 338 52.3 14 2.5e-06 ***
vis.hetqsymm 287 321 17.7 9 0.038 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the model vis.hetqsymm fits better than the model vis.hetdiag in absolute terms
and by AIC, but the latter, with fewer parameters, fits better by BIC. The mosaic for the model
vis.hetqsymm is shown in Figure 10.14.

> mosaic(vis.hetqsymm, ~ gender + right + left, condvars="gender",
+ residuals_type="rstandard", gp=shading_Friendly,
+ labeling_args=largs,
+ main="Heterogeneous quasi-symmetry")

As in the two-way case, this model now fits the diagonal cells in each table exactly, effectively
ignoring this part of the association between right and left eye acuity. All remaining residuals are
relatively small in magnitude, except for the two opposite off-diagonal cells (Low, High) and
(High, Low) in the table for women.
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Figure 10.14: Mosaic display for the model of heterogeneous quasi-symmetry fit to the VisualAcu-
ity data. {fig:vision2-hetqsymm}

The substantive interpretation of this example is that visual acuity is largely the same (diagonal
cells) in the right and left eyes of both men and women. Ignoring the diagonal cells, when visual
acuity differs, both men and women exhibit approximately symmetric associations. However, de-
viations from symmetry (Figure 10.13) are such that men are slightly more likely to have a lower
grade in the right eye, while women are slightly more likely to have a higher grade in the right eye.

4

10.4 Multivariate responses
{sec:loglin-multiv}

In many studies, there may be several categorical responses observed along with one or more ex-
planatory variables. In a clinical trial, for example, the efficacy of a drug might be the primary
response, but the occurrence of side-effects might give rise to additional response variables of sub-
stantive interest. Or, in a study of occupational health, the occurrence of two or more distinct
symptoms might be treated as response variables.

If there are no explanatory variables, then the problem is simply to understand the joint distri-
bution of the response categories, and the loglinear models and graphical displays described earlier
are sufficient. Otherwise, in these cases we usually wish to understand how the various responses
are affected by the explanatory variables. Moreover, it may also be important to understand how
the association between the categorical responses depends on the explanatory variables. That is, we
would like to study how both the marginal distributions of the responses, and their joint distribution
depends on the predictors. In the occupational health example, the goal might be to understand both
how the prevalence of several symptoms varies with one or more predictors, and how the association
(loosely, “correlation”) among those symptoms varies with those predictors.
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Although the general loglinear model is often used in these situations, there are special repa-
rameterizations that may be used to separate the marginal dependence of each response on the ex-
planatory variables from the relationship of the association among the responses on the explanatory
variables.

Let us say that categorical responses, Y1, Y2, . . . have been observed, together with possible
explanatory variables, X1, X2, . . ., and let πij··· be the joint probability of all the responses and
explanatory variables; we also use x to refer to the values of X1, X2, . . ..

Note that the minimal model of independence of all responses from each other and from the
explanatory variables is the loglinear model [Y1][Y2] · · · [X1X2 · · ·] (i.e., all associations among the
Xi must be included). A no-effect model, in which the responses do not depend on the explanatory
variables, but may be associated among themselves is [Y1Y2 · · ·][X1X2 · · ·]. However, these models
do not separate the individual (marginal) effects of X1, X2 . . . on each Yi from their associative
effects on the joint relationships among the Yi.

There are three useful general approaches which do separate these effects:

1. Model the marginal dependence of each response, Yi separately onX1,X2, . . ., and, in addition,
model the interdependence among the responses, Y1, Y2, . . ..5

2. Model the joint dependence of all responses on X1, X2, . . ., but parameterized so that marginal
and associative effects are delineated.

3. Construct simultaneous models, estimated together, for the marginal and joint dependence of
the responses on the explanatory variables.

The first approach is the simplest, an informative starting place, and is satisfactory in the (often
unlikely) case that the responses are not associated, or if the associations among responses do not
vary much over the explanatory variables (i.e., no terms like [Y1Y2Xj ] are required). In the clinical
trial example, we would construct separate loglinear or logit models for efficacy of the drug, and for
occurrence of side-effects, and supplement these analyses with mosaic or other displays showing
the relations between efficacy and side-effects and a model for their joint association. If those who
improve with the drug also show more serious side effects, the worth of the treatment would be
questioned. A limitation of this method is that it does not provide an overall model comprising
these effects.

In the second approach, the joint probabilities, πij···, are recast to give separate information
regarding the dependence of the univariate marginal probabilities πi•, π•j , . . ., on the explanatory
variables and the dependence of the intra-response associations on the explanatory variables. The
VGAM package provides several versions of this approach with the function vglm() (for vector
generalized linear model).

The third approach, developed, for example, by Lang and Agresti (1994), is the most general,
and provides a scheme to represent a model J (•) for the joint distributions of theX , Y variables to-
gether with a modelM(•) for their first-order marginal distributions. The joint models are typically
loglinear models, ranging from the mutual independence model, J (I) = [Y1][Y2][· · ·][X1][X2][· · ·]
to the saturated model, J (S) = [Y1Y2 · · ·X1X2 · · ·], while the marginal models are logit models
for the response variables. The combined model, denotedJ (•)∩M(•), is estimated simultaneously
by maximum likelihood. This approach is implemented in R in the hmmm package (hierarchical
multinomial marginal models). However, model specification in this implementation is complicated,
and it will not be considered further here.

5For quantitative responses, this is roughly analogous to fitting univariate response models for each Yi, followed by
something like a principal component analysis of the relationships among the Yi. But in this case, the multivariate linear
model, Y = XB +E provides a general solution.
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10.4.1 Bivariate, binary response models
We focus here on two related models reflecting the second approach, as discussed by McCullagh
and Nelder (1989, Section 6.5). We consider here only the case of two binary responses, though the
general approach can be applied to R > 2 responses Y1, Y2, . . . , YR, and these may be polytomous
or ordinal.

Let x refer to the values of all the explanatory variables and let πij (x) be the joint probabilities
in cell Y1 = i, Y2 = j. The essential idea of the bivariate logistic model arises from a linear
transformation of the cell probabilities π to interpretable functions of the marginal probabilities
(logits) and their association (odds ratio), a mapping of π → η,

η1 = logit(π1•)

η2 = logit(π•1) (10.10){eq:blogits}

η12 =
π11 π22
π12 π21

The predictors in x are then taken into account by considering models that relate π to x through η,

η1 = xT
1β1

η2 = xT
2β2 (10.11){eq:blogits2}

η12 = xT
12β12

where x1, x2 and x12 are subsets of the predictors in x for each sub-model, and β1, β1 and β12 are
the corresponding parameters to be estimated.

McCullagh and Nelder (1989) arrive at this joint bivariate model in two steps. First, transform
the cell probabilities π to a vector of probabilities γ which also includes the univariate margins,
given by

γ = Lπ (10.12){eq:gamma1}

where L is a matrix of 0s and 1s of the form of a factorial design matrix. In the 2× 2 case,

γ =



π1•
π2•
π•1
π•2
π11
π12
π21
π22


=



1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




π11
π12
π21
π22

 . (10.13){eq:gamma2}

There are of course only three linearly independent probabilities, because
∑∑

πij = 1. In the
second step, the bivariate logistic model is formulated in terms of factorial contrasts on the elements
of γ which express separate models for the two logits and the log odds. The model is expressed as

η = C log γ = C logLπ , (10.14){eq:eta1}

where C is a matrix of contrasts. In the 2× 2 case, the usual contrasts may be defined by

η =

 η1
η2
η12

 =

 logit π1•
logit π•1
θ12

 =

 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 −1 1





π1•
π2•
π•1
π•2
π11
π12
π21
π22


(10.15){eq:eta2}
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Thus, we are modeling the marginal odds of each response, together with the log odds ratio θ12
simultaneously.

Specific models are then formulated for the dependence of η1(x), η2(x) and η12(x) on some
or all of the explanatory variables. For example, with one quantitative explanatory variable, x, the
model  η1

η2
η12

 =

 α1 + β1x
α2 + β2x

θ

 (10.16) {eq:bilogit1}

asserts that the log odds of each response changes linearly with x, while the odds ratio between
the responses remains constant. In the general form given by McCullagh and Nelder (1989) the
submodels in Eqn. (10.16) may each depend on the explanatory variables in different ways. For
example, the logits could both depend quadratically on x, while an intercept-only model could be
posited for the log odds ratio.

The second model is the bivariate loglinear model, the special case obtained by taking L = I
in Eqn. (10.12) and Eqn. (10.14) so that γ = π. Then a loglinear model of the form

η(x) = C logπ

expresses contrasts among log probabilities as linear functions of the explanatory variables. For the
2× 2 case, we take the contrasts C as shown below

η =

 l1
l2
η12

 =

 1 1 −1 −1
1 −1 1 −1
1 −1 1 −1




log π11
log π12
log π21
log π22

 (10.17) {eq:eta3}

and models for the dependence of l1(x) , l2(x) and η12(x) are expressed in the same way as in
Eqn. (10.16). The estimates of the odds ratio, η12 are the same under both models. The marginal
functions are parameterized differently, however, but lead to similar predicted probabilities.

In R, bivariate logistic models of the form Eqn. (10.10) and Eqn. (10.11) can be fit using
vglm() with the binom2.or() family in the VGAM package.6 The fitting and graphing of
these models is illustrated in the next example. {ex:coalminers}

EXAMPLE 10.8: Breathlessness and wheeze in coal miners
In Example 4.12 we examined the association between the occurrence of two pulmonary con-

ditions, breathlessness and wheeze, among coal miners classified by age (Ashford and Sowden,
1970). Figure 4.7 showed fourfold displays focused on the odds ratio for the co-occurrence of these
symptoms, and Figure 4.8 plotted these odds ratios against age directly. Here, we consider models
which examine the changes in prevalence of the two symptoms over age, together with the changes
in their association.

Plotting bivariate response data

As a starting point and overview of what is necessary for bivariate response models, we calculate
the empirical log odds for breathlessness and for wheeze, and the log odds ratio for their association
in each 2× 2 table. The log odds ratios are the same values plotted in Figure 4.8 (but the youngest
age group was not included in the earlier analysis).

The CoalMiners data is 2 × 2 × 9 table. For convenience in this analysis (and for use with
VGAM) we convert it to a 4 × 9 data frame, and relabel the columns to use the combinations of
("B", "b") and ("W", "w") to represent the conditions of breathlessness and wheeze, where
the upper case letter indicates presence of the condition. A variable age is also created, using the
midpoints of the age categories.

6This package also provides for bivariate and trivariate loglinear models with loglinb2() and loglinb2.
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> data("CoalMiners", package="vcd")
> coalminers <- data.frame(t(matrix(aperm(CoalMiners, c(2,1,3)),
+ 4, 9)))
> colnames(coalminers) <- c("BW", "Bw", "bW", "bw")
> coalminers$age <- c(22, 27, 32, 37, 42, 47, 52, 57, 62)
> coalminers

BW Bw bW bw age
1 9 7 95 1841 22
2 23 9 105 1654 27
3 54 19 177 1863 32
4 121 48 257 2357 37
5 169 54 273 1778 42
6 269 88 324 1712 47
7 404 117 245 1324 52
8 406 152 225 967 57
9 372 106 132 526 62

With the data in this form, a simple function blogits() in vcdExtra calculates the logits and
log odds ratios corresponding to Eqn. (10.10). The add argument accommodates cases where there
are very small, or 0 frequencies in some cells, and it is common to add a small constant, such as 0.5
to each cell in calculating empirical logits. This function is used to calculate the empirical logits
and log odds as follows:

> logitsCM <- vcdExtra::blogits(coalminers[,1:4], add=0.5)
> colnames(logitsCM)[1:2] <- c("logitB", "logitW")
> logitsCM

logitB logitW logOR
[1,] -4.73568 -2.86844 3.1956
[2,] -3.97656 -2.55717 3.6583
[3,] -3.31713 -2.09388 3.3790
[4,] -2.73322 -1.84818 3.1327
[5,] -2.21492 -1.42014 3.0069
[6,] -1.73870 -1.10922 2.7770
[7,] -1.10116 -0.79681 2.9217
[8,] -0.75808 -0.57219 2.4368
[9,] -0.31902 -0.22591 2.6318

We plot these as shown below, using matplot(), which is convenient for plotting multiple
columns against a given horizontal variable, age here.7 For ease of interpretation of the log odds,
we also use right vertical axis showing the equivalent probabilities for breathlessness and wheeze.

> col <- c("blue", "red", "black")
> pch <- c(15, 17, 16)
> age <- coalminers$age
>
> op <- par(mar=c(4, 4, 1, 4)+.2)
> matplot(age, logitsCM, type="p",
+ col=col, pch=pch, cex=1.2, cex.lab=1.25,
+ xlab="Age", ylab="Log Odds or Odds Ratio")
> abline(lm(logitsCM[,1] ~ age), col=col[1], lwd=2)
> abline(lm(logitsCM[,2] ~ age), col=col[2], lwd=2)
> abline(lm(logitsCM[,3] ~ age), col=col[3], lwd=2)
>
> # right probability axis
> probs <- c(.01, .05, .10, .25, .5)
> axis(4, at=qlogis(probs), labels=probs)

7It is actually a small graphical misdemeanor to plot logits and odds ratios on the same vertical axis because they are not
strictly commensurable. We plead guilty with the explanation that this graph shows what we want to see here and does not
distort the data.
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> mtext("Probability", side=4, cex=1.2, at=-2, line=2.5)
> # curve labels
> text(age[2], logitsCM[2,1]+.5, "Breathlessness", col=col[1], pos=NULL, cex=1.2)
> text(age[2], logitsCM[2,2]+.5, "Wheeze", col=col[2], pos=NULL, cex=1.2)
> text(age[2], logitsCM[2,3]-.5, "log OR\n(B|W)/(B|w)", col=col[3], pos=1, cex=1.2)
> par(op)
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Figure 10.15: Empirical logits and log odds ratio for breathlessness and wheeze in the CoalMiners
data. The lines show separate linear regressions for each function. The right vertical axis shows
equivalent probabilities for the logits. {fig:cm-blogits}

In Figure 10.15 we see that both symptoms, while quite rare among young miners, increase
steadily with age (or years working in the mine). By age 60, the probability is nearly 0.5 of having
either condition. There is a hint of curvilinearity, particularly in the logit for breathlessness. The
decline in the odds ratio with age may reflect selection, as miners who had retired for health or other
reasons were excluded from the study.

Fitting glm models

Next, we illustrate what can easily be achieved using the standard glm() approach for loglinear
models and why the bivariate models we described are more useful in this situation. glm() requires
a data frame as input, so first reshape CoalMiners to a frequency data frame. For convenience,
we simplify the variable names to B and W.

> CM <- as.data.frame(CoalMiners)
> colnames(CM)[1:2] <- c("B", "W")
> str(CM)

'data.frame': 36 obs. of 4 variables:
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$ B : Factor w/ 2 levels "B","NoB": 1 2 1 2 1 2 1 2 1 2 ...
$ W : Factor w/ 2 levels "W","NoW": 1 1 2 2 1 1 2 2 1 1 ...
$ Age : Factor w/ 9 levels "20-24","25-29",..: 1 1 1 1 2 2 2 2 3 3 ...
$ Freq: num 9 95 7 1841 23 ...

As a point of comparison, we fit the mutual independence model, [B][W][Age] and the baseline
model for associated responses, [BW][Age] which asserts that the association between B and W is
independent of Age.

> cm.glm0 <- glm(Freq ~ B + W + Age, data=CM, family=poisson)
> cm.glm1 <- glm(Freq ~ B * W + Age, data=CM, family=poisson)
> vcdExtra::LRstats(cm.glm0, cm.glm1)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

cm.glm0 7217 7234 6939 25 <2e-16 ***
cm.glm1 2981 3000 2702 24 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The baseline model cm.glm1 fits very badly. We can see the pattern of the residual association
in a mosaic display for this model shown in Figure 10.16. The formula argument here specifies the
order of the variables in the mosaic.

> vnames <- list(set_varnames = c(B="Breathlessness", W="Wheeze"))
> lnames <- list(B=c("B", "b"), W = c("W", "w"))
> mosaic(cm.glm1, ~ Age + B + W,
+ labeling_args=vnames, set_labels=lnames)
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Figure 10.16: Mosaic display for the baseline model, [BW][Age], fit to the CoalMiners data{fig:cm-mosaic1}

As structured here, it is easy to see the increase in the prevalence of breathlessness and wheeze with
age and the changing pattern of their association with age.
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From Figure 10.15 and Figure 10.16, it is apparent that both breathlessness and wheeze increase
with age, so we can model this by adding terms [B Age][ W Age] to the baseline model. This is the
no-three-way interaction model, which could also be specified as Freq ~ (B + W + Age)^2.

> cm.glm2 <- glm(Freq ~ B * W + (B + W) * Age, data=CM, family=poisson)
> vcdExtra::LRstats(cm.glm1, cm.glm2)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

cm.glm1 2981 3000 2702 24 <2e-16 ***
cm.glm2 338 383 27 8 8e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The improvement in fit is substantial, and all terms are highly significant, yet, the residualG2(8)
indicates there is still lack of fit.

> library(car)
> Anova(cm.glm2)

Analysis of Deviance Table (Type II tests)

Response: Freq
LR Chisq Df Pr(>Chisq)

B 11026 1 <2e-16 ***
W 7038 1 <2e-16 ***
Age 887 8 <2e-16 ***
B:W 3025 1 <2e-16 ***
B:Age 1130 8 <2e-16 ***
W:Age 333 8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

One way to improve the model using the glm() framework is to make use of Age as a quanti-
tative variable and add a term to allow the odds ratio for the [BW] association to vary linearly with
age. Here, we construct the variable age using the midpoints of the Age intervals.

> CM$age <- rep(seq(22, 62, 5), each=4)

In the glm() approach, the odds ratio cannot be modeled directly, but we can use the following
trick: For each 2 × 2 subtable, the odds ratio can be parameterized in terms of the frequency in
any one cell, say, n11k, given that the marginal total n++k is included in the model. We do this
by adding a new interaction variable, ageOR having the value of age for the (1, 1, k) cells and 0
otherwise.

> CM$ageOR <- (CM$B=="B") * (CM$W=="W") * CM$age
> cm.glm3 <- update(cm.glm2, . ~ . + ageOR)
> vcdExtra::LRstats(cm.glm0, cm.glm1, cm.glm2, cm.glm3)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

cm.glm0 7217 7234 6939 25 <2e-16 ***
cm.glm1 2981 3000 2702 24 <2e-16 ***
cm.glm2 338 383 27 8 0.0008 ***
cm.glm3 320 366 7 7 0.4498
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model cm.glm3, with one more parameter, now fits reasonably well, having residualG2(7) =
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6.80. The likelihood ratio test of model cm.glm3 against cm.glm2, which assumes equal odds
ratios over age, can be regarded as a test of the hypothesis of homogeneity of odds ratios, against
the alternative that the [BW] association changes linearly with age. The glm() models fit in this
example are summarized above. As usual, anova() can be used to compare competing nested
models.

> anova(cm.glm2, cm.glm3, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ B * W + (B + W) * Age
Model 2: Freq ~ B + W + Age + ageOR + B:W + B:Age + W:Age
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 8 26.7
2 7 6.8 1 19.9 8.2e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This analysis, while useful, also shows the limitations of the glm() approach: (a) It doesn’t
easily allow us to represent and test the substantively interesting hypotheses regarding how the
prevalence of the binary responses, B and W vary with Age, such as seen in Figure 10.15. (b) It
doesn’t represent the odds ratio for the [BW] association directly, but only through the coding trick
we used here. Thus, it is difficult to interpret the coefficient for ageOR = -0.02613 in a substantively
meaningful way, except that is shows that the odds ratio is decreasing.8

Fitting vglm models

The vglm() function in the VGAM package provides a very general implementation of these and
other models for discrete multivariate responses. The family function, binom2.or() for binary
logistic models allows some or all of the logits or odds ratio submodels to be constrained to be
intercept-only (e.g., as in Eqn. (10.16)) and the two marginal distributions can be constrained to be
equal.

Quantitative predictors (such as age, here), can be modeled linearly or nonlinearly, using poly()
for a parametric fit, or smooth regression splines, as provided by the functions ns(), bs() and
others in model formulas. In this illustration, we fit bivariate linear and quadratic models in age.

vglm() takes its input data in the wide form we called coalminers at the beginning of this
example. We could use the 9-level factor, Age as we did with glm(), but we plan to use age
as a numeric variable in all three submodels. The coefficients in these models will be more easily
interpreted if we center age and express it as agec in units of five years, as shown below.

> coalminers <- transform(coalminers, agec=(age-42)/5)
> coalminers$Age <- dimnames(CoalMiners)[[3]]
> coalminers

BW Bw bW bw age agec Age
1 9 7 95 1841 22 -4 20-24
2 23 9 105 1654 27 -3 25-29
3 54 19 177 1863 32 -2 30-34
4 121 48 257 2357 37 -1 35-39
5 169 54 273 1778 42 0 40-44
6 269 88 324 1712 47 1 45-49
7 404 117 245 1324 52 2 50-54
8 406 152 225 967 57 3 55-59
9 372 106 132 526 62 4 60-64

8Actually, the interpretability of the coefficient for the log odds ratio can be enhanced here by centering age, and repre-
senting its units in steps of 5 years, as we do below.
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vglm() takes the 2×2 response frequencies as a 4-column matrix on the right hand side of the
model formula. However, denoting the responses of failure and success by 0 and 1 respectively, it
takes these in the order y00, y01, y10, y11. We specify the order below so that the logits are calculated
for the occurrence of breathlessness or wheeze, rather than their absence.

> library(VGAM)
> # 00 01 10 11
> cm.vglm1 <- vglm(cbind(bw, bW, Bw, BW) ~ agec,
+ binom2.or(zero=NULL), data=coalminers)
> cm.vglm1

Call:
vglm(formula = cbind(bw, bW, Bw, BW) ~ agec, family = binom2.or(zero = NULL),

data = coalminers)

Coefficients:
(Intercept):1 (Intercept):2 (Intercept):3 agec:1

-2.26247 -1.48776 3.02191 0.51451
agec:2 agec:3

0.32545 -0.13136

Degrees of Freedom: 27 Total; 21 Residual
Residual deviance: 30.394
Log-likelihood: -100.53

In this call, the argument zero=NULL indicates that none of the linear predictors, η1, η2, η12 are
modeled as constants.9

At this writing, there is no anova() method for the "vgam" objects produced by vglm(), but
we can test the residual deviance of the model (against the saturated model) as follows, showing
that this model has an acceptable fit.

> (G2 <- deviance(cm.vglm1))

[1] 30.394

> # test residual deviance
> 1-pchisq(deviance(cm.vglm1), cm.vglm1@df.residual)

[1] 0.084355

The estimated coefficients in this model are usefully shown as below, using the argument matrix=TRUE
in coef(). Using exp() on the result gives values of odds that can be easily interpreted:

> coef(cm.vglm1, matrix=TRUE)

logit(mu1) logit(mu2) loge(oratio)
(Intercept) -2.26247 -1.48776 3.02191
agec 0.51451 0.32545 -0.13136

> exp(coef(cm.vglm1, matrix=TRUE))

logit(mu1) logit(mu2) loge(oratio)
(Intercept) 0.10409 0.22588 20.5304
agec 1.67282 1.38465 0.8769

Thus, the odds of a miner showing breathlessness are multiplied by 1.67, a 67% increase, for
each 5 years increase in age; similarly, the odds of wheeze are multiplied by 1.38, a 38% increase.

9The default, zero=3 gives the model shown in Eqn. (10.16), with the odds ratio constant.
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Figure 10.17: Observed and fitted values for the combinations of breathlessness and wheeze in the
binary logistic regression model cm.vglm1. Left: probabilities; right: on the log odds scale.{fig:cm-vglm1}

The odds ratio for the association between the two symptoms are multiplied by 0.88, a 12% decrease
over each 5 year interval.

The VGAM package has no special plot methods for "vglm" objects, but it is not hard to con-
struct these using the methods we showed earlier in this example. First, we can obtain the fitted
probabilities for the 4 response combinations using fitted() and the corresponding observed
probabilities using depvar().

> age <- coalminers$age
> P <- fitted(cm.vglm1)
> colnames(P) <- c("bw", "bW", "Bw", "BW")
> head(P)

bw bW Bw BW
1 0.93747 0.049409 0.0046356 0.0084831
2 0.91461 0.063636 0.0069757 0.0147776
3 0.88411 0.080029 0.0104965 0.0253679
4 0.84394 0.097484 0.0158138 0.0427671
5 0.79188 0.113839 0.0238598 0.0704196
6 0.72578 0.125910 0.0359684 0.1123366

> Y <- depvar(cm.vglm1)

In the left panel of Figure 10.17, we plot the fitted probabilities in the matrix P using matplot()
and the observed probabilities in Y using matpoints().

> col <- c("red", "blue", "red", "blue")
> pch <- c(1,2,16,17)
>
> op <- par(mar=c(5,4,1,1)+.1)
> matplot(age, P, type="l",
+ col=col,
+ lwd=2, cex=1.2, cex.lab=1.2,
+ xlab="Age", ylab="Probability",
+ xlim=c(20,65))
> matpoints(age, Y,
+ pch=pch, cex=1.2, col=col)
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> # legend
> text(64, P[9,]+ c(0,.01, -.01, 0), labels=colnames(P), col=col, cex=1.2)
> text(20, P[1,]+ c(0,.01, -.01, .01), labels=colnames(P), col=col, cex=1.2)
> par(op)

The right panel of Figure 10.17 shows these on the log odds scale, produced using the same
code as above, applied to the probabilities transformed using qlogis(), the quantile function for
the logistic distribution.

> lP <- qlogis(P)
> lY <- qlogis(Y)

In Figure 10.15 we plotted the empirical logits and log odds using the function blogits() to
transform frequencies to these values. An essentially identical plot can be produced by transforming
the fitted and observed probabilities, as calculated below.

> # blogits, but for B and W
> logitsP <- blogits(P[,4:1])
> logitsY <- blogits(Y[,4:1])

To test for nonlinearity in the prevalence of the symptoms or their odds ratio with age, we can fit
a similar model using poly() or a smoothing spline, such as ns(). We illustrate this here using
a bivariate model allowing quadratic effects of age on all three components.

> cm.vglm2 <- vglm(cbind(bw, bW, Bw, BW) ~ poly(agec,2),
+ binom2.or(zero=NULL), data=coalminers)

This model has a residual G2 = 16.963 with 18 df. Compared to the linear model cm.vglm1,
this represents a significant improvement in goodness of fit.

> (LR <- deviance(cm.vglm1) - deviance(cm.vglm2))

[1] 13.43

> 1 - pchisq(LR, cm.vglm1@df.residual - cm.vglm2@df.residual)

[1] 0.0037925

A plot of the fitted logits and log odds ratios under this model is shown in Figure 10.18. You
can interpret this plot as showing that the statistical evidence for the quadratic model indicates
some slight tendency for the prevalence of breathlessness and wheeze levels off slightly with age,
particularly the former.

4

10.4.2 More complex models
When there is more than one explanatory variable and several responses, the methods described
above using glm() and vglm() still apply. However, it is useful to begin with a more thorough
visual examination of the relations within and between these sets. Some useful graphical displays
include:

• mosaic displays showing the marginal relations among the response variables and of the ex-
planatory variables, each collapsed over the other set;

• conditional mosaics or fourfold displays of the associations among the responses, stratified by
one or more of the explanatory variables;
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Figure 10.18: Observed (points) and fitted (lines) logits and log odds ratios for the quadratic binary
logistic regression model cm.vglm2. {fig:cm-vglm2-blogit}

• plots of empirical logits and log odds ratios, as in Figure 10.15 or model-based plots, such as
Figure 10.18, showing a model-smoothed summary.

These displays can, and should, inform our search for an adequate descriptive or explanatory model.
Some of these ideas are illustrated in the following example. {ex:toxaemia}

EXAMPLE 10.9: Toxaemic symptoms in pregnancy
Brown et al. (1983) gave the data used here on two signs of toxaemia, an abnormal condition

during pregnancy characterized by high blood pressure (hypertension) and high levels of protein
in the urine. If untreated, both the mother and baby are at risk of complications or death. The
data frame Toxaemia in vcdExtra represents 13,384 expectant mothers in Bradford, England in
their first pregnancy, who were also classified according to social class and the number of cigarettes
smoked per day.

