
Chapter 4

Two-way contingency tables

{ch:twoway}
The analysis of two-way frequency tables concerns the association between two vari-

ables. A variety of specialized graphical displays help to visualize the pattern of asso-
ciation, using area of some region to represent the frequency in a cell. Some of these
methods are focused on visualizing an odds ratio (for 2×2 tables), or the general pattern
of association, or the agreement between row and column categories in square tables.

4.1 Introduction
{sec:twoway-intro}

Tables are like cobwebs, like the sieve of Danaides; beautifully
reticulated, orderly to look upon, but which will hold no conclusion.
Tables are abstractions, and the object a most concrete one, so difficult
to read the essence of.

From Chartism by Thomas Carlyle (1840), Chapter II, Statistics

Most methods of statistical analysis are concerned with understanding relationships or depen-
dence among variables. With categorical variables, these relationships are often studied from data
which has been summarized by a contingency table in table form or frequency form, giving the
frequencies of observations cross-classified by two or more such variables. As Thomas Carlyle
said, it is often difficult to appreciate the message conveyed in numerical tables.

This chapter is concerned with simple graphical methods for understanding the association
between two categorical variables. Some examples are also presented which involve a third, strat-
ifying variable, where we wish to determine if the relationship between two primary variables is
the same or different for all levels of the stratifying variable. More general methods for fitting
models and displaying associations for three-way and larger tables are described in Chapter 5.

In Section 4.2, We describe briefly some numerical and statistical methods for testing whether
an association exists between two variables, and measures for quantifying the strength of this
association. In Section 4.3 we extend these ideas to situations where the relation between two
variables is of primary interest, but there are one or more background variables to be controlled.

The main emphasis, however, is on graphical methods which help to describe the pattern of an
association between variables. Section 4.4 presents the fourfold display, designed to portray the
odds ratio in 2× 2 tables or a set of k such tables. Sieve diagrams (Section 4.5) and association

113



114 [11-26-2014] 4 Two-way contingency tables

plots (Section 4.6) are more general methods for depicting the pattern of associations an any two-
way tables. When the row and column variables represent the classifications of different raters,
specialized measures and visual displays for inter-rater agreement (Section 4.7) are particularly
useful. Another specialized display, a trilinear plot or ternary plot, described in Section 4.8, is
designed for three-column frequency tables or compositional data. In order to make clear some
of the distinctions which occur in contingency table analysis, we begin with several examples.{ex:berkeley1}

EXAMPLE 4.1: Berkeley admissions
Table 4.1 shows aggregate data on applicants to graduate school at Berkeley for the six largest

departments in 1973 classified by admission and gender (Bickel et al., 1975). See UCBAdmissions
for the complete data set. For such data we might wish to study whether there is an association
between admission and gender. Are male (or female) applicants more likely to be admitted? The
presence of an association might be considered as evidence of sex bias in admission practices.

Table 4.1 is an example of the simplest kind of contingency table, a 2 × 2 classification
of individuals according to two dichotomous (binary) variables. For such a table, the question
of whether there is an association between admission and gender is equivalent to asking if the
proportions of males and females who are admitted to graduate school are the same, or whether
the difference in proportions admitted is zero. 4

Table 4.1: Admissions to Berkeley graduate programs{tab:berk22}

Admitted Rejected Total % Admit Odds(Admit)
Males 1198 1493 2691 44.52 0.802
Females 557 1278 1835 30.35 0.437
Total 1755 2771 4526 38.78 0.633

Although the methods for quantifying association in larger tables can be used for 2×2 tables,
there are specialized measures (described in Section 4.2) and graphical methods for these simpler
tables.

As we mentioned in Section 1.2.4 it is often useful to make a distinction between response, or
outcome variables, on the one hand, and possible explanatory or predictor variables on the other.
In Table 4.1, it is natural to consider admission as the outcome, and gender as the explanatory
variable. In other tables, no variable may be clearly identified as the outcome, or there may be
several response variables, giving a multivariate problem.{ex:haireye1}

EXAMPLE 4.2: Hair color and eye color
Table 4.2 shows data collected by Snee (1974) on the relation between hair color and eye

color among 592 students in a statistics course (a two-way margin of HairEyeColor). Neither
hair color nor eye color is considered a response in relation to the other; our interest concerns
whether an association exists between them. Hair color and eye color have both been classified
into four categories. Although the categories used are among the most common, they are not the
only categories possible.1 Everyday observation suggests that there probably is an association
between hair color and eye color, and we will describe tests and measures of associations for
larger tables in Section 4.2.3.

1If students had been asked to write down their hair and eye colors, it is likely that many more than four categories
of each would appear in a sample of nearly 600.
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Table 4.2: Hair-color eye-color data{tab:hairdat}

Hair Color
Eye
Color Black Brown Red Blond Total

Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 71 127 592

4

If, as is suspected, hair color and eye color are associated, we would like to understand how
they are associated. The graphical methods described later in this chapter and in Chapter 5 help
reveal the pattern of associations present. {ex:mental1}

EXAMPLE 4.3: Mental impairment and parents’ SES
Srole et al. (1978, p. 289) gave the data in Table 4.3 on the mental health status of a sample of

1660 young New York residents in midtown Manhattan classified by their parents’ socioeconomic
status (SES); see Mental in the vcdExtra package. These data have also been analyzed by many
authors, including Agresti (2013, §10.5.3), Goodman (1979), and Haberman (1979, p. 375).

There are five categories of SES and mental health is classified in the four categories “well”,
“mild symptom formation”, “moderate symptom formation”, and “impaired”. It may be useful
here to consider SES as explanatory and ask whether and how it predicts mental health status as
a response.

Table 4.3: Mental impairment and parents’ SES {tab:mental-tab}
Mental impairment

SES Well Mild Moderate Impaired
1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

Although there may be an overall association between these two variables, more powerful and
focused tests are available when we treat these variables as ordinal, as we will see in Section 4.2.4.

4
{ex:arthrit1}

EXAMPLE 4.4: Arthritis treatment
The data in Table 4.4 compares an active treatment for rheumatoid arthritis to a placebo

(Koch and Edwards, 1988), used in examples in Chapter 2 (Example 2.2). The outcome reflects
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whether individuals showed no improvement, some improvement, or marked improvement. Here,
the outcome variable is an ordinal one, and it is probably important to determine if the relation
between treatment and outcome is the same for males and females. The data set is given in case
form in Arthritis.

Table 4.4: Arthritis treatment data {tab:arthrit}

Improvement
Treatment Sex None Some Marked Total

Active Female 6 5 16 27
Male 7 2 5 14

Placebo Female 19 7 6 32
Male 10 0 1 11

Total 42 14 28 84

This is, of course, a three-way table, with factors Treatment, Sex, and Improvement. If the
relation between treatment and outcome is the same for both genders, an analysis of the Treatment
by Improvement table (collapsed over sex) could be carried out. Otherwise we could perform
separate analyses for men and women, or treat the combinations of treatment and sex as four
levels of a “population” variable, giving a 4×3 two-way table. These simplified approaches each
ignore certain information available in an analysis of the full three-way table. 4

4.2 Tests of association for two-way tables
{sec:twoway-tests}

4.2.1 Notation and terminology
{sec:twoway-notation}

To establish notation, let N = {nij} be the observed frequency table of variables A and B with
r rows and c columns, as shown in Table 4.5. In what follows, a subscript is replaced by a “+”
when summed over the corresponding variable, so ni+ =

∑
j nij gives the total frequency in row

i, n+j =
∑
i nij gives the total frequency in column j, and n++ =

∑
i

∑
j nij is the grand total;

for convenience, n++ is also symbolized by n.

Table 4.5: The r × c contingency table{tab:rbyc}

Row Column category
Category 1 2 · · · c Total
1 n11 n12 · · · n1c n1+
2 n21 n22 · · · n2c n2+
...

...
... · · ·

...
...

r nr1 nr2 · · · nrc nr+
Total n+1 n+2 · · · n+c n++

When each observation is randomly sampled from some population and classified on two
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categorical variables, A and B, we refer to the joint distribution of these variables, and let πij =
Pr(A = i, B = j) denote the population probability that an observation is classified in row i,
column j (or cell (ij)) in the table. Corresponding to these population joint probabilities, the cell
proportions, pij = nij/n, give the sample joint distribution.

The row totals ni+ and column totals n+j are called marginal frequencies for variables A
and B respectively. These describe the distribution of each variable ignoring the other. For
the population probabilities, the marginal distributions are defined analogously as the row and
column totals of the joint probabilities, πi+ =

∑
j πij , and π+j =

∑
i πij . The sample marginal

proportions are, correspondingly, pi+ =
∑
j pij = ni+/n, and p+j =

∑
i pij = n+j/n.

When one variable (the column variable, B, for example) is a response variable, and the other
(A) is an explanatory variable, it is most often useful to examine the distribution of the response
B for each level of A separately. These define the conditional distributions of B, given the level
of A, and are defined for the population as πj | i = πij/πi+.

These definitions are illustrated for the Berkeley data (Table 4.1) below, using the function
CrossTable().

Berkeley <- margin.table(UCBAdmissions, 2:1)
library(gmodels)
CrossTable(Berkeley, prop.chisq=FALSE, prop.c=FALSE, format="SPSS")

##
## Cell Contents
## |-------------------------|
## | Count |
## | Row Percent |
## | Total Percent |
## |-------------------------|
##
## Total Observations in Table: 4526
##
## | Admit
## Gender | Admitted | Rejected | Row Total |
## -------------|-----------|-----------|-----------|
## Male | 1198 | 1493 | 2691 |
## | 44.519% | 55.481% | 59.456% |
## | 26.469% | 32.987% | |
## -------------|-----------|-----------|-----------|
## Female | 557 | 1278 | 1835 |
## | 30.354% | 69.646% | 40.544% |
## | 12.307% | 28.237% | |
## -------------|-----------|-----------|-----------|
## Column Total | 1755 | 2771 | 4526 |
## -------------|-----------|-----------|-----------|
##
##

The output shows the joint frequencies, nij , and joint sample percentages, 100 × pij , in the
first row within each table cell. The second row in each cell (“Row percent”) gives the conditional
percentage of admission or rejection, 100 × pj | i for males and females separately. The row and
column labelled “Total” give the marginal frequencies, ni+ and n+j , and marginal percentages,
pi+ and p+j .
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4.2.2 2 by 2 tables
{sec:twoway-twobytwo}

The 2 × 2 contingency table of applicants to Berkeley graduate programs in Table 4.1 may be
regarded as an example of a cross-sectional study. The total of n = 4, 526 applicants in 1973
has been classified by both gender and admission status. Here, we would probably consider the
total n to be fixed, and the cell frequencies nij , i = 1, 2; j = 1, 2 would then represent a single
multinomial sample for the cross-classification by two binary variables, with probabilities cell
pij , i = 1, 2; j = 1, 2 such that

p11 + p12 + p21 + p22 = 1 .

