
Chapter 2

Working with categorical data

{ch:working}
Creating and manipulating categorical data sets requires some skills and techniques in

R beyond those ordinarily used for quantitative data. This chapter illustrates these for
the main formats for categorical data: case form, frequency form and table form.

Categorical data can be represented as data sets in various formats: case form, frequency
form, and table form. This chapter describes and illustrates the skills and techniques in R needed
to input, create and manipulate R data objects to represent categorical data, and convert these
from one form to another for the purposes of statistical analysis and visualization which are the
subject of the remainder of the book.

As mentioned earlier, this book assumes that you have at least a basic knowledge of the R lan-
guage and environment, including interacting with the R console (Rgui for Windows, R.app for
Mac OS X) or some other graphical user interface (e.g., R Studio), loading and using R functions
in packages (e.g., library(vcd)) getting help for these from R (e.g., help(matrix)), etc.
This chapter is therefore devoted to covering those topics beyond such basic skills needed in the
book.1

2.1 Working with R data: vectors, matrices, arrays and data
frames

{sec:Rdata}

R has a wide variety of data structures for storing, manipulating and calculating with data. Among
these, vectors, matrices, arrays and data frames are most important for the material in this book.

In R, a vector is a collection of values, like numbers, character strings, logicals (TRUE,
FALSE) or dates, and often correspond to a variable in some analysis. Matrices are rectangular
arrays like a traditional table, composed of vectors in their columns or rows. Arrays add additional
dimensions, so that, for example, a 3-way table can be represented as composed of rows, columns
and layers. An important consideration is that the values in vectors, matrices and arrays must all
be of the same mode, e.g., numbers or character strings. A data frame is a rectangular table, like
a traditional data set in other statistical environments, and composed of rows and columns like a
matrix, but allowing variables (columns) of different types. These data structures and the types

1Some excellent introductory treatments of R are: Fox and Weisberg (2011, Chapter 2), ... Tom Short’s R Refer-
ence Card, http://cran.us.r-project.org/doc/contrib/Short-refcard.pdf is a handy 4-page
summary of the main functions. The web sites Quick-R http://www.statmethods.net/ and Cookbook for R
http://www.cookbook-r.com/ provide very helpful examples, organized by topics and tasks.

29

30 [11-17-2014] 2 Working with categorical data

vector array data framematrix

logicals characters numbers

Figure 2.1: Principal data structures and data types in R. Colors represent different data types:
numeric, character, logical.{fig:datatypes}

of data they can contain are illustrated in Figure 2.1. A more general data structure is a list, a
generic vector which can contain any other types of objects.

2.1.1 Vectors

The simplest data structure in R is a vector, a one-dimensional collection of elements of the
same type. An easy way to create a vector is with the c(), which combines its arguments. The
following examples create and print vectors of length 4, containing numbers, character strings
and logical values respectively:

c(17, 20, 15, 40)

[1] 17 20 15 40

c("female", "male", "female", "male")

[1] "female" "male" "female" "male"

c(TRUE, TRUE, FALSE, FALSE)

[1] TRUE TRUE FALSE FALSE

To store these values in variables, R uses the assignment operator (<-) or equals sign (=).
This creates a variable named on the left-hand side. An assignment doesn’t print the result, but a
bare expression does, so you can assign and print by surrounding the assignment with ().

count <- c(17, 20, 15, 40) # assign
count # print

[1] 17 20 15 40

(sex <- c("female", "male", "female", "male")) # both

[1] "female" "male" "female" "male"

(passed <- c(TRUE, TRUE, FALSE, FALSE))

[1] TRUE TRUE FALSE FALSE

Other useful functions for creating vectors are:

2.1 Working with R data: vectors, matrices, arrays and data frames [supp-pdf.mkii] 31

• The : operator for generating consecutive integer sequences, e.g., 1:10 gives the inte-
gers 1 to 10. The seq() function is more general, taking the forms seq(from, to),
seq(from, to, by=), and seq(from, to, length=)where the optional ar-
gument by specifies the interval between adjacent values and length gives the desired
length of the result.

• The rep() function generates repeated sequences, replicating its first argument (which
may be a vector) a given number of times, to a given length or each a given multiple.

seq(10, 100, by=10) # give interval

[1] 10 20 30 40 50 60 70 80 90 100

seq(0, 1, length=11) # give length

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(sex <- rep(c("female", "male"), times=2))

[1] "female" "male" "female" "male"

(sex <- rep(c("female", "male"), length.out=4)) # same

[1] "female" "male" "female" "male"

(passed <- rep(c(TRUE, FALSE), each=2))

[1] TRUE TRUE FALSE FALSE

2.1.2 Matrices

A matrix is a two-dimensional array of elements of the same type composed in a rectangular array
of rows and columns. Matrices can be created by the function matrix(values, nrow,
ncol), which takes the reshapes the elements in the first argument (values) to a matrix with
nrow rows and ncol columns. By default, the elements are filled in columnwise, unless the
optional argument byrow=TRUE is given.

(matA <- matrix(1:8, nrow=2, ncol=4))

[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

(matB <- matrix(1:8, nrow=2, ncol=4, byrow=TRUE))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8

(matC <- matrix(1:4, nrow=2, ncol=4))

[,1] [,2] [,3] [,4]
[1,] 1 3 1 3
[2,] 2 4 2 4

32 [11-17-2014] 2 Working with categorical data

The last example illustrates that the values in the first argument are recycled as necessary to fill
the given number of rows and columns.

All matrices have a dimensions attribute, a vector of length two giving the number of rows and
columns, retrieved with the function dim(). Labels for the rows and columns can be assigned
using dimnames(),2 which takes a list of two vectors for the row names and column names
respectively. To see the structure of a matrix (or any other R object) and its attributes, I frequently
use the str() function, as shown in the example below.

dim(matA)

[1] 2 4

str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8

dimnames(matA) <- list(c("M","F"), LETTERS[1:4])
matA

A B C D
M 1 3 5 7
F 2 4 6 8

str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8
- attr(*, "dimnames")=List of 2
..$: chr [1:2] "M" "F"
..$: chr [1:4] "A" "B" "C" "D"

Additionally, names for the row and column variables themselves can also be assigned in the
dimnames call by giving each dimension vector a name.

dimnames(matA) <- list(sex=c("M","F"), group=LETTERS[1:4])
matA

group
sex A B C D
M 1 3 5 7
F 2 4 6 8

str(matA)

int [1:2, 1:4] 1 2 3 4 5 6 7 8
- attr(*, "dimnames")=List of 2
..$ sex : chr [1:2] "M" "F"
..$ group: chr [1:4] "A" "B" "C" "D"

Matrices can also be created or enlarged by “binding” vectors or matrices together by rows
or columns:

• rbind(a, b, c) creates a matrix with the vectors a, b and c as its rows, recycling the
elements as necessary to the length of the longest one.

2The dimnames can also be specified as an optional argument to matrix().

2.1 Working with R data: vectors, matrices, arrays and data frames [supp-pdf.mkii] 33

• cbind(a, b, c) creates a matrix with the vectors a, b and c as its columns.
• rbind(mat, a, b, ...) and cbind(mat, a, b, ...) add additional rows

(columns) to a matrix mat, recycling or subsetting the elements in the vectors to conform
with the size of the matrix.

rbind(matA, c(10,20))

A B C D
M 1 3 5 7
F 2 4 6 8
10 20 10 20

cbind(matA, c(10,20))

A B C D
M 1 3 5 7 10
F 2 4 6 8 20

2.1.3 Arrays

Higher-dimensional arrays are less frequently encountered in traditional data analysis, but they
are of great use for categorical data, where frequency tables of three or more variables can be
naturally represented as arrays, with one dimension for each table variable.

The function array(values, dim) takes the elements in values and reshapes these
into an array whose dimensions are given in the vector dim. The number of dimensions is the
length of dim. As with matrices, the elements are filled in with the first dimension (rows) varying
most rapidly, then by the second dimension (columns) and so on for all further dimensions, which
can be considered as layers. A matrix is just the special case of an array with two dimensions.