There are thus two response variables, and two explanatory variables in this data set in frequency
form. For convenience, we also convert it to a 2× 2× 5× 3 table.

> data("Toxaemia", package="vcdExtra")
> str(Toxaemia)

'data.frame': 60 obs. of 5 variables:
$ class: Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ smoke: Factor w/ 3 levels "0","1-19","20+": 1 1 1 1 2 2 2 2 3 3 ...
$ hyper: Factor w/ 2 levels "Low","High": 2 2 1 1 2 2 1 1 2 2 ...
$ urea : Factor w/ 2 levels "Low","High": 2 1 2 1 2 1 2 1 2 1 ...
$ Freq : int 28 82 21 286 5 24 5 71 1 3 ...

> tox.tab <- xtabs(Freq~class + smoke + hyper + urea, Toxaemia)
> ftable(tox.tab, row.vars=1)
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smoke 0 1-19 20+
hyper Low High Low High Low High
urea Low High Low High Low High Low High Low High Low High

class
1 286 21 82 28 71 5 24 5 13 0 3 1
2 785 34 266 50 284 17 92 13 34 3 15 0
3 3160 164 1101 278 2300 142 492 120 383 32 92 16
4 656 52 213 63 649 46 129 35 163 12 40 7
5 245 23 78 20 321 34 74 22 65 4 14 7

The questions of main interest are how the occurrence of each symptom varies with social class
and smoking, and how the association between these symptoms varies. It is useful, however, to
examine first the marginal relationship between the two responses, and between the two predictors.
The calls to mosaic() below produce the two panels in Figure 10.19.

> mosaic(~smoke + class, data=tox.tab, shade=TRUE,
+ main="Predictors", legend=FALSE)
> mosaic(~hyper + urea, data=tox.tab, shade=TRUE,
+ main="Responses", legend=FALSE)
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Figure 10.19: Mosaic displays for Toxaemia data: Predictor and response associations {fig:tox-mosaic1}

We see in Figure 10.19 that the majority of the mothers are in the third social class, and that
smoking is negatively related to social class, with the highest levels of smoking in classes 4 and 5.
(Social class 1 is the highest in status here.) More than 50% are non-smokers. Within the responses,
the great majority of women exhibit neither symptom, but showing one symptom makes it much
more likely to show the other. Marginally, hypertension is somewhat more prevalent than protein
urea.

We next examine how the association between responses varies with social class and with smok-
ing. Figure 10.20 shows a collection of conditional mosaic plots using cotabplot() of the asso-
ciation between hypertension and urea, for each level of smoking, collapsed over social class.

> cotabplot(~hyper + urea | smoke, tox.tab, shade=TRUE,
+ legend=FALSE, layout=c(1,3))

Figure 10.21 is similar, but stratified by social class. The marginal frequencies of the condi-
tioning variable is not represented in these plots. (For example, as can be seen in Figure 10.19, the
greatest number of women are in class 3.)
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Figure 10.20: Toxaemia data: Response association conditioned on smoking level {fig:tox-mosaic2}

> cotabplot(~hyper + urea | class, tox.tab, shade=TRUE,
+ legend=FALSE, layout=c(1,5))
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Figure 10.21: Toxaemia data: Response association conditioned on social class{fig:tox-mosaic3}

Ignoring social class, the association between hypertension and protein urea decreases with
smoking. Ignoring smoking, the association is greatest in social class 3. However, these displays
don’t show directly how the two symptoms are associated in the combinations of social class and
smoking. The fourfold display in Figure 10.22, does that.

> fourfold(aperm(tox.tab), fontsize=16)

It can be seen in Figure 10.22 that the odds ratio appears to increase with both smoking and
social class number and these two symptoms are positively associated in nearly all cases. In only
two cases the odds ratio is not significantly different from 1: mothers in classes 1 and 2, who smoke
more than 20 cigarettes a day, but the frequency in this cell is quite small.

> margin.table(tox.tab, 2:1)

class
smoke 1 2 3 4 5
0 417 1135 4703 984 366
1-19 105 406 3054 859 451
20+ 17 52 523 222 90

From these plots, it is useful to examine the association between hypertension and urea more
directly, by calculating and plotting the odds ratios. For a 2× 2×K × L× · · · table, the function
loddsratio() in vcd calculates these for each 2×2 subtable, and returns an array of dimension
K × L× · · ·, together with similar array of standard errors.
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Figure 10.22: Fourfold display for Toxaemia data. Smoking levels vary in the rows and social class
in the columns.{fig:tox-fourfold}

> loddsratio(urea ~ hyper | smoke + class, data = tox.tab)

log odds ratios for urea and hyper by smoke, class

class
smoke 1 2 3 4 5
0 1.5268 1.46196 1.58056 1.31351 1.0036
1-19 1.0710 0.86401 1.37370 1.34260 1.0348
20+ 2.4485 -1.14579 0.74425 0.88469 2.0187

The plot() method for the resulting "logoddsratio" object treats the conditioning variables
in the formula argument as strata, and plots the log odds ratios for the first such variable on the hor-
izontal axis with curves for the subsequent strata variables. The lines below produce Figure 10.23.

> LOR <- loddsratio(urea ~ hyper | class + smoke, data = tox.tab)
> plot(LOR, confidence=FALSE, legend_pos="bottomright",
+ xlab="Social class of mother")

The association between the response symptoms, shown in Figure 10.23 is clearer, once we
take the variation in sample sizes into account. Except for the heavy smokers, particularly in social
classes 1 and 2, the log odds ratio appears to range only between 1–1.5, meaning that, given one
symptom, the odds of also having the other range between exp(1) = 2.72 and exp(1.5) = 4.48.

This initial overview of the data is completed by calculating and plotting the log odds for each
symptom within each class-smoke population. This could be done in the same way as in Exam-
ple 10.8, (except that there are now two explanatory factors). The steps used there were: (a) Re-
shape the 2 × 2 ×K · · · table to a matrix with four columns corresponding to the binary response
combinations. (b) Calculate the logits (and log odds ratio) using blogits(). TODO: Use this
as an exercise.

Here, it is more useful to make separate plots for each of the logits, and we illustrate a more
general approach that applies to two or more binary responses, with two or more predictor variables.
The essential idea is to fit a separate logit model for each response separately, using the highest-order
interaction of all predictors (the saturated model). The fitted logits in these models then match those
in the data.
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Figure 10.23: Log odds ratios for protein urea given hypertension, by social class and level of
maternal smoking {fig:tox-LOR}

> tox.hyper <- glm(hyper=='High' ~ class*smoke, weights=Freq,
+ data=Toxaemia, family=binomial)
> tox.urea <- glm(urea=='High' ~ class*smoke, weights=Freq,
+ data=Toxaemia, family=binomial)

It is then simple to plot these results using the effects package as shown in Figure 10.24. Each
plot shows the logit for the response measure against class, with separate curves for the levels of
smoking.10

> library(effects)
>
> plot(allEffects(tox.hyper),
+ ylab = "Probability (hypertension)",
+ xlab = "Social class of mother",
+ main = "Hypertension: class*smoke effect plot",
+ colors = c("blue", "black", "red"),
+ lwd=3, multiline=TRUE,
+ key.args=list(x=0.05, y=0.2, cex=1.2, columns=1)
+ )
>
> plot(allEffects(tox.urea),
+ ylab = "Probability (Urea)",
+ xlab = "Social class of mother",
+ main = "Urea: class*smoke effect plot",
+ colors = c("blue", "black", "red"),
+ lwd=3, multiline=TRUE,
+ key.args=list(x=0.65, y=0.2, cex=1.2, columns=1)
+ )

From Figure 10.24, it can be seen that the prevalence of these symptoms has a possibly complex
relation to social class and smoking. However, the mosaic for these predictors in Figure 10.19 has
shown us that several of the class-smoking categories are quite small (particularly heavy smokers

10As is usual for effect plots of binary response glm() models, the vertical axis is plotted on the scale of log odds, but
labeled in terms of probabilities.
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Figure 10.24: Effect plots for hypertension and urea, by social class of mother and smoking.{fig:tox-effplots}

in Classes 1 and 2) so the response effects for these classes will be poorly estimated. Taking this
into account, we suspect that protein urea varies with social class, but not with smoking, while the
prevalence of hypertension may truly vary with neither, just one, or both of these predictors.

Fitting models

The plots shown so far in this example are all essentially data-based, in that they use the observed
frequencies or transformations of them and don’t allow for a simpler view, based on a reasonable
model. That is, abbreviating the table variables by their initial letters, the plots in Figure 10.23
and Figure 10.24 are plots of the saturated model, [CSHU] that fits perfectly, but with the data
transformed for each 2 × 2 subtable to the log odds ratio and the two log odds for hyper and
urea.

The bivariate logistic model fit by vglm() still applies when there are two or more predictors;
however, like other multivariate response models, it doesn’t easily allow the logits to depend on
different predictor terms. To illustrate this, we first transform the Toxaemia to a 15×4 data frame
in the form required by vglm().

> tox.tab <- xtabs(Freq~class + smoke + hyper + urea, Toxaemia)
> toxaemia <- t(matrix(aperm(tox.tab), 4, 15))
> colnames(toxaemia) <- c("hu", "hU", "Hu", "HU")
> rowlabs <- expand.grid(smoke=c("0", "1-19", "20+"), class=factor(1:5))
> toxaemia <- cbind(toxaemia, rowlabs)
> head(toxaemia)

hu hU Hu HU smoke class
1 286 21 82 28 0 1
2 71 5 24 5 1-19 1
3 13 0 3 1 20+ 1
4 785 34 266 50 0 2
5 284 17 92 13 1-19 2
6 34 3 15 0 20+ 2

In the model specification for vglm(), the zero argument in binom.or() allows any one or
more of the two log odds and log odds ratio to be fit as a constant (intercept-only) in Eqn. (10.11).
However, in that equation, the predictors x1, x2, x12, must be the same in all three submodels. For
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example, the model tox.vglm1 below uses main effects of class and smoke in both models
for the logits, and zero=3 for a constant log odds ratio.

> tox.vglm1 <- vglm(cbind(hu, hU, Hu, Hu) ~ class + smoke,
+ binom2.or(zero=3), data=toxaemia)
> coef(tox.vglm1, matrix=TRUE)

logit(mu1) logit(mu2) loge(oratio)
(Intercept) -0.50853648 -1.2214518 2.7808
class2 0.18156457 0.0382046 0.0000
class3 0.06332765 -0.0087552 0.0000
class4 -0.02227055 -0.0031541 0.0000
class5 -0.00077172 0.0821863 0.0000
smoke1-19 -0.41298650 -0.2198673 0.0000
smoke20+ -0.30562472 -0.1245019 0.0000

Instead, when there are no quantitative predictors, and when the odds ratio is relatively constant
(as here) it is easier to fit ordinary loglinear models than to use the bivariate logit formulation
of the previous example. These allow the responses H and U to depend on the class-smoking
combinations separately, by including the terms [CSH] or [CSU ], respectively.

The minimal, null model, [CS][H][U ] fits the marginal association of the numbers in each class-
smoking category, but asserts that the responses, H and U are independent, which we have already
seen is contradicted by the data. We take [CS][HU ] as the baseline model (Model 1), asserting
no relation between response and predictor variables, but associations within each set are allowed,
These models are fit as shown below.

> # null model
> tox.glm0 <- glm(Freq ~ class*smoke + hyper + urea,
+ data=Toxaemia, family=poisson)
> # baseline model: no association between predictors and responses
> tox.glm1 <- glm(Freq ~ class*smoke + hyper*urea,
+ data=Toxaemia, family=poisson)

We proceed to fit a collection of other models, adding terms to allow more associations between
the responses and predictors. Summary measures of goodness of fit and parsimony are shown in
Table 10.1.

Table 10.1: Loglinear models, tox.glm*, fit to the Toxaemia data{tab:toxmod}

Model Terms df G2 p-value G2/df AIC BIC R2

0 CS H U 43 672.85 0.0000 15.65 586.85 264.27 .
1 CS HU 42 179.03 0.0000 4.26 95.03 -220.04 0.000
2 CS HU SH CU 36 46.12 0.1203 1.28 -25.88 -295.94 0.742
3 CS CH CU HU SH CU 30 40.47 0.0960 1.35 -19.53 -244.58 0.774
4 CSH CU HU 24 26.00 0.3529 1.08 -22.00 -202.04 0.855
5 CSH CU SU HU 22 25.84 0.2588 1.17 -18.16 -183.20 0.856
6 CSH CSU HU 14 22.29 0.0729 1.59 -5.71 -110.74 0.875
7 CSH CSU SHU 12 15.65 0.2079 1.30 -8.35 -98.37 0.913
8 CSH CSU CHU SHU 8 12.68 0.1233 1.59 -3.32 -63.33 0.929
9 CSHU 0 0.00 0 0 0.00 0.00 1.000

> tox.glm2 <- update(tox.glm1, . ~ . + smoke*hyper + class*urea)
>
> tox.glm3 <- glm(Freq ~ (class + smoke + hyper + urea)^2,
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+ data=Toxaemia, family=poisson)
>
> tox.glm4 <- glm(Freq ~ class*smoke*hyper + hyper*urea + class*urea,
+ data=Toxaemia, family=poisson)
>
> tox.glm5 <- update(tox.glm4, . ~ . + smoke*urea)
>
> tox.glm6 <- update(tox.glm4, . ~ . + class*smoke*urea)
>
> tox.glm7 <- update(tox.glm6, . ~ . + smoke*hyper*urea)
>
> tox.glm8 <- glm(Freq ~ (class + smoke + hyper + urea)^3,
+ data=Toxaemia, family=poisson)
>
> tox.glm9 <- glm(Freq ~ (class + smoke + hyper + urea)^4,
+ data=Toxaemia, family=poisson)

Model 2 adds the simple dependence of hypertension on smoking ([SH]) and that of urea on
class ([CU ]). Model 3 includes all two-way terms. In Model 4, hypertension is allowed to depend on
both class and smoking jointly ([CSH]). In Model 5 an additional dependence of urea on smoking
([SU ]) is included, while in Model 6 urea depends on class and smoking jointly ([CSU ]).

None of these models contain three-way terms involving bothH and U , so these models assume
that the log odds ratio for hypertension given urea is constant over the explanatory variables. Re-
calling the conditional mosaics (Figure 10.20 and Figure 10.21), Models 7 and 8 add terms which
allow the odds ratio to vary, first with smoking ([SHU ]), then with class ([CHU ]) as well. Finally,
Model 9 is the saturated model, that fits perfectly.

How do we choose among these models? Model 2 is the smallest model whose deviance is
non-significant. Models 4 and 5 both have a smaller ratio of G2/df. For comparing nested models,
we can also examine the change in deviance as terms are added (or dropped). Thus, going from
Model 2 to Model 3 decreases the deviance by 5.65 on 6 df, while the step from Model 3 to Model
4 gives a decrease of 14.47, also on 6 df. These tests can be performed using lrtest() in the
lmtest package, shown below for models tox.glm1–tox.glm5.

> library(lmtest)
> lmtest::lrtest(tox.glm1, tox.glm2, tox.glm3, tox.glm4, tox.glm5)

Likelihood ratio test

Model 1: Freq ~ class * smoke + hyper * urea
Model 2: Freq ~ class + smoke + hyper + urea + class:smoke + hyper:urea +

smoke:hyper + class:urea
Model 3: Freq ~ (class + smoke + hyper + urea)^2
Model 4: Freq ~ class * smoke * hyper + hyper * urea + class * urea
Model 5: Freq ~ class + smoke + hyper + urea + class:smoke + class:hyper +

smoke:hyper + hyper:urea + class:urea + smoke:urea + class:smoke:hyper
#Df LogLik Df Chisq Pr(>Chisq)

1 18 -260
2 24 -194 6 132.91 <2e-16 ***
3 30 -191 6 5.65 0.464
4 36 -184 6 14.47 0.025 *
5 38 -184 2 0.17 0.920
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The AIC and BIC statistics, balancing parsimony and goodness-of-fit, have their minimum value
for Model 2, which we adopt here for this example.

Plotting model results

Whatever model is chosen, as a final step, it is important to determine what that model implies about
the original research questions. Because our focus here is on the prevalence of each symptom, and
their association, it is helpful to graph the fitted logits and log odds ratios implied by the model, as
was done in Figure 10.17 and Figure 10.18.
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The presentation goal here is to produce plots showing the observed logits and log odds ratios
as in Figure 10.24 and Figure 10.23, supplemented by lines showing these values according to the
fitted model. In Example 10.8 we fit the bivariate logit model, for which the response functions were
the desired logits and log odds. Here, where we have fit ordinary loglinear models, the observed
and fitted logits can be calculated from the observed and fitted frequencies. The calculations require
a bit of R calisthenics to arrange these into forms suitable for plotting.

As we did earlier, we first reshape the Toxaemia to wide format, as a 15× 4 table of observed
frequencies. Because there are now two predictor variables, we take care to include the levels of
smoke and class as additional columns.

> # reshape to 15 x 4 table of frequencies
> tox.tab <- xtabs(Freq~class + smoke + hyper + urea, Toxaemia)
> toxaemia <- t(matrix(aperm(tox.tab), 4, 15))
> colnames(toxaemia) <- c("hu", "hU", "Hu", "HU")
> rowlabs <- expand.grid(smoke=c("0", "1-19", "20+"), class=factor(1:5))
> toxaemia <- cbind(toxaemia, rowlabs)

Applying blogits(), we get the observed logits and log odds ratios in logitsTox.

> # observed logits and log odds ratios
> logitsTox <- blogits(toxaemia[,4:1], add=0.5)
> colnames(logitsTox)[1:2] <- c("logitH", "logitU")
> logitsTox <- cbind(logitsTox, rowlabs)
> head(logitsTox)

logitH logitU logOR smoke class
1 -1.02057 -1.9988 1.52679 0 1
2 -0.94261 -2.1665 1.07102 1-19 1
3 -1.02962 -2.1401 2.44854 20+ 1
4 -0.95040 -2.5158 1.46196 0 2
5 -1.04699 -2.4983 0.86401 1-19 2
6 -0.86500 -2.5257 -1.14579 20+ 2

The fitted frequencies are extracted using predict(tox.glm2, type="response")
and then manipulated in a similar way to give logitsFit.

> # fitted frequencies, as a 15 x 4 table
> Fit <- t(matrix(predict(tox.glm2, type="response"), 4, 15))
> colnames(Fit) <- c("HU", "Hu", "hU", "hu")
> Fit <- cbind(Fit, rowlabs)
> logitsFit <- blogits(Fit[,1:4], add=0.5)
> colnames(logitsFit)[1:2] <- c("logitH", "logitU")
> logitsFit <- cbind(logitsFit, rowlabs)

In tabular form, you can examine any of these components, for example, the log odds ratios
from the fitted values shown below.

> matrix(logitsFit$logOR, 3, 5,
+ dimnames=list(smoke=c("0", "1-19", "20+"), class=1:5))

class
smoke 1 2 3 4 5
0 1.3588 1.3638 1.3675 1.3643 1.3582
1-19 1.3582 1.3678 1.3683 1.3674 1.3658
20+ 1.2799 1.3471 1.3662 1.3622 1.3511

Finally, we can plot the observed values in logitsTox (as points) and the fitted values under
Model 2 in logitsFit (as lines), separately for the logitH, logitU, and logOR components.
The code below uses ggplot2 for the log odds of hypertension, and is repeated for urea and the log
odds ratio. These graphs are shown in Figure 10.25 and Figure 10.26.
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Figure 10.25: Observed (points) and fitted (lines) logits for the Toxaemia data under Model 2.{fig:tox-glm-logits1}

> ggplot(logitsFit, aes(x=as.numeric(class), y=logitH, color=smoke)) +
+ theme_bw() +
+ geom_line(size=1.2) +
+ scale_color_manual(values=c("blue", "black", "red")) +
+ ylab("log odds (Hypertension)") +
+ xlab("Social class of mother") +
+ ggtitle("Hypertension") +
+ theme(axis.title=element_text(size=16)) +
+ geom_point(data=logitsTox,
+ aes(x=as.numeric(class), y=logitH, color=smoke), size=3) +
+ theme(legend.position=c(0.85, .6))

According to this model, Figure 10.26 shows that the fitted log odds ratio is in fact nearly
constant, while Figure 10.25 shows that the log odds for hypertension depends mainly on smoking
(with a large difference of the non-smoking mothers from the rest) and that for protein urea depends
mainly on social class.11

Yet, the great variability of the observed points around the fitted curves indicates that these
relationships are not well-determined. Adding error bars showing the standard error around each
fitted point would indicate that the data conforms as closely to the model as can be expected, given
the widely different sample sizes. However, this would make the plots more complex, and so was
omitted here. In addition to showing the pattern of the results according to the fitted model, such
graphs also help us to appreciate the model’s limitations.

4

10.5 Chapter summary
{sec:loglin2-summary}

• Standard loglinear models treat all variables as unordered factors. When one or more factors are
ordinal, however, loglinear and logit models may be simplified by assigning quantitative scores
to the levels of an ordered factor. Such models are often more sensitive and have greater power
because they are more focused.

11Some possible enhancements to these graphs include (a) plotting on the scale of probabilities or including a right vertical
axis showing corresponding probabilities; (b) using the same vertical axis limits for the two graphs for direct comparison.
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Figure 10.26: Observed (points) and fitted (lines) log odds ratios for the Toxaemia data under
Model 2. {fig:tox-glm-logits3}

• Models for square tables, with the same row and column categories are an important special
case. For these and other structured tables, a variety of techniques provide the opportunity
to fit models more descriptive than the independence model and more parsimonious than the
saturated model.

• When there are several categorical responses, along with one or more explanatory variables,
some special forms of loglinear and logit models may be used to separate the marginal de-
pendence of each response on the explanatory variables from the interdependence among the
responses.

• In all these cases, the interplay between graphing and fitting is important in arriving at an un-
derstanding of the relationships among variables and an adequate descriptive model which is
faithful to the details of the data.

10.6 Lab exercises
{sec:loglin2-lab}{lab:10.1}

Exercise 10.1 Example 10.4 presented an analysis of the data on visual acuity for the subset of
women in the VisualAcuity data. Carry out a parallel analysis of the models fit there for the
men in this data set, given by:

> data("VisualAcuity", package="vcd")
> men <- subset(VisualAcuity, gender=="male", select=-gender)

{lab:10.2}

Exercise 10.2 Table 10.2 gives a 4×4 table of opinions about premarital sex and whether methods
of birth control should be made available to teenagers aged 14–16 from the 1991 General Social
Survey (Agresti, 2013, Table 10.3). Both variables are ordinal, and their grades are represented by
the case of the row and column labels.

(a) Fit the independence model to these data using loglm() or glm().
(b) Make a mosaic display showing departure from independence and describe verbally the pattern

of association.
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Table 10.2: Opinions about premarital sex and availability of teenage birth control. Source: Agresti
(2013, Table 10.3){tab:birthcontrol}

Premarital sex Birth control
DISAGREE disagree agree AGREE

WRONG 81 68 60 38
Wrong 24 26 29 14
wrong 18 41 74 42

OK 36 57 161 157

(c) Treating the categories as equally spaced, fit the L × L model of uniform association, as in
Section 10.1. Test the difference against the independence model with a likelihood-ratio test.

(d) Fit the RC(1) model with gnm(), and test the difference of this against the model of uniform
association.

(e) Write a brief summary of these results, including plots useful for explaining the relationships
in this data set.

{lab:10.3}

Exercise 10.3 The data set gss8590 in logmult gives a 4 × 5 × 4 table of education levels and
occupational categories for the four combinations of gender and race from the General Social Sur-
veys, 1985–1990 as reported by Wong (2001, Table 2). Wong (2010, Table 2.3B) later used the
subset pertaining to women to illustrate RC(2) models. This data is created below as Women.tab,
correcting an inconsistency to conform with the 2010 table.

> data("gss8590", package="logmult")
> Women.tab <- margin.table(gss8590[,,c("White Women", "Black Women")], 1:2)
> Women.tab[2,4] <- 49
> colnames(Women.tab)[5] <- "Farm"

(a) Fit the independence model, and also the RC(1) and RC(2) models using rc() with marginal
weights, as illustrated in Example 10.3. Summarize these statistical tests in a table.

(b) Plot the solution for the RC(2) model with 68% confidence ellipses. What verbal labels would
you use for the two dimensions?

(c) Is there any indication that a simpler model, using integer scores for the row (Education) or
column (Occupation) categories or both might suffice? If so, fit the analogous column effects,
row effects or L× L model, and compare with the models fit in part (a).
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Generalized linear models extend the familiar linear models of regression and ANOVA
to include counted data, frequencies, and other data for which the assumptions of indepen-
dent, normal errors are not reasonable. We rely on the analogies between ordinary and
generalized linear models (GLMs) to develop visualization methods to explore the data,
display the fitted relationships and check model assumptions. The main focus of this chap-
ter is on models for count data.

In one word, to draw the rule from experience, one must generalize; this is a necessity
that imposes itself on the most circumspect observer.

Henri Poincaré, The Value of Science: Essential Writings of Henri Poincare

In the modern history of statistics, most developments occur incrementally, with small additions
to existing models and theory that extend their range and applicability to new problems and data.
Occasionally, there is a major synthesis that unites a wide class of existing methods in a general
framework and provides opportunities for far greater growth.

A prime example is the theory of generalized linear models, introduced originally by Nelder and
Wedderburn (1972), that extended the familiar (classical) linear models for regression and ANOVA
to include related models, such as logistic regression and logit models (described in Chapter 7) and
loglinear models (described in Chapter 9) and other variations as “families” within a single general
system.

This approach has proved attractive because it: (a) integrates many familiar statistical models
in a general theory where they are just special cases; (b) provides the basis for extending these and
developing new models within the same or similar framework; (c) simplifies the implementation
of these models in software, since the same algorithm can be used for estimation, inference and
assessing model adequacy for all generalized linear models.

423
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Section 11.1 gives a brief sketch of the GLM framework. The focus of this book is on visual-
ization methods for categorical data, and the two important topics concern models and methods for
binomial response data and for count data. The first of these, was described extensively in Chapter 7,
with extensions to multinomial data (Chapter 8) and there is little to add here, except for changes in
notation.

GLM models for count data, however, provide the opportunity to extend the scope of these
methods beyond what was covered in Chapter 9, and this topic is introduced in Section 11.2. The
GLM framework also provides the opportunity to deal with common problems of overdispersion
(Section 11.3) and an overabundance of zero counts (Section 11.3), giving some new models and
visualization methods that help to understand such data in greater detail. Section 11.6 illustrates
other graphical methods for diagnostic model checking, some of which were introduced in earlier
chapters. Finally, Section 11.7 outlines some simple extensions of these models to handle multi-
variate responses.

11.1 Components of Generalized Linear Models
{glm:components}

The motivation for the generalized linear model (GLM) and its structure are most easily seen by
considering the classical linear model,

yi = xT
i β + εi

where yi is the response variable for case i, i = 1, . . . n, xi is the vector of explanatory variables
or regressors, β is the vector of model parameters, and the εi are random errors. In the classical
linear model, the εi are assumed to (a) have constant variance, σ2

ε , (b) follow a normal (Gaussian)
distribution (conditional on xi), (c) be independent across observations.

Thus, Nelder and Wedderburn (1972) generalized this Gaussian linear model to consist of the
following three components, by relaxing assumptions (a) and (b) above:1

random component The conditional distribution of the yi |xi, with mean E(yi) = µi. Under clas-

sical assumptions, this is independent, normal with constant variance σ2, i.e., yi
iid∼ N(µi, σ

2).
In the GLM, the probability distribution of the yi can be any member of the exponential family,
including the normal, Poisson, binomial, gamma and others. Subsequent work has extended
this framework to include multinomial distributions and some non-exponential families such as
the negative binomial distribution.

systematic component The idea that the predicted value of yi itself is a linear combination of the
regressors is replaced by that of a linear predictor, η, that captures this aspect of linear models,

ηi = xT
i β

link function The connection between the mean of the response, µi, and the linear predictor, ηi, is
specified by the link function, g(•), giving

g(µi) = ηi = xT
i β

The link function g(•) must be both smooth and monotonic, meaning that it is one-to-one, so an
inverse transformation, g−1(•) exists,

µi = g−1(ηi) = g−1(xT
i β)

1The remaining assumption of independent observations is relaxed in generalized linear mixed models (GLMMs), in
which random effects to account for non-independence are added to the linear predictor. This allows the modeling of
correlated (responses of family members), clustered (residents in different communities) or hierarchical data (patients within
hospitals within regions). See: McCulloch and Neuhaus (2005) ... TODO: other references?
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which allows us to obtain and plot the predicted values on their original scale. The link function
captures the familiar idea that linear models are often estimated with a transformation of the
response, such as log(yi) for a frequency variable or logit(yi) for a binomial variable. The
inverse function g−1(•) is also called the mean function.