The basic null hypothesis of interest for a multinomial sample is that of independence. Are
admission and gender independent of each other?

Alternatively, if we consider admission the response variable, and gender an explanatory
variable, we would treat the numbers of male and female applicants as fixed and consider the cell
frequencies to represent two independent binomial samples for a binary response. In this case,
the null hypothesis is described as that of homogeneity of the response proportions across the
levels of the explanatory variable.

Odds and odds ratios
{sec:twoway-odds}

Measures of association are used to quantify the strength of association between variables. Among
the many measures of association for contingency tables, the odds ratio is particularly useful for
2 × 2 tables, and is a fundamental parameter in several graphical displays and models described
later. Other measures of strength of association for 2 × 2 tables are described in Stokes et al.
(2000, Chapter 2) and Agresti (1996, §2.2).

For a binary response, where the probability of a “success” is π, the odds of a success is
defined as

odds =
π

1− π
.

Hence, odds = 1 corresponds to π = 0.5, or success and failure equally likely. When success
is more likely than failure π > 0.5, and the odds > 1; for instance, when π = 0.75, odds =
.75/.25 = 3, so a success is three times as likely as a failure. When failure is more likely,
π < 0.5, and the odds < 1; for instance, when π = 0.25, odds = .25/.75 = 1

3 .

The odds of success thus vary multiplicatively around 1. Taking logarithms gives an equiva-
lent measure which varies additively around 0, called the log odds or logit:

logit(π) ≡ log(odds) = log

(
π

1− π

)
. (4.1){eq:logit}

The logit is symmetric about π = 0.5, in that logit(π) = − logit(1 − π). The following lines
calculate the odds and log odds for a range of probabilities. As you will see in Chapter 7, the
logit transformation of a probability is fundamental in logistic regression.

p <- c(0.05, .1, .25, .50, .75, .9, .95)
odds <- p / (1-p)
logodds <- log(odds)
data.frame(p, odds, logodds)
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## p odds logodds
## 1 0.05 0.052632 -2.9444
## 2 0.10 0.111111 -2.1972
## 3 0.25 0.333333 -1.0986
## 4 0.50 1.000000 0.0000
## 5 0.75 3.000000 1.0986
## 6 0.90 9.000000 2.1972
## 7 0.95 19.000000 2.9444

A binary response for two groups gives a 2 × 2 table, with Group as the row variable, say.
Let π1 and π2 be the success probabilities for Group 1 and Group 2. The odds ratio, θ, is just the
ratio of the odds for the two groups:

odds ratio ≡ θ = odds1
odds2

=
π1/(1− π1)
π2/(1− π2)

.

Like the odds itself, the odds ratio is always non-negative, between 0 and∞. When θ = 1,
the distributions of success and failure are the same for both groups (so π1 = π2); there is no
association between row and column variables, or the response is independent of group. When
θ > 1, Group 1 has a greater success probability; when θ < 1, Group 2 has a greater success
probability.

Similarly, the odds ratio may be transformed to a log scale, to give a measure which is sym-
metric about 0. The log odds ratio, symbolized by ψ, is just the difference between the logits for
Groups 1 and 2:

log odds ratio ≡ ψ = log(θ) = log

[
π1/(1− π1)
π2/(1− π2)

]
= logit(π1)− logit(π2) .

Independence corresponds to ψ = 0, and reversing the rows or columns of the table merely
changes the sign of ψ.

For sample data, the sample odds ratio is the ratio of the sample odds for the two groups:

θ̂ =
p1/(1− p1)
p2/(1− p2)

=
n11/n12
n21/n22

=
n11n22
n12n21

. (4.2) {eq:soddsratio}

The sample estimate θ̂ in Eqn. (4.2) is the maximum likelihood estimator of the true θ. The
sampling distribution of θ̂ is asymptotically normal as n → ∞, but may be highly skewed in
small to moderate samples.

Consequently, inference for the odds ratio is more conveniently carried out in terms of the
log odds ratio, whose sampling distribution is more closely normal, with mean ψ = log(θ), and
asymptotic standard error (ASE)

ASE log(θ) ≡ ŝ(ψ̂) =
{

1

n11
+

1

n12
+

1

n21
+

1

n22

}1/2

=
{∑∑

n−1ij

}1/2
(4.3) {eq:aselogtheta}

A large-sample 100(1− α)% confidence interval for log(θ) may therefore be calculated as

log(θ)± z1−α/2 ASE log(θ) = ψ̂ ± z1−α/2 ŝ(ψ̂)
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where z1−α/2 is the cumulative normal quantile with 1 − α/2 in the lower tail. Confidence
intervals for θ itself are obtained by exponentiating the end points of the interval for ψ = log(θ),2

exp
(
ψ̂ ± z1−α/2ŝ(ψ̂)

)
.

4.2.3 Larger tables: Overall analysis
{sec:twoway-overall}

For two-way tables overall tests of association can be carried out using assocstats(). If the
data set has more than two factors (as in the Arthritis Treatment data), the other factors will be
ignored (and collapsed) if not included when the table is constructed. This simplified analysis
may be misleading if the excluded factors interact with the factors used in the analysis.{ex:arthrit2}

EXAMPLE 4.5: Arthritis treatment
Since the main interest is in the relation between Treatment and Improved, an overall

analysis (which ignores Sex) can be carried out by creating a two-way table with xtabs() as
shown below.

data("Arthritis", package="vcd")
Art.tab <- xtabs(~Treatment + Improved, data=Arthritis)
Art.tab

## Improved
## Treatment None Some Marked
## Placebo 29 7 7
## Treated 13 7 21

round(100*prop.table(Art.tab, margin=1), 2)

## Improved
## Treatment None Some Marked
## Placebo 67.44 16.28 16.28
## Treated 31.71 17.07 51.22

The row proportions show a clear difference in the outcome for the two groups: For those
given the placebo, 67% reported no improvement; in the treated group, 51% reported marked
improvement. χ2 tests and measures of association are provided by assocstats() as shown
below:

assocstats(Art.tab)

## Error in eval(expr, envir, enclos): could not find function "assocstats"

4

2Note that θ̂ is 0 or ∞ if any nij = 0. Haldane (1955) and Gart and Zweiful (1967) showed that improved
estimators of θ and ψ = log(θ) are obtained by replacing each nij by [nij +

1
2
] in Eqn. (4.2) and Eqn. (4.3). This

adjustment is preferred in small samples, and required if any zero cells occur. In large samples, the effect of adding
0.5 to each cell becomes negligible.
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4.2.4 Tests for ordinal variables
{sec:ordinaltests}

For r×c tables, more sensitive tests than the test for general association (independence) are avail-
able if either or both of the row and column variables are ordinal. Generalized Cochran-Mantel-
Haenszel tests (Landis et al., 1978) which take the ordinal nature of a variable into account are
provided by the CMHtest() in vcdExtra. These tests are based on assigning numerical scores
to the table categories; the default (table) scores treat the levels as equally spaced. They gener-
ally have higher power when the pattern of association is determined by the order of an ordinal
variable. {ex:mental2}

EXAMPLE 4.6: Mental impairment and parents’ SES
We illustrate these tests using the data on mental impairment and SES introduced in Exam-

ple 4.3, where both variables can be considered ordinal.

data(Mental, package="vcdExtra")
mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)
assocstats(mental.tab) # standard chisq tests

## Error in eval(expr, envir, enclos): could not find function "assocstats"

CMHtest(mental.tab) # CMH tests

## Error in eval(expr, envir, enclos): could not find function "CMHtest"

In this data set, all four tests show a highly significant association. However, the cor test
for nonzero correlation uses only one degree of freedom, whereas the test of general association
requires 15 df. 4

The four tests differ in the types of departure from independence they are sensitive to:

General Association When the row and column variables are both nominal (unordered) the only
alternative hypothesis of interest is that there is some association between the row and col-
umn variables. The CMH test statistic is similar to the (Pearson) Chi-Square and Likeli-
hood Ratio Chi-Square in the result from assocstats(); all have (r − 1)(c − 1) df.

Row Mean Scores Differ If the column variable is ordinal, assigning scores to the column vari-
able produces a mean for each row. The association between row and column variables can
be expressed as a test of whether these means differ over the rows of the table, with r − 1
df. This is analogous to the Kruskal-Wallis non-parametric test (ANOVA based on rank
scores).

Column Mean Scores Differ Same as the above, assigning scores to the row variable.

Nonzero Correlation (Linear association) When both row and column variables are ordinal, we
could assign scores to both variables and compute the correlation (r). The CMH χ2 is
equal to (N − 1)r2, where N is the total sample size. The test is most sensitive to a pattern
where the row mean score changes linearly over the rows.
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4.2.5 Sample CMH Profiles
{sec:Sample}

Two contrived examples may make the differences among these tests more apparent. Visualiza-
tions of the patterns of association reinforces the aspects to which the tests are most sensitive, and
introduces the sieve diagram described more fully in Section 4.5.