(arrayA <- array(1:16, dim=c(2, 4, 2))) # 2 rows, 4 columns, 2 layers

, , 1
##
[,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8
##
, , 2
##
[,1] [,2] [,3] [,4]
[1,] 9 11 13 15
[2,] 10 12 14 16

str(arrayA)

int [1:2, 1:4, 1:2] 1 2 3 4 5 6 7 8 9 10 ...

(arrayB <- array(1:16, dim=c(2, 8))) # 2 rows, 8 columns

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 3 5 7 9 11 13 15
[2,] 2 4 6 8 10 12 14 16

str(arrayB)

int [1:2, 1:8] 1 2 3 4 5 6 7 8 9 10 ...

34 [11-17-2014] 2 Working with categorical data

In the same way that we can assign labels to the rows, columns and variables in matri-
ces, we can assign these attributes to dimnames(arrayA), or include this information in a
dimnames= argument to array().

dimnames(arrayA) <- list(sex=c("M", "F"),
group=letters[1:4],
time=c("Pre", "Post"))

arrayA

, , time = Pre
##
group
sex a b c d
M 1 3 5 7
F 2 4 6 8
##
, , time = Post
##
group
sex a b c d
M 9 11 13 15
F 10 12 14 16

str(arrayA)

int [1:2, 1:4, 1:2] 1 2 3 4 5 6 7 8 9 10 ...
- attr(*, "dimnames")=List of 3
..$ sex : chr [1:2] "M" "F"
..$ group: chr [1:4] "a" "b" "c" "d"
..$ time : chr [1:2] "Pre" "Post"

Arrays in R can contain any single type of elements— numbers, character strings, logicals. R
also has a variety of functions (e.g., table(), xtabs()) for creating and manipulating "table"
objects, which are specialized forms of matrices and arrays containing integer frequencies in a
contingency table. These are discussed in more detail below (Section 2.4).

2.1.4 data frames
{sec:data-frames}

Data frames are the most commonly used form of data in R and more general than matrices in that
they can contain columns of different types. For statistical modeling, data frames play a special
role, in that many modeling functions are designed to take a data frame as a data= argument,
and then find the variables mentioned within that data frame. Another distinguishing feature is
that discrete variables (columns) like character strings ("M", "F") or integers (1, 2, 3)
in data frames can be represented as factors, which simplifies many statistical and graphical
methods.

A data frame can be created using keyboard input with the data.frame() function, ap-
plied to a list of objects, data.frame(a, b, c, ...), each of which can be a vector,
matrix or another data frame, but typically all containing the same number of rows. This works
roughly like cbind(), collecting the arguments as columns in the result.

The following example generates n=100 random observations on three discrete factor vari-
ables, A, B, sex, and a numeric variable, age. As constructed, all of these are statistically
independent, since none depends on any of the others. The function sample() is used here to

2.1 Working with R data: vectors, matrices, arrays and data frames [supp-pdf.mkii] 35

generate n random samples from the first argument allowing replacement (rep=TRUE). Finally,
all four variables are combined into the data frame mydata.

set.seed(12345) # reproducibility
n=100
A <- factor(sample(c("a1","a2"), n, rep=TRUE))
B <- factor(sample(c("b1","b2"), n, rep=TRUE))
sex <- factor(sample(c("M", "F"), n, rep=TRUE))
age <- round(rnorm(n, mean=30, sd=5))
mydata <- data.frame(A, B, sex, age)
head(mydata,5)

A B sex age
1 a2 b1 F 22
2 a2 b2 F 33
3 a2 b2 M 31
4 a2 b2 F 26
5 a1 b2 F 29

str(mydata)

'data.frame': 100 obs. of 4 variables:
$ A : Factor w/ 2 levels "a1","a2": 2 2 2 2 1 1 1 2 2 2 ...
$ B : Factor w/ 2 levels "b1","b2": 1 2 2 2 2 2 2 2 1 1 ...
$ sex: Factor w/ 2 levels "F","M": 1 1 2 1 1 1 2 2 1 1 ...
$ age: num 22 33 31 26 29 29 38 28 30 27 ...

For real data sets, it is usually most convenient to read these into R from external files, and
this is easiest using plain text (ASCII) files with one line per observation and fields separated by
commas (or tabs), and with a first header line giving the variable names– called comma-separated
or CSV format. If your data is in the form of Excel, SAS, SPSS or other file format, you can
almost always export that data to CSV format first.3

The function read.table() has many options to control the details of how the data are
read and converted to variables in the data frame. Among these some important options are:

header indicates whether the first line contains variable names. The default is FALSE unless
the first line contains one fewer field than the number of columns;

sep (default: "" meaning white space, i.e., one or more spaces, tabs or newlines) specifies the
separator character between fields;

stringsAsFactors (default: TRUE) determines whether character string variables should
be converted to factors;

na.strings (default: "NA") one or more strings which are interpreted as missing data values
(NA);

For delimited files, read.csv() and read.delim() are convenient wrappers to read.table(),
with default values sep="," and sep="�" respectively, and header=TRUE. {ex:ch2-arth-csv}

EXAMPLE 2.1: Arthritis treatment
3The foreign package contains specialized functions to directly read data stored by Minitab, SAS, SPSS, Stata,

Systat and other software. There are also a number of packages for reading (and writing) Excel spreadsheets directly
(gdata, XLConnect, xlsx). The R manual, R Data Import/Export covers many other variations, including data in
relational data bases.

36 [11-17-2014] 2 Working with categorical data

The file Arthritis.csv contains data in CSV format from Koch and Edwards (1988),
representing a double-blind clinical trial investigating a new treatment for rheumatoid arthritis
with 84 patients. The first (“header”) line gives the variable names. Some of the lines in the file
are shown below, with ... representing omitted lines:

ID,Treatment,Sex,Age,Improved
57,Treated,Male,27,Some
46,Treated,Male,29,None
77,Treated,Male,30,None
17,Treated,Male,32,Marked
...
42,Placebo,Female,66,None
15,Placebo,Female,66,Some
71,Placebo,Female,68,Some
1,Placebo,Female,74,Marked

We read this into R using read.csv() as shown below, using all the default options:

Arthritis <- read.csv("ch02/Arthritis.csv")
str(Arthritis)

'data.frame': 84 obs. of 5 variables:
$ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Factor w/ 3 levels "Marked","None",..: 3 2 2 1 1 1 2 1 2 2 ...

Note that the character variables Treatment, Sex and Improved were converted to fac-
tors, and the levels of those variables were ordered alphabetically. This often doesn’t matter
much for binary variables, but here, the response variable, Improved has levels that should
be considered ordered, as "None", "Some", "Marked". We can correct this here by re-
assigning Arthritis$Improved using ordered(). The topic of re-ordering variables and
levels in categorical data is considered in more detail in Section 2.3.

levels(Arthritis$Improved)

[1] "Marked" "None" "Some"

Arthritis$Improved <- ordered(Arthritis$Improved,
levels=c("None", "Some", "Marked"))

4

2.2 Forms of categorical data: case form, frequency form and
table form

{sec:forms}

As we saw in Chapter 1, categorical data can be represented as ordinary data sets in case form,
but the discrete nature of factors or stratifying variables allows the same information to be rep-
resented more compactly in summarized form with a frequency variable for each cell of factor
combinations, or in tables. Consequently, we sometimes find data created or presented in one
form (e.g., a spreadsheet data set, a two-way table of frequencies) and want to input that into R.
Once we have the data in R, it is often necessary to manipulate the data into some other form
for the purposes of statistical analysis, visualizing results and our own presentation. It is useful

2.2 Forms of categorical data: case form, frequency form and table form [supp-pdf.mkii]37

to understand the three main forms of categorical data in R and how to work with them for our
purposes.

2.2.1 Case form

Categorical data in case form are simply data frames, with one or more discrete classifying vari-
ables or response variables, most conveniently represented as factors or ordered factors. In case
form, the data set can also contain numeric variables (covariates or other response variables), that
cannot be accommodated in other forms.