Table 11.1: Common link functions and their inverses used in generalized linear models {tab:link-funcs}

Link name Function: ηi = g(µi) Inverse: µi = g−1(ηi)

identity µi ηi

square-root
√
µi η2i

log loge(µi) exp(ηi)

inverse µ−1i η−1i
inverse-square µ−2i η

−1/2
i

logit loge
µi

1−µi

1
1+exp(−ηi)

probit Φ−1(µi) Φ−1(ηi)

log-log − loge[− loge(µi)] exp[− exp(−ηi)]
comp. log-log loge[− loge(1− µi)] 1− exp[− exp(ηi)]

Some commonly used link functions are shown in Table 11.1. Some of these link functions
have restrictions on the range of yi to which they can be applied. For example, the square-root and
log links apply only to non-negative and positive values respectively. The last four link functions
in this table are for binomial data, where yi represents the observed proportion of successes in ni
independent trials, and thus the mean µi represents the probability of success (symbolized by πi in
Chapter 7). Binary data are the special case where ni = 1.

11.1.1 Variance functions

The GLM has the additional property that, for distributions in the exponential family, the condi-
tional variance of yi | ηi is a known function, V(µi) of the mean and possibly one other parameter
called the scale parameter or dispersion parameter, φ. Some commonly used distributions in the
exponential family and their variance functions are shown in Table 11.2.

Table 11.2: Common distributions in the exponential family used with generalized linear models
and their canonical link and variance functions {tab:exp-families}

Family Notation Canonical link Range of y Variance function, V(µ | η)

Gaussian N(µ, σ2) identity: µ (−∞,+∞) φ

Poisson Pois(µ) loge(µ) 0, 1, . . . ,∞ µ

Negative-Binomial NBin(µ, θ) loge(µ) 0, 1, . . . ,∞ µ+ µ2/θ

Binomial Bin(n, µ)/n logit(µ) {0, 1, . . . , n}/n µ(1− µ)/n

Gamma G(µ, ν) µ−1 (0,+∞) φµ2

Inverse-Gaussian IG(µ, ν) µ2 (0,+∞) φµ3

• In the classical Gaussian linear model, the conditional variance is constant, φ = σ2
ε .
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• In the Poisson family, V(µi) = µi and the dispersion parameter is fixed at φ = 1. In practice,
it is common for count data to exhibit overdispersion, meaning that V(µi) > µi. One way to
correct for this is to extend the GLM to allow the dispersion parameter to be estimated from the
data, giving what is called the quasi-Poisson family, with V(µi) = φ̂µi.

• Similarly, for binomial data, the variance function is V(µi) = µi(1− µi)/ni, with φ fixed at 1.
Overdispersion often results from failures of the assumptions of the binomial model: supposedly
independent observations may be correlated or clustered and the probability of success may not
be constant, or vary with unmeasured or unmodeled variables.

• The gamma and inverse-Gaussian families are distributions useful for modeling a continuous
and positive response variable with no upper bound (e.g., reaction time). They both have the
property that conditional variance increases with the mean, and for the inverse-Gaussian, vari-
ance increases at a faster rate. Their dispersion parameters φ are simple functions of their
intrinsic “shape” parameters, indicated as ν in the table.

The important points from this discussion are that the GLM together with the exponential family
of distributions:

• provide for simple, linear relations between the response and the predictors via the link function
and the linear predictor.

• allows a very flexible relationship between the mean and conditional variance to be specified in
terms of a set of known families.

• incorporates a dispersion parameter φ that in some cases can be estimated or tested for departure
from that entailed in a given family.

• has allowed further extensions of this framework outside the exponential family, ranging from
simple adjustments for statistical inference (“quasi” families, adjusted “sandwich” covariances)
to separate modeling of the variance relation to the predictors.

Further details of generalized linear models are beyond the scope of this book, but the interested
reader should consult Fox (2008, §15.3) and Agresti (2013, Ch. 4) for a comprehensive treatment.

11.1.2 Hypothesis tests for coefficients
{sec:glm-hyptests}

GLMs are fit using maximum likelihood estimation, and implemented in software using an iterative
algorithm known as iteratively weighted least squares that generalizes the least squares method for
classical linear models. This provides estimates β̂ of the model coefficients for the predictors in x,
as well as an estimated asymptotic (large sample) variance matrix of β̂, given by

V(β̂) = φ(XTWX) (11.1){eq:varbeta}

where W is a diagonal matrix of weights computed in the final iteration. In the standard Poisson
GLM, the weight matrix isW = diag (µ̂) and φ = 1 is assumed.

Asymptotic standard errors, se(β̂j), for the coefficients are then the square roots of the diagonal
elements of V(β̂), and tests of hypotheses regarding an individual coefficient, e.g., H0 : βj = 0,
can be carried out using the Wald test statistic, zj = β̂j/se(β̂j). When the null hypothesis is true,
zj has a standard normal N (0, 1) distribution, providing p-values for significance tests.2

More generally, we can test any linear hypothesis, of the form H0 : Lβ = c, where L is
a constant hypothesis matrix of size h × p giving h linear combinations of the coefficients, to be

2Wald tests are sometimes carried out using z2, which has an equivalent χ2
1 distribution with 1 degree of freedom.
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tested for equality with the constants in c, typically taken as c = 0. The test statistic is the Wald
chi-square,

Z2 = (Lβ̂ − c)T [LV(β̂)LT]−1 (Lβ̂ − c) (11.2){eq:waldchisq}

which has a χ2 distribution on h degrees of freedom.3

For example, to test the hypothesis that all of β1 = β2 = β3 = 0 in a model with three
predictors, you can use

L =

 0 1 0 0
0 0 1 0
0 0 0 1

 =
[

0 I
]
, c =

 0
0
0


Similarly, to test the hypothesis that β1 = β2 in the same model, you can use L = [0, 1,−1, 0] and
c = [0].4

In R, such tests are most conveniently carried out using linearHypothesis() in the car
package. The hypothesis matrix L can be supplied as a numeric matrix, or more conveniently,
the hypothesis can be specified symbolically as a character vector of the names of the coefficients
involved in each row of L. For example, the first hypothesis test above could be specified using the
vector c("x1=0", "x2=0", "x3=0") and the test of equality as "x1-x2=0".

11.1.3 Goodness-of-fit tests
{sec:glm-goodfit}

The basic ideas for testing goodness-of-fit were discussed in Section 9.3.2 in connection with log-
linear models for contingency tables. As before, these assess the overall performance of a model in
reproducing the data. The commonly used measures include the Pearson chi-square and likelihood-
ratio deviance statistics, which can be seen as weighted sums of residuals. We re-state these test
statistics here in the wider context of the GLM.

Let yi, i = 1, 2, . . . , n be the response and µ̂i = g−1(xT
i β̂) the fitted mean using the estimated

coefficients, having estimated variance ω̂i = V(µ̂i | ηi) as in Table 11.2. Then the normalized
squared residual for observation i is (yi − µ̂i)2/ω̂i, and the Pearson statistic is

X2
P =

n∑
i=1

(yi − µ̂i)2

ω̂i
. (11.3) {eq:pearson}

In the GLM for count data, the main focus of this chapter, the Poisson family sets ω = µ with
the dispersion parameter fixed at φ = 1.

The residual deviance statistic, as in logistic regression and loglinear models is defined as twice
the difference between the maximum possible log-likelihood for the saturated model that fits per-
fectly and maximized log-likelihood for the fitted model. The deviance can be defined as

D(y, µ̂) ≡ 2[loge L(y;y)− loge L(y; µ̂)]

For classical linear models under normality, the deviance is simply the residual sum of squares,∑n
i (yi − µ̂i). This has led to the deviance being taken in the GLM framework as a generalization

of the sum of squares used in ANOVA, and hence, an analogous analysis of deviance to carry out
tests for individual terms in GLMs, or to compare nested models.

In R, anova(mod) for the "glm" object mod gives sequential (“Type I”) tests of successive
terms in a model, while Anova() in the car package gives the more generally useful “Type II”

3When a dispersion parameter φ has been estimated from the data, it is common to use an F -test, using the statistic
F = Z2/h, with h and n− p degrees of freedom.

4Such a test is only sensible if the predictors x1 and x2 are on the same scale, so their coefficients are commensurable.
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(and “Type III”) partial tests, that assess the additional contribution of each term above all others,
taking marginality into account.

For Poisson models with a log link giving µ = exp(xTβ) , the deviance takes the form5

D(y, µ̂) = 2

n∑
i=1

[
yi loge

(
yi
µ̂i

)
− (yi − µ̂i)

]
(11.4){eq:pois-deviance}

For a GLM with p parameters, both the Pearson and residual deviance statistics follow approximate
χ2
n−p distributions with n− p degrees of freedom.

11.1.4 Comparing non-nested models
{sec:glm-nonnest}

The flexibility of the GLM and its extensions allows us to fit models to the same data using dif-
ferent families and different link functions, and to fit models that allow for overdispersion (Sec-
tion 11.3) or that make special provisions for zero counts (Section 11.4). One price paid for this
additional versatility is that standard LR tests and F tests (such as provided by anova() and
linearHypothesis() in the car package) do not apply to models that are not nested, that is,
where one model cannot be represented as a restricted, special case of another.

For models estimated by maximum likelihood, one general route to comparing non-nested mod-
els is through the AIC information criterion proposed initially by Akaike (1973) and the related BIC
criterion (Schwartz, 1978) based on the fitted log-likelihood function.

AIC = −2 loge L+ 2k (11.5)
BIC = −2 loge L+ loge(n)k (11.6)

As noted in Section 9.3.2, these both penalize models with larger k, the number of parameters in
the model, with BIC adding a greater penalty with larger sample size. However, because they are
based only on the maximized log-likelihood, they are agnostic as to whether models are nested or
not, and give comparable results (lower is better) provided the same observations have been used in
all models.

In R, these results are given for a collection of models by the generic functions AIC() and
BIC(); these can be calculated for any model for which logLik() and (for BIC) nobs() meth-
ods exist. The vcdExtra function LRstats() is a convenient wrapper for these methods.

AIC and BIC do not give significance tests for assessing whether one model is significantly
“better” than another. One test that does this was proposed by Vuong (1989), unsurprisingly called
Vuong’s test. The test is based on comparing the predicted probabilities or the pointwise log-
likelihoods of the two models, and tests the null hypothesis that each is equally close to the saturated
model, against the alternative that one model is closer.

For two such models, let f1(yi |xi,θ1) be the density function under model 1, with parameters
θ1 and similarly f2(yi |xi,θ2) under model 2 with parameters θ2, where f1(•) and f2(•) need not
be the same. Vuong’s test compares these based on the observation-wise log-likelihood ratios,

`i = loge

(
f1(yi |xi, θ̂1)

f2(yi |xi, θ̂2)

)

The test statistic is

V =
¯̀− penalty√

ns`

where ¯̀is the mean of the `i, s` is their variance, and penalty is an adjustment for model parsimony,

5In the context of the loglinear models discussed in Section 9.3.2, this is also referred to as the likelihood-ratio G2

statistic.
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typically taken as log(n)(k1 − k2)/2 when model 1 has k1 parameters in θ1 and model 2 has k2
parameters in θ2.

The test statistic V has an asymptotic normal N(0, 1) distribution, and is directional, with large
positive values favoring model 1, and large negative values favoring model 2. This test is imple-
mented as the vuong() function in the pscl package.

11.2 GLMs for count data
{sec:glm-count}

The prototypical GLM for count data, where the response yi takes on non-negative values 0, 1, 2, . . .,
uses the Poisson family with the log link. We used this model extensively throughout all of Chap-
ter 9. There the focus was on the special case of the loglinear model applied largely to contingency
tables, where the loglinear model could be seen as a fairly direct extension of ANOVA models for a
quantitative response applied to the log of cell frequency.

The advantage there was that models for two-way, three-way and by implication n-way tables
could be discussed and illustrated using notation and graphs that separated the parameters and ef-
fects for one-way terms (“main effects”), two-way terms (“simple associations”) and higher-way
terms (“conditional associations”).

The disadvantage is that these models as formulated there do not easily accommodate general
quantitative predictors and were limited to the log link and the Poisson family. For example, the
models discussed in Section 10.1 for ordinal variables allow one or more table factors to be assigned
quantitative scores or have such scores estimated from the data, as in RC() models (Section 10.1.2).
Yet, the contingency table approach for loglinear models breaks down if there are continuous pre-
dictors, and count data often exhibits features that make the equivalent Poisson regression model
unsuitable or incomplete. We consider some extended models here. {ex:phdpubs1}

EXAMPLE 11.1: Publications of PhD candidates
In Example 3.24 we considered the distribution of the number of publications by PhD candidates

in their last three years of study, but without taking any available predictors into account. For
these data, a simple calculation shows why the Poisson distribution is unsuitable (for the marginal
distribution), because the variance is 2.19 times the mean.

> data("PhdPubs", package="vcdExtra")
> with(PhdPubs, c(mean=mean(articles), var=var(articles),
+ ratio=var(articles)/mean(articles)))

mean var ratio
1.6929 3.7097 2.1914

The earlier example showed rootograms (in Figure 3.25) of the number of articles, but here
it is useful to consider some more basic exploratory displays. A basic barplot of the frequency
distribution of number of articles published is shown in the left panel of Figure 11.1. A quick look
indicates that the distribution is highly skewed and there is a large number of counts of zero.

Another problem is that the frequencies of 0–2 articles account for over 75% of the total, so
that the frequencies of the larger counts get lost in the display. The rootogram corrects for this by
plotting frequency on the square-root scale. However, because we are contemplating a model with
a log link, the same goal can be achieved by plotting log of frequency, as shown in the right panel
of Figure 11.1. To accommodate the zero frequencies, the plot shows log(Frequency+1), avoiding
errors from log(0). It can be seen that log frequency decreases steadily up to 7 articles and then
levels off approximately.

These plots are produced as shown below. The frequency distribution of articles can be
tabulated by table(), but there is a subtle wrinkle here: By default, table() excludes the
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Figure 11.1: Barplots showing the frequency distribution of number of publications by PhD candi-
dates. Left: raw scale; Right: a log scale makes the smaller counts more visible. The vertical red
lines show the mean and horizontal lines show mean ±1 standard deviation. {fig:phdpubs-barplot}

values of articles that do not occur in the data (zero frequencies). To include all values in the
entire range, it is necessary to treat articles as a factor with levels 0:19.

> art.fac <- factor(PhdPubs$articles, levels=0:19) # include zero frequencies
> art.tab <- table(art.fac)
> art.tab

art.fac
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

275 246 178 84 67 27 17 12 1 2 1 1 2 0 0 0 1 0 0 1

Then, the basic plot on the frequency scale is created using barplot(), and some annotations
showing the mean and a one standard deviation interval can be added using standard plotting tools.

> barplot(art.tab, xlab="Number of articles", ylab="Frequency",
+ col="lightblue")
> abline(v=mean(PhdPubs$articles), col="red", lwd=3)
> ci <- mean(PhdPubs$articles)+c(-1,1) * sqrt(var(PhdPubs$articles))
> lines(x=ci, y=c(-4, -4), col="red", lwd=3, xpd=TRUE)

Similarly, the plot on the log scale in the right panel of Figure 11.1 is produced with barplot(),
but using art.tab+1 to start frequency at one and log="y" to scale the vertical axis to log.

> barplot(art.tab+1, ylab="log(Frequency+1)", xlab="Number of articles",
+ col="lightblue", log="y")

Other useful exploratory plots for count data include boxplots of the response (on a log scale)
and scatterplots against continuous predictors, where jittering the response is often necessary to
avoid overplotting and a smooth nonparametric curve can show possible non-linearity. The log="y"
option is again handy, and the formula method allows adding a start value to the response. Fig-
ure 11.2 illustrates these ideas, for the factor married and the covariate mentor.

> boxplot(articles+1 ~ married, data=PhdPubs, log="y", varwidth=TRUE,
+ ylab="log(articles+1)", xlab="married", cex.lab=1.25)
> plot(jitter(articles+1) ~ mentor, data=PhdPubs, log="y",
+ ylab="log(articles+1)", cex.lab=1.25)
> lines(lowess(PhdPubs$mentor, PhdPubs$articles+1), col="blue", lwd=3)

It can be seen that the distribution of articles for married and non-married are quite similar,
except that for the married students there are quite a few observations with a large number of publi-
cations. The relationship between log(articles) and mentor publications seems largely linear except
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Figure 11.2: Exploratory plots for the number of articles in the PhdPubs data. Left: boxplots for
married (1) vs. non-married (0); right: jittered scatterplot vs. mentor publications with a lowess
smoothed curve.{fig:phdpubs-logplots}

possibly at the very low end. The large number of zero counts at the lower left corner stands out;
this would not be seen without jittering.

Plots similar to those in Figure 11.2 can also be produced using ggplot2 with greater flexibility,
but perhaps greater effort to get the details right. One key feature is the use of scale_y_log10()
to plot the response, and all other features on a log scale. The following code gives a plot similar
to the right panel of Figure 11.2, but also plots a confidence band around the smoothed curve, and
adds a linear regression line of log(articles) on mentor publications. This plot is not shown here, but
it is a good exercise to reproduce it for yourself.

> ggplot(PhdPubs, aes(mentor, articles+1)) +
+ geom_jitter(position=position_jitter(h=0.05)) +
+ stat_smooth(method="loess", size=2, fill="blue", alpha=0.25) +
+ stat_smooth(method="lm", color="red", size=1.25, se=FALSE) +
+ scale_y_log10(breaks=c(1,2,5,10,20)) +
+ labs(y = "log (articles+1)", x="Mentor publications")

To start analysis, we fit the Poisson model using all predictors— female, married, kid5,
phdprestige, and mentor. As recorded in PhdPubs, female and married are both dummy
(0/1) variables, and it slightly more convenient for plotting purposes to make them factors.

> PhdPubs <- within(PhdPubs, {
+ female <- factor(female)
+ married <- factor(married)
+ })

The model is fit as shown below and summarized using summary(), but with abbreviated
output. TODO: output.lines=9:24 works in chapter.Rnw, but not in book.Rnw. Why???

> phd.pois <- glm(articles ~ ., data=PhdPubs, family=poisson)
> summary(phd.pois)

Call:
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glm(formula = articles ~ ., family = poisson, data = PhdPubs)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.488 -1.538 -0.365 0.577 5.483

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.26562 0.09962 2.67 0.0077 **
female1 -0.22442 0.05458 -4.11 3.9e-05 ***
married1 0.15732 0.06125 2.57 0.0102 *
kid5 -0.18491 0.04012 -4.61 4.0e-06 ***
phdprestige 0.02538 0.02527 1.00 0.3153
mentor 0.02523 0.00203 12.43 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1817.4 on 914 degrees of freedom
Residual deviance: 1633.6 on 909 degrees of freedom
AIC: 3313

Number of Fisher Scoring iterations: 5

Significance tests for the individual coefficients show that all are significant, except for phdprestige.
We ignore this here, and continue to interpret and extend the full main effects model.6

The estimated coefficients β for the predictors are shown below. Recall that using the log
link means, for example, that being married increases the log of the expected number of articles
published by 0.157, holding all other predictors constant. Each additional child of age 5 or less
decreases this by 0.185.

> round(cbind(beta=coef(phd.pois),
+ expbeta=exp(coef(phd.pois)),
+ pct=100*(exp(coef(phd.pois))-1)),3)

beta expbeta pct
(Intercept) 0.266 1.304 30.425
female1 -0.224 0.799 -20.102
married1 0.157 1.170 17.037
kid5 -0.185 0.831 -16.882
phdprestige 0.025 1.026 2.570
mentor 0.025 1.026 2.555

It is somewhat easier to interpret the exponentiated coefficients, exp(β) as multiplicative effects
on the expected number of articles and convert these to percentage change, again holding other
predictors constant. For example, expected publications by married candidates are 1.17 times that
of non-married, a 17% increase, while each additional child multiplies articles by 0.831, a 16.88%
decrease.

Alternatively, we recommend visual displays for model interpretation, and effect plots do well
in most cases, as shown in Figure 11.3. For a Poisson GLM, an important feature is that the response
is plotted on the log scale, so that effects in the model appear as linear functions, while the values of
the response (number of articles) are labeled on their original scale, facilitating interpretation. The
confidence bands and error bars give 95% confidence intervals around the fitted effects.

6It is usually less harmful to include a non-significant predictor, (which in any case may be a variable useful to control,
as phdprestige here), than to omit a potentially important predictor, or worse— to fail to account for an important
interaction.



11.2: GLMs for count data 433

> library(effects)
> plot(allEffects(phd.pois), band.colors="blue", lwd=3,
+ ylab="Number of articles", main="")
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Figure 11.3: Effect plots for the predictors in the Poisson regression model for the PhdPubs data.
Jittered values of the continuous predictors are shown at the bottom as rug-plots. {fig:phdpubs1-effpois}

In Figure 11.3 we can see the decrease in published articles with number of young children,
but also that the confidence band gets wider with increasing children. The predicted effect here
of number of publications by the student’s mentor is more dramatic, particularly for those whose
mentor were truly prolific.

You should note that the panels for the predictors in Figure 11.3 are scaled individually for the
range of the fitted main effects. This is often a sensible default and all predictors except mentor
give a similar range here. To make all of these plots strictly comparable, provide a ylim argument,
giving the range of the response on the log scale, as below (but not shown here).

> plot(allEffects(phd.pois), band.colors="blue", ylim=c(0,log(10)))

All of the above is useful, but still leaves aside the question of how well the Poisson model fits
the data. The output from summary(phd.pois) above showed that the Poisson model fits quite
badly. The residual deviance of 1633.6 with 909 degrees of freedom is highly significant.

4
{ex:crabs1}

EXAMPLE 11.2: Mating of horseshoe crabs
Brockmann (1996) studied the mating behavior of female horseshoe crabs in the Gulf of Mex-

ico. In the mating season, crabs arrive on the beach in female/male pairs to lay and fertilize eggs.
However, unattached males, called “satellites,” also come to the beach, crowd around the nesting
couples and compete with attached males for fertilizations, contributing to reproductive success.
Some females are ignored by satellite males, and some attract more satellites than others, and the
question is: what factors contribute to to the number of satellites for each female? Or, perhaps bet-
ter, how do unattached males choose among available females? This is another example in which
zero counts may require special treatment.

The data, given in CrabSatellites in the countreg package, give the response variable,
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satellites for 173 females. Possible predictors are the female’s color and spine condition,
given as ordered factors, as well as her weight and carapace (shell) width.

> data("CrabSatellites", package = "countreg")
> str(CrabSatellites)

'data.frame': 173 obs. of 5 variables:
$ color : Ord.factor w/ 4 levels "lightmedium"<..: 2 3 3 4 2 1 4 2 2 2 ...
$ spine : Ord.factor w/ 3 levels "bothgood"<"onebroken"<..: 3 3 3 2 3 2 3 3 1 3 ...
$ width : num 28.3 26 25.6 21 29 25 26.2 24.9 25.7 27.5 ...
$ weight : num 3.05 2.6 2.15 1.85 3 2.3 1.3 2.1 2 3.15 ...
$ satellites: int 8 4 0 0 1 3 0 0 8 6 ...

Agresti (2013, §4.3) analyses the number of satellites using count data GLMs, and in his Chapter
5, describes separate logistic regression models for the binary outcome of one or more satellites vs.
none. Later in this chapter (Section 11.4) we consider hurdle and zero-inflated models for count
data. These have the advantage of modeling the zero counts together with a model for the positive
counts.

A useful overview plot of the data is shown using gpairs() in Figure 11.4. You can see that
the distribution of satellites is quite positively skewed, with many zero counts. width and
weight are highly correlated (0.89), and both relate to the size of the female. Their scatterplots
in the first row show that larger females attract more satellites. The categorical ordered factors
spine condition and color are strongly associated, with the lightest colored crabs having the
best conditions.

> library(vcd)
> library(gpairs)
> gpairs(CrabSatellites[,5:1],
+ diag.pars = list(fontsize=16),
+ mosaic.pars = list(gp=shading_Friendly, gp_args=list(interpolate=1:4)))

Figure 11.5 shows the scatterplots of satellites against width and weight together with
smoothed lowess curves.

> plot(jitter(satellites) ~ width, data=CrabSatellites,
+ ylab="Number of satellites (jittered)", xlab="Carapace width",
+ cex.lab=1.25)
> with(CrabSatellites, lines(lowess(width, satellites), col="red", lwd=2))
> plot(jitter(satellites) ~ weight, data=CrabSatellites,
+ ylab="Number of satellites (jittered)", xlab="Weight",
+ cex.lab=1.25)
> with(CrabSatellites, lines(lowess(weight, satellites), col="red", lwd=2))

Both variables show approximately linear relations to the mean number of satellites, so it would
not be unreasonable to fit models using the identity link (µ ∼ x) rather than the log link (µ ∼ log(x))
with the Poisson family GLM.

In these plots, we reduce the problem of overplotting of the discrete response by jittering, but
an alternative technique is to transform a numeric count or continuous predictor to a factor (for
visualization purposes only), thereby giving boxplots. A convenience function for this purpose,
cutfac() is defined in vcdExtra. It acts like cut(), but gives nicer labels for the factor levels
and by default chooses convenient breaks among the values based on deciles. Using this, the plots
in Figure 11.5 can be re-drawn as boxplots, giving Figure 11.6.

> plot(satellites ~ cutfac(width), data=CrabSatellites,
+ ylab="Number of satellites", xlab="Carapace width (deciles)")
> plot(satellites ~ cutfac(weight), data=CrabSatellites,
+ ylab="Number of satellites", xlab="Weight (deciles)")
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Figure 11.4: Generalized pairs plot for the CrabSatellites data.{fig:crabs1-gpairs}
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Figure 11.5: Scatterplots of number of satellites vs. width and weight, with lowess smooths.{fig:crabs1-scats}
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Figure 11.6: Boxplots of number of satellites vs. width and weight.{fig:crabs1-boxplots}

With this visual overview, we proceed to an initial Poisson GLM model, using all predictors.
Note that color and spine are ordered factors, so glm() represents them as polynomial con-
trasts, as if they were coded numerically. TODO: output.lines=9:26 works in chapter.Rnw,
but not in book.Rnw. Why???

> crabs.pois <- glm(satellites ~ ., data=CrabSatellites, family=poisson)
> summary(crabs.pois)

Call:
glm(formula = satellites ~ ., family = poisson, data = CrabSatellites)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.029 -1.863 -0.599 0.933 4.945

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.7057 0.9344 -0.76 0.4501
color.L -0.4120 0.1567 -2.63 0.0085 **
color.Q 0.1237 0.1231 1.00 0.3150
color.C 0.0481 0.0914 0.53 0.5983
spine.L 0.0618 0.0848 0.73 0.4660
spine.Q 0.1585 0.1609 0.99 0.3244
width 0.0165 0.0489 0.34 0.7358
weight 0.4971 0.1663 2.99 0.0028 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 549.56 on 165 degrees of freedom
AIC: 920.9

Number of Fisher Scoring iterations: 6

The Wald tests for the coefficients show that only the linear effect of color and the effect of
width are significant. Effect plots, in Figure 11.7, show the nature of these effects— lighter colored
females attract more satellites, as do wider and heavier females.
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> plot(allEffects(crabs.pois), main="")
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Figure 11.7: Effect plots for the predictors in the Poisson regression model for the CrabSatellites
data. {fig:crabs1-eff1}

A simpler model can be constructed using color as a numeric variable, and either width or
weight to represent female size. We choose weight here.7

> CrabSatellites1 <- transform(CrabSatellites,
+ color = as.numeric(color))
>
> crabs.pois1 <- glm(satellites ~ weight + color, data=CrabSatellites1,
+ family=poisson)
> summary(crabs.pois1)

Call:
glm(formula = satellites ~ weight + color, family = poisson,

data = CrabSatellites1)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.978 -1.916 -0.547 0.918 4.834

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0888 0.2544 0.35 0.727

7Agresti (2013, §4.3) and others who have analyzed this example uses carapace width as the main quantitative predictor,
possibly because width might be more biologically salient to the single males than weight. This is a case where two highly
correlated predictors are each strongly related to the outcome, yet partial tests (controlling for all others) may prefer one over
the other.
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weight 0.5458 0.0675 8.09 6e-16 ***
color -0.1728 0.0615 -2.81 0.005 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 552.77 on 170 degrees of freedom
AIC: 914.1

Number of Fisher Scoring iterations: 6

From the statistical and graphical analysis so far, the answer to the question posed in this exam-
ple is clear: unattached male horseshoe crabs prefer light-colored big, fat mamas!