General Association

The table below exhibits a general association between variables A and B, but no difference
in row means or linear association. The row means are calculated by assigning integer scores,
bi = i to the column categories. Figure 4.1(left) shows the pattern of association in this table
graphically, as a sieve diagram (described in Section 4.5).

b1 b2 b3 b4 b5 Total Mean
a1 0 15 25 15 0 55 3.0
a2 5 20 5 20 5 55 3.0
a3 20 5 5 5 20 55 3.0

Total 25 40 35 40 25 165 3.0

This is reflected in the CMHtest() output shown below. TODO: Something wrong here:
does CMHtest() get rows/cols mixed up? Would be nice to calculate col means also.

CMHtest(cmhdemo1)

## Error in eval(expr, envir, enclos): could not find function "CMHtest"

The chi-square values for non-zero correlation and different row mean scores are exactly zero
because the row means are all equal. Only the general association test shows that A and B are
associated.

sieve(cmhdemo1, shade=TRUE, main="General association",
gp = shading_sieve(interpolate = 0, lty = c("solid", "longdash")))

## Error in eval(expr, envir, enclos): could not find function "sieve"

sieve(cmhdemo2, shade=TRUE, main="Linear association",
gp = shading_sieve(interpolate = 0, lty = c("solid", "longdash")))

## Error in eval(expr, envir, enclos): could not find function "sieve"

Linear Association

The table below contains a weak, non-significant general association, but significant row mean
differences and linear associations. The unstructured test of general association would therefore
lead to the conclusion that no association exists, while the tests taking ordinal factors into account
would conclude otherwise. Note that the largest frequencies shift towards lower levels of B as
the level of variable A increases. See Figure 4.1(right) for a visual representation of this pattern.
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b1 b2 b3 b4 b5 Total Mean
a1 2 5 8 8 8 31 3.48
a2 2 8 8 8 5 31 3.19
a3 5 8 8 8 2 31 2.81
a4 8 8 8 5 2 31 2.52

Total 17 29 32 29 17 124 3.00

Note that the χ2-values for the row-means and non-zero correlation tests from CMHtest()
are very similar, but the correlation test is more highly significant since it is based on just one
degree of freedom.

CMHtest(cmhdemo2)

## Error in eval(expr, envir, enclos): could not find function "CMHtest"

The difference in sensitivity and power among these tests for categorical data is analogous to
the difference between general ANOVA tests and tests for linear trend (contrasts) in experimental
designs with quantitative factors: The more specific test has greater power, but is sensitive to a
narrower range of departures from the null hypothesis. The more focused tests for ordinal factors
are a better bet when we believe that the association depends on the ordered nature of the factor
levels.

4.3 Stratified analysis
{sec:twoway-strat}

An overall analysis ignores other variables (like sex), by collapsing over them. In the Arthritis
data, it is possible that the treatment is effective only for one gender, or even that the treatment has
opposite effects for men and women. If so, pooling over the ignored variable(s) can be seriously
misleading.

A stratified analysis controls for the effects of one or more background variables. This is
similar to the use of a blocking variable in an ANOVA design. Tests for association can be ob-
tained by applying a function (assocstats(), CMHtest()) over the levels of the stratifying
variables. {ex:arthrit3}

EXAMPLE 4.7: Arthritis treatment
The statements below request a stratified analysis of the arthritis treatment data with CMH

tests, controlling for sex. Essentially, the analysis is carried out separately for males and females.
The table Art.tab2 is constructed as a three-way table, with sex as the last dimension.

Art.tab2 <- xtabs(~Treatment + Improved + Sex, data=Arthritis)
Art.tab2

## , , Sex = Female
##
## Improved
## Treatment None Some Marked
## Placebo 19 7 6
## Treated 6 5 16
##
## , , Sex = Male
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##
## Improved
## Treatment None Some Marked
## Placebo 10 0 1
## Treated 7 2 5

assocstats() only applies to two-way tables, so we use apply() to run it for each level
of Sex. CMHtest() is designed for such stratified tables, and uses all dimensions after the first
two as strata.

apply(Art.tab2, MARGIN=3, FUN=assocstats)

## Error in match.fun(FUN): object ’assocstats’ not found

Note that even though the strength of association (φ-coefficient) is similar in the two groups,
the χ2 tests show significance for females, but not for males. This is true even using the more
powerful CMH tests below, treating Treatment as ordinal. The reason is that there were more
than twice as many females as males in this sample.

CMHtest(Art.tab2)

## Error in eval(expr, envir, enclos): could not find function "CMHtest"

apply(Art.tab2, 3, sum)

## Female Male
## 59 25

4

4.3.1 Assessing homogeneity of association
{sec:twoway-homog}

In a stratified analysis it is often crucial to know if the association between the primary table
variables is the same over all strata. For 2 × 2 × k tables this question reduces to whether the
odds ratio is the same in all k strata. The vcd package implements Woolf’s test (Woolf, 1995) in
woolf_test() for this purpose.

For larger n-way tables, this question is equivalent to testing whether the association between
the primary variables, A and B, say, is the same for all levels of the stratifying variables, C, D,
. . ..

In the case of a 3-way table, this can be stated as the loglinear model of no three-way as-
sociation, [AB][AC][BC]. This notation (described in Section 8.2) lists only the high-order
association terms in a linear model for log frequency.{ex:berkeley1a}

EXAMPLE 4.8: Berkeley admissions
Here we illustrate the use of Woolf’s test for the UCBAdmissions data. The test is signifi-

cant, indicating that the odds ratios cannot be considered equal across departments. We will see
why when we visualize the data by department in the next section.

woolf_test(UCBAdmissions)

## Error in eval(expr, envir, enclos): could not find function "woolf_test"
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4
{ex:arthrit4}

EXAMPLE 4.9: Arthritis treatment
For the arthritis data, homogeneity means that there is no three-way Treatment * Improved *

Sex association. That is, the association between treatment and outcome (improve) is the same
for both men and women. This hypothesis can be stated as the loglinear model,

[SexTreatment] [SexImproved] [TreatmentImproved] . (4.4) {eq:STO2}

Such tests can be carried out most conveniently using loglm() in the MASS package. The
model formula uses the standard R notation ()^2 to specify all terms of order 2.

library(MASS)
loglm(~ (Treatment + Improved + Sex)^2, data=Art.tab2)

## Call:
## loglm(formula = ~(Treatment + Improved + Sex)^2, data = Art.tab2)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 1.7037 2 0.42663
## Pearson 1.1336 2 0.56735

Even though we found in the CMH analysis above that the association between Treatment
and Improved was stronger for females than males, the analysis using loglm() is clearly
non-significant, so we cannot reject homogeneity of association. 4

4.4 Fourfold display for 2 x 2 tables
{sec:twoway-fourfold}

The fourfold display is a special case of a radial diagram (or “polar area chart”) designed for
the display of 2 × 2 (or 2 × 2 × k) tables (Fienberg, 1975, Friendly, 1994a,b). In this display
the frequency nij in each cell of a fourfold table is shown by a quarter circle, whose radius is
proportional to√nij , so the area is proportional to the cell count. The fourfold display is similar
to a pie chart in using segments of a circle to show frequencies. It differs from a pie chart in that
it keeps the angles of the segments constant and varies the radius, whereas the pie chart varies the
angles and keeps the radius constant.

The main purpose of this display is to depict the sample odds ratio, θ̂ = (n11/n12) ÷
(n21/n22). An association between the variables (θ 6= 1) is shown by the tendency of diago-
nally opposite cells in one direction to differ in size from those in the opposite direction, and the
display uses color or shading to show this direction. Confidence rings for the observed θ allow a
visual test of the hypothesis of independence, H0 : θ = 1. They have the property that (in a stan-
dardized display) the rings for adjacent quadrants overlap iff the observed counts are consistent
with the null hypothesis. {ex:berkeley2}

EXAMPLE 4.10: Berkeley admissions
Figure 4.2(left) shows the basic, unstandardized fourfold display for the Berkeley admissions

data (Table 4.1). Here, the area of each quadrant is proportional to the cell frequency, shown
numerically in each corner. The odds ratio is proportional to the product of the areas shaded dark,
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divided by the product of the areas shaded light. The sample odds ratio, Odds (Admit|Male) /
Odds(Admit|Female) is 1.84 (see Example 4.8) indicating that males were nearly twice as likely
to be admitted.

fourfold(Berkeley, std="ind.max") # unstandardized

## Error in eval(expr, envir, enclos): could not find function "fourfold"

fourfold(Berkeley, margin=1) # equating gender

## Error in eval(expr, envir, enclos): could not find function "fourfold"

However, it is difficult to make these visual comparisons because there are more men than
women, and because the proportions admitted and rejected are unequal. In the unstandardized
display the confidence bands have no interpretation as a test of H0 : θ = 1.

Table 4.6: Admissions to Berkeley graduate programs, Frequencies and Row Percentages{tab:berkrow}

Frequencies Row Percents
Admitted Rejected Admitted Rejected

Males 1198 1493 44.52 55.48
Females 557 1278 30.35 69.65

The data in a 2 × 2 table can be standardized to make these visual comparisons easier. Ta-
ble 4.6 shows the Berkeley data with the addition of row percentages (which equate for the num-
ber of men and women applicants) indicating the proportion of each gender accepted and rejected.
We see that 44.52% of males were admitted, while only 30.35% of females were admitted. More-
over, the row percentages have the same odds ratio as the raw data: 44.52×69.65/30.35×55.48 =
1.84. Figure 4.2(right) shows the fourfold display where the area of each quarter circle is propor-
tional to these row percentages.

With this standardization, the confidence rings have the property that the confidence rings for
each upper quadrant will overlap with those for the quadrant below it if the odds ratio does not
differ from 1.0. (Details of the calculation of confidence rings are described in the next section.)
No similar statement can be made about the corresponding left and right quadrants, however,
because the overall rate of admission has not been standardized.

As a final step, we can standardize the data so that both table margins are equal, while pre-
serving the odds ratio. Each quarter circle is then drawn to have an area proportional to this
standardized cell frequency. This makes it easier to see the association between admission and
sex without being influenced by the overall admission rate or the differential tendency of males
and females to apply. With this standardization, the four quadrants will align (overlap) horizon-
tally and vertically when the odds ratio is 1, regardless of the marginal frequencies. The fully
standardized display, which is usually the most useful form, is shown in Figure 4.3.

fourfold(Berkeley) # standardize both margins

## Error in eval(expr, envir, enclos): could not find function "fourfold"

4
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These displays also use color (blue) and diagonal tick marks to show the direction of positive
association. The visual interpretation (also conveyed by area) is that males are more likely to be
accepted, females more likely to be rejected.