As with any data frame, X, you can access or compute with its attributes using nrow(X) for
the number of observations, ncol(X) for the number of variables, names(X) or colnames(X)
for the variable names and so forth. {ex:ch2-arth}

EXAMPLE 2.2: Arthritis treatment
The Arthritis data is available in case form in the vcd package. There are two ex-

planatory factors: Treatment and Sex. Age is a numeric covariate, and Improved is the
response— an ordered factor, with levels "None" < "Some" < "Marked". Excluding
Age, we would have a 2 × 2 × 3 contingency table for Treatment, Sex and Improved.

data(Arthritis, package="vcd") # load the data
names(Arthritis) # show the variables

[1] "ID" "Treatment" "Sex" "Age" "Improved"

str(Arthritis) # show the structure

'data.frame': 84 obs. of 5 variables:
$ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...

head(Arthritis,5) # first 5 observations, same as Arthritis[1:5,]

ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked

4

2.2.2 Frequency form

Data in frequency form is also a data frame, containing one or more discrete factor variables and a
frequency variable (often called Freq or count) representing the number of basic observations
in that cell.

This is an alternative representation of a table form data set considered below. In frequency
form, the number of cells in the equivalent table is nrowX, and the total number of observations is
the sum of the frequency variable, sum(X$Freq), sum(X[,"Freq"]) or similar expression. {ex:ch2-GSS}

38 [11-17-2014] 2 Working with categorical data

EXAMPLE 2.3: General social survey
For small frequency tables, it is often convenient to enter them in frequency form using

expand.grid() for the factors and c() to list the counts in a vector. The example below,
from Agresti (2002) gives results for the 1991 General Social Survey, with respondents classified
by sex and party identification. As a table, the data look like this:

party
sex dem indep rep

female 279 73 225
male 165 47 191

We use expand.grid() to create a 6 × 2 matrix containing the combinations of sex
and party with the levels for sex given first, so that this varies most rapidly. Then, input
the frequencies in the table by columns from left to right, and combine these two results with
data.frame().

Agresti (2002), table 3.11, p. 106
GSS <- data.frame(
expand.grid(sex=c("female", "male"),

party=c("dem", "indep", "rep")),
count=c(279,165,73,47,225,191))

GSS

sex party count
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191

names(GSS)

[1] "sex" "party" "count"

str(GSS)

'data.frame': 6 obs. of 3 variables:
$ sex : Factor w/ 2 levels "female","male": 1 2 1 2 1 2
$ party: Factor w/ 3 levels "dem","indep",..: 1 1 2 2 3 3
$ count: num 279 165 73 47 225 191

sum(GSS$count)

[1] 980

The last line above shows that there are 980 cases represented in the frequency table. 4

2.2.3 Table form

Table form data is represented as a matrix, array or table object whose elements are the frequen-
cies in an n-way table. The number of dimensions of the table is the length, length(dim(X)),
of its dim (or dimnames) attribute, and the sizes of the dimensions in the table are the elements

2.2 Forms of categorical data: case form, frequency form and table form [supp-pdf.mkii]39

of dim(X). The total number of observations represented is the sum of all the frequencies,
sum(X).{ex:ch2-hec}

EXAMPLE 2.4: Hair color and eye color
A classic data set on frequencies of hair color, eye color and sex is given in table form in

HairEyeColor in the vcd package, reporting the frequencies of these categories for 592 stu-
dents in a statistics course.

data(HairEyeColor, package="datasets") # load the data
str(HairEyeColor) # show the structure

table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
..$ Sex : chr [1:2] "Male" "Female"

dim(HairEyeColor) # table dimension sizes

[1] 4 4 2

dimnames(HairEyeColor) # variable and level names

$Hair
[1] "Black" "Brown" "Red" "Blond"
##
$Eye
[1] "Brown" "Blue" "Hazel" "Green"
##
$Sex
[1] "Male" "Female"

sum(HairEyeColor) # number of cases

[1] 592

Three-way (and higher-way) tables can be printed in a more convenient form using structable()
and ftable() as described below in Section 2.5. 4

Tables are often created from raw data in case form or frequency form using the functions
table() and xtabs() described in Section 2.4. For smallish frequency tables that are already
in tabular form, you can enter the frequencies in a matrix, and then assign dimnames and other
attributes.

To illustrate, we create the GSS data as a table below, entering the values in the table by rows
(byrow=TRUE), as they appear in printed form.

GSS.tab <- matrix(c(279, 73, 225,
165, 47, 191), nrow=2, ncol=3, byrow=TRUE)

dimnames(GSS.tab) <- list(sex=c("female", "male"),
party=c("dem", "indep", "rep"))

GSS.tab

party

40 [11-17-2014] 2 Working with categorical data

sex dem indep rep
female 279 73 225
male 165 47 191

GSS.tab is a matrix, not an object of class("table"), and some functions are happier
with tables than matrices.4 You can coerce it to a table with as.table(),

GSS.tab <- as.table(GSS.tab)
str(GSS.tab)

table [1:2, 1:3] 279 165 73 47 225 191
- attr(*, "dimnames")=List of 2
..$ sex : chr [1:2] "female" "male"
..$ party: chr [1:3] "dem" "indep" "rep"

{ex:jobsat1}

EXAMPLE 2.5: Job satisfaction
Here is another similar example, entering data on job satisfaction classified by income and

level of satisfaction from a 4× 4 table given by Agresti (2002, Table 2.8, p. 57).

A 4 x 4 table Agresti (2002, Table 2.8, p. 57) Job Satisfaction
JobSat <- matrix(c(1,2,1,0,

3,3,6,1,
10,10,14,9,
6,7,12,11), 4, 4)

dimnames(JobSat) = list(income=c("< 15k", "15-25k", "25-40k", "> 40k"),
satisfaction=c("VeryD", "LittleD", "ModerateS", "VeryS"))

JobSat <- as.table(JobSat)
JobSat

satisfaction
income VeryD LittleD ModerateS VeryS
< 15k 1 3 10 6
15-25k 2 3 10 7
25-40k 1 6 14 12
> 40k 0 1 9 11

4

2.3 Ordered factors and reordered tables
{sec:ordered}

As we saw above (Example 2.1), factor variables in data frames (case form or frequency form)
can be re-ordered and declared as ordered factors using ordered(). As well, the order of the
factors themselves can be rearranged by sorting the data frame using sort().

However, in table form, the values of the table factors are ordered by their position in the
table. Thus in the JobSat data, both income and satisfaction represent ordered factors,
and the positions of the values in the rows and columns reflects their ordered nature, but only
implicitly.

Yet, for analysis or graphing, there are occasions when you need numeric values for the levels
of ordered factors in a table, e.g., to treat a factor as a quantitative variable. In such cases, you can

4There are quite a few functions in R with specialized methods for "table" objects. For example,
plot(GSS.tab) gives a mosaic plot and barchart(GSS.tab) gives a divided bar chart.

2.3 Ordered factors and reordered tables [supp-pdf.mkii] 41

simply re-assign the dimnames attribute of the table variables. For example, here, we assign
numeric values to income as the middle of their ranges, and treat satisfaction as equally
spaced with integer scores.

dimnames(JobSat)$income <- c(7.5,20,32.5,60)
dimnames(JobSat)$satisfaction <- 1:4

A related case is when you want to preserve the character labels of table dimensions, but also
allow them to be sorted in some particular order. A simple way to do this is to prefix each label
with an integer index using paste().

dimnames(JobSat)$income <- paste(1:4, dimnames(JobSat)$income, sep=":")
dimnames(JobSat)$satisfaction <-

paste(1:4, dimnames(JobSat)$satisfaction, sep=":")

A different situation arises with tables where you want to permute the levels of one or more
variables to arrange them in a more convenient order without changing their labels. For example,
in the HairEyeColor table, hair color and eye color are ordered arbitrarily. For visualizing
the data using mosaic plots and other methods described later, it turns out to be more useful to
assure that both hair color and eye color are ordered from dark to light. Hair colors are actually
ordered this way already: "Black", "Brown", "Red", "Blond". But eye colors are or-
dered as "Brown", "Blue", "Hazel", "Green". It is easiest to re-order the eye colors
by indexing the columns (dimension 2) in this array to a new order, "Brown", "Hazel",
"Green", "Blue", giving the indices of the old levels in the new order (here: 1,3,4,2). Again
str() is your friend, showing the structure of the result to check that the result is what you
want.

data(HairEyeColor, package="datasets")
HEC <- HairEyeColor[, c(1,3,4,2),]
str(HEC)

num [1:4, 1:4, 1:2] 32 53 10 3 10 25 7 5 3 15 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Hazel" "Green" "Blue"
..$ Sex : chr [1:2] "Male" "Female"

Finally, there are situations where, particularly for display purposes, you want to re-order the
dimensions of an n-way table, and/or change the labels for the variables or levels. This is easy
when the data are in table form: aperm() permutes the dimensions, and assigning to names
and dimnames changes variable names and level labels respectively.

str(UCBAdmissions)

table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "A" "B" "C" "D" ...