Yet, neither of these models fit well, as can be seen from their residual deviances and likelihood-
ratio tests.

> vcdExtra::LRstats(crabs.pois, crabs.pois1)

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

crabs.pois 921 946 550 165 <2e-16 ***
crabs.pois1 914 924 553 170 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Perhaps there is something else to be learned here.
4

11.3 Models for overdispersed count data
{sec:glm-overdisp}

In practice, the Poisson model is often very useful for describing the relationship between the mean
µi and the linear predictors, but typically underestimates the variance in the data. The consequence
is that the Poisson standard errors are too small, rendering the Wald tests of coefficients, zj =

β̂j/se(β̂j) (and other hypothesis test statistics) too large, and thus overly liberal.
In applications of the GLM, overdispersion is usually assessed by the likelihood-ratio test of

the deviance (or the Pearson statistic) given in Section 11.1.3, but there is a subtle problem here.
Lack of fit in a GLM for count data can result either from a mis-specified model for the systematic
component (omitted or unmeasured predictors, non-linear relations, etc.) or from failure of the
Poisson mean = variance assumption. Thus, use of these methods requires some high degree of
confidence that the systematic part of the model has been correctly specified, so that any lack of fit
can be attributed to overdispersion.

One way of dealing with this is to base inference on so-called sandwich covariance estima-
tors that are robust against some types of model mis-specification. In R, this is provided by the
sandwich() function in the sandwich package, and can be used with coeftest(model,
vcov=sandwich) to give overdispersion-corrected hypothesis tests. Alternatively, the Poisson
model variance assumption can be relaxed in the quasi-Poisson model and the negative-binomial
model as discussed below.

11.3.1 The quasi-Poisson model
{sec:glm-quasi}

One obvious solution to the problem of overdispersion for count data is the relaxed assumption that
the conditional variance is merely proportional to the mean,

V(yi|ηi) = φµi
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Overdispersion is the common case of φ > 1, implying that the conditional variance increases faster
than the mean, but the opposite case of underdispersion, φ < 1 is also possible, though relatively
rare in practice. This strategy entails estimating the dispersion parameter φ from the data, and gives
the quasi-Poisson model for count data.

One possible estimate is the residual deviance divided by degrees of freedom. However, it is
more common to use the Pearson statistics, that gives a method-of-moments estimate with improved
statistical properties.

φ̂ =
X2
P

n− p
=

n∑
i=1

(yi − µ̂i)2

µ̂i
/(n− p)

It turns out that this model gives the same coefficient estimates as the standard Poisson GLM,
but inference is adjusted for over/under dispersion. In particular, following Eqn. (11.1) the standard
errors of the model coefficients are multiplied by φ̂1/2 and so are inflated when overdispersion is
present. In R, the quasi-Poisson model with this estimated dispersion parameter is fitted with the
glm() function, by setting family=quasipoisson. {ex:phdpubs2}

EXAMPLE 11.3: Publications of PhD candidates
For the PhdPubs data, the deviance and Pearson estimates of dispersion φ can be calculated

using the results of the Poisson model saved in the phd.pois object. The Pearson estimate, 1.83,
indicates that standard errors of coefficients in this model should be multiplied by

√
1.83 = 1.35, a

35% increase, to correct for overdispersion.

> with(phd.pois, deviance/df.residual)

[1] 1.7971

> sum(residuals(phd.pois, type = "pearson")^2)/phd.pois$df.residual

[1] 1.8304

The quasi-Poisson model is then fitted using glm() as:

> phd.qpois <- glm(articles ~ ., data=PhdPubs, family=quasipoisson)

For use in other computation, the dispersion parameter estimate φ̂ can be obtained as the dispersion
value of the summary() method for a quasi-Poisson model.

> (phi <- summary(phd.qpois)$dispersion)

[1] 1.8304

Note that this value can be compared to the variance/mean ratio of 2.91 calculated for the
marginal distribution in Example 11.1; there is considerable improvement taking the predictors
into account.

4

11.3.2 The negative-binomial model
{sec:glm-negbin}

The negative-binomial (NB) model for count data was introduced in Section 3.2.3 as a different
generalization of the Poisson model that allows for overdispersion. In the context of the GLM, this
can be developed as the extended form where the distribution of yi |xi where the mean µi for fixed
xi can vary across observations i according to a gamma distribution with mean µi and a constant
shape parameter, θ, reflecting the additional variation due to heterogeneity.

For a fixed value of θ, the negative-binomial is another special case of the GLM. The expected
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value of the response is again E(yi) = µi, but the variance function is V(yi) = µi + µ2
i /θ, so

the variance of y increases more rapidly than that of the Poisson distribution. Some authors (e.g.,
Agresti (2013), Hilbe (2014)) prefer to parameterize the variance function in terms of α = 1/θ,
giving

V(yi) = µi + µ2
i /θ = µi + αµ2

i ,

so that α is a kind of dispersion parameter. Note that as α → 0, V(yi) → µi and the negative-
binomial converges to the Poisson.

The MASS package provides the family function negative.binomial(theta) that can
be used directly with glm() provided that the argument theta is specified. One example would
be the related geometric distribution (Section 3.2.4), that is the special case of θ = 1. This can be
fitted in R by setting family=negative.binomial(theta=1) in the call to glm().

Most often, θ is unknown and must be estimated from the data. In this case, the negative-
binomial model is not a special case of the GLM, but it is possible to obtain maximum likelihood
estimates of both β and θ, by iteratively estimating β for fixed θ and vice-versa. This method is
implemented in the glm.nb() in the package MASS.{ex:crabs-nbin}

EXAMPLE 11.4: Mating of horseshoe crabs
For example, for the CrabSatellites data, we can fit the general negative-binomial model

with θ free.

> library(MASS)
> crabs.nbin <- glm.nb(satellites ~ weight + color, data=CrabSatellites1)
> crabs.nbin$theta

[1] 0.95562

The estimated value θ̂ returned by glm.nb() is not very far from 1. Hence, we might also
consider fixing θ = 1, as illustrated below.

> crabs.nbin1 <- glm(satellites ~ weight + color, data=CrabSatellites1,
+ family=negative.binomial(1))

4

11.3.3 Visualizing the mean–variance relation

The quasi-Poisson and negative-binomial models have different variance functions, and one way to
visualize which provides a better fit to the data is to group the data according to the fitted value of the
linear predictor, calculate the mean and variance for each group, and then plot the variances against
the means. A smoothed curve will then approximate the empirical mean–variance relationship. To
this, we can add curves showing the mean–variance function implied by various models.8{ex:phdpubs3}

EXAMPLE 11.5: Publications of PhD candidates
For the PhdPubs data, the fitted values are obtained with fitted() for the Poisson and

negative binomial models. Either set can be used to categorize the observations into groups for the
purpose of calculating means and variances of the response.

> fit.pois <- fitted(phd.pois, type="response")
> fit.nbin <- fitted(phd.nbin, type="response")

8This idea and the example that follows was suggested by Germán Rodrigues in a Stata example given at http://
data.princeton.edu/wws509/stata/overdispersion.html.
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Here we use a simpler version of the cutfac() function to group a numeric variable into
quantile-based groups. cutq() also uses deciles by default, and just uses simple integer values for
the factor labels.

> cutq <- function(x, q = 10) {
+ quantile <- cut(x, breaks = quantile(x, probs = 0:q/q),
+ include.lowest = TRUE, labels = 1:q)
+ quantile
+ }

Using this, we create a variable group giving 20 quantile groups of the fitted values, and then
use aggregate() to find the mean and variance of the number of articles in each group.

> group <- cutq(fit.nbin, q=20)
> qdat <- aggregate(PhdPubs$articles,
+ list(group),
+ FUN = function(x) c(mean=mean(x), var=var(x)))
> qdat <- data.frame(qdat$x)
> qdat <- qdat[order(qdat$mean),]

We can then calculate the theoretical variances implied by the quasi-Poisson and negative-
binomial models:

> phi <- summary(phd.qpois)$dispersion
> qdat$qvar <- phi * qdat$mean
> qdat$nbvar <- qdat$mean + (qdat$mean^2) / phd.nbin$theta
> head(qdat)

mean var qvar nbvar
1 0.61224 0.78401 1.1206 0.7776
2 1.14894 1.78168 2.1030 1.7312
8 1.24444 2.46162 2.2778 1.9276
4 1.26087 1.70821 2.3079 1.9622
6 1.27273 1.83087 2.3296 1.9873
7 1.29787 4.34413 2.3756 2.0409

The plot, shown in Figure 11.8, then simply plots the points and uses lines() to plot the
model-implied variances.

> with(qdat, {
+ plot(var ~ mean, xlab="Mean number of articles", ylab="Variance",
+ pch=16, cex=1.2, cex.lab=1.2)
+ abline(h=mean(PhdPubs$articles), col=gray(.40), lty="dotted")
+ lines(mean, qvar, col="red", lwd=2)
+ lines(mean, nbvar, col="blue", lwd=2)
+ lines(lowess(mean, var), lwd=2, lty="dashed")
+ text(3, mean(PhdPubs$articles), "Poisson", col=gray(.40))
+ text(3, 5, "quasi-Poisson", col="red")
+ text(3, 6.7, "negbin", col="blue")
+ text(3, 8.5, "lowess")
+ })

We can see from this plot that the variances implied by the quasi-Poisson and negative-binomial
models are in reasonable accord with the data and with each other up to a mean of about 2.5. They
diverge substantially at the upper end, for the 20–30% of the most productive candidates, where the
quadratic variance function of the negative-binomial provides a better fit.

Finally, we can also compare the standard errors of coefficients for the various methods designed
to correct for overdispersion. These are extracted as the diagonal elements of the vcov() and
sandwich() methods from the model objects.



442 11. Generalized Linear Models

●

●

●

●●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5

2
4

6
8

10

Mean number of articles

V
ar

ia
nc

e

Poisson

quasi−Poisson

negbin

lowess

Figure 11.8: Mean–variance functions for the PhdPubs data. Points show the observed means and
variances for 20 quantile groups based on the fitted values in the negative-binomial model. The
labeled lines and curves show the variance functions implied by various models. {fig:phd-mean-var-plot}

> library(sandwich)
> phd.SE <- sqrt(cbind(
+ pois=diag(vcov(phd.pois)),
+ sand=diag(sandwich(phd.pois)),
+ qpois=diag(vcov(phd.qpois)),
+ nbin=diag(vcov(phd.nbin))))
> round(phd.SE,4)

pois sand qpois nbin
(Intercept) 0.0996 0.1382 0.1348 0.1327
female1 0.0546 0.0714 0.0738 0.0726
married1 0.0613 0.0823 0.0829 0.0819
kid5 0.0401 0.0560 0.0543 0.0528
phdprestige 0.0253 0.0392 0.0342 0.0343
mentor 0.0020 0.0039 0.0027 0.0032

For this example, the sandwich, quasi-Poisson and negative-binomial methods give similar re-
sults, all about 40% larger on average than those from the Poisson model. 4

11.3.4 Testing overdispersion
{sec:glm-disptest}

The forms of overdispersion seen in these examples and in Figure 11.8 give rise to a statistical test
(Cameron and Trivedi 1990; Cameron and Trivedi 1998, §3.4) for the null hypothesis of Poisson
variation, H0 : V(y) = µ against an alternative that the variance has a particular form depending on
the mean,

V(y) = µ+ α× f(µ) ,

where f(µ) is a given transformation function of the mean.
Overdispersion corresponds to α > 0 and underdispersion to α < 0. The coefficient α can be

estimated by an auxiliary OLS regression (without an intercept, i.e., of the form

lm(var ~ -1 + f(mean)



11.3: Models for overdispersed count data 443

and tested with the corresponding t (or z) statistic, which is asymptotically standard normal under
the null hypothesis.

Common specifications of the transformation function are f(µ) = µ and f(µ) = µ2. The first
corresponds to a NB model with a linear variance function (called NB1 by various authors) or a
quasi-Poisson model with dispersion parameter φ, i.e.,

V(y) = (1 + α)µ = φµ .

The second is the more traditional form with quadratic variance function described in Section 11.3.2
(called NB2 by some authors).

These tests are carried out using the dispersiontest() function in the AER package. The
first argument is a Poisson GLM model; the second specifies the alternative hypothesis, either as an
integer power of µ or a function of the mean.

> library(AER)
> dispersiontest(phd.pois)

Overdispersion test

data: phd.pois
z = 5.7347, p-value = 4.885e-09
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion

1.8259

> dispersiontest(phd.pois, 2)

Overdispersion test

data: phd.pois
z = 6.4579, p-value = 5.308e-11
alternative hypothesis: true alpha is greater than 0
sample estimates:
alpha

0.50877

These tests use a specified alternative hypothesis, so there is no way to compare directly which
of the NB1 or NB2 models is better or worse, except by using methods such as AIC or BIC described
in Section 11.1.4.

11.3.5 Visualizing goodness-of-fit
{sec:glm-visfit}

Even with correction for overdispersion, goodness-of-fit tests provide only an overall summary of
model fit. Some specialized tests for particular forms of overdispersion are also available (e.g.,
see Cameron and Trivedi (1998, Chapter 5)), but these only identify general problems and cannot
provide detailed indications of the possible source of these problems.

In Chapter 3, we illustrated the use of rootograms for visualizing goodness-of-fit to a wide
variety discrete distributions using the plot() method for class "goodfit" objects with the vcd
package. However, those methods were developed for one-way discrete distributions without ex-
planatory variables.

Kleiber and Zeileis (2014) have generalized this idea to the wider class of GLM-related count
regression models considered here. The countreg package provides a new implementation of
rootogram() with methods for all of these models (and others not mentioned). We illustrate
these plots for the models considered to this point, and then extend this use for models allowing for
excess zero counts in Section 11.4. {ex:phdpubs4}
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EXAMPLE 11.6: Publications of PhD candidates
For the PhdPubs data, Figure 11.9 shows hanging rootograms for the Poisson and negative-

binomial models produced using countreg::rootogram9 on the fitted model objects. We are
looking both for general patterns of under/over fit, as well as counts that stand out as poorly fitted
against the background.

> library(countreg)
> countreg::rootogram(phd.pois, max=12, main="PhDPubs: Poisson")
> countreg::rootogram(phd.nbin, max=12, main="PhDPubs: Negative-Binomial")
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Figure 11.9: Hanging rootograms for the PhdPubs data.{fig:phdpubs4-rootogram}

The Poisson model shows a systematic, wave-like pattern with excess zeros, too few observed
frequencies for counts of 1–3, but generally greater frequencies for counts of 4 or more. The
negative-binomial model clearly fits much better, though there is a peculiar tendency among the
smaller frequencies for 8 or more articles. 4

{ex:crabs2}

EXAMPLE 11.7: Mating of horseshoe crabs
Figure 11.10 shows similar plots for the same two models fit to the number of crab satellites.

The fit of the Poisson model clearly reveals the excess of zero male satellites. For the negative-
binomial, the rootogram no longer exhibits same wave-like pattern, however, the underfitting of the
count for 0 and overfitting for counts 1–2 is characteristic of data with excess zeros.

> countreg::rootogram(crabs.pois, max=15, main="CrabSatellites: Poisson")
> countreg::rootogram(crabs.nbin, max=15, main="CrabSatellites: Negative-Binomial")

4

11.4 Models for excess zero counts
{sec:glm-zeros}

In addition to overdispersion, many sets of empirical data exhibit a greater prevalence of zero
counts than can be accommodated by the Poisson or negative-binomial models. We saw this in
the PhdPubs data set, where there were many candidates who had not published at all, and in the
CrabSatellites data where a large number of females attracted no unattached males. Other
examples abound in many different fields: studies of the use of health care services often find that
many people never visit a hospital in some time frame; similarly, the distribution of insurance claims

9At the time of this writing, rootogram in countreg conflicts with the version in vcd, so we qualify the use here with
the package name.
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Figure 11.10: Hanging rootograms for the CrabSatellites data.{fig:crabs2-rootogram}

often shows large numbers who make no claims (Yip and Yau, 2005) because of under-reporting of
small claims, policy deductible provisions and desire to avoid premium increases.

Beyond simply identifying this as a problem of lack-of-fit, understanding the reasons for excess
zero counts can make a contribution to a more complete explanation of the phenomenon of interest,
and this requires both new statistical models and visualization techniques illustrated in this section.

In the first example, Long (1997) argued that the PhD candidates might fall into two distinct
groups: “publishers” (perhaps striving for an academic career) and “non-publishers” (seeking other
career paths). Of the 275 observations having articles==0, some might not have published
due to chance or unmeasured factors. One reasonable form of explanation is that the observed
zero counts reflect a mixture of the two latent classes— those who simply have not yet published
and those who will likely never publish. A statistical formulation of this idea leads to the class of
zero-inflated models described below.

A different form of explanation is that there may be some special circumstance or “hurdle” re-
quired to achieve a positive count, like publishing the master’s thesis (such as being driven internally
by a personality trait or externally by pressure from a mentor). This idea leads to the class of hurdle
models that entertain and fit (simultaneously) two separate models: one for the occurrence of the
zero counts, and one for the positive counts. These two approaches are illustrated in Figure 11.11

y 

π 1 π−

0 Y 

Zero-inflated 

y 

π 1 π−

0 Y|Y>0 

Hurdle 

Figure 11.11: Models for excess zeros. The observed response y is derived from a latent or parent
distribution for Y yielding zero counts with probability π. {fig:ExcessZeros}

11.4.1 Zero-inflated models
{sec:glm-zip}

Zero-inflated models, introduced by Lambert (1992) as the zero-inflated Poisson (ZIP) model, pro-
vide an attractive solution to the problem of dealing with an overabundance of zero counts. It
postulates that the observed counts arise from a mixture of two latent classes of observations: some
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structural zeros for whom yi will always be 0, and the rest, sometimes giving random zeros. The
ZIP model is comprised of two components:

• A model for the binary event of membership in the unobserved (latent) class of those for whom
the count is necessarily zero (e.g., “non-publishers”). This is typically taken as a logistic re-
gression for the probability πi that observation i is in this class, with predictors z1, z2, . . . ,zq ,
giving

logit(πi) = zTi γ = γ0 + γ1zi1 + γ2zi2 + · · ·+ γqziq . (11.7){eq:zip-logit}

• A Poisson model for the other class (e.g., “publishers”), for whom the observed count may 0
or positive. This model typically uses the usual log link to predict the mean, using predictors
x1,x2, . . . ,xp, so

loge µ(xi) = xT
i β = β0 + β1xi1 + β2xi2 + · · ·+ βqxip . (11.8){eq:zip-pois}

In application, it is permissible and not uncommon to use the same set of predictors x = z in both
submodels, but the notation indicates that this is not required. Some simple special cases arise when
the model for the always zero latent class is an intercept-only model, logit(πi) = γ0, implying
the same probability for all individuals, and (less commonly) when the Poisson mean model is
intercept-only with no predictors but there might be excess zero counts.

With this setup, one can show that the probability of observing counts of yi = 0 and yi > 0 are

Pr(yi = 0 |x, z) = πi + (1− πi)e−µi (11.9){eq:zip-probs}

Pr(yi |x, z) = (1− πi)×
[
µi
yie−µi

yi!

]
, yi ≥ 0

where the term in brackets in the second equation is the Poisson probability Pr(y = yi) with rate
parameter Pois(µi). In these equations, πi = logit−1(zTi γ) depends on the z through Eqn. (11.7),
and µi = exp(xTβ) depends on the x through Eqn. (11.8).

The conditional expectation and variance of yi then have the forms

E(yi) = (1− πi) µi
V(yi) = (1− πi) µi(1 + µiπi) .

Thus, when πi > 0, the mean of y is always less than µi, and the variance of y is greater than its
mean by a dispersion factor of (1 + µiπi).

There is nothing special about the use of the Poisson distribution here. The model for the
count variable could also be taken as the negative-binomial, giving a zero-inflated negative-binomial
(ZINB) model using NBin(µ, θ) or a zero-inflated geometric model using NBin(µ, θ = 1).{ex:zipois}

EXAMPLE 11.8: Simulating zero-inflated data
A simple way of understanding the effects of zero-inflation on count data is to simulate data

from their distribution and plot it. For the standard Poisson and negative-binomial, random values
can be generated using rpois() and rnegbin() (in MASS), respectively. Their zero-inflated
counterparts are implemented in the VGAM package as rzipois() and rzinegbin().

To illustrate this use, we generate two random data sets using rzipois() having constant
mean µ = 3. The first is a standard Poisson (π = 0), while the second has a constant probability
π = 0.3 of an excess zero.

> library(VGAM)
> set.seed(1234)
> data1 <- rzipois(200, 3, 0)
> data2 <- rzipois(200, 3, .3)
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Barplots of the frequencies in these data sets are shown in Figure 11.12. The sample mean in
data1 is 2.925, quite close to µ = 3. In the zero-inflated data2, the mean is only 2.25 due to the
excess zeros.

> tdata1 <- table(data1)
> barplot(tdata1, xlab="Count", ylab="Frequency",
+ main="Poisson(3)")
> tdata2 <- table(data2)
> barplot(tdata2, xlab="Count", ylab="Frequency",
+ main=expression("ZI Poisson(3, " * pi * "= .3)"))
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Figure 11.12: Bar plots of simulated data from Poisson and zero-inflated Poisson distributions {fig:zipois-plot}

4

There are several packages in R capable of fitting zero-inflated models. The most mature and
complete of these is zeroinfl() in the countreg package (a successor to the pscl package) The
function zeroinfl() is modeled after glm(), but provides an extended syntax for the model
formula.

If the formula argument is supplied in the form y ~ x1 + x2 + ..., it not only de-
scribes the count regression of y on x1, x2, . . ., but also implies that the same set of regressors,
zj = xj , is used for the zero count binary submodel. The extended syntax uses the notation
y ~ x1 + x2 + ... | z1 + z2 + ... to specify the x variables separately, conditional
on (|) the always-zero count model y ~ z1 + z2 + .... The model for the not-always-zero
class can be specified using the dist argument, with possible values "poisson", "negbin"
and "geometric".

11.4.2 Hurdle models
{sec:glm-hurdle}

A different class of models capable of accounting for excess zero counts is the hurdle model (also
called the zero-altered model) proposed initially by Cragg (1971) and developed further by Mullahy
(1986). This model also uses a separate logistic regression submodel to distinguish counts of y = 0
from larger counts, y > 0. The submodel for the positive counts is expressed as a (left) truncated
Poisson or negative-binomial model, excluding the zero counts. As an example, consider a study of
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behavioral health in which one outcome is the number of cigarettes smoked in one month. All the
zero counts will come from non-smokers and smokers will nearly always smoke a positive number.

This differs from the set of ZIP models in that classes of y = 0 and y > 0 are now considered
fully-observed, rather than latent. Conceptually, there is one process and submodel accounting for
the zero counts and a separate process accounting for the positive counts, once the “hurdle” of y = 0
has been passed. In other words, for ZIP models, the first process generates only extra zeros beyond
those of the regular Poisson distribution. For hurdle models, the first process generates all of the
zeros. The probability equations corresponding to Eqn. (11.9) are:

Pr(yi = 0 |x, z) = πi (11.10)

Pr(yi |x, z) =
(1− πi)
1− e−µi

×
[
µi
yie−µi

yi!

]
, yi ≥ 0

The hurdle model can be fitted in R using the hurdle() function from the countreg pack-
age. The syntax for the model formula is the same extended form provided by zeroinfl(),
where y ~ x1 + x2 uses the same regressors for the zero and positive count submodels, while
y ~ x1 + x2 | z1 + z2 uses y ~ z1 + z2 for the zero hurdle model. Similarly, the
count distribution can be given as "poisson", "negbin" or "geometric" with the dist
argument. For hurdle(), the distribution for zero model can be specified with a zero.dist
argument. The default is "binomial" (with a logit link), but other right-censored distributions
can also be specified.

11.4.3 Visualizing zero counts
{sec:glm-viszero}

Both the zero-inflated and hurdle models treat the zero counts y = 0 specially with separate sub-
models, so the binary event of y = 0 vs. y > 0 can be visualized using any of the techniques
illustrated in Chapter 7. See Section 7.2.3, Section 7.3.1 and Section 7.3.2 for some examples that
plot both the binary observations and a model summary or smoothed curve to show the relation-
ships with one or more regressors. To apply these ideas in the current context, simply define or plot
a logical variable corresponding to the expression y==0, giving values of TRUE or FALSE.

A different, and simpler idea is illustrated here using what is called a spine plot Hummel (1996)
when a predictor x is a discrete factor or spinogram when x is continuous. Both are forms of mosaic
plots with special formatting of spacing and shading, and in this context they plot Pr(y = 0|x)
against Pr(x); when x is numerical, it is first made discrete, as in a histogram. Then, in the spine
plot or spinogram, the widths of the bars correspond to the relative frequencies of x and heights of
the bars correspond to the conditional relative frequencies of y = 0 in every x group. In R, spine
plots are implemented in the function spineplot(), however, this is what you get by default if
you use plot(y==0 ~ x) to plot the binary factor against any regressor x.

A related graphical method is the conditional density plot (Hofmann and Theus, 2005). The
conditional probabilities Pr(y = 0|x) are derived using a smoothing approach (via density())
over x rather than by making x discrete. These plots are provided by cdplot() in the graphics
package and a similar cd_plot() in vcd. The smoothing method for the density estimate is
controlled by a bw (bandwidth) method and other arguments.{ex:crabs-zero}

EXAMPLE 11.9: Mating of horseshoe crabs
For the CrabSatellites data, we can examine the relationship of the zero counts (females

who attract no unattached male satellites) to the predictors using spinograms or conditional density
plots. Here, we consider weight and color (treated numerically) as predictors. TODO: Fixup
use of color in Example 11.2 so it doesn’t cause a problem here

Spinograms for the occurrence of zero satellites against weight and color are shown in Fig-
ure 11.13, where we have used quantiles of those distributions to define the breaks on the horizontal
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axis. Using ylevels=2:1 reverses the order of the vertical categories. You can easily see that the
zeros decrease steadily with weight and increase with darkness.

> op <- par(cex.lab=1.2, mfrow = c(1, 2))
> plot(factor(satellites == 0) ~ weight, data = CrabSatellites,
+ breaks = quantile(weight, probs=seq(0,1,.2)), ylevels=2:1,
+ ylab="No satellites")
> plot(factor(satellites == 0) ~ color, data = CrabSatellites,
+ breaks = quantile(color, probs=seq(0,1,.33)), ylevels=2:1,
+ ylab="No satellites")
> par(op)
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Figure 11.13: Spinograms for the CrabSatellites data. The variables weight (left) and color(right)
have been made discrete using quantiles of their distributions. {fig:crabs-zero-spinogram}

Similar plots in the form of conditional density plots are shown in Figure 11.14, with a similar
interpretation.

> op <- par(cex.lab=1.2, mfrow = c(1, 2))
> cdplot(factor(satellites == 0) ~ weight, data = CrabSatellites,
+ ylevels=2:1, ylab="No satellites")
> cdplot(factor(satellites == 0) ~ color, data = CrabSatellites,
+ ylevels=2:1, , ylab="No satellites")
> par(op)

4

11.5 Case studies
{sec:glm-casestudies}

In this section, we introduce two extended examples, designed to illustrate aspects of exploratory
analysis, visualization, model fitting, and interpretation for count data GLMs. The first (Sec-
tion 11.5.1) concerns another well-known data set from ethology, where (a) excess zeros require
special treatment, (b) the occurrence of zero counts has substantive meaning, and (c) an interaction
between two factors is important.