The quadrants in Figure 4.3 do not align and the 95% confidence rings around each quadrant
do not overlap, indicating that the odds ratio differs significantly from 1—putative evidence of
gender bias. The very narrow width of the confidence rings gives a visual indication of the
precision of the data—if we stopped here, we might feel quite confident of this conclusion.

4.4.1 Confidence rings for odds ratio

Confidence rings for the fourfold display are computed from a confidence interval for θ, whose
endpoints can each be mapped into a 2× 2 table. Each such table is then drawn in the same way
as the data.

The interval for θ is most easily found by considering the distribution of ψ̂ = log θ̂, whose
standard error may be estimated by Eqn. (4.3). Then an approximate 1 − α confidence interval
for ψ is given by

ψ̂ ± ŝ(ψ̂) z1−α/2 = {ψ̂l, ψ̂u} ,

as described in Section 4.2.2. The corresponding limits for the odds ratio θ are {exp(ψ̂l), exp(ψ̂u)}.
For the data shown in Figure 4.3, ψ̂ = log θ̂ = .6104, and ŝ(ψ̂) = 0.0639, so the 95%, limits
for θ are {1.624, 2.087}, as shown by the calculations below. The same result is returned by
confint() for an "oddsratio" object.

summary(oddsratio(Berkeley))

## Error in summary(oddsratio(Berkeley)): could not find function "oddsratio"

exp(.6103 + c(-1, 1) * qnorm(.975) * 0.06398)

## [1] 1.6240 2.0869

confint(oddsratio(Berkeley, log=FALSE))

## Error in confint(oddsratio(Berkeley, log = FALSE)): could not find function
"oddsratio"

Now consider how to find a 2 × 2 table whose frequencies correspond to the odds ratios at
the limits of the confidence interval. A table standardized to equal row and column margins can
be represented by the 2× 2 matrix with entries[

p (1− p)
(1− p) p

]
,

whose odds ratio is θ = p2/(1− p)2. Solving for p gives p =
√
θ/(1 +

√
θ). The corresponding

frequencies can then be found by adjusting the standardized table to have the same row and
column margins as the data. The results of these computations which generate the confidence
rings in Figure 4.3 are shown in Table 4.7.
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Table 4.7: Odds ratios and equivalent tables for 95% confidence rings for the Berkeley data. {tab:berkodds}

Odds Standardized Equivalent
Ratio Table Frequencies

Lower 1.624 0.560 0.440 1167.1 587.9
limit 0.440 0.560 1523.9 1247.1

Data 1.841 0.576 0.424 1198.0 557.0
0.424 0.576 1493.0 1278.0

Upper 2.087 0.591 0.409 1228.4 526.6
limit 0.409 0.591 1462.6 1308.4

4.4.2 Stratified analysis for 2× 2× k tables
{sec:twoway-fourstrat}

In a 2 × 2 × k table, the last dimension often corresponds to “strata” or populations, and it is
typically of interest to see if the association between the first two variables is homogeneous across
strata. For such tables, simply make one fourfold panel for each stratum. The standardization of
marginal frequencies is designed to allow easy visual comparison of the pattern of association
when the marginal frequencies vary across two or more populations

The admissions data shown in Figure 4.2 and Figure 4.3 were actually obtained from six
departments —the six largest at Berkeley (Bickel et al., 1975). To determine the source of the
apparent sex bias in favor of males, we make a new plot, Figure 4.4, stratified by department.

# fourfold display
UCB <- aperm(UCBAdmissions, c(2, 1, 3))
fourfold(UCB,mfrow=c(2,3))

## Error in eval(expr, envir, enclos): could not find function "fourfold"

Surprisingly, Figure 4.4 shows that, for five of the six departments, the odds of admission is
approximately the same for both men and women applicants. Department A appears to differs
from the others, with women approximately 2.86 (= (313/19)/(512/89)) times as likely to gain
admission. This appearance is confirmed by the confidence rings, which in Figure 4.4 are joint3

95% intervals for θc, c = 1, . . . , k.

This result, which contradicts the display for the aggregate data in Figure 4.2, is a nice exam-
ple of Simpson’s paradox4, and illustrates clearly why an overall analysis of a three- (or higher-)
way table can be misleading. The resolution of this contradiction can be found in the large dif-
ferences in admission rates among departments. Men and women apply to different departments
differentially, and in these data women happen to apply in larger numbers to departments that
have a low acceptance rate. The aggregate results are misleading because they falsely assume

3For multiple-strata plots, fourfold() by default adjusts the significance level for multiple testing, using Holm’s
(1979) method provided by p.adjust().

4Simpson’s paradox (Simpson, 1951) occurs in a three-way table, [A,B,C], when the marginal association be-
tween two variables, A,B collapsing over C differs in direction from the partial association A,B|C = ck at the
separate levels of C. Strictly speaking, Simpson’s paradox would require that for all departments separately the odds
ratio θk < 1 (which occurs for Departments A, B, D, and F in Figure 4.4) while in the aggregate data θ > 1.
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men and women are equally likely to apply in each field.5

Visualization principles

TODO: Move this to Ch. 1 An important principle in the display of large, complex data sets
is controlled comparison—we want to make comparisons against a clear standard, with other
things held constant. The fourfold display differs from a pie chart in that it holds the angles of the
segments constant and varies the radius. An important consequence is that we can quite easily
compare a series of fourfold displays for different strata, since corresponding cells of the table
are always in the same position. As a result, an array of fourfold displays serve the goals of
comparison and detection better than an array of pie charts.

Moreover, it allows the observed frequencies to be standardized by equating either the row or
column totals, while preserving the design goal for this display—the odds ratio. In Figure 4.4,
for example, the proportion of men and women, and the proportion of accepted applicants were
equated visually in each department. This provides a clear standard which also greatly facilitates
controlled comparison.

Another principle is visual impact—we want the important features of the display to be easily
distinguished from the less important (Tukey, 1993). Figure 4.4 distinguishes the one department
for which the odds ratio differs significantly from 1 by shading intensity, even though the same
information can be found by inspection of the confidence rings. {ex:wheeze1}

EXAMPLE 4.11: Breathlessness and wheeze in coal miners
The various ways of standardizing a collection of 2 × 2 tables allows visualizing relations

with different factors (row percentages, column percentages, strata totals) controlled. However,
different kinds of graphs can speak more eloquently to other questions by focusing more directly
on the odds ratio.

Agresti (2002, Table 9.8) cites data from Ashford and Sowden (1970) on the association
between two pulmonary conditions, breathlessness and wheeze, in a large sample of coal miners.
The miners are classified into age groups, and the question treated by Agresti is whether the
association between these two symptoms is homogeneous over age.These data are available in
the CoalMiners data in vcd, a 2× 2× 9 frequency table. The first group, aged 20-24 has been
omitted from these analyses.

data("CoalMiners", package="vcd")
CM <- CoalMiners[,,2:9]
ftable(CM, row.vars = 3)

## Breathlessness B NoB
## Wheeze W NoW W NoW
## Age
## 25-29 23 9 105 1654
## 30-34 54 19 177 1863
## 35-39 121 48 257 2357
## 40-44 169 54 273 1778
## 45-49 269 88 324 1712
## 50-54 404 117 245 1324
## 55-59 406 152 225 967
## 60-64 372 106 132 526

5This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to
departments that attract women applicants.
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The question of interest can addressed by displaying the odds ratio in the 2×2 tables with the
margins of breathlessness and wheeze equated (i.e., with the default std=’margins’ option),
which gives the graph shown in Figure 4.5. Although the panels for all age groups show an
overwhelmingly positive association between these two symptoms, one can also (by looking
carefully) see that the strength of this association declines with increasing age.

fourfold(CM, mfcol = c(2,4))

## Error in eval(expr, envir, enclos): could not find function "fourfold"

However, note that the pattern of change over age is somewhat subtle compared to the domi-
nant positive association within each panel. When the goal is to display how the odds ratio varies
with a quantitative factor such as age, it is often better to simply calculate and plot the odds ratio
directly.

The oddsratio() function in vcd calculates odds ratios for 2× 2(×k) tables. By default,
it returns the log odds. Use the option log=FALSE to get the odds ratios themselves. It is easy
to see that the (log) odds ratios decline with age.

oddsratio(CM)

## Error in eval(expr, envir, enclos): could not find function "oddsratio"

oddsratio(CM, log=FALSE)

## Error in eval(expr, envir, enclos): could not find function "oddsratio"

When the analysis goal is to understand how the odds ratio varies with a stratifying factor
(which could be a quantitative variable), it is often better to plot the odds ratio directly.

The lines below use the plot() method for "oddsratio" objects. This produces a line graph
of the log odds ratio against the stratum variable, together with confidence interval error bars. In
addition, because age is a quantitative variable, we can calculate, and display the fitted relation
for a linear model relating lodds to age. Here, we try using a quadratic model (poly(age,
2)) mainly to see if the trend is nonlinear.

lodds <- oddsratio(CM)

## Error in eval(expr, envir, enclos): could not find function "oddsratio"

plot(lodds, lwd=2, cex=1.25, pch=16,
xlab = "Age Group",
main = "Breathlessness and Wheeze in Coal Miners")

## Error in plot(lodds, lwd = 2, cex = 1.25, pch = 16, xlab = "Age Group",
: object ’lodds’ not found

age <- seq(25, 60, by = 5)
mod <- lm(lodds ~ poly(age, 2))

## Error in eval(expr, envir, enclos): object ’lodds’ not found

lines(fitted(mod), col = "red", lwd=2)

## Error in fitted(mod): object ’mod’ not found
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In Figure 4.6, it appears that the decline in the log odds ratio levels off with increasing age.
One virtue of fitting the model in this way is that we can test the additional contribution of the
quadratic term, which turns out to be insignificant.

summary(mod)

## Error in summary(mod): object ’mod’ not found

4

4.5 Sieve diagrams
{sec:twoway-sieve}

The wise ones fashioned speech with their thought, sifting it as grain is
sifted through a sieve.