UCB <- aperm(UCBAdmissions, c(2, 1, 3))
dimnames(UCB)[[2]] <- c("Yes", "No")
names(dimnames(UCB)) <- c("Sex", "Admitted", "Department")
str(UCB)

42 [11-17-2014] 2 Working with categorical data

table [1:2, 1:2, 1:6] 512 89 313 19 353 17 207 8 120 202 ...
- attr(*, "dimnames")=List of 3
..$ Sex : chr [1:2] "Male" "Female"
..$ Admitted : chr [1:2] "Yes" "No"
..$ Department: chr [1:6] "A" "B" "C" "D" ...

2.4 Generating tables with table() and xtabs()
{sec:table}

With data in case form or frequency form, you can generate frequency tables from factor variables
in data frames using the table() function; for tables of proportions, use the prop.table()
function, and for marginal frequencies (summing over some variables) use margin.table().
The examples below use the same case-form data frame mydata used earlier (Section 2.1.4).

set.seed(12345) # reproducibility
n=100
A <- factor(sample(c("a1","a2"), n, rep=TRUE))
B <- factor(sample(c("b1","b2"), n, rep=TRUE))
sex <- factor(sample(c("M", "F"), n, rep=TRUE))
age <- round(rnorm(n, mean=30, sd=5))
mydata <- data.frame(A, B, sex, age)

table(...) takes a list of variables interpreted as factors, or a data frame whose columns
are so interpreted. It does not take a data= argument, so either supply the names of columns in
the data frame, or select the variables using column indexes:

2-Way Frequency Table
table(mydata$A, mydata$B) # A will be rows, B will be columns

##
b1 b2
a1 18 30
a2 22 30

(mytab <- table(mydata[,1:2])) # same

B
A b1 b2
a1 18 30
a2 22 30

We can use margin.table(X, margin) to sum a table X for the indices in margin,
i.e., over the dimensions not included in margin. A related function is addmargins(X,
margin, FUN=sum), which extends the dimensions of a table or array with the marginal
values calculated by FUN.

margin.table(mytab) # sum over A & B

[1] 100

margin.table(mytab, 1) # A frequencies (summed over B)

A
a1 a2
48 52

2.4 Generating tables: table and xtabs [supp-pdf.mkii] 43

margin.table(mytab, 2) # B frequencies (summed over A)

B
b1 b2
40 60

addmargins(mytab) # show all marginal totals

B
A b1 b2 Sum
a1 18 30 48
a2 22 30 52
Sum 40 60 100

The function prop.table() expresses the table entries as a fraction of a given marginal
table.

prop.table(mytab) # cell percentages

B
A b1 b2
a1 0.18 0.30
a2 0.22 0.30

prop.table(mytab, 1) # row percentages

B
A b1 b2
a1 0.37500 0.62500
a2 0.42308 0.57692

prop.table(mytab, 2) # column percentages

B
A b1 b2
a1 0.45 0.50
a2 0.55 0.50

table() can also generate multidimensional tables based on 3 or more categorical vari-
ables. In this case, use the ftable() or structable() function to print the results more
attractively as a “flat” (2-way) table.

3-Way Frequency Table
mytab <- table(mydata[,c("A", "B", "sex")])
ftable(mytab)

sex F M
A B
a1 b1 9 9
b2 15 15
a2 b1 12 10
b2 19 11

table() ignores missing values by default, but has optional arguments useNA and exclude
that can be used to control this. See help(table) for the details.

44 [11-17-2014] 2 Working with categorical data

2.4.1 xtabs()
{sec:xtabs}

The xtabs() function allows you to create cross tabulations of data using formula style input.
This typically works with case-form or frequency-form data supplied in a data frame or a matrix.
The result is a contingency table in array format, whose dimensions are determined by the terms
on the right side of the formula. As shown below, the summary method for tables produces a
simple χ2 test of independence of all factors.

3-Way Frequency Table
mytable <- xtabs(~A+B+sex, data=mydata)
ftable(mytable) # print table

sex F M
A B
a1 b1 9 9
b2 15 15
a2 b1 12 10
b2 19 11

summary(mytable) # chi-square test of independence

Call: xtabs(formula = ~A + B + sex, data = mydata)
Number of cases in table: 100
Number of factors: 3
Test for independence of all factors:
Chisq = 1.54, df = 4, p-value = 0.82

When the data have already been tabulated in frequency form, include the frequency variable
(usually count or Freq) on the left side of the formula, as shown in the example below for the
GSS data.

(GSStab <- xtabs(count ~ sex + party, data=GSS))

party
sex dem indep rep
female 279 73 225
male 165 47 191

summary(GSStab)

Call: xtabs(formula = count ~ sex + party, data = GSS)
Number of cases in table: 980
Number of factors: 2
Test for independence of all factors:
Chisq = 7, df = 2, p-value = 0.03

For "table" objects, the plotmethod produces basic mosaic plots using the mosaicplot()
function. With the option shade=TRUE, the cells are shaded according to the deviations (resid-
uals) from an independence model. Mosaic plot are discussed in detail in Chapter 5.

plot(mytable)
plot(GSStab, shade=TRUE)

2.5 Printing tables: structable and ftable [supp-pdf.mkii] 45

mytable

A

B
a1 a2

b1
b2

F M F M

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

−
4

−
4:

−
2

−
2:

0
0:

2 2:
4>
4

GSStab

sex

pa
rt

y

female male

de
m

in
de

p
re

p

Figure 2.2: Mosaic plot of tables using the plot method for table objects
fig:plot-xtab

2.5 Printing tables with structable() and ftable()
{sec:structable}

For 3-way and larger tables, the functions ftable() (in the stats package) and structable()
(in vcd) provide a convenient and flexible tabular display in a “flat” (2-way) format.

With ftable(X, row.vars=, col.vars=), variables assigned to the rows and/or
columns of the result can be specified as the integer numbers or character names of the variables
in the array X. By default, the last variable is used for the columns. The formula method, in the
form ftable(colvars ~ rowvars, data) allows a formula, where the left and right
hand side of formula specify the column and row variables respectively.

ftable(UCB) # default

Department A B C D E F
Sex Admitted
Male Yes 512 353 120 138 53 22
No 313 207 205 279 138 351
Female Yes 89 17 202 131 94 24
No 19 8 391 244 299 317

#ftable(UCB, row.vars=1:2) # same result
ftable(Admitted + Sex ~ Department, data=UCB) # formula method

Admitted Yes No
Sex Male Female Male Female
Department
A 512 89 313 19
B 353 17 207 8
C 120 202 205 391
D 138 131 279 244
E 53 94 138 299
F 22 24 351 317

The structable() function is similar, but more general, and uses recursive splits in the
vertical or horizontal directions (similar to the construction of mosaic displays). It works with
both data frames and table objects.

structable(HairEyeColor) # show the table: default

Eye Brown Blue Hazel Green

46 [11-17-2014] 2 Working with categorical data

Hair Sex
Black Male 32 11 10 3
Female 36 9 5 2
Brown Male 53 50 25 15
Female 66 34 29 14
Red Male 10 10 7 7
Female 16 7 7 7
Blond Male 3 30 5 8
Female 4 64 5 8

structable(Hair+Sex ~ Eye, HairEyeColor) # specify col ~ row variables

Hair Black Brown Red Blond
Sex Male Female Male Female Male Female Male Female
Eye
Brown 32 36 53 66 10 16 3 4
Blue 11 9 50 34 10 7 30 64
Hazel 10 5 25 29 7 7 5 5
Green 3 2 15 14 7 7 8 8

It also returns an object of class "structable" for which there are a variety of special
methods. For example, the transpose function t() interchanges rows and columns, so that
t(structable(HairEyeColor)) produces the second result shown just above; "structable"
objects can be subset using the [and [[operators, using either level indices or names. There are
also plot methods, so that plot() and mosaic() produce mosaic plots.