The second case study (Section 11.5.2) uses a larger, also well-known data set from health
economics, with more predictors and more potential interactions. The emphasis shifts here from
fitting and comparing models with different distributional forms and link functions to selecting
terms for an adequate descriptive and explanatory model. Another feature of these examples is that
the relatively large sample size in this data supports a wider range of model complexity than is
available in smaller samples.
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Figure 11.14: Conditional density plots for the CrabSatellites data. The region shaded below shows
the conditional probability density estimate for a count of zero. {fig:crabs-zero-cdplot}

11.5.1 Cod parasites
{sec:glm-case-cod}

The cod fishery is extremely important to the economy of Norway, so anything that affects the
health of the cod population and its ecosystem can have severe consequences. The red king crab
Paralithodes camtschaticus was deliberately introduced by Russian scientists to the Barents Sea in
the 1960s and 1970s from its native area in the North Pacific. The carapace of these crabs is used by
the leech Johanssonia arctica to deposit its eggs. This leech in turn is a vector for the blood parasite
Trypanosoma murmanensis that can infect marine fish, including cod.

Hemmingsen et al. (2005) examined cod for trypanosome infections during annual cruises along
the coast of Finnmark in North Norway over three successive years and in four different areas (A1:
Sørøya; A2: Magerøya; A3: Tanafjord; A4: Varangerfjord). They show that trypanosome infections
are strongest in the area Varangerfjord where the density of red king crabs is highest. Thus, there is
evidence that the introduction of the foreign red king crabs had an indirect detrimental effect on the
health of the native cod population. This situation stands out because it is not an introduced parasite
that is dangerous for a native host, but rather an introduced host that promotes transmission of two
endemic parasites. They call the connections among these factors “an unholy trinity.”10

{ex:cod1}

EXAMPLE 11.10: Cod parasites
The data from Hemmingsen et al. (2005) is contained in CodParasites in the countreg

package. It gives the results for 1254 cod caught by one ship in annual autumn cruises from 1999–
2001. The main response variable, intensity, records the counted number of Trypanosoma
parasites found in blood samples from these fish. To distinguish between infected vs. non-infected
fish, a secondary response, prevalence is also recorded, corresponding to the expression

> CodParasites$prevalence <- ifelse(CodParasites$intensity == 0, "no", "yes")

Thus, intensity is the basic count response variable, and prevalence reflects the zero count
that would be assessed in zero-inflated and hurdle models. In substantive terms, in a hurdle model,
prevalence corresponds to whether a fish is infected or not; once infected, intensity gives
the degree of infection. In a zero-inflated model, infected could be considered a latent variable;
there are extra zeros from non-infected fish, but some infected fish are measured as “normal” zeros.

10 The four areas A1–A4 are arranged from east to west, with Varangerfjord (A4) closest to the Russian Kola Peninsula{fn:russian}
where the red king crabs initially migrated. A more specific test of the “Russian hypothesis” could be developed by treating
area as an ordered factor and testing the linear component. We leave this analysis to an exercise for the reader.
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Hemmingsen et al. (2005) consider only three explanatory predictors: area, year (both fac-
tors) and length of the fish.11 A quick numerical summary of the univariate properties of these
variables is shown below. The intensity values are indeed extremely skewed, with a median of 0 and
a maximum of 257. However, there are some missing values (NAs) among the response variables
and a few in the length variable.

> data("CodParasites", package = "countreg")
> summary(CodParasites[, c(1:4,7)])

intensity prevalence area year length
Min. : 0.00 no :654 soroya :272 1999:567 Min. : 17.0
1st Qu.: 0.00 yes :543 mageroya :255 2000:230 1st Qu.: 44.0
Median : 0.00 NA's: 57 tanafjord :415 2001:457 Median : 54.0
Mean : 6.18 varangerfjord:312 Mean : 53.4
3rd Qu.: 4.00 3rd Qu.: 62.0
Max. :257.00 Max. :101.0
NA's :57 NA's :6

Even better, a quick univariate and bivariate summary of these variables can be shown in a
generalized pairs plot (Figure 11.15).

> library(vcd)
> library(gpairs)
> gpairs(CodParasites[, c(1:4,7)],
+ diag.pars=list(fontsize=16),
+ mosaic.pars=list(gp=shading_Friendly))

In this plot, among the categorical variables, prevalence is strongly associated with area, but also
with year. As well there seems to be an association between area and year, meaning the number
of cod samples collected in difference areas varied over time. In the univariate plots on the diag-
onal, intensity stands out as extremely skewed, and the distribution of length appears reasonably
symmetric.

Before fitting any models, some more detailed exploratory plots are helpful for understanding
the relationship of both prevalence and intensity to the predictors. The general idea is to make sep-
arate plots of prevalence and intensity and to try to show both the data and some simple summaries.
In their Table 1, Hemmingsen et al. (2005) counted the missing observations as infected and we do
the same to get a similar contingency table.

> cp.tab <- xtabs(~ area + year + factor(is.na(prevalence) |
+ prevalence == "yes"),
+ data = CodParasites)
> dimnames(cp.tab)[3] <- list(c("No", "Yes"))
> names(dimnames(cp.tab))[3] <- "prevalence"

For the factors area and year, we can visualize prevalence as before (Example 11.9) using
spineplots, but, for two (or more) factors, doubledecker and mosaic plots are better because they
are more flexible and keep the factors distinct. The doubledecker plot (Figure 11.16) highlights the
infected fish, and shows that prevalence is indeed highest in all years in Varangerfjord.

> doubledecker(prevalence ~ area + year, data=cp.tab)

A similar plot, in the doubledecker format, can be drawn as a mosaic plot, but now shading the
tiles according a model for the expected counts. It makes sense here to consider the null loglinear
model for prevalence as a response, independent of the combinations of area and year. This plot
(Figure 11.17) shows further that prevalence differs substantially over the area-year combinations,

11Other potential predictors include weight, sex, age, and developmental stage, as well as the depth at which the fish were
caught.
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Figure 11.15: Generalized pairs plot for the CodParasites data. {fig:cod1-gpairs}
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Figure 11.16: Doubledecker plot for prevalence against area and year in the CodParasites data. The
cases of infected fish are hightlighted {fig:cod1-doubledecker}

so we should expect an interaction in the model for zero counts. As well, Varangerfjord stands out
as having consistently greater prevalence in all years than expected under this model.
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> mosaic(~area + year + prevalence, data=cp.tab,
+ split_vertical=c(TRUE, TRUE, FALSE),
+ labeling=labeling_doubledecker, spacing=spacing_highlighting,
+ expected = ~year:area + prevalence)
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Pearson
residuals:

p−value =
<2e−16
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Figure 11.17: Mosaic plot for prevalence against area and year in the CodParasites data, in the
doubledecker format. Shading reflects departure from a model in which prevalence is independent
of area and year jointly. {fig:cod1-mosaic}

The effect of fish length on prevalence can be most easily seen by treating the factor as a
numeric (0/1) variable and smoothing, as shown in Figure 11.18. The loess smoothed curve shows
an apparent U-shaped relationship, however the plotted observations and the confidence bands make
clear that there is very little data in the extremes of length.

> library(ggplot2)
> ggplot(CodParasites, aes(x=length, y=as.numeric(prevalence)-1)) +
+ geom_jitter(position=position_jitter(height=.05), alpha=0.25) +
+ geom_rug(position='jitter', sides='b') +
+ stat_smooth(method="loess", color="red", fill="red", size=1.5) +
+ theme_bw() + labs(y='prevalence')

For the positive counts of intensity, boxplots by area and year show the distributions of
parasites, and it is again useful to display these on a log scale. In Figure 11.19, we have used
ggplot2, with geom_boxplot() and geom_jitter() to also plot the individual observations.
Note that facet_grid() makes it easy to organize the display with separate panels for each area,
a technique that could extend to additional factors.

> # plot only positive values of intensity
> CPpos <- subset(CodParasites, intensity>0)
> ggplot(CPpos, aes(x=year, y=intensity)) +
+ geom_boxplot(outlier.size=3, notch=TRUE, aes(fill=year), alpha=0.2) +
+ geom_jitter(position=position_jitter(width=0.1), alpha=0.25) +
+ facet_grid(.~area) +
+ scale_y_log10(breaks=c(1,2,5,10,20,50,100, 200)) +
+ theme_bw() + theme(legend.position="none") +
+ labs(y='intensity (log scale)')

Most of these distributions are positively skewed and there are a few high outliers, but probably
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Figure 11.18: Jittered scatterplot of prevalence against length of fish, with loess smooth. {fig:cod1-length-prevalence}
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Figure 11.19: Notched boxplots for log (intensity) of parasites by area and year in the CodParasites
data. Significant differences in the medians are signaled when the notches of two groups do not
overlap. {fig:cod1-boxplot}
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not more than would be expected in a sample of this size. The positive counts (degree of infection)
are also higher in all years in Varangerfjord than other areas. You can also see that the intensity
values were generally lower in 2001 than other years.

For the effect of length of fish, we want to know if log (intensity) is reasonably linear on length.
A jittered scatterplot produced with ggplot2 is shown in Figure 11.20. The smoothed loess curve
together with the linear regression line show no indication of non-linearity.

> ggplot(CPpos, aes(x=length, y=intensity)) +
+ geom_jitter(position=position_jitter(height=.1), alpha=0.25) +
+ geom_rug(position='jitter', sides='b') +
+ scale_y_log10(breaks=c(1,2,5,10,20,50,100, 200)) +
+ stat_smooth(method="loess", color="red", fill="red", size=2) +
+ stat_smooth(method="lm", size=1.5) + theme_bw()
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Figure 11.20: Jittered scatterplot of log (intensity) for the positive counts against length of fish,
with loess smooth and linear regression line. {fig:cod1-length-scat}

4

11.5.1.1 Fitting models

The simple summary of these exploratory analyses is that both the zero component (prevalence) and
and non-zero component (intensity) involve an interaction of area and year and at least intensity
depends on length. We proceed to fit some count data models. {ex:cod2}

EXAMPLE 11.11: Cod parasites
For a baseline reference, we first fit the standard Poisson and negative-binomial models, not

allowing for excess zeros.

> library(MASS); library(countreg)
> cp_p <- glm(intensity ~ length + area * year,
+ data = CodParasites, family = poisson)
> cp_nb <- glm.nb(intensity ~ length + area * year,
+ data = CodParasites)

Next, we fit analogous hurdle and zero-inflated models, in each case allowing the non-zero
count component to be either Poisson or negative-binomial. The zero components are fit as logistic
regressions with the same predictors and the logit link.
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> cp_hp <- hurdle(intensity ~ length + area * year,
+ data = CodParasites, dist = "poisson")
> cp_hnb <- hurdle(intensity ~ length + area * year,
+ data = CodParasites, dist = "negbin")
> cp_zip <- zeroinfl(intensity ~ length + area * year,
+ data = CodParasites, dist = "poisson")
> cp_znb <- zeroinfl(intensity ~ length + area * year,
+ data = CodParasites, dist = "negbin")

Following Section 11.3.5, we can compare the fit of these models using rootograms. The details
of fit of these six models are shown in Figure 11.21.

> op <- par(mfrow = c(3, 2))
> countreg::rootogram(cp_p, max = 50, main = "Poisson")
> countreg::rootogram(cp_nb, max = 50, main = "Negative Binomial")
> countreg::rootogram(cp_hp, max = 50, main = "Hurdle Poisson")
> countreg::rootogram(cp_hnb, max = 50, main = "Hurdle Negative Binomial")
> countreg::rootogram(cp_zip, max = 50, main = "Zero-inflated Poisson")
> countreg::rootogram(cp_znb, max = 50, main = "Zero-inflated Negative Binomial")
> par(op)

The basic Poisson model of course fits terribly due to the excess zero counts. The hurdle Poisson
and zero-inflated Poisson fit the zero counts perfectly, but at the expense of underfitting the counts
for low intensity values. All of the negative binomial models show a reasonable fit (at the scale
shown in this plot), and none show a systematic pattern of under/overfitting.

These models are all in different GLM and extended-GLM families, and there are no anova()
methods for hurdle and zero-inflated models. Each pair of Poisson and negative-binomial models
are a nested set, because the Poisson is a special case of the negative-binomial where θ → ∞, and
so can be compared using likelihood-ratio tests available with lrtest() from lmtest. However,
this cannot be used to compare models of different class, such as a hurdle model vs. a zero-inflated
model. (In Figure 11.21, each pair in the same row are nested models, while all other pairs are
non-nested.) Yet, they all have logLik() methods to calculate their log likelihood, and so AIC()
and BIC() can be used.

> vcdExtra::LRstats(cp_p, cp_nb, cp_hp, cp_hnb, cp_zip, cp_znb, sortby="BIC")

Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

cp_p 20378 20444 20352 1178 <2e-16 ***
cp_hp 13688 13820 13636 1165 <2e-16 ***
cp_zip 13687 13819 13635 1165 <2e-16 ***
cp_nb 5031 5102 5003 1178 <2e-16 ***
cp_znb 4955 5092 4901 1164 <2e-16 ***
cp_hnb 4937 5074 4883 1164 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These show that all the Poisson models fit quite badly, and among the negative-binomial models,
the hurdle version, cp_hnb, is preferred by both AIC and BIC. If you want to carry out formal tests,
lrtest() can be used to compare a given Poisson model to its negative-binomial counterpart,
which are nested. For example, the test below compares the hurdle Poisson to the hurdle negative-
binomial and confirms that the latter is a significant improvement.

> library(lmtest)
> lrtest(cp_hp, cp_hnb)

Likelihood ratio test
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Figure 11.21: Rootograms for six models fit to the CodParasites data{fig:cod2-rootograms}
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Model 1: intensity ~ length + area * year
Model 2: intensity ~ length + area * year
#Df LogLik Df Chisq Pr(>Chisq)

1 26 -6818
2 27 -2442 1 8752 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Of greater interest is the difference among the negative-binomial models, that are not nested. As
described in Section 11.1.4, these can be compared using Voung’s test.

> library(pscl)
> vuong(cp_nb, cp_hnb) # nb vs. hurdle nb

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)
-------------------------------------------------------------

Vuong z-statistic H_A p-value
Raw -5.4873 model2 > model1 2.04e-08
AIC-corrected -4.2943 model2 > model1 8.76e-06
BIC-corrected -1.2625 model2 > model1 0.103

> vuong(cp_hnb, cp_znb) # hurdle nb vs znb

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)
-------------------------------------------------------------

Vuong z-statistic H_A p-value
Raw 1.7941 model1 > model2 0.0364
AIC-corrected 1.7941 model1 > model2 0.0364
BIC-corrected 1.7941 model1 > model2 0.0364

The negative-binomial model is considered to be a closer fit than the hurdle version (because
it is more parsimonious), while the hurdle NB model has a significantly better fit than the zero-
inflated NB model. For this example, we continue to work with the hurdle NB model. The tests for
individual coefficients in this model are shown below.

> summary(cp_hnb)

Call:
hurdle(formula = intensity ~ length + area * year, data = CodParasites,

dist = "negbin")

Pearson residuals:
Min 1Q Median 3Q Max

-0.696 -0.407 -0.336 -0.108 11.114

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.37580 0.39947 8.45 < 2e-16 ***
length -0.03748 0.00587 -6.38 1.7e-10 ***
areamageroya 0.37898 0.38105 0.99 0.3199
areatanafjord -0.50480 0.31238 -1.62 0.1061
areavarangerfjord 0.89159 0.29161 3.06 0.0022 **
year2000 -0.03957 0.32857 -0.12 0.9041
year2001 -0.75388 0.68925 -1.09 0.2741
areamageroya:year2000 -0.63981 0.61667 -1.04 0.2995
areatanafjord:year2000 1.19387 0.49479 2.41 0.0158 *
areavarangerfjord:year2000 0.51074 0.47719 1.07 0.2845
areamageroya:year2001 0.70444 0.82036 0.86 0.3905
areatanafjord:year2001 0.90824 0.77685 1.17 0.2424
areavarangerfjord:year2001 0.59838 0.74738 0.80 0.4233
Log(theta) -1.49866 0.23904 -6.27 3.6e-10 ***
Zero hurdle model coefficients (binomial with logit link):
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.08526 0.29505 0.29 0.773
length 0.00693 0.00465 1.49 0.136
areamageroya -1.32137 0.28526 -4.63 3.6e-06 ***
areatanafjord -1.44918 0.24388 -5.94 2.8e-09 ***
areavarangerfjord 0.30073 0.27111 1.11 0.267
year2000 0.39507 0.34382 1.15 0.251
year2001 -2.65201 0.43340 -6.12 9.4e-10 ***
areamageroya:year2000 -0.08034 0.50797 -0.16 0.874
areatanafjord:year2000 0.87058 0.45027 1.93 0.053 .
areavarangerfjord:year2000 0.86462 0.59239 1.46 0.144
areamageroya:year2001 2.73749 0.53291 5.14 2.8e-07 ***
areatanafjord:year2001 2.71899 0.49949 5.44 5.2e-08 ***
areavarangerfjord:year2001 2.54144 0.51825 4.90 9.4e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Theta: count = 0.223
Number of iterations in BFGS optimization: 25
Log-likelihood: -2.44e+03 on 27 Df

From the above and from Figure 11.18, it appears that length is not important as a linear
effect in the submodel for prevalence. A revised model excludes this from the zero formula.

> cp_hnb1 <- hurdle(intensity ~ length + area * year | area*year,
+ data = CodParasites, dist = "negbin")

A likelihood-ratio test shows no advantage for the smaller model, however Vuong’s test leads to
the conclusion that this reduced model is preferable:

> lrtest(cp_hnb, cp_hnb1)

Likelihood ratio test

Model 1: intensity ~ length + area * year
Model 2: intensity ~ length + area * year | area * year
#Df LogLik Df Chisq Pr(>Chisq)

1 27 -2442
2 26 -2443 -1 2.23 0.14

> vuong(cp_hnb, cp_hnb1)

Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the
null that the models are indistinguishible)
-------------------------------------------------------------

Vuong z-statistic H_A p-value
Raw 0.741801 model1 > model2 0.2291
AIC-corrected 0.076907 model1 > model2 0.4693
BIC-corrected -1.612770 model2 > model1 0.0534

4

11.5.1.2 Model interpretation: Effect plots

Interpreting these models from their coefficients is very difficult because an interaction is present
and there are separate submodels for the zero and count components. This task is much easier with
effects plots. The effects package has methods for any GLM, but cannot handle the extended forms
of the zero-inflated and hurdle models.

When the same predictors are used in both submodels, and a standard GLM such as the negative-
binomial provides a reasonable fit, you can use the standard effects functions to visualize the (total)
expected count, which for the zeros would include both the extra zeros and those that derive from the
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count submodel. For visual interpretation, these will be sufficiently similar, even though the hurdle
and zero-inflated models differ with respect to explaining overdispersion and/or excess zeros.

Alternatively, if you want to visualize and interpret the zero and nonzero components separately,
perhaps with different predictors, you can fit the implied submodels separately, and then use effects
functions for the effects in each. These ideas are illustrated in the next example.{ex:cod3}

EXAMPLE 11.12: Cod parasites
The expected counts for intensity, including both zero and positive counts can be plotted

using effects for the cp_nb NB model. Figure 11.21 gives some confidence that the fitted values
are similar to those in the hurdle and zero-inflated versions.

We use allEffects() to calculate the effects for the high-order terms— the main effect of
length and the interaction of area and year. These could be plotted together by plotting the
resulting eff.nb object, but we plot them separately to control the plot details. In these plots,
the argument rescale=FALSE gives plots on the response scale, and we use ylim to equate the
ranges to make the plots directly comparable. The code below produces Figure 11.22.

> library(effects)
> eff.nb <- allEffects(cp_nb)
> plot(eff.nb[1], rescale=FALSE, ylim=c(0,30),
+ main="NB model: length effect")
>
> plot(eff.nb[2], rescale=FALSE, ylim=c(0,30),
+ multiline=TRUE, ci.style='bars',
+ key.args=list(x=.05, y=.95, columns=1),
+ colors=c("black", "red", "blue") ,
+ symbols=15:17, cex=2,
+ main="NB model: area*year effect")
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Figure 11.22: Effect plots for total intensity of parasites from the negative-binomial model{fig:cod3-eff1}

This helps to interpret the nature of the area by year effect. The pattern of mean expected
intensity of cod parasites is similar in 1999 and 2001, except for the Sørøya area. The results in
year 2000 differ mainly in greater intensity in Tanafjord and Varangerfjord. Varangerfjord shows
larger infection counts overall, but particularly in year 2000. The effect plot for length on this scale
is roughly comparable to the variation in areas and years.
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In this example, the submodels for zero and positive counts have substantively different inter-
pretations. To visualize the fitted effects in these submodels using effects, first fit the equivalent
submodels separately using GLM methods. The following models for prevalence, using the
binomial family, and the positive counts for intensity, using glm.nb(), give similar fitted
results to those obtained from the hurdle negative-binomial model, cp_hnb discussed earlier.

> cp_zero <- glm(prevalence ~ length + area * year,
+ data = CodParasites, family=binomial)
> cp_nzero <- glm.nb(intensity ~ length + area * year,
+ data = CodParasites, subset=intensity>0)

We could construct effect plots for each of these submodels, but interest here is largely on the
binomial model for the zero counts, cp_zero. Effect plots for the terms in this model are shown
in Figure 11.23. Again, we set the ylim values to equate the vertical ranges to make the plots
comparable.

> eff.zero <- allEffects(cp_zero)
> plot(eff.zero[1], ylim=c(-2.5, 2.5),
+ main="Hurdle zero model: length effect")
>
> plot(eff.zero[2], ylim=c(-2.5, 2.5),
+ multiline=TRUE,
+ key.args=list(x=.05, y=.95, columns=1),
+ colors=c("black", "red", "blue"),
+ symbols=15:17, cex=2,
+ main="Hurdle zero model: area*year effect")
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Figure 11.23: Effect plots for prevalence of parasites analogous to the hurdle negative-binomial
model, fitted using a binomial GLM model. {fig:cod3-eff2}

The effect of length on prevalence is slightly increasing, but we saw earlier that this is not
significant. For the area-year interaction, the three curves have similar shapes, except for the aber-
rant value for Sørøya in 2001 and the closeness of the values at Magerøya in all years. Overall,
prevalence was highest in 2000, and also in the Varangerfjord samples.

4
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11.5.2 Demand for medical care by the elderly
{sec:glm-case-nmes}

A large cross-sectional study was carried out by the U.S. National Medical Expenditure Survey
(NMES) in 1987–1988 to assess the demand for medical care, as measured by the number of
physician/non-physician office visits and the number of hospital outpatient visits to a physician/non-
physician. The survey was based upon a representative, national probability sample of the civilian
non-institutionalized population and individuals admitted to long-term care facilities during 1987.
A subsample of 4,406 individuals ages 66 and over, all of whom are covered by Medicare is con-
tained in the NMES1988 data set in the AER package. These data were previously analyzed by Deb
and Trivedi (1997) and Zeileis et al. (2008), from which this account borrows. The objective of the
study and these analyses is to create a descriptive, and hopefully predictive, model for the demand
for medical care in this elderly population.{ex:nmes1}

EXAMPLE 11.13: Demand for medical care
The potential response variables in the NMES1988 data set form a 2×2 set of the combinations

of place of visit (office vs. hospital) and (physician vs. non-physician) practitioner. Here, we focus
on the highest total frequency variable visits, recording office visits to a physician. There are
quite a few potential predictors, but here we consider only the following:

• hospital: number of hospital stays12

• health: a factor indicating self-perceived health status, with categories "poor", "average"
(reference category), "excellent"

• chronic: number of chronic conditions
• gender
• school: number of years of education
• insurance: a factor. Is the individual covered by private insurance?

For convenience, these variables are extracted to a reduced data set, nmes.

> data("NMES1988", package="AER")
> nmes <- NMES1988[, c(1, 6:8, 13, 15, 18)]

A quick overview of the response variable, visits is shown as simple (unbinned) histograms
on the frequency and log(frequency) scales in Figure 11.24. The zero counts are not as extreme
as we have seen in other examples. On the log scale, there is a small, but noticeable spike at 0,
followed by a progressive, nearly linear decline, up to about 30 visits.

> plot(table(nmes$visits),
+ xlab="Physician office visits", ylab="Frequency")
> plot(log(table(nmes$visits)),
+ xlab="Physician office visits", ylab="log(Frequency)")

However as a benchmark, without taking any predictors into account, there is very substantial
overdispersion relative to a Poisson distribution, the variance being nearly 8 times the mean.

> with(nmes, c(mean=mean(visits),
+ var=var(visits),
+ ratio=var(visits)/mean(visits)))

mean var ratio
5.7744 45.6871 7.9120

12It is arguable that number of hospitalizations should be regarded as a dependent variable, reflecting another aspect of
demand for medical care, rather than as a predictor. We include it here as a predictor to control for its relationship to the
outcome visits.
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Figure 11.24: Frequency distributions of the number of physician office visits{fig:nmes-visits}

As before, it is useful to precede formal analysis with a variety of exploratory plots. Fig-
ure 11.25 shows a few of these as boxplots, using cutfac() to make predictors discrete, and
plotting visits on a log scale, started at 1. All of these show the expected relationships, e.g.,
number of office visits increases with numbers of chronic conditions and hospital stays, but de-
creases with better perceived health status.

> op <-par(mfrow=c(1, 3), cex.lab=1.4)
> plot(log(visits+1) ~ cutfac(chronic), data = nmes,
+ ylab = "Physician office visits (log scale)",
+ xlab = "Number of chronic conditions", main = "chronic")
> plot(log(visits+1) ~ health, data = nmes, varwidth = TRUE,
+ ylab = "Physician office visits (log scale)",
+ xlab = "Self-perceived health status", main = "health")
> plot(log(visits+1) ~ cutfac(hospital, c(0:2, 8)), data = nmes,
+ ylab = "Physician office visits (log scale)",
+ xlab = "Number of hospital stays", main = "hospital")
> par(op)

Similar plots for insurance and gender show that those with private insurance have more office
visits and women slightly more than men.

The relationship with number of years of education could be shown in boxplots by the use
of cutfac(school), or with spineplot() by making both variables discrete. However, it
is more informative (shows the data) to depict this in a smoothed and jittered scatterplot, as in
Figure 11.26.

> library(ggplot2)
> ggplot(nmes, aes(x=school, y=visits+1)) +
+ geom_jitter(alpha=0.25) +
+ stat_smooth(method="loess", color="red", fill="red", size=1.5, alpha=0.3) +
+ labs(x="Number of years of education", y="log(Physician office visits+1)") +
+ scale_y_log10(breaks=c(1,2,5,10,20,50,100)) + theme_bw()

As you might expect, there is a small but steady increase in mean office visits with years of edu-
cation. It is somewhat surprising that there are quite a few individuals with 0 years of education;
jittering also shows the greater density of observations at 8 and 12 years.

As in previous examples, a variety of other exploratory plots would be helpful in understanding
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Figure 11.25: Number of physician office visits plotted against some of the predictors {fig:nmes-boxplots}
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Figure 11.26: Jittered scatterplot of physician office visits against number of years of education,
with nonparametric (loess) smooth. {fig:nmes-school}
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the relationships among these variables jointly, particularly how office visits depends on combina-
tions of two (or more) predictors. Some natural candidates would include mosaic and doubledecker
plots (using cutfac(visits)), e.g., as in Figure 11.17, and conditional or faceted versions of
the boxplots shown in Figure 11.25, each stratified by one (or more) additional predictors. These
activities are left as exercises for the reader.

4

11.5.2.1 Fitting models

Most previous analyses of these data have focused on exploring and comparing different types of
count data regression models. Deb and Trivedi (1997) compared the adequacy of fit of the negative-
binomial, a hurdle NB, and models using finite mixtures of NB models. Zeileis et al. (2008) used
this data to illustrate hurdle and zero-inflated models using the countreg package, while Cameron
and Trivedi (1998, 2013) explored a variety of competing models, including 1- and 2-parameter
NB models and C-component finite mixture models that can be thought of as generalizations of the
2-component models described in Section 11.4.

In most cases, the full set of available predictors was used, and models were compared using
the standard methods for model selection: likelihood-ratio tests for nested models, AIC, BIC and
so forth. An exception is Kleiber and Zeileis (2014), who used a reduced set of predictors similar
to those employed here, and illustrated the use of rootograms and plots of predicted values for
visualizing and comparing fitted models.

This is where model comparison and selection for count data models (and other GLMs) adds
another layer of complexity beyond what needs to be considered for classical (Gaussian) linear
models, standard logistic regression models and the special case of loglinear models treated earlier.
Thus, when we consider and compare different distribution types or link functions, we have to be
reasonably confident that the systematic part of the model has been correctly specified (as we noted
in Section 11.3), and is the same in all competing models, so that any differences can be attributed
to the distribution type. However, lack-of-fit may still arise because the systematic part of the model
is incorrect.