Buddha

For two- (and higher-) way contingency tables, the design principles of perception, detection,
and comparison (see Chapter 1) suggest that we should try to show the observed frequencies in
relation to what we would expect those frequencies to be under a reasonable null model—for
example, the hypothesis that the row and column variables are unassociated.

To this end, several schemes for representing contingency tables graphically are based on the
fact that when the row and column variables are independent, the estimated expected frequencies,
mij , are products of the row and column totals (divided by the grand total).

mij =
ni+n+j
n++

.

Then, each cell can be represented by a rectangle whose area shows the observed cell frequency,
nij , expected frequency, mij , or deviation (residual) from independence, nij − mij . Visual
attributes (color, shading) of the rectangles can be used to highlight the pattern of association.

For example, for any two-way table, the expected frequencies under independence can be
represented by rectangles whose widths are proportional to the total frequency in each column,
n+j , and whose heights are proportional to the total frequency in each row, ni+; the area of each
rectangle is then proportional tomij . Figure 4.7 (left) shows the expected frequencies for the hair
and eye color data (Table 4.2), calculated using independence_table() in vcd.

haireye <- margin.table(HairEyeColor, 1:2)
expected = independence_table(haireye)

## Error in eval(expr, envir, enclos): could not find function "independence_table"

round(expected, 1)

## Error in eval(expr, envir, enclos): object ’expected’ not found

## Error in eval(expr, envir, enclos): could not find function "sieve"

## Error in eval(expr, envir, enclos): could not find function "sieve"
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Figure 4.7 (left) simply represents the model—what the frequencies would be if hair color and
eye color were independent—not the data. Note, however, that the rectangles are cross-ruled so
that the number of boxes in each (counting up the fractional bits) equals the expected frequency
with which the cell is labeled, and moreover, the rulings are equally spaced in all cells. Hence,
cross-ruling the cells to show the observed frequency would give a data display which implicitly
compares observed and expected frequencies as shown in Figure 4.7 (right).

Riedwyl and Schüpbach 1983, 1994 proposed a sieve diagram (later called a parquet dia-
gram) based on this principle. In this display the area of each rectangle is always proportional to
expected frequency but observed frequency is shown by the number of squares in each rectangle,
as in Figure 4.7 (right).

Hence, the difference between observed and expected frequency appears as variations in the
density of shading. Cells whose observed frequency nij exceeds the expected mij appear denser
than average. The pattern of positive and negative deviations from independence can be more
easily seen by using color, say, red for negative deviations, and blue for positive.6{ex:haireye2}

EXAMPLE 4.12: Hair color and eye color
The sieve diagram for hair color and eye color shown in Figure 4.7 (right) can be interpreted

as follows: The pattern of color and shading shows the high frequency of blue-eyed blonds and
people with brown eyes and dark hair. People with hazel eyes are also more likely to have red
or brown hair, and those with green eyes more likely to have red or blond hair, than would be
observed under independence. 4

{ex:vision1}

EXAMPLE 4.13: Visual acuity
In World War II, all workers in the U.K. Royal Ordnance factories were given test of visual

acuity (unaided distance vision) of their left and right eyes on a 1 (high) to 4 (low) scale. The
dataset VisualAcuity in vcd gives the results for 10,719 workers (3242 men, 7477 women)
aged 30-39.

Figure 4.8 shows the sieve diagram for data from the larger sample of women (Kendall and
Stuart (1961, Table 33.5), Bishop et al. (1975, p. 284)). The VisualAcuity data is a frequency
data frame and we first convert it to table form (VA.tab), a 4×4×2 table to re-label the variables
and levels. Done: Make this an exercise in Ch. 2

# re-assign names/dimnames
data("VisualAcuity", package="vcd")
VA.tab <- xtabs(Freq ~ right + left + gender, data=VisualAcuity)
dimnames(VA.tab)[1:2] <- list(c("high", 2, 3, "low"))
names(dimnames(VA.tab))[1:2] <- paste(c("Right", "Left"), "eye grade")
#str(VA.tab)

sieve(VA.tab[,,"female"], shade=TRUE)

## Error in eval(expr, envir, enclos): could not find function "sieve"

The diagonal cells show the obvious: people tend to have the same visual acuity in both eyes,
and there is strong lack of independence. The off diagonal cells show a more subtle pattern that

6Positive residuals are also shown by solid lines, negative residuals by broken lines, so that they may still be
distinguished in monochrome versions.
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suggests symmetry—the cells below the diagonal are approximately equally dense as the corre-
sponding cells above the diagonal. Moreover, the relatively consistent pattern on the diagonals
±1,±2, . . . away from the main diagonals suggests that the association may be explained in terms
of the difference in visual acuity between the two eyes.

These suggestions can be tested by fitting intermediate models between the null model of
independence (which fits terribly) and the saturated model (which fits perfectly), as we shall see
later in this book. A model of quasi-independence, for example (see Example 8.8 in Chap-
ter 8) ignores the diagonal cells and tests whether independence holds for the remainder of the
table. The symmetry model for a square table allows association, but constrains the expected
frequencies above and below the main diagonal to be equal. Such models provide a way of test-
ing specific explanatory models that relate to substantive hypotheses and what we observe in our
visualizations. These and other models for square tables are discussed further in Section 8.7. 4

4.5.1 Larger tables: The strucplot framework
{sec:twoway-sieve-larger}

The implementation of sieve diagrams in vcd is far more general than illustrated in the examples
above. For one thing, the sieve function has a formula method, which allows one to specify the
variables in the display as a model formula. For example, for the VisualAcuity data, a plot
of the (marginal) frequencies for left and right eye grades pooling over gender can be obtained
with the call below (this plot is not shown).

sieve(Freq ~ right + left, data = VisualAcuity, shade=TRUE)

More importantly, sieve diagrams are just one example of the strucplot framework, a general
system for visualizing n-way frequency tables in a hierarchical way. We describe this framework
in more detail in Section 5.3 in context of mosaic displays. For now, we just illustrate the exten-
sion of the formula method to provide for conditioning variables. In the call below, the formula
Freq ~ right + left | gender means to produce a separate block in the plot for the
levels of gender.7

sieve(Freq ~ right + left | gender, data = VisualAcuity, shade=TRUE)

## Error in eval(expr, envir, enclos): could not find function "sieve"

In Figure 4.9, the relative sizes of the blocks for the conditioning variable (gender) show the
much larger number of women than men in this data. Within each block, color and density of the
box rules shows the association of left and right acuity, and it appears that the pattern for men is
similar to that observed for women. The methods described in Section 4.3.1 can be used to test the
hypothesis of homogeneity of association, and loglinear models described in Chapter 8 provide
specific tests of hypotheses of symmetry, quasi-independence and other models for structured
associations. {ex:berkeley3}

EXAMPLE 4.14: Berkeley admissions
This example illustrates some additional flexibility of sieve plots with the strucplot frame-

work, using the Berkeley admissions data. The left panel of Figure 4.10 shows the sieve diagrams
for the relation between department and admission, conditioned by gender. It can easily be seen

7An equivalent plot, but one labeled more nicely, as in Figure 4.8 can be produced from the VA.tab table using
sieve(VA.tab, shade=TRUE, condvar=’gender’).
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that (a) overall, there were more male applicants than female; (b) there is a moderately similar
pattern of observed > expected (blue) for males and females.

# conditioned on gender
sieve(UCBAdmissions, shade=TRUE, condvar='Gender')

## Error in eval(expr, envir, enclos): could not find function "sieve"

# three-way table, Department first, with cell labels
UCB <- aperm(UCBAdmissions, c(3,1,2))
dimnames(UCB)[[3]] <- c("M", "F") # abbreviate for display
sieve(UCB, shade=TRUE, pop=FALSE)

## Error in eval(expr, envir, enclos): could not find function "sieve"

labeling_cells(text = UCB, gp_text = gpar(fontface = 2))(UCB)

## Error in eval(expr, envir, enclos): could not find function "labeling_cells"

In the right panel of Figure 4.10, the three-way table was first permuted to make Dept the
first splitting variable. Each 2 × 2 table of Admit by Gender then appears, giving a sieve
diagram version of what we showed earlier in fourfold displays (Figure 4.4). The function
labeling_cells() is used here to write the cell frequency in each rectangle.

Finally, for tables of more than two dimensions, there is a variety of different models for
“independence,” and the strucplot framework allows these to be specified with the expected
argument, either as an array of numbers conforming to the data argument, or as a model formula
for loglm().

For example, a sieve diagram may be used to determine if the association between gender and
department is the same across departments by fitting the model ~Admit*Gender + Dept,
which says that Dept is independent of the combinations of Admit and Gender. This is done
as shown below, giving the plot in Figure 4.11.

UCB2 <- aperm(UCBAdmissions, c(3,2,1))
sieve(UCB2, shade=TRUE, expected=~Admit*Gender + Dept,

split_vertical=c(FALSE,TRUE,TRUE))

## Error in eval(expr, envir, enclos): could not find function "sieve"

In terms of the loglinear models discussed in Chapter 5, this is equivalent to fitting the model
of joint independence, [AdmitGender][Dept]. Figure 4.11 shows the greater numbers of male
applicants in departments A and B (whose overall rate of admission is high) and greater numbers
of female applicants in the remaining departments (where the admission rate is low).

4

4.6 Association plots
{sec:twoway-assoc}

In the sieve diagram the foreground (rectangles) shows expected frequencies; deviations from
independence are shown by color and density of shading. The association plot (Cohen, 1980,
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Friendly, 1991) puts deviations from independence in the foreground: the area of each box is
made proportional to the (observed − expected) frequency.