HSE <- structable(Hair+Sex ~ Eye, HairEyeColor) # save structable object
HSE[1:2,] # subset rows

Hair Black Brown Red Blond
Sex Male Female Male Female Male Female Male Female
Eye
Brown 32 36 53 66 10 16 3 4
Blue 11 9 50 34 10 7 30 64

mosaic(HSE, shade=TRUE, legend=FALSE) # plot it

Hair

Sex

E
ye

G
re

en

MaleFemale Male Female Male Female Male Female

H
az

el
B

lu
e

B
ro

w
n

Black Brown Red Blond

2.5 Printing tables: structable and ftable [supp-pdf.mkii] 47

2.5.1 Publishing tables to LATEX or HTML

OK, you’ve read your data into R, done some analysis, and now want to include some tables in a
LATEXdocument or in a web page in HTML format. Formatting tables for these purposes is often
tedious and error-prone.

There are a great many packages in R that provide for nicely formatted, publishable tables
for a wide variety of purposes; indeed, most of the tables in this book are generated using these
tools. See Leifeld (2013) for description of the texreg package and a comparison with some of
the other packages.

Here, we simply illustrate the xtable package, which, along with capabilities for statistical
model summaries, time-series data, and so forth, has a xtable.table method for one-way
and two-way table objects.

The HorseKicks data is a small one-way frequency table described in Example 3.4 and
containing the frequencies of 0, 1, 2, 3, 4 deaths per corps-year by horse-kick among soldiers in
20 corps in the Prussian army.

data(HorseKicks, package="vcd")
HorseKicks

nDeaths
0 1 2 3 4
109 65 22 3 1

By default, xtable() formats this in LATEXas a vertical table, and prints the LATEX markup
to the R console. This output is shown below (without the usual ## comment used to indicate R
output).

library(xtable)
xtable(HorseKicks)

% latex table generated in R 3.1.1 by xtable 1.7-4 package
% Mon Nov 17 14:53:27 2014
\begin{table}[ht]
\centering
\begin{tabular}{rr}

\hline
& nDeaths \\
\hline

0 & 109 \\
1 & 65 \\
2 & 22 \\
3 & 3 \\
4 & 1 \\
\hline

\end{tabular}
\end{table}

When this is rendered in a LATEX document, the result of xtable() appears as shown in the
table below.

xtable(HorseKicks)

The table above isn’t quite right, because the column label “nDeaths” belongs to the first
column, and the second column should be labeled “Freq”. To correct that, we convert the

48 [11-17-2014] 2 Working with categorical data

nDeaths
0 109
1 65
2 22
3 3
4 1

HorseKicks table to a data frame (see Section 2.7 for details), add the appropriate colnames,
and use the xtable.print method to supply some other options.

tab <- as.data.frame(HorseKicks)
colnames(tab) <- c("nDeaths", "Freq")
print(xtable(tab), include.rownames=FALSE, include.colnames=TRUE)

nDeaths Freq
0 109
1 65
2 22
3 3
4 1

Finally, in Chapter 3, we display a number of similar one-way frequency tables in a transposed
form to save display space. Table 3.3 is the finished version we show there. The code below
uses the following techniques: (a) addmargins() is used to show the sum of all the frequency
values; (b) t() transposes the data frame to have 2 rows; (c) rownames() assigns the labels we
want for the rows; (d) using the caption argument provides a table caption, and a numbered
table in LATEX. (d) column alignment ("r" or "l") for the table columns is computed as a
character string used for the align argument.

horsetab <- t(as.data.frame(addmargins(HorseKicks)))
rownames(horsetab) <- c("Number of deaths", "Frequency")
horsetab <- xtable(horsetab, digits = 0,

caption = "von Bortkiewicz's data on deaths by horse kicks",
align = paste0("l|", paste(rep("r", ncol(horsetab)), collapse=""))
)

print(horsetab, include.colnames=FALSE)

Number of deaths 0 1 2 3 4 Sum
Frequency 109 65 22 3 1 200

Table 2.1: von Bortkiewicz’s data on deaths by horse kicks

2.6 Collapsing over table factors [supp-pdf.mkii] 49

2.6 Collapsing over table factors: aggregate(), margin.table()
and apply()

{sec:collapse}

It sometimes happens that we have a data set with more variables or factors than we want to
analyse, or else, having done some initial analyses, we decide that certain factors are not impor-
tant, and so should be excluded from graphic displays by collapsing (summing) over them. For
example, mosaic plots and fourfold displays are often simpler to construct from versions of the
data collapsed over the factors which are not shown in the plots.

The appropriate tools to use again depend on the form in which the data are represented— a
case-form data frame, a frequency-form data frame (aggregate()), or a table-form array or
table object (margin.table() or apply()).

When the data are in frequency form, and we want to produce another frequency data frame,
aggregate() is a handy tool, using the argument FUN=sum to sum the frequency variable
over the factors not mentioned in the formula. {ex:dayton1}

EXAMPLE 2.6: Dayton survey
The data frame DaytonSurvey in the vcdExtra package represents a 25 table giving the

frequencies of reported use (“ever used?”) of alcohol, cigarettes and marijuana in a sample of
2276 high school seniors, also classified by sex and race.

data(DaytonSurvey, package="vcdExtra")
str(DaytonSurvey)

'data.frame': 32 obs. of 6 variables:
$ cigarette: Factor w/ 2 levels "Yes","No": 1 2 1 2 1 2 1 2 1 2 ...
$ alcohol : Factor w/ 2 levels "Yes","No": 1 1 2 2 1 1 2 2 1 1 ...
$ marijuana: Factor w/ 2 levels "Yes","No": 1 1 1 1 2 2 2 2 1 1 ...
$ sex : Factor w/ 2 levels "female","male": 1 1 1 1 1 1 1 1 2 2 ...
$ race : Factor w/ 2 levels "white","other": 1 1 1 1 1 1 1 1 1 1 ...
$ Freq : num 405 13 1 1 268 218 17 117 453 28 ...

head(DaytonSurvey)

cigarette alcohol marijuana sex race Freq
1 Yes Yes Yes female white 405
2 No Yes Yes female white 13
3 Yes No Yes female white 1
4 No No Yes female white 1
5 Yes Yes No female white 268
6 No Yes No female white 218

To focus on the associations among the substances, we want to collapse over sex and race. The
right-hand side of the formula used in the call to aggregate() gives the factors to be retained
in the new frequency data frame, Dayton.ACM.df. The left-hand side is the frequency variable
(Freq), and we aggregate using the FUN=sum.

data in frequency form: collapse over sex and race
Dayton.ACM.df <- aggregate(Freq ~ cigarette+alcohol+marijuana,

data=DaytonSurvey, FUN=sum)
Dayton.ACM.df

cigarette alcohol marijuana Freq

50 [11-17-2014] 2 Working with categorical data

1 Yes Yes Yes 911
2 No Yes Yes 44
3 Yes No Yes 3
4 No No Yes 2
5 Yes Yes No 538
6 No Yes No 456
7 Yes No No 43
8 No No No 279

4

When the data are in table form, and we want to produce another table, apply() with
FUN=sum can be used in a similar way to sum the table over dimensions not mentioned in
the MARGIN argument. margin.table() is just a wrapper for apply() using the sum()
function.{ex:dayton2}

EXAMPLE 2.7: Dayton survey
To illustrate, we first convert the DaytonSurvey to a 5-way table using xtabs(), giving

Dayton.tab.

convert to table form
Dayton.tab <- xtabs(Freq~cigarette+alcohol+marijuana+sex+race,

data=DaytonSurvey)
structable(cigarette+alcohol+marijuana ~ sex+race, data=Dayton.tab)

cigarette Yes No
alcohol Yes No Yes No
marijuana Yes No Yes No Yes No Yes No
sex race
female white 405 268 1 17 13 218 1 117
other 23 23 0 1 2 19 0 12
male white 453 228 1 17 28 201 1 133
other 30 19 1 8 1 18 0 17

Then, use apply() on Dayton.tab to give the 3-way table Dayton.ACM.tab summed
over sex and race. The elements in this new table are the column sums for Dayton.tab shown
by structable() just above.

collapse over sex and race
Dayton.ACM.tab <- apply(Dayton.tab, MARGIN=1:3, FUN=sum)
Dayton.ACM.tab <- margin.table(Dayton.tab, 1:3) # same result
structable(cigarette+alcohol ~ marijuana, data=Dayton.ACM.tab)

cigarette Yes No
alcohol Yes No Yes No
marijuana
Yes 911 3 44 2
No 538 43 456 279

4

Many of these operations can be performed using the **ply() functions in the plyr pack-
age. For example, with the data in a frequency form data frame, use ddply() to collapse over
unmentioned factors, and plyr::summarise()5 as the function to be applied to each piece.