In short, we cannot easily compare apples to oranges (different distributions with different re-
gressors), but we also have to make sure we have a good apple to begin with. The important
questions are:

• Have all important predictors and control variables have been included in the model?
• Are quantitative predictors represented on the correct scale (via transformations or non-linear

terms) so their effects are reasonably additive for the linear predictor?
• Are there important interactions among the explanatory variables?

{ex:nmes2}

EXAMPLE 11.14: Demand for medical care
In this example, we start with the all main-effects model of the predictors in the nmes data,

similar to that considered by Zeileis et al. (2008). We first fit the basic Poisson and NB models, as
points of reference.

> nmes.pois <- glm(visits ~ ., data = nmes, family = poisson)
> nmes.nbin <- glm.nb(visits ~ ., data = nmes)

A quick check with lmtest() shows that the NB model is clearly superior superior to the
standard Poisson regression model as we expect (and also to the quasi-Poisson).

> library(lmtest)
> lrtest(nmes.pois, nmes.nbin)
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Likelihood ratio test

Model 1: visits ~ hospital + health + chronic + gender + school + insurance
Model 2: visits ~ hospital + health + chronic + gender + school + insurance
#Df LogLik Df Chisq Pr(>Chisq)

1 8 -17972
2 9 -12171 1 11602 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model summary for the NB model below shows the coefficients area all significant. More-
over, the signs of the coefficients are all as we would expect from our exploratory plots. For example,
log(visits) increases with number of hospital stays, chronic conditions and education, and is greater
for females and those with private health insurance. So, what’s not to like?

> summary(nmes.nbin)

Call:
glm.nb(formula = visits ~ ., data = nmes, init.theta = 1.206603534,

link = log)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.047 -0.995 -0.295 0.296 5.818

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.92926 0.05459 17.02 < 2e-16 ***
hospital 0.21777 0.02018 10.79 < 2e-16 ***
healthpoor 0.30501 0.04851 6.29 3.2e-10 ***
healthexcellent -0.34181 0.06092 -5.61 2.0e-08 ***
chronic 0.17492 0.01209 14.47 < 2e-16 ***
gendermale -0.12649 0.03122 -4.05 5.1e-05 ***
school 0.02682 0.00439 6.10 1.0e-09 ***
insuranceyes 0.22440 0.03946 5.69 1.3e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.2066) family taken to be 1)

Null deviance: 5743.7 on 4405 degrees of freedom
Residual deviance: 5044.5 on 4398 degrees of freedom
AIC: 24359

Number of Fisher Scoring iterations: 1

Theta: 1.2066
Std. Err.: 0.0336

2 x log-likelihood: -24341.1070

This all-main-effects model is relatively simple to interpret, but a more important question is
whether it adequately explains the relations of the predictors to the outcome, visits.

Significant interactions among the predictors could substantially change the interpretation of the
model, and in the end, could affect policy recommendations based on this analysis. This question
turns out to be far more interesting and important than the subtle differences among models for
handling overdispersion and zero counts.

One simple way to consider whether there are important interactions among the predictors that
better explain patient visits is to get simple tests of the additional contribution of each two-way
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(or higher-way) interaction using the add1() function. The formula argument in the call below
specifies to test the addition of all two-way terms.

> add1(nmes.nbin, . ~ .^2, test="Chisq")

Single term additions

Model:
visits ~ hospital + health + chronic + gender + school + insurance

Df Deviance AIC LRT Pr(>Chi)
<none> 5045 24357
hospital:health 2 5025 24341 19.9 4.7e-05 ***
hospital:chronic 1 5009 24324 35.2 3.0e-09 ***
hospital:gender 1 5044 24358 0.8 0.3650
hospital:school 1 5041 24355 4.0 0.0453 *
hospital:insurance 1 5036 24351 8.0 0.0046 **
health:chronic 2 5005 24322 39.5 2.6e-09 ***
health:gender 2 5040 24357 4.3 0.1172
health:school 2 5030 24347 14.3 0.0008 ***
health:insurance 2 5032 24348 12.9 0.0016 **
chronic:gender 1 5045 24359 0.0 0.9008
chronic:school 1 5043 24357 1.9 0.1705
chronic:insurance 1 5039 24354 5.1 0.0246 *
gender:school 1 5040 24354 4.8 0.0290 *
gender:insurance 1 5042 24357 2.5 0.1169
school:insurance 1 5037 24352 7.2 0.0072 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From this, we decide to add all two-way interactions among health, hosp and numchron,
and also the two-way interaction health:school. Other significant interactions could also be
explored, but we don’t do this here.

> nmes.nbin2 <- update(nmes.nbin,
+ . ~ . + (health+chronic+hospital)^2
+ + health:school)

This model clearly fits much better than the main effects model, as shown by a likelihood ratio
test. The same conclusion would result from anova().

> lrtest(nmes.nbin, nmes.nbin2)

Likelihood ratio test

Model 1: visits ~ hospital + health + chronic + gender + school + insurance
Model 2: visits ~ hospital + health + chronic + gender + school + insurance +

health:chronic + hospital:health + hospital:chronic + health:school
#Df LogLik Df Chisq Pr(>Chisq)

1 9 -12171
2 16 -12133 7 74.3 2e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4

11.5.2.2 Model interpretation: Effect plots

Complex models with more than a few predictors are difficult to understand and explain, even more
so when there are interactions among the predictors. As we have noted previously, effect plots (Fox,
1987, Fox and Andersen, 2006) provide a ready solution.



468 11. Generalized Linear Models

They have the advantage that each plot shows the correct partial relation between the response
and the variables in the term shown, controlling (adjusting) for all other variables in the model,
as opposed to marginal plots that ignore all other variables. From these, it is possible to read an
interpretation of a given model effect directly from the effect plot graphs, knowing that all variables
not shown in a given graph have been controlled (adjusted for) by setting them equal to average or
typical values.

A disadvantage is that these plots show only the predicted (fitted) effects under the given model
(and not the data). If relationships of the response to predictors are nonlinear, or important inter-
actions are not included in the model, you won’t see this in an effect plot. We illustrate this point
using the results of the main effect NB model, nmes.nbin, as shown in Figure 11.27.{ex:nmes2a}

EXAMPLE 11.15: Demand for medical care

> library(effects)
> plot(allEffects(nmes.nbin), ylab = "Office visits")
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Figure 11.27: Effects plots for the main effects of each predictor in the negative binomial model
nmes.nbin{fig:nmes2-eff1}

All of these panels show the expected relations of the predictors to the visits response, and
the confidence bands and error bars provide visual tests of the sizes of differences. But they don’t
tell the full story, because the presence of an important interaction (such as health:chronic)
means that the effect of one predictor (health) differs over the values of the other (chronic).

We can see this clearly in effect plots for the model nmes.nbin2with interactions. For display
purposes, it is convenient here to calculate the fitted effects for model terms over a smaller but
representative subset of the levels of the integer-valued predictors, using the xlevels= argument
to allEffects().

> eff_nbin2 <- allEffects(nmes.nbin2,
+ xlevels=list(hospital=c(0:3, 6, 8), chronic=c(0:3, 6, 8), school=seq(0,20,5)))

The result of allEffects(), eff_nbin2, is a "efflist" object, a list of effects for each high-
order term in the model. Note that only the terms gender and insurance, not involved in any
interaction, appear as main effects here.
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> names(eff_nbin2)

[1] "gender" "insurance" "health:chronic"
[4] "hospital:health" "hospital:chronic" "health:school"

Plotting the entire "efflist" object gives a collection of plots, one for each high-order term, as
in Figure 11.27, and is handy for a first look. However, the plot() methods for effects objects
offer greater flexibility when you plot terms individually using additional options. For example,
Figure 11.28 plots the effect for the interaction of health and number of chronic conditions with
a few optional arguments. See help(plot.eff, package="effects") for the available
options.

> plot(eff_nbin2, "health:chronic", layout=c(3,1),
+ ylab = "Office visits", colors="blue")
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Figure 11.28: Effect plot for the interaction of health and number of chronic conditions in the
model nmes.nbin2 {fig:nmes2-eff2}

The default style shown in Figure 11.28 is a conditional or faceted plot, graphing the response
against the X variable with the greatest number of levels, with separate panels for the levels of
the other predictor. Alternatively, the effects for a given term can be shown overlaid in a single
plot, using the multiline=TRUE argument, as shown in Figure 11.29 for the two interactions
involving health status. Not only is this style more compact, but it also makes direct comparison of
the trends for the other variable easier.

> plot(eff_nbin2, "health:chronic", multiline=TRUE, ci.style="bands",
+ ylab = "Office visits", xlab="# Chronic conditions",
+ key.args = list(x = 0.05, y = .80, corner = c(0, 0), columns = 1))
>
> plot(eff_nbin2, "hospital:health", multiline=TRUE, ci.style="bands",
+ ylab = "Office visits", xlab="Hospital stays",
+ key.args = list(x = 0.05, y = .80, corner = c(0, 0), columns = 1))

From both Figure 11.28 and the left panel of and Figure 11.29, it can be seen that for people with
poor health status, the relationship of chronic conditions to office visits is relatively flat. For those
who view their health status as excellent, their use of office visits is much more strongly related to
their number of chronic conditions.
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Figure 11.29: Effect plots for the interactions of chronic conditions and hospital stays with per-
ceived health status in the model nmes.nbin2 {fig:nmes2-eff3}

The interaction of perceived health status with number of hospital stays (right panel of Fig-
ure 11.29) shows that the difference in office visits according to health status is mainly important
only for those with 0 or 1 hospital stays.

The remaining two interaction effects are plotted in Figure 11.30. The interaction of hospital
stays and number of chronic conditions (left panel of Figure 11.30) has a clearly interpretable pat-
tern: for those with few chronic conditions, there is a strong positive relationship between hospital
stays and office visits. As the number of chronic conditions increases, the relation with hospital
stays decreases in slope.

> plot(eff_nbin2, "hospital:chronic", multiline=TRUE, ci.style="bands",
+ ylab = "Office visits", xlab="Hospital stays",
+ key.args = list(x = 0.05, y = .70, corner = c(0, 0), columns = 1))
>
> plot(eff_nbin2, "health:school", multiline=TRUE, ci.style="bands",
+ ylab = "Office visits", xlab="Years of education",
+ key.args = list(x = 0.65, y = .1, corner = c(0, 0), columns = 1))

Finally, the interaction of health:school is shown in the right panel of Figure 11.30. It can
be readily seen that for those of poor health, office visits are uniformly high, and have no relation to
years of education. Among those of average or excellent health, office visits increase with years of
education in roughly similar ways. 4

11.5.2.3 More model wrinkles: Nonlinear terms

Effect plots such as those above are much easier to interpret than tables of fitted coefficients. How-
ever, we emphasize that these only reflect the fitted model. It might be that the effects of both
hospital and chronic are nonlinear (on the scale of log(visits)). In assessing this ques-
tion, we increase the complexity of model and try to balance parsimony against goodness-of-fit, but
also assure that the model retains a sensible interpretation.{ex:nmes3}

EXAMPLE 11.16: Demand for medical care
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Figure 11.30: Effect plots for the interactions of chronic conditions and hospital stays and for health
status with years of education in the model nmes.nbin2{fig:nmes2-eff4}

The simplest approach is to use poly(hosp,2) and/or poly(numchron,2) to add possi-
ble quadratic (or higher power) relations to the model nmes.nbin2 containing interactions studied
above. A slightly more complex model could use poly(hosp, numchron, degree=2) for
a response-surface model in these variables. A significantly improved fit of such a model is evidence
for nonlinearity of the effects of these predictors. This is easily done using update():

> nmes.nbin3 <- update(nmes.nbin2, . ~ . + I(chronic^2) + I(hospital^2))

This model is equivalent to the long-form version below:

> nmes.nbin3 <- glm.nb(visits ~ poly(hospital,2) + poly(chronic,2) +
+ insurance + school + gender +
+ (health+chronic+hospital)^2 + health:school, data = nmes)

Comparing these models using anova(), we see that there is a substantial improvement in the
model fit by including these nonlinear terms. The quadratic model also fits best by AIC and BIC.

> anova(nmes.nbin, nmes.nbin2, nmes.nbin3)

Likelihood ratio tests of Negative Binomial Models

Response: visits
Model

1 hospital + health + chronic + gender + school + insurance
2 hospital + health + chronic + gender + school + insurance + health:chronic + hospital:health + hospital:chronic + health:school
3 hospital + health + chronic + gender + school + insurance + I(chronic^2) + I(hospital^2) + health:chronic + hospital:health + hospital:chronic + health:school

theta Resid. df 2 x log-lik. Test df LR stat.
1 1.2066 4398 -24341
2 1.2354 4391 -24267 1 vs 2 7 74.307
3 1.2446 4389 -24245 2 vs 3 2 22.278

Pr(Chi)
1
2 1.9829e-13
3 1.4537e-05

> vcdExtra::LRstats(nmes.nbin, nmes.nbin2, nmes.nbin3)
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Likelihood summary table:
AIC BIC LR Chisq Df Pr(>Chisq)

nmes.nbin 24359 24417 5045 4398 2.2e-11 ***
nmes.nbin2 24299 24401 5047 4391 1.1e-11 ***
nmes.nbin3 24281 24396 5049 4389 8.5e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

However, effect plots for this model quickly reveal a substantive limitation of this approach
using polynomial terms. Figure 11.31 shows one such plot for the interaction of health and number
of chronic conditions that you should compare with Figure 11.28.

> eff_nbin3 <- allEffects(nmes.nbin3,
+ xlevels=list(hospital=c(0:3, 6, 8), chronic=c(0:3, 6, 8), school=seq(0,20,5)))
> plot(eff_nbin3, "health:chronic", layout=c(3,1))
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Figure 11.31: Effect plot for the interaction of health and number of chronic conditions in the
quadratic model nmes.nbin3{fig:nmes3-eff1}

The quadratic fits for each level of health in Figure 11.31 imply that office visits increase with
chronic conditions up to a point and then decrease— with a quadratic, what goes up must come
down, the same way it went up! This makes no sense here, particularly for those with poor health
status. As well, the confidence bands in this figure are uncomfortably wide, particularly at higher
levels of chronic conditions, compared to those in Figure 11.28. The quadratic model is thus prefer-
able statistically and descriptively, but serves less well for explanatory, substantive and predictive
goals.

An alternative approach nonlinearity is to use regression splines (as in Example 7.9) or a gen-
eralized additive model (Hastie and Tibshirani, 1990) for these terms. The latter specifies the linear
predictor as a sum of smooth functions,

g(E(y)) = β0 + f1(x1) + f2(x2) + · · ·+ fm(xm) .

where each fj(xj) may be a function with a specified parametric form (for example a polynomial)
or may be specified non-parametrically, simply as “smooth functions”, to be estimated by non-
parametric means.

In R, a very general implementation of the generalized additive model (GAM) is provided by
gam() in the mgcv package and described in detail by Wood (2006). Particular features of the
package are facilities for automatic smoothness selection (Wood, 2004), and the provision of a
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variety of smooths of more than one variable. This example just scratches the surface of GAM
methodology.

In the context of the NB model we are considering here, the analog of model nmes.nbin3
fitted using gam() is nmes.gamnb shown below. The negative-binomial distribution can be
specified using family=nb() when the parameter θ is also estimated from the data (as with
glm.nb()), or family=negbin(theta)when θ is taken as fixed, for example using the value
theta=1.24 available from models nmes.nbin2, and nmes.nbin3.

> library(mgcv)
> nmes.gamnb <- gam(visits ~ s(hospital, k=3) + s(chronic, k=3) +
+ insurance + school + gender +
+ (health+chronic+hospital)^2 + health:school,
+ family=nb(), data = nmes)

The key feature here is the specification of the smooth terms for s(hospital, k=3) and
s(chronic, k=3), where k=3 specifies the dimension of the basis used to represent the smooth
term. There are many other possibilities with gam(), but these are beyond the scope of this exam-
ple.

We could again visualize the predicted values from this model using effect plots. However a
different approach is to visualize the fitted surface in 3D, using a range of values for two of the
predictors, and controlling for the others.

The rsm package provides extensions of the standard contour(), image() and persp()
functions for this purpose. The package provides S3 methods (e.g., persp.lm()) for "lm" objects,
or classes (such as "negbin" and "glm") that inherit methods from lm. The calculation of fitted
values in these plots use the applicable predict() method for the model object. As in effect
plots, the remaining predictors are controlled at their average values (or other values specified in the
at argument).

Two such plots are shown in Figure 11.32. The left panel shows the interaction of hospital stays
and chronic conditions, included in the model with smoothed terms for their main effects. The right
panel shows the joint effects of years of education and chronic conditions on office visits, but there
is no interaction of these variables in the GAM model nmes.gamnb. These plots use rainbow()
colors to depict the predicted values of office visits. Contours of these values are projected into the
bottom or top plane with corresponding color coding.13

> library(rsm)
> persp(nmes.gamnb, hospital ~ chronic, zlab="log Office visits",
+ col=rainbow(30), contour=list(col="colors", lwd=2),
+ at=list(school=10, health='average'), theta=-60)
>
> persp(nmes.gamnb, school ~ chronic, zlab="log Office visits",
+ col=rainbow(30), contour=list(col="colors", lwd=2, z="top"),
+ at=list(hospital=0.3, health='average'), theta=-60)

A simple, credible interpretation of the plot in the left panel is that office visits rise steeply
initially with both hospital stays and number of chronic conditions, and then levels off. For those
with no chronic conditions, the effect of hospital stays rises to a higher level compared with the
effect of chronic conditions among those who have had no hospital stays. However, as we have seen
before, the data is quite thin at the upper end of these predictors, and this plot does not show model
uncertainty.

The right panel of Figure 11.32 illustrates the form of model predictions for a term where one
variable (chronic) is treated as possibly nonlinear using a smooth s() effect, the other is treated
as linear (school), and no interaction between these is included in the model. At each fixed value
of chronic, increasing education results in greater office visits. At each fixed value of school,

13The vignette vignette("rsm-plots", package="rsm") illustrates some of these options.
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Figure 11.32: Fitted response surfaces for the relationships among chronic conditions, number of
hospital stays and years of education to office visits in the generalized additive model, nmes.gamnb {fig:nmes3-rsm}

the number of chronic conditions shows a steep increase in office visits initially, leveling off toward
higher levels, but these all have the same predicted shape.

4

11.6 Diagnostic plots for model checking
{sec:glm-diag}

Models, of course, are never true, but fortunately it is only necessary that they be useful.

G. E. P. Box, Some Problems of Statistics of Everyday Life, 1979, p. 2

Most of the model diagnostic methods for classical linear models extend in a relatively direct
way to GLMs. These include (a) plots of residuals of various types, (b) diagnostic measures and
plots of leverage and influence, as well as some (c) more specialized plots (component-plus-residual
plots, added-variable plots) designed to show the specific contribution of a given predictor among
others in a linear model. These methods were described in Section 7.5 in the context of logistic
regression, and most of that discussion is applicable here in wider GLM class.

One additional complication here is that in any GLM we are specifying: (a) the distribution of
the random component, which for count data models may also involve a dispersion parameter or
other additional parameters; (b) the form of the linear predictor, η = xTβ = β0 +β1x1 + · · ·, where
all important regressors have been included, and on the right scale; (c) the correct link function,
g(µ) = η transforming the conditional mean of the response y to the predictor variables where they
have linear relationships.

Thus, there are a lot of things that could go wrong, but the famous quote from George Box
should remind us that all models are approximate, and the goal for model diagnosis should be an
adequate model, useful for description, estimation or prediction as the case may be. What is most
important is that our models cannot be misleadingly wrong, that is they should not affect substantive
conclusions or interpretation.
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11.6.1 Diagnostic measures and residuals for GLMs

Estimation of GLMs by maximum likelihood uses an iterative weighted least squares (IWLS) algo-
rithm, and many of the diagnostic measures for these models are close counterparts of their forms
for classical linear models. Roughly speaking, these follow from replacing y and ŷ in least squares
diagnostics by a “working response” and η̂, replacing the residual variance σ̂2 by φ̂, and using a
weighted form of the Hat matrix.

11.6.1.1 Leverage

Hat values, hi, measuring leverage or the potential of an observation to affect the fitted model are
defined as the diagonal elements of the hat matrix H , using the weight matrix W from the final
IWLS iteration. This has the same form as in a weighted least squares regression using a fixed W
matrix:

H = W 1/2X(XTWX)−1XTW 1/2 .

In contrast to OLS, the weights depend on the y values as well as the X values, so high leverage
observations do not necessarily reflect only unusualness in the space of the predictors.

11.6.1.2 Residuals

Several types of residuals can be defined starting from the goodness-of-fit measures discussed in
Section 11.1.3. The raw residual or response residual is simply the difference yi − µ̂i between the
observed response yi and the estimated mean, µ̂ = g−1(η̂i) = g−1(xT

i β̂).
From this, the Pearson residual is defined as

rPi =
yi − µ̂i√
V̂(yi)

(11.11) {eq:res-pearson}

and the deviance residual is defined as the signed square root of the contribution of observation i to
the deviance in Eqn. (11.4).

rDi = sign(yi − µ̂i)
√
di (11.12) {eq:res-deviance}

The Pearson and deviance residuals do not account for dispersion or for differential leverage
(which makes their variance smaller), so standardized residuals (sometimes called scaled residuals)
can be calculated as

r̃Pi =
rPi√

φ̂(1− hi)
(11.13) {eq:res-pearson-s}

r̃Di =
rDi√

φ̂(1− hi)
(11.14) {eq:res-deviance-s}

These have approximate standard normalN (0, 1) distributions, and will generally have quite similar
values (except for small values in µ̂). Consequently, convenient thresholds like |r̃i| > 2 or |r̃i| > 4
are useful for identifying unusually large residuals.

Finally, the studentized residual (or deletion residual) gives the standardized residual that would
result omitting each observation in turn and calculating the change in the deviance. Calculating these
exactly would require refitting the model n times, but an approximation is

r̃Si = sign(yi − µ̂i)
√

(r̃Di )2 + (r̃Pi )2hi/(1− hi) . (11.15)
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From the theory of classical linear models, these provide formal outlier tests for individual observa-
tions (Fox, 2008, §11.3) as a mean-shift outlier model that dedicates an additional parameter to fit
observation i exactly. To correct for multiple testing and a focus on the largest absolute residuals, it
is common to apply a Bonferoni adjustment to the p-values of these tests, multiplying them by n.

For a class "glm" object, the function residuals(object, type) returns the unstandard-
ized residuals for type="pearson" or type="deviance".14 The standardized versions are
obtained using rstandard(), again with a type argument for the Pearson or deviance flavor.
rstudent() calculates the studentized deletion residuals.

11.6.1.3 Influence

As discussed in Section 7.5 in the context of logistic regression, influence measures attempt to
evaluate the effect that an observation exerts on the parameters, fitted values or goodness-of-fit
statistics by comparing a statistic calculated for all the data with the value obtained omitting each
observation in turn. Again, approximations are used to estimate these effects without laboriously
refitting the model n times.

Overall measures of influence include

• Cook’s distance (Eqn. (7.10)), a squared measure of the difference β̂−β̂(−i) in all p coefficients
in the model. The approximation used in cooks.distance() is

Ci =
r̃ihi

φ̂ p (1− hi)
.

This follows Williams (1987), but scales the result by the estimated dispersion φ̂ as an approxi-
mate Fp,n−p statistic rather than χ2

p.
• DFFITS, the standardized signed measure of the difference of the fitted value µ̂i using all the

data and the value µ̂(−i) omitting observation i.
{ex:phdpubs5}

EXAMPLE 11.17: Publications of PhD candidates
For models that inherit methods from the "glm" class (including NB models fit using glm.nb()),

the simplest initial diagnostic plots are provided by the plot() method. Figure 11.33 shows the
default regression quartet of plots for the negative-binomial model phd.nbin examined in earlier
examples. By default, the id.n=3 most noteworthy observations are labeled with their row names
from the original data set.

> op <- par(mfrow=c(2,2), mar=c(4,4,2,1)+.1, cex.lab=1.2)
> plot(phd.nbin)
> par(op)

The plot of residuals against predicted values in the upper left panel of Figure 11.33 should show
no overall systematic trend for a well-fitting model. The smoothed loess curve in red suggests that
this is not the case.

Several functions in the car package make these plots more flexibly and with greater control of
the details. Figure 11.34 shows the plot of residuals against predicted values two ways. The right
panel explains the peculiar pattern of diagonal band of points. These correspond to the different
discrete values of the response variable, number of articles published.

14Other types include raw response residuals (type="response"), working residuals (type="working") and par-
tial residuals (type="partial").
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Figure 11.33: Default diagnostic plots for the negative-binomial model fit to the PhdPubs data.{fig:phdpubs5-plot}

> library(car)
> residualPlot(phd.nbin, type="rstandard", col.smooth="red", id.n=3)
> residualPlot(phd.nbin, type="rstandard",
+ groups=PhdPubs$articles, key=FALSE, linear=FALSE, smoother=NULL)

Other useful plots show the residuals against each predictor. For a good-fitting model, the
average residual should not vary systematically with the predictor. As shown in Figure 11.35,
residualPlot() draws a lowess smooth, and also computes a curvature test for each of the
plots by adding a quadratic term and testing the quadratic to be zero.

> residualPlot(phd.nbin, "mentor", type="rstudent",
+ quadratic=TRUE, col.smooth="red", col.quad="blue", id.n=3)
> residualPlot(phd.nbin, "phdprestige", type="rstudent",
+ quadratic=TRUE, col.smooth="red", col.quad="blue", id.n=3)

In the plot at the left for number of articles by the student’s mentor, the curvature is quite
pronounced: at high values of mentor, nearly all of the residuals are negative, these students
publishing fewer articles than would be expected. This would indicate a problem in the scale for
mentor if there were more observations at the high end; but only about 1.5% points occur for
mentor>45, so this can be discounted.

Figure 11.36 gives a better version of the influence plot shown in the lower right panel of Fig-
ure 11.33. This plots studentized (deletion) residuals against leverage, showing the value of Cook’s
distance by the area of the bubble symbol.