For a two-way contingency table, the signed contribution to Pearson χ2 for cell i, j is

dij =
nij −mij√

mij
= Pearson residual, χ2 =

∑
ij

(dij)
2 (4.5){eq:Pearson-residual}

In the association plot, each cell is shown by a rectangle, having:

• (signed) height ∼ dij
• width = √mij .

so, the area of each cell is proportional to the raw residual, nij −mij . The rectangles for each
row in the table are positioned relative to a baseline representing independence (dij = 0) shown
by a dotted line. Cells with observed > expected frequency rise above the line (and are colored
blue); cells that contain less than the expected frequency fall below it (and are shaded red).

haireye <- margin.table(HairEyeColor, 1:2)
assoc(haireye, shade=TRUE)

## Error in eval(expr, envir, enclos): could not find function "assoc"

Figure 4.12 shows the association plot for the data on hair color and eye color. In constructing
this plot, each rectangle is shaded according to the value of the Pearson residual Eqn. (4.5), using
a simple scale shown in the legend, where residuals |dij | > 2 are shaded blue or red depending
on their sign and residuals |dij | > 4 are shaded with a more saturated color.

One virtue of the association plot is that it is quite simple to interpret in terms of the pattern
of positive and negative dij values. Bertin (1981) uses similar graphics to display large complex
contingency tables. Like the sieve diagram, however, patterns of association are most apparent
when the rows and columns of the display are ordered in a sensible way.

assoc(HairEyeColor, shade=TRUE)

## Error in eval(expr, envir, enclos): could not find function "assoc"

We note here that the association plot also belongs to the strucplot framework and thus ex-
tends to higher-way tables. For example, the full HairEyeColor table is also classified by
Sex. The plot for the three-way table is shown in Figure 4.13. TODO: Perhaps combine these
two figures into two panels, side by side. In this plot the third table variable (Sex here) is shown
nested within the first two, allowing easy comparison of the profiles of hair and eye color for
males and females.

4.7 Observer agreement
{sec:twoway-agree}

When the row and column variables represent different observers rating the same subjects or
objects, interest is focused on observer agreement rather than mere association. In this case,
measures and tests of agreement provide a method of assessing the reliability of a subjective
classification or assessment procedure.
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For example, two (or more) clinical psychologists might classify patients on a scale with
categories (a) normal, (b) mildly impaired, (c) severely impaired. Or, ethologists might classify
the behavior of animals in categories of cooperation, dominance and so forth, or paleologists
might classify pottery fragments according to categories of antiquity or cultural groups. As these
examples suggest, the rating categories are often ordered, but not always.

For two raters, a contingency table can be formed classifying all the subjects/objects rated
according to the rating categories used by the two observers. In most cases, the same categories
are used by both raters, so the contingency table is square, and the entries in the diagonal cells
are the cases where the raters agree.

In this section we describe some measures of the strength of agreement and then a method
for visualizing the pattern of agreement. But first, the following examples show some typical
agreement data.{ex:sexisfun1}

EXAMPLE 4.15: Sex is fun
The SexualFun table in vcd (Agresti (1990, Table 2.10), from Hout et al. (1987)) sum-

marizes the responses of 91 married couples to a questionnaire item: “Sex is fun for me and my
partner: (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always. ”

data("SexualFun", package="vcd")
SexualFun

## Wife
## Husband Never Fun Fairly Often Very Often Always fun
## Never Fun 7 7 2 3
## Fairly Often 2 8 3 7
## Very Often 1 5 4 9
## Always fun 2 8 9 14

In each row the diagonal entry is not always the largest, though it appears that the partners
tend to agree more often when either responds “almost always”. 4

{ex:MS1}

EXAMPLE 4.16: Diagnosis of MS patients
Landis and Koch (1977) gave data on the diagnostic classification of multiple sclerosis (MS)

patients by two neurologists, one from Winnipeg and one from New Orleans. There were two
samples of patients, 149 from Winnipeg and 69 from New Orleans, and each neurologist classified
all patients into one of four diagnostic categories: (a) Certain MS, (b) Probable MS, (c) Possible
MS, (d) Doubtful, unlikely, or definitely not MS

These data are available in MSPatients, a 4×4×2 table, as shown below. It is convenient
to show the data in separate slices for the Winnipeg and New Orleans patients:

MSPatients[,,"Winnipeg"]

## Error in eval(expr, envir, enclos): object ’MSPatients’ not found

MSPatients[,,"New Orleans"]

## Error in eval(expr, envir, enclos): object ’MSPatients’ not found

apply(MSPatients, 3, sum) # show sample sizes

## Error in apply(MSPatients, 3, sum): object ’MSPatients’ not found
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In this example, note that the distribution of degree of severity of MS may differ between the
two patient samples. As well, for a given sample, the two neurologists may be more or less strict
about the boundaries between the rating categories.

4

4.7.1 Measuring agreement
{sec:agreemeas}

In assessing the strength of agreement we usually have a more stringent criterion than in mea-
suring the strength of association, because observers ratings can be strongly associated without
strong agreement. For example, one rater could use a more stringent criterion and thus consis-
tently rate subjects one category lower (on an ordinal scale) then another rater.

More generally, measures of agreement must take account of the marginal frequencies with
which two raters use the categories. If observers tend to use the categories with different fre-
quency, this will affect measures of agreement.

Here we describe some simple indices that summarize agreement with a single score (and
associated standard errors or confidence intervals). Von Eye and Mun (2006) treat this topic from
the perspective of loglinear models.

Intraclass correlation

An analysis of variance framework leads to the intraclass correlation as a measure of inter-rater
reliability, particularly when there are more than two raters. This approach is not covered here,
but various applications are described by Shrout and Fleiss (1979), and implemented in R in
ICC() in the psych package.

Cohen’s Kappa

Cohen’s kappa (κ) (Cohen, 1960, 1968) is a commonly used measure of agreement that com-
pares the observed agreement to agreement expected by chance if the two observer’s ratings were
independent. If pij is the probability that a randomly selected subject is rated in category i by
the first observer and in category j by the other, then the observed agreement is the sum of the
diagonal entries, Po =

∑
i pii. If the ratings were independent, this probability of agreement (by

chance) would be Pc =
∑
i pi+ p+i. Cohen’s κ is then the ratio of the difference between actual

agreement and chance agreement, Po − Pc, to the maximum value this difference could obtain:

κ =
Po − Pc
1− Pc

. (4.6) {eq:kappa}

When agreement is perfect, κ = 1; when agreement is no better than would be obtained from
statistically independent ratings, κ = 0. κ could conceivably be negative, but this rarely occurs
in practice. The minimum possible value depends on the marginal totals.

For large samples (n++), κ has an approximate normal distribution when H0 : κ = 0 is true
and its standard error (Fleiss, 1973, Fleiss et al., 1969) is given by

σ̂(κ) =
Pc + P 2

c −
∑
i pi+p+i(pi+ + p+i)

n++(1− Pc)2
.
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Hence, it is common to conduct a test of H0 : κ = 0 by referring z = κ/σ̂(κ) to a unit nor-
mal distribution. The hypothesis of agreement no better than chance is rarely of much interest,
however. It is preferable to estimate and report a confidence interval for κ.

Weighted Kappa

The original (unweighted) κ only counts strict agreement (the same category is assigned by both
observers). A weighted version of κ (Cohen, 1968) may be used when one wishes to allow
for partial agreement. For example, exact agreements might be given full weight, one-category
difference given weight 1/2. This typically makes sense only when the categories are ordered, as
in severity of diagnosis.

Weighted κ uses weights, 0 ≤ wij ≤ 1 for each cell in the table, withwii = 1 for the diagonal
cells. In this case Po and Pc are defined as weighted sums

Po =
∑
i

∑
j

wijpij

Pc =
∑
i

∑
j

wijpi+p+j

and these weighted sums are used in Eqn. (4.6).

For an r × r table, two commonly-used pattern of weights are those based on equal spacing
of weights (Cicchetti and Allison, 1971) for a near-match, and Fleiss-Cohen weights (Fleiss and
Cohen, 1972), based on an inverse-square spacing,

wij = 1− |i−j|r−1 equal spacing

wij = 1− |i−j|2
(r−1)2 Fleiss-Cohen

The Fleiss-Cohen weights attach greater importance to near disagreements, as you can see below
for a 4× 4 table. These weights also provide a measure equivalent to the intraclass correlation.

Integer Spacing Inverse Square Spacing
Cicchetti Allison weights Fleiss-Cohen weights

---------------------------- ---------------------------
1 2/3 1/3 0 1 8/9 5/9 0

2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9

0 1/3 2/3 1 0 5/9 8/9 1

Computing Kappa

The function Kappa() in vcd calculates unweighted and weighted Kappa. The weights argu-
ment can be used to specify the weighting scheme as either "Equal-Spacing" or "Fleiss-Cohen".
The function returns a "Kappa" object, for which there is a confint.Kappa() method, pro-
viding confidence intervals. The summary.Kappa() method also prints the weights.

The lines below illustrate Kappa for the SexualFun data.
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Kappa(SexualFun)

## Error in eval(expr, envir, enclos): could not find function "Kappa"

confint(Kappa(SexualFun))

## Error in confint(Kappa(SexualFun)): could not find function "Kappa"

4.7.2 Observer Agreement Chart
{sec:twoway-Bangdiwala}

The observer agreement chart proposed by Bangdiwala (1985, 1987) provides a simple graphic
representation of the strength of agreement in a contingency table, and alternative measures of
strength of agreement with an intuitive interpretation. More importantly, it shows the pattern of
disagreement when agreement is less than perfect.