5Ugh. This plyr function clashes with a function of the same name in vcdExtra. In this book I will use the explicit
double-colon notation to keep them separate.

2.6 Collapsing over table factors [supp-pdf.mkii] 51

Dayton.ACM.df <- ddply(DaytonSurvey, .(cigarette, alcohol, marijuana),
plyr::summarise, Freq=sum(Freq))

2.6.1 Collapsing table levels: collapse.table()

A related problem arises when we have a table or array and for some purpose we want to reduce
the number of levels of some factors by summing subsets of the frequencies. For example, we
may have initially coded Age in 10-year intervals, and decide that, either for analysis or display
purposes, we want to reduce Age to 20-year intervals. The collapse.table() function in
vcdExtra was designed for this purpose. {ex:collapse-cat}

EXAMPLE 2.8: Collapsing categories
Create a 3-way table, and collapse Age from 10-year to 20-year intervals and Education from

three levels to two. To illustrate, we first generate a 2 × 6 × 3 table of random counts from a
Poisson distribution with mean of 100, with factors sex, age and education.

create some sample data in frequency form
sex <- c("Male", "Female")
age <- c("10-19", "20-29", "30-39", "40-49", "50-59", "60-69")
education <- c("low", 'med', 'high')
dat <- expand.grid(sex=sex, age=age, education=education)
counts <- rpois(36, 100) # random Poisson cell frequencies
dat <- cbind(dat, counts)
make it into a 3-way table
tab1 <- xtabs(counts ~ sex + age + education, data=dat)
structable(tab1)

age 10-19 20-29 30-39 40-49 50-59 60-69
sex education
Male low 91 110 106 95 107 98
med 108 104 97 100 107 112
high 104 104 106 101 92 95
Female low 115 103 96 93 112 94
med 96 88 92 103 98 93
high 84 93 103 93 95 103

Now collapse age to 20-year intervals, and education to 2 levels. In the arguments to
collapse.table(), levels of age and education given the same label are summed in the
resulting smaller table.

collapse age to 3 levels, education to 2 levels
tab2 <- collapse.table(tab1,

age=c("10-29", "10-29", "30-49", "30-49", "50-69", "50-69"),
education=c("<high", "<high", "high"))

structable(tab2)

age 10-29 30-49 50-69
sex education
Male <high 413 398 424
high 208 207 187
Female <high 402 384 397
high 177 196 198

4

52 [11-17-2014] 2 Working with categorical data

2.7 Converting among frequency tables and data frames
{sec:convert}

As we’ve seen, a given contingency table can be represented equivalently in case form, frequency
form and table form. However, some R functions were designed for one particular representation.
Table 2.2 shows some handy tools for converting from one form to another.

Table 2.2: Tools for converting among different forms for categorical data{tab:convert}

To this
From this Case form Frequency form Table form

Case form
Z <- xtabs(A+B)
as.data.frame(Z)

table(A,B)

Frequency form expand.dft(X) xtabs(count~A+B)
Table form expand.dft(X) as.data.frame(X)

2.7.1 Table form to frequency form

A contingency table in table form (an object of class "table") can be converted to a data frame in
frequency form with as.data.frame().6 The resulting data frame contains columns repre-
senting the classifying factors and the table entries (as a column named by the responseName
argument, defaulting to Freq. The function as.data.frame() is the inverse of xtabs(),
which converts a data frame to a table.{ex:GSS-convert}

EXAMPLE 2.9: General social survey
Convert the GSStab in table form to a data.frame in frequency form. By default, the fre-

quency variable is named Freq, and the variables sex and party are made factors.

as.data.frame(GSStab)

sex party Freq
1 female dem 279
2 male dem 165
3 female indep 73
4 male indep 47
5 female rep 225
6 male rep 191

4

In addition, there are situations where numeric table variables are represented as factors, but
you need to convert them to numerics for calculation purposes.{ex:horse.df}

EXAMPLE 2.10: Death by horse kick
For example, We might want to calculate the weighted mean of nDeaths in the HorseKicks

data. Using as.data.frame() won’t work here, because the variable nDeaths becomes a
factor.

6Because R is object-oriented, this is actually a short-hand for the function as.data.frame.table().

2.7 Converting among frequency tables and data frames [supp-pdf.mkii] 53

str(as.data.frame(HorseKicks))

'data.frame': 5 obs. of 2 variables:
$ nDeaths: Factor w/ 5 levels "0","1","2","3",..: 1 2 3 4 5
$ Freq : int 109 65 22 3 1

One solution is to use data.frame() directly and as.numeric() to coerce the table
names to numbers.

horse.df <- data.frame(nDeaths = as.numeric(names(HorseKicks)),
Freq = as.vector(HorseKicks))

str(horse.df)

'data.frame': 5 obs. of 2 variables:
$ nDeaths: num 0 1 2 3 4
$ Freq : int 109 65 22 3 1

horse.df

nDeaths Freq
1 0 109
2 1 65
3 2 22
4 3 3
5 4 1

Then, weighted.mean() works as we would like:

weighted.mean(horse.df$nDeaths, weights=horse.df$Freq)

[1] 2

4

2.7.2 Case form to table form

Going the other way, we use table() to convert from case form to table form. {ex:Arth-convert}

EXAMPLE 2.11: Arthritis treatment
Convert the Arthritis data in case form to a 3-way table of Treatment × Sex ×

Improved. We select the desired columns with their names, but could also use column numbers,
e.g., table(Arthritis[,c(2,3,5)]).

Art.tab <- table(Arthritis[,c("Treatment", "Sex", "Improved")])
str(Art.tab)

'table' int [1:2, 1:2, 1:3] 19 6 10 7 7 5 0 2 6 16 ...
- attr(*, "dimnames")=List of 3
..$ Treatment: chr [1:2] "Placebo" "Treated"
..$ Sex : chr [1:2] "Female" "Male"
..$ Improved : chr [1:3] "None" "Some" "Marked"

ftable(Art.tab)

54 [11-17-2014] 2 Working with categorical data

Improved None Some Marked
Treatment Sex
Placebo Female 19 7 6
Male 10 0 1
Treated Female 6 5 16
Male 7 2 5

4

2.7.3 Table form to case form

There may also be times that you will need an equivalent case form data frame with factors
representing the table variables rather than the frequency table. For example, the mca() function
in package MASS only operates on data in this format. The function expand.dft()7 in
vcdExtra does this, converting a table into a case form.{ex:Arth-convert2}

EXAMPLE 2.12: Arthritis treatment
Convert the Arthritis data in table form (Art.tab) back to a data.frame in case

form, with factors Treatment, Sex and Improved.

Art.df <- expand.dft(Art.tab)
str(Art.df)

'data.frame': 84 obs. of 3 variables:
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 1 1 1 1 1 1 1 1 1 1 ...
$ Sex : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
$ Improved : Factor w/ 3 levels "Marked","None",..: 2 2 2 2 2 2 2 2 2 2 ...

4

2.8 A complex example: TV viewing data
{sec:working-complex}

If you’ve followed so far, congratulations! You’re ready for a more complicated example that puts
together a variety of the skills developed in this chapter: (a) reading raw data, (b) creating tables,
(c) assigning level names to factors and (d) collapsing levels or variables for use in analysis.