> influencePlot(phd.nbin)

StudRes Hat CookD
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Figure 11.34: Plots of residuals against the linear predictor using residualPlot(). The right panel
shows that the diagonal bands correspond to different values of the discrete response. {fig:phdpubs5-resplot1}

0 20 40 60 80

−
2

−
1

0
1

2
3

mentor

R
st

ud
en

t r
es

id
ua

ls

●

●●●

●

●
●●

●

●

●

●
●
●

●●
● ●
● ●●

●

●●

●

● ●●
●

●

●

●
●

●●
●●

●

●
●

●

●

●

●
●

●
●

●

●●●

●

●
●

● ●
●

●●● ●● ●●● ●

●
●

●
●

●

●

●
● ●●

●
● ●

●●●

●
●

●

●

●

●

●

●
●●

●

●

●
●●
●

●

●

●● ●●
●
●

●
●

●●

●

● ●

●

●
●●

●
●●● ●

●

●●

●
●

●
● ●

●

●

●
● ●

●

●
●

●
●●

●●
●● ●

●
●

●

●
●

●
●●● ●●

●
●

●

●
●

●●

●

●
●

●● ●
●●

●
●

●●

●
●
●●

●

●
● ●

●
●

●
●

●
●

●
●

●

● ● ●
●

●

●

●

●●
● ●●

●

●●
●●●
●●

●●
●● ●

●
●

●
● ●●●

●
●
●

●
●

●

●

●
● ● ●
●

●

●
●

●●

●●●● ●
●

●●

●

●
●

●

●●●
●●

●
●●●

● ●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●
● ●●

●

●
●● ●

●

●

●
●

●● ●●

●

●

●●
●●

●

●

● ●

●
●

●

●

●
●

●

●
●

●●
●●

●
●● ●●

● ●
●

●

●

● ●
●

●
●●
● ●

●
● ●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●●
●●

●

●

●

● ●●

●

●

●

● ●

●●

●

●
●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●

●
●

● ●

●

●

●●

●

●●
●

●

●
●

●
●
●

●

●●

●

●
● ●

●
●
●

●

●

●●

●

●

●
●●

●

● ●
●●

●
●
●

●

● ● ●

●

●

●
●

●●● ●

●

●●●

●

●●●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●
●●

● ● ●

●
●

●

●

●● ●
●●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●
●

●
●

● ●

●
●

●

●●

●

● ●
●

●
● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●

●●
●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●
●

●
● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

● ●

●

●
●

●

● ●●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

913911

914

1 2 3 4 5

−
2

−
1

0
1

2
3

phdprestige

R
st

ud
en

t r
es

id
ua

ls

●

● ●●

●

●
●●

●

●

●

●
●

●
● ●
● ●

● ●●

●

●●

●

● ●●
●

●

●

●
●
●●
●●

●

●
●
●

●

●

●
●

●
●

●

●● ●

●

●
●

●●
●
● ●●●● ●●●●

●
●

●
●

●

●

●
●● ●

●
●●

●● ●

●
●

●

●

●

●

●

●
●●

●

●

●
● ●

●
●

●

●●● ●
●

●
●

●
● ●

●

● ●

●

●
●●

●
● ●●●
●

● ●

●
●

●
●●

●

●

●
●●

●

●
●

●
● ●

●●
●● ●

●
●

●

●
●

●
● ●●● ●●

●
●

●
●

● ●

●

●
●

● ● ●
●●

●
●
● ●

●
●

●●
●

●
●●

●
●

●
●

●
●
●

●
●

● ●●
●

●

●

●

●●
●●●

●

● ●
●● ●

●●
●●

●● ●
●

●
●
●● ●●

●
●
●

●
●
●

●

●
●●●

●

●

●
●

●●

●● ●● ●
●

● ●

●

●
●

●

●●●
●●

●
● ●●

● ●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●
●

●●●

●

●

●
●●

●

●

●
●●●

●

●

●
●

●●●●

●

●

●●
●●

●

●

●●

●
●

●

●

●
●

●

●
●

●●
●● ●

● ●●●
● ●

●
●

●

●●
●
●

●●
● ●

●
● ●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

● ●
● ●
●

●

●

●●●

●

●

●

●●

●●

●

●
●

●
●

●
● ●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●
●

●●

●

●

● ●

●

● ●
●

●

●
●
●

●
●

●

●●

●

●
●●
●
●
●

●

●

●●

●

●

●
●●

●

● ●
●●

●
●

●

●

●●●

●

●

●
●

●●● ●

●

●●●

●

●● ●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●●
●

●
●
●

●

●

●
●

●

●

●

●●
●●

●●●

●
●

●

●

● ● ●
●●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●
●

●
●

● ●

●
●

●

●●

●

● ●
●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●●
●

● ●
●

●

● ●
●

●

●
●

●

●●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●●

●

●
●

●

● ●●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

913 911

914

Figure 11.35: Plots of residuals against two predictors in the phd.nbin model. Such plots should
show no evidence of a systematic trend for a good-fitting model. {fig:phdpubs5-resplot2}
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Figure 11.36: Influence plot showing leverage, studentized residuals and Cook’s distances for the
negative-binomial model fit to the PhdPubs data. Conventional cutoffs for studentized residuals are
shown by dashed horizontal lines at ±2; vertical lines show 2 and 3 times the average hat-value. {fig:phdpubs5-influenceplot}

Several observations are considered noteworthy, because of one or more of large absolute resid-
ual, large leverage or large Cook’s distance. influencePlot() uses different default rules for
point labeling than does the plot() method, but provides many options to control the details. Ob-
servation 328 stands out as having the largest leverage and a large negative residual; case 913 has
the largest absolute residual, but is less influential than case 915.15

The outlierTest() function in car gives a formal test of significance of the largest absolute
studentized residuals, with a Bonferroni-adjusted p-value accounting for choosing the largest values
among n such tests. Individually, case 913 is extreme, but it is not at all extreme among n = 915
such tests, each using α = .05.

> outlierTest(phd.nbin)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:

rstudent unadjusted p-value Bonferonni p
913 3.3488 0.00084491 0.77309

This example started with the negative-binomial model, the best-fitting from the previous ex-
amples. It highlighted a few features of the data not seen previously and worth considering, but
doesn’t seriously challenge the substantive interpretation of the model. This is what we hope for
from model diagnostic plots.

4

15The higher case numbers appear in these plots and diagnostics because the data set PhdPubs had been sorted by the
response, articles.
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11.6.2 Quantile-quantile and half-normal plots
As we noted above, in theory the standardized and studentized Pearson and deviance residuals
have approximate standard normalN (0, 1) distributions (in large samples) when the fitted model is
correct. This suggests a plot of the sorted residuals, r(i), against the corresponding expected values,
z(i) an equal-sized sample of size n would have in a normal distribution.16

If the distribution of the residuals is approximately normal, the points (r(i), z(i)) should lie
along a line with unit slope through the origin; systematic or individual departure from this line
signals a potential violation of assumptions. The expected values are typically calculated as z(i) =

Φ−1{(i− 3
8 )/(n+ 1

4 )}, where Φ−1(•) is the inverse normal, or normal quantile function, qnorm()
in R.

Such plots, called normal quantile plots or normal QQ plots, are commonly used for GLMs
with a quantitative response variable. The upper right panel of Figure 11.33 illustrates the form of
such plots produced by plot() for a "glm" object.

One difficulty with the default plots is that it is hard to tell to what extent the points deviate
from the unit line because there is no visual reference for the line or envelope to indicate expected
variability about that line. This problem is easily remedied using qqPlot() from car.

Figure 11.37 shows the result for the model phd.nbin. The envelope lines used here are at
the quartiles of the expected normal distribution. They suggest a terrible fit, but, surprisingly, the
largest three residuals are within the envelope.

> qqPlot(rstudent(phd.nbin), id.n=3,
+ xlab="Normal quantiles", ylab="Studentized residuals")
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Figure 11.37: Normal QQ plot of the studentized residuals from the NB model for the PhdPubs
data. The normal-theory reference line and confidence envelope are misleading here.{fig:phdpubs6-qqplot}

For GLMs with discrete responses, such plots are often disappointing, even with a reasonably
good-fitting model, because: (a) possible outliers can appear at both the lower and upper ends of the

16The subscripted notation r(i), and z(i) here denotes an order statistic, the ith largest value in a set arranged in increasing
order.
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distribution of residuals; (b) the theoretical normal distribution used to derive the envelope may not
be well approximated in a given model.

Atkinson (1981, 1987) suggested a more robust and useful version of these QQ plots: half
normal plots, with simulated confidence envelopes. The essential ideas are:

• Model departures and outliers are often easier to see for discrete data when the absolute values
of residuals are plotted, because large positive and negative values are sorted together. This
gives the half-normal plot, in which the absolute values of residuals, arranged in increasing
order, |r|(i), are plotted against |z|(i) = Φ−1{(n + i − 1

8 )/(2n + 1
2 )}. All outliers will then

appear in the upper right of such a plot, as points separated from the trend of the remaining
cells.

• The normal-theory reference line, |r|(i) = |z|(i) and the normal-theory confidence envelope can
be replaced by simulating residuals from the assumed distribution, that need not be normal. The
reference line is taken as the mean of S simulations and the envelope with 1 − α coverage is
taken as the (α/2, 1− α/2) quantiles of their values.

• Specifically, for a GLM, S sets of random observations yj , j = 1, 2, . . . S are generated from
the fitted model, each with mean µ̂, the fitted values under from the model and with the same
distribution. In R, this is readily accomplished using the generic simulate() function; the
random variation around µ̂ uses rnorm(), rpois(), rnegbin(), etc., as appropriate for
the family of the model.

• The same model is then fit to each simulated yj , giving a new set of residuals for each simu-
lation. Sorting their absolute values then gives the simulation distribution used as reference for
the observed residuals.

At the time of writing there is no fully general implementation of these plots in R, but the
technique is not too difficult and is sufficiently useful to illustrate here. {ex:phdpubs6}

EXAMPLE 11.18: Publications of PhD candidates
First, calculate the sorted absolute values of the residuals |r|(i) and their expected normal values,

|z|(i). The basic plot will be plot(expected, observed).

> observed <- sort(abs(rstudent(phd.nbin)))
> n <- length(observed)
> expected <- qnorm((1:n + n - 1/8)/(2*n + 1/2))

Then, use simulate() to generate S = 100 simulated response vectors around the fitted
values in the model. Here this uses the negative-binomial random number generator (rnegbin())
with the same dispersion value (θ̂ = 2.267) estimated in the model. The result, called sims here,
is a data frame of n = 915 rows and S = 100 columns, named sim_1, sim_2, ....

> S <- 100
> sims <- simulate(phd.nbin, nsim=S)
> simdat <- cbind(PhdPubs, sims)

The next step is computationally intensive, because we have to fit the NB model S = 100 times
and a little bit tricky, because we need to use the same model formula as the original, but with the
simulated y. We first define a function resids to do this for a given y, and then use a loop to
calculate them all. To save computing time, the coefficients from the phd.nbin model are used as
starting values.

> # calculate residuals for one simulated data set
> resids <- function(y)
+ rstudent(glm.nb(y ~ female + married + kid5 + phdprestige + mentor,
+ data=simdat, start=coef(phd.nbin)))
> # do them all ...
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> simres <- matrix(0, nrow(simdat), S)
> for(i in 1:S) {
+ simres[,i] <- sort(abs(resids(dat[,paste("sim", i, sep="_")])))
+ }

We can then use apply() to compute the summary measures defining the center and limits for
the simulated confidence interval.

> envelope <- 0.95
> mean <- apply(simres, 1, mean)
> lower <- apply(simres, 1, quantile, prob=(1 - envelope)/2)
> upper <- apply(simres, 1, quantile, prob=(1 + envelope)/2)
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Figure 11.38: Half-normal QQ plot of studentized residuals for the NB model fit to the PhdPubs
data. The reference line and confidence envelope reflect the mean and (2.5%, 97.5%) quantiles of
the simulation distribution under the negative-binomial model for the same data.{fig:phd-halfnorm}

Finally, plot the observed against expected absolute residuals as points, and add the lines for the
confidence envelope, producing Figure 11.38.

> plot(expected, observed,
+ xlab='Expected value of half-normal order statistic',
+ ylab='Absolute value of studentized residual')
> lines(expected, mean, lty=1, lwd=2, col="blue")
> lines(expected, lower, lty=2, lwd=2, col="red")
> lines(expected, upper, lty=2, lwd=2, col="red")
> identify(expected, observed, labels=names(observed), n=3)

The shape of the QQ plot in Figure 11.37 shows a peculiar bend at low values and the half-
normal version in Figure 11.38 has a peculiar hump in the middle. What could be the cause?

Figure 11.39 shows two additional plots of the studentized residuals that give a clear answer. The
density plot at the left shows a strongly bimodal distribution of the residuals. An additional plot at
the right of residuals against the log(response) confirms the guess that the lower mode corresponds
to those students who published no articles— excess zeros again!
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> # examine distribution of residuals
> res <- rstudent(phd.nbin)
> plot(density(res), lwd=2, col="blue",
+ main="Density of studentized residuals")
> rug(res)
>
> # why the bimodality?
> plot(jitter(log(PhdPubs$articles+1), factor=1.5), res,
+ xlab="log (articles+1)", ylab="Studentized residual")
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Figure 11.39: Further plots of studentized residuals. Left: density plot; right: residuals against
log(articles+1) {fig:phdpubs6-res-plots}

Now we have something to worry about that could affect substantive interpretation or conclu-
sions from this analysis using the NB model, but not accounting for excess zeros. If we believe,
following Long (1997), that there is a separate latent class of students who don’t publish, it would
be sensible to fit a zero-inflated NB model, perhaps with a different subset of predictors for the
zero component. The alternative theory of a “hurdle” to a first publication suggests fitting a hurdle
model. We leave these as exercises for the reader.

4

11.7 Multivariate response GLM models
{sec:glm-multiv}

Far better an approximate answer to the right question, which is often vague, than an
exact answer to the wrong question, which can always be made precise.

John W. Tukey (1962), The future of data analysis

As noted in Section 10.4, in many studies, there may be several response variables along with
one or more explanatory variables, and it is useful to try to model some properties of their joint
distribution as well as their separate dependence on the predictors. In the current chapter, the case
study (Section 11.5.2) of demand for medical care by the elderly provides a relevant example. There
are actually four indicators of medical care, a 2× 2 set of (office vs. hospital) place and (physician
vs. non-physician) practitioner. That case study analysed only the office visits by physicians.
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This section describes a few steps in this direction. To provide some context, we begin with a
capsule overview of classical multivariate response models.

In the case of classical linear models with Gaussian error distributions, the model for a univariate
response, y = Xβ + ε, with ε ∼ N (0,Σ) extends quite readily to the multivariate linear model
(MLM) for q response variables, Y = {y1,y2, . . . ,yq}. The MLM has the form

Y
(n×q)

= X
(n×p)

B
(p×q)

+ E
(n×q)

(11.16){eq:mlm}

where Y is a matrix of n observations on q response variables; X is a model matrix with columns
for p regressors, typically including an initial column of 1s for the regression constant;B is a matrix
of regression coefficients, one column for each response variable; and E is a matrix of errors.

It is important to note that:

• The maximum likelihood estimator of B in the MLM is equivalent to the result of fitting q
separate univariate models for the individual responses and joining the coefficients columwise,
giving

B̂ = {β̂1, β̂2, . . . , β̂q} = (XTX)−1XTY

• Procedures for statistical inference (hypothesis tests, confidence intervals), however, take ac-
count of the correlations among the responses. Multivariate tests can therefore be more powerful
than separate univariate tests under some conditions.

• A unique feature of the MLM stems from the assumption of multivariate normality of the errors,
so that each row, εTi of E is assumed to be distributed independently, εTi ∼ N q(0,Σ), where
Σq×q is the error covariance matrix, constant across observations, like σ2 in univariate models.
Then, the conditional distributions of yj |X are all univariate normal, all bivariate distributions,
yj ,yk |X are bivariate normal, and any linear combination of the conditional ys is univariate
normal.

• Consequently, all relationships among the ys can be summarized by correlations and relation-
ships between the ys and xs by linear regressions. These can be visualized using data ellipses
(Friendly et al., 2013) and hypothesis tests in the MLM can be visualized by ellipses using
hypothesis-error plots (Friendly, 2007, Fox et al., 2009).

This generality of the MLM is lost, however, when we move to multivariate response models in
the non-Gaussian case. For binomial responses, Section 10.4 described several approaches toward
a multivariate logistic regression model that attempt to separate the marginal dependence of each y
on the xs from the relationship of the association among the ys on the xs. The bivariate logistic
model for (y1,y2) for example, was parameterized (see Eqn. (10.15)) in terms of submodels for a
logit for each response, η1 = xTβ1, η2 = xTβ2 and a submodel for the odds ratio, θ12 = xTβ12.

The situation becomes more difficult for multivariate count data responses, because parametric
approaches to their joint distribution (e.g., a multivariate Poisson distribution) given a set of ex-
planatory variables are computationally and analytically intractable. Cameron and Trivedi (2013,
Chapter 8) provide a detailed description of the problems and some solutions for the bivariate case,
including bivariate Poisson, negative-binomial and hurdle models.

Consequently, only a few special cases have been worked out theoretically, and mostly for the
bivariate case. For example, King (1989) described a seemingly unrelated bivariate Poisson model
for two correlated count variables. This models the separate linear predictors for y1 and y2 as

g(µ1) = xT
1β1

g(µ2) = xT
2β2 ,

with the covariance between y1 and y2 represented as ξ. As in the MLM, the coefficients have
the same point estimates as in equation-by-equation Poisson models. However, there is a gain in
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efficiency (reduced standard errors) resulting from a bivariate full-information maximum likelihood
solution, and efficiency increases with the covariance ξ between the two count variables.

As a result, for lack of a fully general model for multivariate count data, one simple approach is
to employ a method for simultaneous estimation of the equation-by-equation coefficients, accepting
some loss of efficiency. This allows for hypothesis tests that may not be most powerful, but provide
approximate answers to more interesting questions. We can supplement this with separate analysis
of the dependencies among the responses, and how these vary with the explanatory variables.

In R, the VGAM package is the most general available package for analysis of multivariate
response GLMs. For multivariate count data, it provides for both Poisson and negative-binomial
models. For NB models, the dispersion parameters θj = α−1j can be allowed to vary with the
predictors via a GLM of the form log θj = xTγj or can be constrained to be “intercept-only,”
log θj = γ0j , giving separate global dispersion estimates for each response. In the latter case, the
resulting coefficients are the same as fitting a separate model for each response using glm.nb(). {ex:nmes4}

EXAMPLE 11.19: Demand for medical care
In the examples in Section 11.5.2 we considered a variety of models for the number of office

visits to physicians (visits) as the primary outcome variable in the study of demand for medical
care by the elderly. We noted that other indicators of demand included office visits to non-physicians
and hospital visits to both physicians and non-physicians. A more complete analysis of this data
would consider all four response indicators together.

A special feature of this example is that the four response variables constitute a 2× 2 set of the
combinations of place of visit (office vs. hospital) and (physician vs. non-physician) practitioner.
These are all counts, and could be transformed to two binary responses according to place and
practitioner. Instead, we treat them individually here.

We start by selecting the variables to consider from the NMES1988 data, giving a new working
data set nmes2.

> data("NMES1988", package="AER")
> nmes2 <- NMES1988[, c(1:4, 6:8, 13, 15, 18)]
> names(nmes2)[1:4] # responses

[1] "visits" "nvisits" "ovisits" "novisits"

> names(nmes2)[-(1:4)] # predictors

[1] "hospital" "health" "chronic" "gender" "school"
[6] "insurance"

11.7.0.1 Analyzing correlations: HE plots

For purely descriptive purposes, a useful starting point is often an analysis of the log (y) on the
predictor variables using the classical MLM, a rough analog of a multivariate Poisson regression
with a log link. Inferential statistics will be biased, but we can use the result to visualize the pairwise
linear relations that exist among all responses and all predictors compactly using hypothesis-error
(HE) plots (Friendly, 2007).

Zero counts cause problems because the log of zero is undefined, so we add 1 to each yij in the
call to lm(). The result is an object of class "mlm".

> clog <- function(x) log(x+1)
> nmes.mlm <- lm(clog(cbind(visits, nvisits, ovisits, novisits)) ~ .,
+ data=nmes2)

An HE plot provides a visualization of the covariances of effects for the linear hypothesis (H)
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for each term in a MLM in relation to error covariances (E) using data ellipsoids in the space of
dimension q, the number of response variables. The size of each H ellipsoid in relation to the
E ellipsoid indicates the strength of the linear relations between the responses and the individual
predictors.17 The orientation of each H ellipsoid shows the direction of the correlations for that
term with the response variables. For 1 degree of freedom terms (a covariate or factor with two
levels), the corresponding H ellipsoid collapses to a line.

The heplots package contains functions for 2D plots (heplot()) of pairs of y variables, 3D
plots (heplot3d()), and all pairwise plots (pairs()). We illustrate this here using pairs()
for the MLM model, giving the plot shown in Figure 11.40.

> library(heplots)
> vlabels <- c("Physician\noffice visits", "Non-physician\n office visits",
+ "Physician\nhospital visits", "Non-physician\nhospital visits")
> pairs(nmes.mlm, factor.means="health", fill=TRUE, var.labels=vlabels)
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Figure 11.40: Pairwise HE plots for all responses in the nmes2 data.{fig:nmes4-hepairs}

The top row in Figure 11.40 shows the relationship of physician office visits to the other types of

17When the errors, E in Eqn. (11.16) are approximately multivariate normal, the H ellipsoid provides a visual test of
significance: the H ellipsoid projects outside the E ellipsoid if and only if Roy’s test is significant at a chosen α level.
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medical services. It can be seen that chronic conditions and hospital stays are positively correlated
with both responses, as they also are in all other pairwise plots. Having private health insurance is
positively related to some of these outcomes, and negatively to others. Except for difficulties with
overlapping labels and the obvious violation of statistical assumptions of the MLM here, such plots
give reasonably useful overview of the relationships among the y and x variables.

11.7.0.2 Analyzing associations: Odds ratios and fourfold plots

In the analysis below, we first attempt to understand the association among these response variables
and how these associations relate to the explanatory variables. It is natural to think of this in terms
of the (log) odds ratio of a visit to a physician vs. a non-physician, given that the place is in an office
as opposed to a hospital. Following this, we consider some multivariate negative binomial models
relating these counts to the explanatory variables.

In order to treat the four response variables as a single response (visit), distinguished by
type, it is necessary to reshape the data from a wide format to a long format with four rows for
each input observation.

> vars <- colnames(nmes2)[1:4]
> nmes.long <- reshape(nmes2,
+ varying = vars,
+ v.names = "visit",
+ timevar = "type",
+ times = vars,
+ direction = "long",
+ new.row.names = 1:(4*nrow(nmes2)))

Then, the type variable can be used to create two new variables, practitioner and place
corresponding to the distinctions among visits. While we are at it, we create factors for the two of
the predictors.

> nmes.long <- nmes.long[order(nmes.long$id),]
> nmes.long <- transform(nmes.long,
+ practitioner = ifelse(type %in% c("visits", "ovisits"),
+ "physician", "nonphysician"),
+ place = ifelse(type %in% c("visits", "nvisits"), "office", "hospital"),
+ hospf = cutfac(hospital, c(0:2, 8)),
+ chronicf = cutfac(chronic))

Then, we can use xtabs() to create a frequency table of practitioner and place clas-
sified by any one or more of these factors. For example, the total number of visits of the four types
is given by

> xtabs(visit ~ practitioner + place, data=nmes.long)

place
practitioner hospital office
nonphysician 2362 7129
physician 3308 25442

From this, we can calculate the odds ratio and visualize the association with a fourfold or mosaic
plot. More generally, by including more factors in the call to xtabs(), we can calculate and
visualize how the conditional association varies with these factors. For example, Figure 11.41
shows fourfold plots conditioned by health status. It can be seen that there is a strong positive
association, except for those with excellent health: people are more likely to see a physician in an
office visit, and a non-physician in a hopsiptal visit. The corresponding log odds ratios are shown
numerically using loddsratio().
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> library(vcdExtra)
> fourfold(xtabs(visit ~ practitioner + place + health, data=nmes.long),
+ mfrow=c(1,3))
> loddsratio(xtabs(visit ~ practitioner + place + health, data=nmes.long))

log odds ratios for practitioner and place by health
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Figure 11.41: Fourfold displays for the association between practitioner and place in the nmes.long
data, conditioned on health status.{fig:nmes4-fourfold1}

Going further, we can condition by more factors. Figure 11.42 shows the fourfold plots condi-
tioned by the number of chronic conditions (in the rows) and the combinations of gender and private
insurance (columns).

> tab <- xtabs(visit ~ practitioner + place + gender + insurance + chronicf,
+ data=nmes.long)
> fourfold(tab, mfcol=c(4,4))

The systematic patterns seen here are worth exploring further by graphing the log odds ratios di-
rectly. The call as.data.frame(loddsratio(tab)) converts the result of loddsratio(tab)
to a data frame with factors for these variables and variables LOR and ASE containing the estimated
log odds ratio (ϑ̂) and its asymptotic standard error (ASE(ϑ̂)). Figure 11.43 shows the plot of these
values as line graphs with associated 95% error bars produced using ggplot2.

> lodds.df <- as.data.frame(loddsratio(tab))
> library(ggplot2)
> ggplot(lodds.df, aes(x=chronicf, y=LOR,
+ ymin=LOR-1.96*ASE, ymax=LOR+1.96*ASE,
+ group=insurance, color=insurance)) +
+ geom_line(size=1.2) + geom_point(size=3) +
+ geom_linerange(size=1.2) +
+ geom_errorbar(width=0.2) +
+ geom_hline(yintercept=0) +
+ facet_grid(. ~ gender, labeller=label_both) +
+ labs(x="Number of chronic conditions",
+ y="log odds ratio (physician|place)") +
+ theme_bw()

It can be seen that for those with private insurance, the log odds ratios are uniformly positive, but
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Figure 11.42: Fourfold displays for the association between practitioner and place in the nmes.long
data, conditioned on gender, insurance and number of chronic conditions. Rows are levels of
chronic; columns are the combinations of gender and insurance.{fig:nmes4-fourfold2}
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Figure 11.43: Plot of log odds ratios with standard error bars for the association between practi-
tioner and place, conditioned on gender, insurance and number of chronic conditions.{fig:nmes4-loddsratio}

males and females exhibit a somewhat different pattern over number of chronic conditions. Among
those with no private insurance, the log odds ratios generally increase over number of chronic con-
ditions, except for females with 3 or more such conditions.

Beyond this descriptive analysis, you can test hypotheses about the effects of the predictors on
the log odds ratios using a simple ANOVA model. Under the null hypothesis, H0 : ϑijk... = 0,
the ϑ̂ are each distributed normally, N (0,ASE(ϑ̂)), so a weighted ANOVA can be used to test for
differences according to the predictors. This analysis gives the results below.

> lodds.mod <- lm(LOR ~ (gender + insurance + chronicf)^2,
+ weights=1/ASE^2, data=lodds.df)
> anova(lodds.mod)

Analysis of Variance Table

Response: LOR
Df Sum Sq Mean Sq F value Pr(>F)

gender 1 0.8 0.8 0.17 0.707
insurance 1 5.3 5.3 1.17 0.358
chronicf 3 4.6 1.5 0.34 0.802
gender:insurance 1 32.5 32.5 7.20 0.075 .
gender:chronicf 3 54.1 18.0 3.99 0.143
insurance:chronicf 3 114.1 38.0 8.43 0.057 .
Residuals 3 13.5 4.5
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As might be expected from the graph in Figure 11.43, having private insurance is a primary
determinant of the decision to seek an office visit with a physician, but this effect interacts slightly
according to number of chronic conditions and gender.

4
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11.7.0.3 Fitting and testing multivariate count data models

With a multivariate response, vglm() in the VGAM package estimates the separate coefficients
for each response jointly. A special feature of this formulation is that constraints can be imposed to
force the coefficients for a given term in a model to to be the same for all responses. A likelihood-
ratio test against the unconstrained model can then be used to test for differences in the effects of
predictors across the response variables.

This is achieved by formulating the linear predictor as a sum of terms,

η(x) =

p∑
k=1

Hkβkxk

whereH1, . . . ,Hp are known full-rank constraint matrices. With no constraints theHk are identity
matrices Iq for all terms. With vglm(), the constraint matrices for a given model are returned using
constraints(), and can be set for a new, restricted model using the constraints argument.
To constrain the coefficients for a term k to be equal for all responses, useHk = 1q , a unit vector.

More general Wald tests of hypotheses can be carried out without refitting using linearHypothesis()
in the car package. These include (a) joint tests that a subset of predictors for a given response have
null effects; (b) across-response tests of equality of coefficients for one or more model terms. {ex:nmes5}

EXAMPLE 11.20: Demand for medical care
In the examples in Section 11.5.2, we described a series of increasingly complex models for

physician office visits, including interactions and non-linear terms. The multivariate case is com-
putationally more intensive, and estimation can break down in complex models. We can illustrate
the main ideas here using the multivariate analog of the simple main effects model discussed in
Example 11.14.

Using vglm(), the response variables are specified as the matrix form Y using cbind() on
the left-hand side of the model formula. The right-hand side, ~ . here specifies all other variables
as predictors. family = negbinomial uses the NB model for each yj , with an intercept-only
model for the dispersion parameters by default.

> nmes2.nbin <- vglm(cbind(visits, nvisits, ovisits, novisits) ~ .,
+ data = nmes2, family = negbinomial)

The estimated parameters from this model are returned by the coef() method as pairs of
columns labeled log(mu), logsize for each response. For example, the parameters for the
visits response are in the first two columns, and are the same as those estimated for the model
nmes.nbin using glm.nb().

> # coefficients for visits
> coef(nmes2.nbin, matrix=TRUE)[,c(1,2)]

loge(mu1) loge(size1)
(Intercept) 0.929257 0.18781
hospital 0.217772 0.00000
healthpoor 0.305013 0.00000
healthexcellent -0.341807 0.00000
chronic 0.174916 0.00000
gendermale -0.126488 0.00000
school 0.026815 0.00000
insuranceyes 0.224402 0.00000

> # theta for visits
> exp(coef(nmes2.nbin, matrix=TRUE)[1,2])

[1] 1.2066
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The log(mu) coefficients for all four response variables are shown below.