The agreement chart is constructed as an n × n square, where n = n++ is the total sample
size. Black squares, each of size nii × nii, show observed agreement. These are positioned
within k larger rectangles, each of size ni+ × n+i as shown in the left panel of Figure 4.14. The
large rectangle shows the maximum possible agreement, given the marginal totals. Thus, a visual
impression of the strength of agreement is given by

B =
area of dark squares
area of rectangles

=

∑k
i n

2
ii∑k

i ni+ n+i
(4.7) {eq:bangb}

When there is perfect agreement, the k rectangles determined by the marginal totals are all
squares, completely filled by the shaded squares reflecting the diagonal nii entries, and B = 1.

agreementplot(SexualFun, main="Unweighted", weights=1)

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

agreementplot(SexualFun, main="Unweighted")

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

Partial agreement

Partial agreement is allowed by including a weighted contribution from off-diagonal cells, b steps
from the main diagonal. For a given cell frequency, nij , a pattern of weights, w1, w2, . . . , wb is
applied to the cell frequencies as shown schematically below:

ni−b,i
...

ni,i−b · · · ni,i · · · ni,i+b
...

ni−b,i

⇐

wb
...

wb · · · 1 · · · wb
...
wb

These weights are incorporated in the agreement chart (right panel of Figure 4.14) by suc-
cessively lighter shaded rectangles whose size is proportional to the sum of the cell frequencies,
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denoted Abi, shown above. A1i allows 1-step disagreements, using weights 1 and w1; A2i in-
cludes 2-step disagreements, etc. From this, one can define a weighted measure of agreement,
Bw, analogous to weighted κ:

Bw =
weighted sum of areas of agreement

area of rectangles
= 1−

∑k
i [ni+n+i − n2ii −

∑q
b=1 wbAbi]∑k

i ni+ n+i

where wb is the weight for Abi, the shaded area b steps away from the main diagonal, and q is the
furthest level of partial disagreement to be considered.

The function agreementplot() actually calculates both B and Bw and returns them
invisibly as the result of the call. The results, B = 0.146, and Bw = 0.498, indicate a stronger
degree of agreement when 1-step disagreements are included.

B <-agreementplot(SexualFun)

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

unlist(B)[1:2]

## Error in unlist(B): object ’B’ not found
{ex:mammograms}

EXAMPLE 4.17: Mammogram ratings
The Mammograms data in vcdExtra gives a 4×4 table of (probably contrived) ratings of 110

mammograms by two raters from Kundel and Polansky (2003), used to illustrate the calculation
and interpretation of agreement measures in this context.8

data("Mammograms", package="vcdExtra")
B <- agreementplot(Mammograms, main="Mammogram ratings")

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

The agreement plot in Figure 4.15 shows substantial agreement among the two raters, par-
ticularly when one-step disagreements are taken into account. Careful study of this graph shows
that the two raters more often agree exactly for the extreme categories of “Absent” and “Severe.”
The amounts of unweighted and weighted agreement are shown numerically in the B and Bw

statistics.

unlist(B)[1:2]

## Error in unlist(B): object ’B’ not found

4

4.7.3 Observer bias in agreement
{sec:twoway-observer}

With an ordered scale, it may happen that one observer consistently tends to classify the objects
into higher or lower categories than the other, perhaps due to using stricter thresholds for the

8In practice, of course, rater agreement on severity of diagnosis from radiology images varies with many factors.
See Antonio and Crespi (2010) for a meta-analytic study concerning agreement in breast cancer diagnosis.
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boundaries between adjacent categories. This bias produces differences in the marginal totals,
ni+, and n+i and decreases the maximum possible agreement. While special tests exist for
marginal homogeneity, the observer agreement chart shows this directly by the relation of the
dark squares to the diagonal line: When the marginal totals are the same, the squares fall along
the diagonal. The measures of agreement, κ and B, cannot determine whether lack of agreement
is due to such bias, but the agreement chart can detect this. {ex:MS2}

EXAMPLE 4.18: Diagnosis of MS patients
Agreement charts for both patient samples in the MSPatients data are shown in Fig-

ure 4.16. The agreementplot() function only handles two-way tables, so we do these sepa-
rately by indexing on the last dimension (Patients).

agreementplot(MSPatients[,,"Winnipeg"], main="Winnipeg patients")

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

agreementplot(MSPatients[,,"New Orleans"], main="New Orleans patients")

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

It can be seen that, for both groups of patients, the rectangles for the two intermediate cate-
gories lie largely below the diagonal line (representing equality). This indicates that the Winnipeg
neurologist tends to classify patients into more severe diagnostic categories. The departure from
the diagonal is greater for the Winnipeg patients, for whom the Winnipeg neurologist uses the
two most severe diagnostic categories very often, as can also be seen from the marginal totals
printed in the plot margins.

Nevertheless there is a reasonable amount of agreement if one-step disagreements are al-
lowed, as can be seen in figreffig:MS-agree and quantified in the Bw statistics below. The agree-
ment charts also serve to explain why the B measures for exact agreement are so much lower.

agr1 <- agreementplot(MSPatients[,,"Winnipeg"])

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

agr2 <- agreementplot(MSPatients[,,"New Orleans"])

## Error in eval(expr, envir, enclos): could not find function "agreementplot"

rbind(Winnipeg=unlist(agr1), NewOrleans=unlist(agr2))[,1:2]

## Error in unlist(agr1): object ’agr1’ not found

4

4.8 Trilinear plots
{sec:twoway-trilinear}

The trilinear plot (also called a ternary diagram or trinomial plot) is a specialized display for a
3-column contingency table or for three variables whose relative proportions are to be displayed.
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Individuals may be assigned to one of three diagnostic categories, for example, or a chemical
process may yield three constituents in varying proportions, or we may look at the division of
votes among three parties in a parliamentary election. This display is useful, therefore, for both
frequencies and proportions.

Trilinear plots are featured prominently in Aitchison (1986), who describes statistical models
for this type of compositional data. Upton (1976, 1994) uses them in detailed analyses of spatial
and temporal changes in British general elections. Wainer (1996) reviews a variety of other uses
of trilinear plots and applies them to aid in understanding the distributions of students achieve-
ment in the National Assessment of Educational Progress, making some aesthetic improvements
to the traditional form of these plots along the way.

A trilinear plot displays each observation as a point inside an equilateral triangle whose co-
ordinate corresponds to the relative proportions in each column. The three vertices represent the
three extremes when 100% occurs in one of the three columns; a point in the exact center corre-
sponds to equal proportions of 1

3 in all three columns. For instance, Figure 4.1 shows three points
whose compositions of three variables, A, B, and C are given in the data frame DATA below.

library(ggtern)
DATA <- data.frame(

A = c(40, 20, 10),
B = c(30, 60, 10),
C = c(30, 20, 80),
id = c("1", "2", "3"))

ggtern(data = DATA,
mapping = aes(x=C, y=A, z=B,

label=id, colour=id)) +
geom_point(aes(size=2)) +
geom_text(vjust=-.5, size=8) +
theme_tern_rgbw() +
theme(plot.margin=unit(c(0,0,0,0),"mm")) +
guides(size = "none")

Note that each apex corresponds to 100% of the labeled variable, and the percentage of this
variable decrease linearly along a line to the midpoint of the opposite baseline. The grid lines in
the figure show the percentage value along each axis.

The construction of trilinear plots is described in detail in http://en.wikipedia.org/
wiki/Ternary_plot. Briefly, let P (a, b, c) represent the three components normalized so
that a+b+c = 1.0. If the apex corresponding to Point A in Figure 4.1 is given (x, y) coordinates
of (xA, yA) = (0, 0), and those at apex B are (xB, yB) = (100, 0), then the coordinates of apex
C are (xC , yC) = (50, 50

√
3). The cartesian coordinates (xP , yP ) of point P are then calculated

as

yP = c yC

xP = yP

(
yC − yB
xC − xB

)
+

√
3

2
yC(1− a)

In R, trilinear plots are implemented in the triplot() function in the TeachingDemos
package, and also in the ggtern package, an extension of the ggplot2 framework. The latter
is much more flexible, because it inherits all of the capabilities of ggplot2 for plot annotations,
faceting, and layers. In essence, the function ggtern() is just a wrapper for ggplot(...)
which adds a change in the coordinate system from cartesian (x, y) coordinates to the ternary
coordinate system with coord_tern().
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Figure 4.1: A trilinear plot showing three points, for variables A, B, C.
fig:tripdemo2

For example, the following code9 creates a data frame DATA containing 100 uniformly dis-
tributed random points. It uses stat_density2d() to draw contours of the densities of the
points in the trilinear space.

set.seed(1)
DATA <- data.frame(x = runif(100),

y = runif(100),
z = runif(100))

plot <- ggtern(data = DATA,
aes(x, y, z))

plot + stat_density2d(method = "lm", fullrange = T,
n = 200, geom = "polygon",
aes(fill = ..level..,

alpha = ..level..)) +
geom_point() +
theme_tern_rgbw() +
labs(title = "Uniform data with density contours") +
scale_fill_gradient(low = "blue",high = "red") +
guides(color = "none", fill = "none", alpha = "none")

{ex:lifeboat1}

EXAMPLE 4.19: Lifeboats on the Titanic
We examine the question of who survived and why in the sinking of the RMS Titanic in

Section 5.4 (Example ??), where we analyze a four-way table, Titanic, of the 2201 people on
board (1316 passengers and 885 crew), classified by Class, Sex, Age, and Survival. A related
data set, Lifeboats in vcd tabulates the survivors according to the life boats on which they
were loaded. This data sheds some additional light on the issue of survival and provides a nice
illustration of trilinear plots.

9This example was taken from the ggtern web site, http://ggtern.com/2013/12/12/
patched-density-functions-2/.