For illustration of these steps, we use the dataset tv.dat, supplied with the initial imple-
mentation of mosaic displays in R by Jay Emerson. In turn, they were derived from an early,
compelling example of mosaic displays (Hartigan and Kleiner, 1984), that illustrated the method
with data on a large sample of TV viewers whose behavior had been recorded for the Neilsen
ratings. This data set contains sample television audience data from Neilsen Media Research for
the week starting November 6, 1995.

The data file, tv.dat is stored in frequency form as a file with 825 rows and 5 columns.
There is no header line in the file, so when we use read.table() below, the variables will be
named V1 – V5. This data represents a 4-way table of size 5× 11× 5× 3 = 825 where the table
variables are V1 – V4, and the cell frequency is read as V5.

The table variables are:
V1– values 1:5 correspond to the days Monday–Friday;

7The original code for this function was provided by Marc Schwarz on the R-Help mailing list.

2.8 A complex example: TV viewing data [supp-pdf.mkii] 55

V2– values 1:11 correspond to the quarter hour times 8:00PM through 10:30PM;
V3– values 1:5 correspond to ABC, CBS, NBC, Fox, and non-network choices;
V4– values 1:3 correspond to transition states: turn the television Off, Switch channels, or

Persist in viewing the current channel.

2.8.1 Creating data frames and arrays

The file tv.dat is stored in the doc/extdata directory of vcdExtra; it can be read as follows:

tv.data<-read.table(system.file("doc","extdata","tv.dat",package="vcdExtra"))
str(tv.data)

'data.frame': 825 obs. of 5 variables:
$ V1: int 1 2 3 4 5 1 2 3 4 5 ...
$ V2: int 1 1 1 1 1 2 2 2 2 2 ...
$ V3: int 1 1 1 1 1 1 1 1 1 1 ...
$ V4: int 1 1 1 1 1 1 1 1 1 1 ...
$ V5: int 6 18 6 2 11 6 29 25 17 29 ...

head(tv.data,5)

V1 V2 V3 V4 V5
1 1 1 1 1 6
2 2 1 1 1 18
3 3 1 1 1 6
4 4 1 1 1 2
5 5 1 1 1 11

To read such data from a local file, just use read.table() in this form:

tv.data<-read.table("C:/R/data/tv.dat")

We could use this data in frequency form for analysis by renaming the variables, and convert-
ing the integer-coded factors V1 – V4 to R factors. The lines below use the function within()
to avoid having to use TV.dat$Day <- factor(TV.dat$Day) etc., and only supplies
labels for the first variable.

TV.df <- tv.data
colnames(TV.df) <- c("Day", "Time", "Network", "State", "Freq")
TV.df <- within(TV.df, {Day <- factor(Day,

labels=c("Mon", "Tue", "Wed", "Thu", "Fri"))
Time <- factor(Time)
Network <- factor(Network)
State <- factor(State)})

Alternatively, we could just reshape the frequency column (V5 or tv.data[,5]) into a 4-
way array. In the lines below, we rely on the facts that the (a) the table is complete— there are no
missing cells, so nrow(tv.data)=825; (b) the observations are ordered so that V1 varies most
rapidly and V4 most slowly. From this, we can just extract the frequency column and reshape it
into an array using the dim argument. The level names are assigned to dimnames(TV) and the
variable names to names(dimnames(TV)).

TV <- array(tv.data[,5], dim=c(5,11,5,3))
dimnames(TV) <- list(c("Mon","Tue","Wed","Thu","Fri"),

c("8:00","8:15","8:30","8:45","9:00","9:15","9:30",

56 [11-17-2014] 2 Working with categorical data

"9:45","10:00","10:15","10:30"),
c("ABC","CBS","NBC","Fox","Other"),
c("Off","Switch","Persist"))

names(dimnames(TV))<-c("Day", "Time", "Network", "State")

More generally (even if there are missing cells), we can use xtabs() (or plyr::daply())
to do the cross-tabulation, using V5 as the frequency variable. Here’s how to do this same opera-
tion with xtabs():

TV <- xtabs(V5 ~ ., data=tv.data)
dimnames(TV) <- list(Day=c("Mon","Tue","Wed","Thu","Fri"),

Time=c("8:00","8:15","8:30","8:45","9:00","9:15","9:30",
"9:45","10:00","10:15","10:30"),

Network=c("ABC","CBS","NBC","Fox","Other"),
State=c("Off","Switch","Persist"))

Note that in the lines above, the variable names are assigned directly as the names of the elements
in the dimnames list.

2.8.2 Subsetting and collapsing

For many purposes, the 4-way table TV is too large and awkward to work with. Among the
networks, Fox and Other occur infrequently, so we will remove them. We can also cut it down to
a 3-way table by considering only viewers who persist with the current station.8

TV <- TV[,,1:3,] # keep only ABC, CBS, NBC
TV <- TV[,,,3] # keep only Persist -- now a 3 way table
structable(TV)

Time 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30
Day Network
Mon ABC 146 151 156 83 325 350 386 340 352 280 278
CBS 337 293 304 233 311 251 241 164 252 265 272
NBC 263 219 236 140 226 235 239 246 279 263 283
Tue ABC 244 181 231 205 385 283 345 192 329 351 364
CBS 173 180 184 109 218 235 256 250 274 263 261
NBC 315 254 280 241 370 214 195 111 188 190 210
Wed ABC 233 161 194 156 339 264 279 140 237 228 203
CBS 158 126 207 59 98 103 122 86 109 105 110
NBC 134 146 166 66 194 230 264 143 274 289 306
Thu ABC 174 183 197 181 187 198 211 86 110 122 117
CBS 196 185 195 104 106 116 116 47 102 84 84
NBC 515 463 472 477 590 473 446 349 649 705 747
Fri ABC 294 281 305 239 278 246 245 138 246 232 233
CBS 130 144 154 81 129 153 136 126 138 136 152
NBC 195 220 248 160 172 164 169 85 183 198 204

Finally, for some purposes, we might also want to collapse the 11 times into a smaller num-
ber. Here, we use as.data.frame.table() to convert the table back to a data frame,
levels() to re-assign the values of Time, and finally, xtabs() to give a new, collapsed
frequency table.

8This relies on the fact that indexing an array drops dimensions of length 1 by default, using the argument
drop=TRUE; the result is coerced to the lowest possible dimension.

2.9 Further reading [supp-pdf.mkii] 57

TV.df <- as.data.frame.table(TV)
levels(TV.df$Time) <- c(rep("8:00-8:59",4),

rep("9:00-9:59",4), rep("10:00-10:44",3))
TV2 <- xtabs(Freq ~ Day + Time + Network, TV.df)
structable(Day ~ Time+Network,TV2)

Day Mon Tue Wed Thu Fri
Time Network
8:00-8:59 ABC 536 861 744 735 1119
CBS 1167 646 550 680 509
NBC 858 1090 512 1927 823
9:00-9:59 ABC 1401 1205 1022 682 907
CBS 967 959 409 385 544
NBC 946 890 831 1858 590
10:00-10:44 ABC 910 1044 668 349 711
CBS 789 798 324 270 426
NBC 825 588 869 2101 585

Congratulations! If you followed the operations described above, you are ready for the mate-
rial described in the rest of the book. If not, try working through some of exercises below.

As a final step and a prelude to what follows, we construct a mosaic plot, below (Fig-
ure 2.3) that focuses on the associations between the combinations of Day and Time and the
Network viewed. In terms of a loglinear model, this is represented by the model formula
~Day:Time + Network, which asserts that Network is independent of the Day:Time
combinations.

dimnames(TV2)$Time <- c("8", "9", "10") # re-level for mosaic display
mosaic(~ Day + Network + Time, data=TV2, expected=~Day:Time + Network,

legend=FALSE, gp=shading_Friendly)

The cells shaded in blue show positive associations (observed frequency > expected) and red
shows negative associations. From this it is easy to read how network choice varies with day and
time. For example, CBS dominates in all time slots on Monday; ABC and NBC dominate on
Tuesday, particularly in the later time slots; Thursday is an NBC day, while on Friday, ABC gets
the greatest share.