> coef(nmes2.nbin, matrix=TRUE)[,c(1,3,5,7)]

loge(mu1) loge(mu2) loge(mu3) loge(mu4)
(Intercept) 0.929257 -0.747798 -1.11284 -1.341783
hospital 0.217772 0.144645 0.41506 0.483881
healthpoor 0.305013 -0.179822 0.16491 0.033495
healthexcellent -0.341807 -0.038121 -0.42449 -1.006528
chronic 0.174916 0.093430 0.27664 0.243572
gendermale -0.126488 -0.255508 0.33456 0.052051
school 0.026815 0.068269 0.03559 -0.027476
insuranceyes 0.224402 0.492793 -0.53105 0.484061

We notice that the coefficients for hospital and chronic have values with the same signs
for all four responses. If it is desired to test the hypothesis that their coefficients are all the
same for each of these predictors, first extract the H matrices for the unconstrained model using
constraints().

> clist <- constraints(nmes2.nbin, type = "term")
> clist$hospital[c(1,3,5,7),]

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

Then, reset the constraints for these terms to be unit vectors, forcing them to be all equal.

> clist2 <- clist
> clist2$hospital <- cbind(rowSums(clist$hospital))
> clist2$chronic <- cbind(rowSums(clist$chronic))
> clist2$hospital[c(1,3,5,7), 1, drop=FALSE]

[,1]
[1,] 1
[2,] 1
[3,] 1
[4,] 1

Now, fit the same model as before, but using the constraints in clist2.

> nmes2.nbin2 <- vglm(cbind(visits, nvisits, ovisits, novisits) ~ ., data = nmes2,
+ constraints = clist2,
+ family = negbinomial(zero = NULL))

The coefficients for the constrained model are shown below. As you can see, the coefficients for
hospital and chronic have the same estimates for all four responses.

> coef(nmes2.nbin2, matrix=TRUE)[,c(1,3,5,7)]

loge(mu1) loge(mu2) loge(mu3) loge(mu4)
(Intercept) 0.918003 -0.835090 -0.864250 -1.175689
hospital 0.244655 0.244655 0.244655 0.244655
healthpoor 0.293335 -0.315479 0.366406 0.172434
healthexcellent -0.334959 0.047829 -0.538294 -1.044777
chronic 0.178562 0.178562 0.178562 0.178562
gendermale -0.127956 -0.272264 0.330587 0.071212
school 0.026829 0.064401 0.031764 -0.028982
insuranceyes 0.222531 0.477475 -0.529976 0.507133
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A likelihood-ratio test prefers the reduced model with equal coefficients for these two predictors.
The degrees of freedom for this test (6) is the number of constrained parameters in the smaller
model.

> lrtest(nmes2.nbin, nmes2.nbin2)

Likelihood ratio test

Model 1: cbind(visits, nvisits, ovisits, novisits) ~ .
Model 2: cbind(visits, nvisits, ovisits, novisits) ~ .

#Df LogLik Df Chisq Pr(>Chisq)
1 35212 -25394
2 35218 -25413 6 39.2 6.4e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Alternatively, these tests can be performed as tests of linear hypotheses (see Section 11.1.2)
on the coefficients B from the original model without refitting. Using linearHypothesis(),
a hypothesis matrix L specifying equality of the coefficients for a given predictor can be easily
generated using a character vector of the coefficient names.

> lh <- paste("hospital:", 1:3, " = ", "hospital:", 2:4, sep="")
> lh

[1] "hospital:1 = hospital:2" "hospital:2 = hospital:3"
[3] "hospital:3 = hospital:4"

Using lh as the linear.hypothesis argument then gives the following result for the co-
efficients of hospital, rejecting the hypothesis that they are all equal across response variables.

> car::linearHypothesis(nmes2.nbin, lh)

Linear hypothesis test

Hypothesis:
hospital:1 - hospital:2 = 0
hospital:2 - hospital:3 = 0
hospital:3 - hospital:4 = 0

Model 1: restricted model
Model 2: cbind(visits, nvisits, ovisits, novisits) ~ .

Res.Df Df Chisq Pr(>Chisq)
1 35215
2 35212 3 26.4 7.8e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4

To pursue this analysis further, you could investigate whether any interactions of these effects
were interesting and important as in Example 11.14, but now for the multivariate response variables.

To interpret a given model visually, you could use effect plots for the terms predicting each of the
responses, as in Example 11.15. The effects package cannot handle models fit with VGAM directly,
but you can use glm() or glm.nb() to fit the equivalent submodels for each response separately,
and then use the plot(Effect()) methods to display the effects for interesting terms. Fig-
ure 11.44 shows one such plot, for the effects of health status on each of the four response variables.
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Figure 11.44: Effect plots for the effects of health status on the four response variables in the nmes2
data. {fig:nmes-eff-health}

11.8 Chapter summary

• The generalized linear model extends the familiar classical linear models for regression and
ANOVA to encompass models for discrete responses and continuous responses for which the
assumption of normality of errors is untenable.

• It does this by retaining the idea of a linear predictor— a linear function of the regressors,
ηi = xTβ, but then allowing:

– a link function, g(•) connecting the linear predictor ηi to the mean, µi = E(yi), of the
response variable, so that g(µi) = ηi. The link function formalizes the more traditional
approach of analyzing an ad-hoc transformation of y, such as log(y),

√
y, y2, or Box-

Cox (Box and Cox, 1964) transformations yλ to determine an empirical optimal power
transformation.

– a random component, specifying the conditional distribution of yi |xi as any member of
the exponential family, including the normal, binomial, Poisson, gamma and other distri-
butions.

• For the analysis of discrete response variables, and count data in particular, a key feature of the
GLM is recognition of a variance function for the conditional variance of yi, not forced to be
constant, but rather allowed to depend on the mean µi and possibly a dispersion parameter, φ.

• From this background, we focus on GLMs for discrete count data response variables that extend
considerably the loglinear models for contingency tables treated in Chapter 9. The Poisson
distribution with a log link function is an equivalent starting point, however, count data GLMs
often exhibit overdispersion in relation to the Poisson assumption that the conditional variance
is the same as the mean, V(yi | ηi) = µi.

– One simple approach to this problem is the quasi-Poisson model, that estimates the dis-
persion parameter φ from the data, and uses this to correct standard errors and inferential
tests.

– Another is the wider class of negative-binomial models that allow a more flexible mean-
variance function such as V(yi | ηi) = µi + αµ2

i .

• In practical application, many sets of empirical count data also exhibit a greater prevalence of
zero counts than can be fit well using (quasi-) Poisson or negative-binomial models. Two simple
extensions beyond the GLM class are
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– zero-inflated models, that posit a latent class of observations that always yield yi = 0
counts, among the rest that have a Poisson or negative-binomial distribution including
some zeros;

– hurdle (or zero-altered) models, with one submodel for the zero counts and a separate
submodel for the positive counts.

• Data analysis and visualization of count data therefore requires flexible tools and graphical
methods. Some useful exploratory methods include jittered scatterplots and boxplots of log(y)
against predictors enhanced by smoothed curves and trend lines, spine plots and conditional
density plots. Rootograms are quite helpful in visualizing the goodness-of-fit of count data
models.

• Effect plots provide a convenient visual display of the high-order terms in a possibly complex
GLM. They show the fitted values of the linear predictor η̂? = X?β̂, using a score matrix
X? that varies the predictors in a given term over their range while holding all other predictors
constant. It is important to recognize, however, that like any model summary these show only
the fitted effects under a given model, not the data.

• Model diagnostic measures (leverage, residuals, Cook’s distance, etc.) and plots of these pro-
vide important ancillary information about the adequacy of a given model as a summary of
relationships in the data. These help to detect problems of violations of assumptions, unusual or
influential observations or patterns that suggest that an important feature has not been accounted
for.

• For multivariate response count data, there is no fully general theory as there is for the MLM
with multivariate normality assumed for the errors. Nevertheless, there is a lot one can do to
analyse such data combining the ideas of estimation for the separate responses with analysis of
dependencies among the responses, conditioned by the explanatory variables.

11.9 Lab exercises
{lab:11.1}

Exercise 11.1 Poole (1989) studied the mating behavior of elephants over 8 years in Amboseli
National Park, Kenya. A focal aspect of the study concerned the mating success of males in relation
to age, since larger males tend to be more successful in mating. Her data were used by Ramsey
and Schafer (2002, Chapter 22) as a case study, and are contained in the Sleuth2 package (Ramsey
et al., 2012) as case2201.
For convenience, rename this to elephants, and study the relation between Age (at the beginning
of the study) and number of successful Matings for the 41 adult male elephants observed over the
course of this study, ranging in age from 27–52.

> data("case2201", package="Sleuth2")
> elephants <- case2201
> str(elephants)

'data.frame': 41 obs. of 2 variables:
$ Age : num 27 28 28 28 28 29 29 29 29 29 ...
$ Matings: num 0 1 1 1 3 0 0 0 2 2 ...

(a) Create some exploratory plots of Matings against Age in the styles illustrated in this chapter.
To do this successfully, you will have to account for the fact that Matings has a range of only
0–9, and use some smoothing methods to show the trend.

(b) Repeat (a) above, but now plotting log(Matings+1) against Age to approximate a Poisson
regression with a log link and avoid problems with the zero counts.
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(c) Fit a linear Poisson regression model for Matings against Age. Interpret the fitted model
verbally from a graph of predicted number of matings and/or from the model coefficients.
(Hint: Using Age-27 will make the intercept directly interpretable.)

(d) Check for non-linearity in the relationship by using the term poly(Age,2) in a new model.
What do you conclude?

(e) Assess whether there is any evidence of overdispersion in these data by fitting analogous
quasi-Poisson and negative-binomial models.

{lab:11.2}

Exercise 11.2 The data set quine in MASS gives data on absenteeism from schools in rural New
South Wales, Australia. 146 children were classified by ethnic background (Eth), age (Age, a
factor), Sex and Learner status (Lrn) and the number of days absent (Days) from school in a
particular school year was recorded.

(a) Fit the all main-effects model in the Poisson family and examine the tests of these effects using
summary() and car::Anova(). Are there any terms that should be dropped according to
these tests?

(b) Re-fit this model as a quasi-Poisson model. Is there evidence of overdispersion? Test for
overdispersion formally, using dispersiontest() from AER.

(c) Carry out the same significance tests and explain why the results differ from those for the
Poisson model.

{lab:11.3}

Exercise 11.3 Male double-crested cormorants use advertising behavior to attract females for breed-
ing. The Cormorants data set in vcdExtra gives some results from a study by Meagan Mc Rae
(2015) on counts of advertising males observed two or three times a week at six stations in a tree-
nesting colony for an entire breeding season. The number of advertising birds was counted and
these observations were classified by characteristics of the trees and nests. The goal was to deter-
mine how this behavior varies temporally over the season and spatially over observation stations, as
well as with characteristics of nesting sites. The response variable is count and other predictors
are shown below. See help(Cormorants, package="vcdExtra") for further details.

> data("Cormorants", package="vcdExtra")
> car::some(Cormorants)

category week station nest height density tree_health count
24 Pre 1 C4 no mid few healthy 3
90 Pre 2 B1 no mid few dead 2
103 Pre 2 B2 partial low few dead 1
110 Pre 2 B2 full high few healthy 5
126 Pre 3 C3 no high moderate dead 2
132 Pre 3 B1 no mid few healthy 3
173 Incubation 4 C4 no high few healthy 1
181 Incubation 4 B1 no high few healthy 7
185 Incubation 4 B1 partial high few dead 1
234 Incubation 5 B2 no high few healthy 12

(a) Using the methods illustrated in this chapter, make some exploratory plots of the number of
advertising birds against week in the breeding season, perhaps stratified by another predictor,
like tree height, nest condition, or observation station. To see anything reasonable, you
should plot count on a log (or square root) scale, jitter the points, and add smoothed curves.
The variable category breaks the weeks into portions of the breeding season, so adding
vertical lines separating those will be helpful for interpretation.

(b) Fit a main-effects Poisson GLM to these data and test the terms using Anova() from the car
package.

(c) Interpret this model using an effects plot.
(d) Investigate whether the effect of week should be treated as linear in the model. You could

try using a polynomial term like poly(week, degree) or perhaps better, using a natural
spline term like ns(week, df) from the splines package.
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(e) Test this model for overdispersion, using either a quasipoisson family or dispersiontest()
in AER.

{lab:11.4}

Exercise 11.4 For the CodParasites data, recode the area variable as an ordered factor as
suggested in footnote 10. Test the hypotheses that prevalence and intensity of cod parasites is
linearly related to area.

{lab:11.5}

Exercise 11.5 In Example 11.10, we ignored other potential predictors in the CodParasites
data: depth, weight, length, sex, stage, and age. Use some of the graphical methods
shown in this case study to assess whether any of these are related to prevalence and intensity.

{lab:11.6}

Exercise 11.6 The analysis of the PhdPubs data in the examples in this chapter were purposely
left incomplete, going only as far as the negative binomial model.

(a) Fit the zero-inflated and hurdle models to this data set, considering whether the count com-
ponent should be Poisson or negative-binomial, and whether the zero model should use all
predictors or only a subset. Describe your conclusions from this analysis in a few sentences.

(b) Using the methods illustrated in this chapter, create some graphs summarizing the predicted
counts and probabilities of zero counts for one of these models.

(c) For your chosen model, use some of the diagnostic plots of residuals and other measures shown
in Section 11.6 to determine if your model solves any of the problems noted in Example 11.17
and Example 11.18, and whether there are any problems that remain.

{lab:11.7}

Exercise 11.7 In Example 11.19 we used a simple analysis of log(y + 1) for the multivariate
responses in the NMES1988 data using a classical MLM (Eqn. (11.16)) as a rough approximation
of a multivariate Poisson model. The HE plot in Figure 11.40 was given as a visual summary, but
did not show the data. Examine why the MLM is not appropriate statistically for these data, as
follows:

(a) Calculate residuals for the model nmes.mlm using

> resids <- residuals(nmes.mlm, type="deviance")

(b) Make univariate density plots of these residuals to show their univariate distributions. These
should be approximately normal under the MLM. What do you conclude?

(c) Make some bivariate plots of these residuals. Under the MLM, each should be bivariate nor-
mal with elliptical contours and linear regressions. Add 2D density contours (kde2d(), or
geom_density2d() in ggplot2) and some smoothed curve. What do you conclude?
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358, 367, 370, 411

mosaic display, 9, 159, 348
mosaic matrix, 196, 238

mosaic3d(), 203, 206, 355
mosaicplot(), 45, 167
Mult(), 378
multinom(), 275, 322, 340, 345
multinomial logit model, 322
multinomial sample, 119
multiple correspondence analysis

bivariate, 238–240
multivariate linear model, 484
mutual(), 184

natural spline, 282
negative binomial distribution, 80–83, 96, 98
nested dichotomies, 322, 333–339
nested models, 353
nlme package, 275
nnet package, 275, 322, 340
nobs(), 428
nominal, 4
nomogram, 296
nomogram(), 296
normal QQ plots, 480
normal quantile plots, 480
ns(), 282, 406, 409

observer agreement, 145
observer agreement chart, 148
odds, 119
odds ratio, 22, 119–122, 127
oddsratio(), 157
optimal scaling, 220, see correspondence

analysis
Ord plot, 93–97
Ord_plot(), 94, 96, 97, 99, 107, 110
ordered(), 37, 41, 324, 341, 343
ordinal, 4
outer(), 74
outlierTest(), 479
overdispersion, 80, 426

p.adjust(), 132
package

AER, 443, 462, 496, 497
agridat, 19, 216
animate, 21
ca, xiii, 222–224, 242, 247
car, xiii, 283, 287, 301, 302, 304–306,

309, 311, 313, 319, 320, 325, 333,
334, 345, 358, 363, 427, 428, 476,
479, 480, 491, 496

colorspace, 169
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corrplot, 375
countreg, 433, 443, 444, 447, 448,

450, 465
datasets, 39, 114
directlabels, 26, 79, 329
effects, xiii, 274, 275, 286, 290, 330,

340, 343, 414, 459–461, 493
extracat, 116
FactoMineR, 223
foreign, 36
gdata, 36
GGally, 201
ggplot, 80
ggplot2, 13, 26, 78–80, 153, 201, 264,

265, 267, 271, 272, 282, 338, 364,
418, 431, 453, 455, 488, 497

ggtern, 153
ggvis, 21
gnm, xiii, 378, 379, 385
googleVis, 21
gpairs, xiii, 196, 201, 202
graphics, 45, 448
grid, 168, 201
heplots, 486
HistData, 65, 108
hmmm, 399
iplots, 21
KernSmooth, 282
knitr, xiii
Lahman, 110, 215
lattice, 18, 26, 78, 79
lme4, 275
lmtest, 262, 417, 456
logmult, xiii, 215, 253, 378, 381, 382,

384, 421
lsmeans, 274
manipulate, 21
MASS, 26, 53, 87, 128, 177, 181, 216,

222, 253, 260, 275, 293, 322, 324,
345, 352, 355, 440, 446, 496

mgcv, 472
mlogit, 340
nlme, 275
nnet, 275, 322, 340
plyr, 50
poLCA, 275
probio, 261
pscl, 429, 447
psych, 147
rCharts, 21
reshape2, 329

rggobi, 21
rgl, 203, 223
rms, 296, 322, 327
rmutil, 103
rsm, 293, 473
sandwich, 438
shiny, 21
Sleuth2, 495
splines, 282, 496
stats, 45, 72, 177, 351
TeachingDemos, 153
texreg, 54
UBbipl, 248, 249
vcd, xii, xiii, 5, 37, 45, 46, 58–61, 67,

68, 76, 87, 92, 94, 96, 99, 116,
117, 121, 127, 133, 134, 136, 138,
145, 148, 153, 154, 157, 165, 168,
170, 172, 185, 189, 192, 193, 196,
201, 209, 211, 227, 231–233, 266,
272, 355, 412, 443, 444, 448, 509

vcdExtra, xii, xiii, 49, 50, 53, 56,
58–60, 69, 84, 103, 106, 109, 110,
116, 123, 150, 156, 157, 181, 184,
196, 203, 217, 252–254, 263, 278,
284, 291, 319, 345, 355, 358, 370,
373, 387, 391, 396, 402, 410, 428,
434, 496

VGAM, 322, 326, 327, 340, 399, 401,
406, 408, 446, 485, 491, 493

XLConnect, 36
xlsx, 36
xtable, 54

pairs(), 168, 196, 198, 206, 486
pairs.table(), 199, 208
palette(), 169
panel functions, 199
parallel coordinate plot, 20
Pareto chart, 24
Pareto distribution, 24
Pareto principle, 24
parquet diagram, 137, see sieve diagram
partial association, 187
partial proportional odds model, 325
partial residual plot, 310
partial residuals, 275
partial-regression plot, 312
Pascal distribution, 80
paste(), 41, 232, 233
pbinom(), 72
pchisq(), 86
pdoublebinom(), 103
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Pearson residual, 299, 354, 475
persp(), 473
persp.lm(), 473
pgeom(), 72
phi (φ) coefficient, 220
pickCoef(), 381, 391
plogseries(), 72
plot(), 46, 92, 135, 157, 225, 243, 245,

247, 258, 275, 290, 293, 301, 304,
383, 413, 443, 469, 476, 479, 480

plot.ca(), 223, 224
plot.goodfit(), 91
plot.gootfit(), 108
plot.rc(), 383
plot.xmean.ordinaly(), 328
plot3d.ca(), 223
plyr package, 50
pnbinom(), 72
Poisson distribution, 75–80, 96–98
Poisson regression, 348
Poissonness plot, 97–100
poLCA package, 275
polr(), 275, 322, 324, 326, 330, 341, 345
poly(), 406, 409
Polya distribution, 81
polygon(), 265
polytomous, 259
Polytomous events, 64
polytomous response, 258
polytomous variables, 4
population marginal means, 274
position_jitter(), 265
power series distributions, 85
ppois(), 72, 78
prcomp(), 251
predict(), 258, 265, 274, 275, 329, 337,

473
principal component analysis, 219, 238
principal coordinates, 221
principal inertia, 221
princomp(), 251
print(), 55, 87, 258, 262, 275, 293
print.goodfit(), 87
probio package, 261
prop.table(), 42, 43
proportional odds model, 321–331

effect plot, 330–331
latent variable interpretation, 323–324

pscl package, 429, 447
psych package, 147

qbinom(), 72
qdoublebinom(), 103
qgeom(), 72
qlogis(), 409
qlogseries(), 72
qnbinom(), 72
qnorm(), 480
qpois(), 72
qqPlot(), 480
quasi-independence, 138, 141
quasi-independence model, 385
quasi-Poisson, 426
quasi-Poisson model, 439
quasi-symmetry, 385

radial diagram, 128
rainbow(), 473
rainbow_hcl(), 169
raw residual, 354, 475
rbinom(), 72
rc(), xiii, 378, 383, 421
rCharts package, 21
rcL(), 383
rdoublebinom(), 103
read.csv(), 36
read.delim(), 36
read.table(), 36, 56
reciprocal averaging, 220, see

correspondence analysis
recode(), 334
regression quartet, 302
regression spline, 282
relevel(), 269, 340, 341
rendering, 18
rep(), 31
reshape2 package, 329
residual deviance, 427
residualPlot(), 477
residuals

standardized, 300
studentized, 300

residuals(), 300, 355
response, 114
response residual, 475
response variables, 7
rgeom(), 72
rggobi package, 21
rgl package, 203, 223
rlogseries(), 72
rms package, 296, 322, 327
rmutil package, 103
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rnbinom(), 72
rnegbin(), 446, 481
rnorm(), 35, 481
rootogram, 91
rootogram(), 92, 107, 110, 443
row effects model, 373
row plus column effects model, 373
row-and-column effects model, 377
rownames(), 55
rpois(), 72, 253, 446, 481
rsm package, 293, 473
rstandard(), 300, 476
rstudent(), 300, 476
rzinegbin(), 446
rzipois(), 446

s(), 473
sample(), 35
sample odds ratio, 120
sampling zeros, 366
sandwich package, 438
sandwich(), 438, 441
saturated model, 176, 179, 263, 349
scale(), 381
scale parameter, 425
scale_y_log10(), 431
scatterplot matrix, 195, 238
scatterplotMatrix(), 309
scree plot, 223
segments(), 228
seq(), 31
seq_loglm(), 185
set.seed(), 35, 172
shading_binary(), 167
shading_Friendly(), 167
shading_hcl(), 167
shading_hsv(), 167
shading_max(), 167, 171, 173
shading_sieve(), 167
shiny package, 21
sieve(), 168, 355
sieve diagram, 136–143
sieve diagrams, 114
simple effects, 187
Simpson’s paradox, 132
simulate(), 481
singular value decomposition, 220, 221
Sleuth2 package, 495
sort(), 41
spacing_conditional(), 167
spacing_dimequal(), 167

spacing_equal(), 167
spacing_highlighting(), 167
spacing_increase(), 167
spaghetti plot, see parallel coordinates plot
spine plot, 448
spineplot, 116, 279
spineplot(), 157, 448, 463
spinogram, 448
splines package, 282, 496
stacking, 230
standard coordinates, 221
standardized residuals, 300, 475
stat_smooth(), 265, 271, 280
stats package, 45, 72, 177, 351
stepAIC(), 293, 345
str(), 32, 41
stratified analysis, 8, 126
stratifying variable, 113
struc_assoc(), 167
struc_mosaic(), 167
struc_sieve(), 167
strucplot(), 168
strucplot framework, 138, 160, 165
structable(), 40, 43, 45, 50, 59–61,

165, 231, 232, 370
structural zeros, 213, 365
studentized residual, 475
studentized residuals, 300
subset(), 48, 60
sum(), 49
summarise(), 50
summary(), 87, 121, 243, 258, 262, 275,

283, 293, 304, 319, 325, 341, 358,
363, 431, 439, 496

summary.goodfit(), 87
summary.Kappa(), 148
supplementary variables, 236
Symm(), 385, 396
symmetric map, 221, 222
symmetry, 138, 141
symmetry model, 385

t(), 33, 46, 55
table(), 34, 40, 42–44, 46, 53, 429
table form, 6
TeachingDemos package, 153
ternary plot, 114
texreg package, 54
theme(), 80
tile(), 116, 157, 168
tile plot, 116
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toeplitz(), 169
Topo(), 385, 390
topological model, 390
treemap, 21
trilinear plot, 114, 152
triplot(), 153
type-token, 70

UBbipl package, 248, 249
uniform association model, 373
uniform interaction, 395
update(), 293, 296, 343, 375, 386, 471

variable
response ,̃ 7

vcd package, xii, xiii, 5, 37, 45, 46, 58–61,
67, 68, 76, 87, 92, 94, 96, 99, 116,
117, 121, 127, 133, 134, 136, 138,
145, 148, 153, 154, 157, 165, 168,
170, 172, 185, 189, 192, 193, 196,
201, 209, 211, 227, 231–233, 266,
272, 355, 412, 443, 444, 448, 509

vcdExtra package, xii, xiii, 49, 50, 53, 56,
58–60, 69, 84, 103, 106, 109, 110,
116, 123, 150, 156, 157, 181, 184,
196, 203, 217, 252–254, 263, 278,
284, 291, 319, 345, 355, 358, 370,
373, 387, 391, 396, 402, 410, 428,
434, 496

vcov(), 274, 441
vector, 30
VGAM package, 322, 326, 327, 340, 399,

401, 406, 408, 446, 485, 491, 493
vglm(), 322, 325, 327, 399, 401, 406, 407,

409, 415, 491
visual impact, 133
vuong(), 429
Vuong’s test, 428

weighted.mean(), 53, 86
with(), 42
within(), 57, 77
woolf_test(), 128, 158

XLConnect package, 36
xlsx package, 36
xtable package, 54
xtable(), 54, 61
xtabs(), 34, 40, 42, 44, 46, 50, 51, 57, 60,

61, 122, 232, 233, 236, 279, 487
xyplot(), 78, 79, 82, 83, 108, 382

zero-altered model, 447
zero-inflated Poisson, 445
zero-truncated distribution, 110
zeroinfl(), 447, 448
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Colophon

This book was produced using the following version of R and package versions listed below.

> print(sessionInfo(), locale = FALSE)

R version 3.1.1 (2014-07-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)

attached base packages:
[1] stats4 splines grid stats graphics grDevices utils datasets
[9] methods base

other attached packages:
[1] VGAM_0.9-7 Hmisc_3.15-0 heplots_1.0-12
[4] rsm_2.07 mgcv_1.8-6 nlme_3.1-120
[7] countreg_0.1-2 AER_1.2-3 sandwich_2.3-3
[10] nnet_7.3-9 proto_0.3-10 reshape2_1.4.1
[13] SparseM_1.6 gridExtra_0.9.1 Formula_1.2-0
[16] survival_2.38-1 car_2.0-25 effects_3.0-4
[19] lmtest_0.9-33 zoo_1.7-12 Lahman_3.0-1
[22] gpairs_1.2 colorspace_1.2-6 MASS_7.3-40
[25] gmodels_2.15.4.1 directlabels_2013.6.15 quadprog_1.5-5
[28] xtable_1.7-4 vcdExtra_0.6-7 gnm_1.0-7
[31] lattice_0.20-31 ggplot2_1.0.1 ca_0.58
[34] vcd_1.3-3 knitr_1.9

loaded via a namespace (and not attached):
[1] acepack_1.3-3.3 barcode_1.1 cluster_2.0.1 codetools_0.2-11
[5] digest_0.6.8 evaluate_0.5.5 foreign_0.8-63 formatR_1.1
[9] gdata_2.13.3 ggtern_1.0.3.2 gtable_0.1.2 gtools_3.4.1
[13] highr_0.4.1 labeling_0.3 latticeExtra_0.6-26 lme4_1.1-7
[17] Matrix_1.1-5 minqa_1.2.4 multcomp_1.4-0 munsell_0.4.2
[21] mvtnorm_1.0-2 nloptr_1.0.4 parallel_3.1.1 pbkrtest_0.4-2
[25] plyr_1.8.1 polspline_1.1.9 pscl_1.4.9 quantreg_5.11
[29] qvcalc_0.8-9 RColorBrewer_1.1-2 Rcpp_0.11.5 relimp_1.0-4
[33] rms_4.3-0 rpart_4.1-9 scales_0.2.4 sp_1.0-17
[37] stringr_0.6.2 TH.data_1.0-6 tools_3.1.1

TODO: Probably delete this from the printed version, or can this be a useful colophon, perhaps in
some different form or format?