2.9 Further reading
{sec:ch02-reading}

If you’re new to the R language but keen to get started with linear modeling or logistic regression
in the language, take a look at this Introduction to R, http://data.princeton.edu/R/
introducingR.pdf, by Germán Rodríguez.

2.10 Lab exercises
{sec:ch02-exercises}{lab:2.1}

Exercise 2.1 The packages vcd and vcdExtra contain many data sets with some examples of
analysis and graphical display. The goal of this exercise is to familiarize yourself with these
resources.
You can get a brief summary of these using the function datasets(). Use the following to get
a list of these with some characteristics and titles.

58 [11-17-2014] 2 Working with categorical data

Network

D
ay

T
im

e

F
ri

10
9

8

T
hu

10
9

8

W
ed

10
9

8

Tu
e

10
9

8

M
on

ABC CBS NBC

10
9

8

Figure 2.3: Mosaic plot for the TV data showing model of joint independence, Day:Time +
Network

fig:TV-mosaic

ds <- datasets(package=c("vcd", "vcdExtra"))
str(ds)

'data.frame': 70 obs. of 5 variables:
$ Package: chr "vcd" "vcd" "vcd" "vcd" ...
$ Item : chr "Arthritis" "Baseball" "BrokenMarriage" "Bundesliga" ...
$ class : chr "data.frame" "data.frame" "data.frame" "data.frame" ...
$ dim : chr "84x5" "322x25" "20x4" "14018x7" ...
$ Title : chr "Arthritis Treatment Data" "Baseball Data" "Broken Marriage Data" "Ergebnisse der Fussball-Bundesliga" ...

(a) How many data sets are there altogether? How many are there in each package?
(b) Make a tabular display of the frequencies by Package and class.
(c) Choose one or two data sets from this list, and examine their help files (e.g., help(Arthritis)

or ?Arthritis). You can use, e.g., example(Arthritis) to run the R code for a
given example.

{lab:2.2}

Exercise 2.2 The data set UCBADdmissions is a 3-way table of frequencies classified by
Admit, Gender and Dept.

(a) Find the total number of cases contained in this table.
(b) For each department, find the total number of applicants.
(c) For each department, find the overall proportion of applicants who were admitted.

2.10 Lab exercises [supp-pdf.mkii] 59

(d) Construct a tabular display of department (rows) and gender (columns), showing the pro-
portion of applicants in each cell who were admitted.

{lab:2.3}

Exercise 2.3 The data set DanishWelfare in vcd gives a 4-way, 3×4×3×5 table as a data
frame in frequency form, containing the variable Freq and four factors, Alcohol, Income,
Status and Urban. The variable Alcohol can be considered as the response variable, and
the others as possible predictors.

(a) Find the total number of cases represented in this table.
(b) In this form, the variables Alcohol and Income should arguably be considered ordered

factors. Change them to make them ordered.
(c) Convert this data frame to table form, DanishWelfare.tab, a 4-way array containing

the frequencies with appropriate variable names and level names.
(d) The variable Urban has 5 categories. Find the total frequencies in each of these. How

would you collapse the table to have only two categories, City, Non-city?
(e) Use structable() or ftable() to produce a pleasing flattened display of the frequen-

cies in the 4-way table. Choose the variables used as row and column variables to make it
easier to compare levels of Alcohol across the other factors.

{lab:2.4}

Exercise 2.4 The data set UKSoccer in vcd gives the distributions of number of goals scored
by the 20 teams in the 1995/96 season of the Premier League of the UK Football Association.

data(UKSoccer, package="vcd")
ftable(UKSoccer)

Away 0 1 2 3 4
Home
0 27 29 10 8 2
1 59 53 14 12 4
2 28 32 14 12 4
3 19 14 7 4 1
4 7 8 10 2 0

This two-way table classifies all 20 × 19 = 380 games by the joint outcome (Home, Away),
the number of goals scored by the Home and Away teams. The value 4 in this table actually
represents 4 or more goals.

(a) Verify that the total number of games represented in this table is 380.
(b) Find the marginal total of the number of goals scored by each of the home and away teams.
(c) Express each of the marginal totals as proportions.
(d) Comment on the distribution of the numbers of home-team and away-team goals. Is there

any evidence that home teams score more goals on average?
{lab:2.5}

Exercise 2.5 The one-way frequency table, Saxony in vcd records the frequencies of families
with 0, 1, 2, . . . 12 male children, among 6115 families with 12 children. This data set is used
extensively in Chapter 3.

data(Saxony, package="vcd")
Saxony

nMales
0 1 2 3 4 5 6 7 8 9 10 11 12
3 24 104 286 670 1033 1343 1112 829 478 181 45 7

60 [11-17-2014] 2 Working with categorical data

Another data set, Geissler in the vcdExtra package, gives the complete tabulation of all com-
binations of boys and girls in families with a given total number of children size. The task
here is to create an equivalent table, Saxony12 from the Geissler data.

data(Geissler, package="vcdExtra")
str(Geissler)

'data.frame': 90 obs. of 4 variables:
$ boys : int 0 0 0 0 0 0 0 0 0 0 ...
$ girls: num 1 2 3 4 5 6 7 8 9 10 ...
$ size : num 1 2 3 4 5 6 7 8 9 10 ...
$ Freq : int 108719 42860 17395 7004 2839 1096 436 161 66 30 ...

(a) Use subset() to create a data frame, sax12 containing the Geissler observations in
families with size==12.

(b) Select the columns for boys and Freq.
(c) Use xtabs() with a formula, Freq ~ boys, to create the one-way table.
(d) Do the same steps again, to create a one-way table, Saxony11 containing similar frequen-

cies for families of size==11.
{lab:2.6}

Exercise 2.6 Interactive coding of table factors: Some statistical and graphical ? methods for
contingency tables are implemented only for two-way tables, but can be extended to 3+ way
tables by recoding the factors to interactive combinations along the rows and/or columns, in a
way similar to what ftable() and structable() do for printed displays.

For the UCBAdmissions data, produce a two-way table object, UCB.tab2 that has the com-
binations of Admit and Gender as the rows, and Dept as its columns, to look like the result
below:

Dept
Admit:Gender A B C D E F

Admitted:Female 89 17 202 131 94 24
Admitted:Male 512 353 120 138 53 22
Rejected:Female 19 8 391 244 299 317
Rejected:Male 313 207 205 279 138 351

Hint: convert to a data frame, manipulate the factors, then convert back to a table.
{lab:2.7}

Exercise 2.7 The data set VisualAcuity in vcd gives 4 × 4 × 2 table as a frequency data
frame.

data("VisualAcuity", package="vcd")
str(VisualAcuity)

'data.frame': 32 obs. of 4 variables:
$ Freq : num 1520 234 117 36 266 ...
$ right : Factor w/ 4 levels "1","2","3","4": 1 2 3 4 1 2 3 4 1 2 ...
$ left : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 2 2 2 2 3 3 ...
$ gender: Factor w/ 2 levels "male","female": 2 2 2 2 2 2 2 2 2 2 ...

(a) From this, use xtabs() to create two 4× 4 frequency tables, one for each gender.
(b) Use structable() to create a nicely organized tabular display.
(c) Use xtable() to create a LATEX or HTML table.

References

Agresti, A. (2002). Categorical Data Analysis. Wiley Series in Probability and Statistics. New
York: Wiley-Interscience [John Wiley & Sons], 2nd edn.

Fox, J. and Weisberg, S. (2011). An R Companion to Applied Regression. Thousand Oaks CA:
Sage, 2nd edn.

Hartigan, J. A. and Kleiner, B. (1984). A mosaic of television ratings. The American Statistician,
38, 32–35.

Koch, G. and Edwards, S. (1988). Clinical efficiency trials with categorical data. In K. E. Peace,
ed., Biopharmaceutical Statistics for Drug Development, (pp. 403–451). New York: Marcel
Dekker.

Leifeld, P. (2013). texreg: Conversion of statistical model output in r to latex and html tables.
Journal of Statistical Software, 55(8), 1–24.

61