144 [11-26-2014] 4 Two-way contingency tables

10
0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

y

x z

y

x

z

Uniform data with density contours

Figure 4.2: A trilinear plot with density contours
fig:ggterm-demo

A bit of background: after the disaster, the British Board of Trade launched several inquiries,
the most comprehensive of which resulted in the Report on the Loss of the “Titanic” (S.S.) by
Lord Mersey (Mersey, 1912). 10 The data frame Lifeboats in vcd contains the data listed on
p. 38 of that report.11

Of interest here is the composition of the boats by the three categories, men, women and
children and crew, and according to the launching of the boats from the port or starboard side.
This can be shown in a trilinear display using the following statements. The plot, shown in
Figure 4.3, has most of the points near the top, corresponding to a high percentage of women and
children. We create a variable, id, used to label those boats with more than 10% male passengers.
In the ggplot2 framework, plot aesthetics, such as color and shape can be mapped to variables
in the data set, and here we map these both to side of the boat.

data("Lifeboats", package="vcd")
# label boats with more than 10% men
Lifeboats$id <- ifelse(Lifeboats$men/Lifeboats$total > .1,

as.character(Lifeboats$boat), "")
ggtern(data = Lifeboats,

mapping = aes(x = women, y = men, z = crew,
colour=side, shape=side, label=id)) +

theme_tern_rgbw() +
theme(plot.margin=unit(c(0,0,0,0),"mm")) +
geom_point(aes(size=2)) +

10The Titanic was outfitted with 20 boats, half on each of the port and starboard sides, of which 14 were large
lifeboats with a capacity of 65, two were emergency boats designed for 40 persons, and the remaining four were
collapsible boats capable of holding 47, a total capacity of 1178 (considered adequate at that time). Two of the
collapsible boats, lashed to the roof of the officers quarters, were ineffectively launched and utilized as rafts after the
ship sunk. The report lists the time of launch and composition of the remaining 18 boats according to male passengers,
women and children, and “men of crew”, as reported by witnesses.

11The “data” lists a total of 854 in 18 boats, although only 712 were in fact saved. Mersey notes “it is obvious that
these figures are quite unreliable”.
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labs(title = "Lifeboats on the Titanic") +
labs(T="Women and children") +
guides(size = "none") +
geom_smooth(method="lm", size=1.5, aes(fill=side)) +
geom_text(vjust=1, color="black")
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Figure 4.3: Lifeboats on the Titanic, showing the composition of each boat. Boats with more than
10% male passengers are labeled.

fig:lifeboats1

The resulting plot in Figure 4.3, makes it immediately apparent that many of the boats
launched from the port side differ substantially from the remaining boats, whose passengers were
almost entirely women and children. Boat 1 had only 20% (2 out of 10) women and children,
while the percentage for boat 3 was only 50% (25 out of 50). We highlight the difference in
composition of the boats launched from the two sides by adding a linear regression smooth for
the relation men ~ women.

The trilinear plot scales the numbers for each observation to sum to 1.0, so differences in the
total number of people on each boat cannot be seen in Figure 4.3. The total number reported
loaded is plotted against launch time in Figure 4.4, with a separate regression line and loess
smooth fit to the data for the port and starboard sides.

ggplot(data = Lifeboats,
aes(x=launch, y=total, colour=side, label=boat)) +

geom_smooth(method="lm", aes(fill=side), size=1.5) +
geom_smooth(method="loess", aes(fill=side), se=FALSE, size=1.2) +
geom_point() + ylim(c(0,100)) +
geom_text(vjust=-.5, color="black") +
labs(y="Total loaded", x="Launch time")
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Figure 4.4: Number of people loaded on lifeboats on the Titanic vs. time of launch, by side of
boat. The plot annotations show the linear regression and loess smooth.

fig:lifeboats2

From the linear regression lines in Figure 4.4, it seems that the rescue effort began in panic
on the port side, with relatively small numbers loaded, and (from Figure 4.3), small proportions
of women and children. But the loading regime on that side improved steadily over time. The
procedures began more efficiently on the starboard side but the numbers loaded increased only
slightly. The smoothed loess curves indicate that over time, for each side, there was still a large
variability from boat to boat.

4

4.9 Chapter summary
{sec:twoway-summary}

• A contingency table gives the frequencies of observations cross-classified by two or more
categorical variables. With such data we are typically interested in testing whether asso-
ciations exist, quantifying the strength of association, and understanding the nature of the
association among these variables.

• For 2×2 tables, association is easily summarized in terms of the odds ratio or its logarithm.
This measure can be extended to stratified 2×2×k tables, where we can also assess whether
the odds ratios are equal across strata or how they vary.

• For r × c tables, measures and tests of general association between two categorical vari-
ables are most typically carried out using the Pearson’s chi-square or likelihood-ratio tests
provided by assocstats(). Stratified tests controlling for one or more background
variables, and tests for ordinal categories are provided by the Cochran-Mantel-Haenszel
tests given by CMHtest().

• For 2 × 2 tables, the fourfold display provides a visualization of the association between
variables in terms of the odds ratio. Confidence rings provide a visual test of whether the
odds ratio differs significantly from 1. Stratified plots for 2×2×k tables are also provided
by fourfold().
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• Sieve diagrams and association plots provide other useful displays of the pattern of as-
sociation in r × c tables. These also extend to higher-way tables as part of the strucplot
framework.

• When the row and column variables represent different observers rating the same subjects,
interest is focused on agreement rather than mere association. Cohen’s κ is one measure of
strength of agreement. The observer agreement chart provides a visual display of how the
observers agree and disagree.

• Another specialized display, the trilinear plot is useful for three-column frequency tables
or compositional data.

4.10 Further reading
{sec:twoway-reading}

4.11 Lab exercises
{sec:twoway-lab}{lab:4.1}

Exercise 4.1 The data set fat, created below, gives a 2× 2 table recording the level of choles-
terol in diet and the presence of symptoms of heart disease for a sample of 23 people.

fat <- matrix( c(6, 4, 2, 11), 2, 2)
dimnames(fat) <- list(diet=c("LoChol", "HiChol"),

disease=c("No", "Yes"))

(a) Use chisq.test(fat) to test for association between diet and disease. Is there any
indication that this test may not be appropriate here?

(b) Use a fourfold display to test this association visually. Experiment with the different op-
tions for standardizing the margins, using the margin argument to fourfold(). What
evidence is shown in different displays regarding whether the odds ratio differs significantly
from 1?

(c) oddsratio(fat, log=FALSE) will give you a numerical answer. How does this
compare to your visual impression from fourfold displays?

(d) With such a small sample, Fisher’s exact test may be more reliable for statistical inference.
Use fisher.test(fat), and compare these results to what you have observed before.

(e) Write a one-paragraph summary of your findings and conclusions for this data set.
{lab:4.2}

Exercise 4.2 The data set Abortion in vcdExtra gives a 2×2×2 table of opinions regarding
abortion in relation to sex and status of the respondent. This table has the following structure:

data("Abortion", package="vcdExtra")
str(Abortion)

## table [1:2, 1:2, 1:2] 171 152 138 167 79 148 112 133
## - attr(*, "dimnames")=List of 3
## ..$ Sex : chr [1:2] "Female" "Male"
## ..$ Status : chr [1:2] "Lo" "Hi"
## ..$ Support_Abortion: chr [1:2] "Yes" "No"

(a) Taking support for abortion as the outcome variable, produce fourfold displays showing the
association with sex, stratified by status.
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(b) Do the same for the association of support for abortion with status, stratified by sex.
(c) For each of the problems above, use oddsratio() to calculate the numerical values of

the odds ratio, as stratified in the question.
{lab:4.3}

Exercise 4.3 The JobSat table on income and job satisfaction created in Example 2.5 is con-
tained in the vcdExtra package.

(a) Carry out a standard χ2 test for association between income and job satisfaction. Is there any
indication that this test might not be appropriate? Repeat this test using simulate.p.value
= TRUE to obtain a Monte Carlo test that does not depend on large sample size. Does this
change your conclusion?

(b) Both variables are ordinal, so CMH tests may be more powerful here. Carry out that analy-
sis. What do you conclude?

{lab:4.4}

Exercise 4.4 The Hospital data in vcd gives a 3×3 table relating the length of stay (in years)
of 132 long-term schizophrenic patients in two London mental hospitals with the frequency of
visits by family and friends.

(a) Carry out a χ2 test for association between the two variables.
(b) Use assocstats() to compute association statistics. How would you describe the

strength of association here?
(c) Produce an association plot for these data, with visit frequency as the vertical variable.

Describe the pattern of the relation you see here.
(d) Both variables can be considered ordinal, so CMHtest() may be useful here. Carry out

that analysis. Do any of the tests lead to different conclusions?
{lab:4.5}

Exercise 4.5 The two-way table Mammograms in vcdExtra gives ratings on the severity of
diagnosis of 110 mammograms by two raters.

(a) Assess the strength of agreement between the raters using Cohen’s κ, both unweighted and
weighted.

(b) Use agreementplot() for a graphical display of agreement here.
{lab:4.6}

Exercise 4.6 Agresti and Winner (1997) gave the data in Table 4.8 on the ratings of 160 movies
by the reviewers Gene Siskel and Roger Ebert for the period from April 1995 through September
1996. The rating categories were Con (“thumbs down”), Mixed and Pro (“thumbs up”).

Table 4.8: Movie ratings by Siskel & Ebert, April 1995–September 1996. Source: Agresti and
Winner (1997){tab:siskel-ebert}

Ebert
Con Mixed Pro total

Con 24 8 13 45
Siskel Mixed 8 13 11 32

Pro 10 9 64 83
total 42 30 88 160

(a) Assess the strength of agreement between the raters using Cohen’s κ, both unweighted and
weighted.

(b) Use agreementplot() for a graphical display of agreement here.
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(c) Assess the hypothesis that the ratings are symmetric around the main diagonal. Hint: Sym-
metry for a square table T means that tij = tji for i 6= j. The expected frequencies under
the hypothesis of symmetry are the average of the off-diagonal cells, E = (T + T T)/2.

{lab:4.7}

Exercise 4.7 For the VisualAcuity data set:

(a) Use the code shown in the text to create the table form, VA.tab.
(b) Perform the CMH tests for this table.
(c) Use loglm() method described in Section 4.3.1 to test whether the association between

left and right eye acuity can be considered the same for men and women.
{lab:4.8}

Exercise 4.8 The graph in Figure 4.4 may be misleading, in that it doesn’t take account of
the differing capacities of the 18 life boats on the Titanic, given in the variable cap in the
Lifeboats data.

(a) Calculate a new variable, pctloaded as the percentage loaded relative to the boat capac-
ity.

(b) Produce a plot similar to Figure 4.4, showing the changes over time in this measure.

detach(package:ggtern)
.locals$ch04 <- setdiff(ls(), .globals)
remove(list=.locals$ch04[sapply(.locals$ch04,function(n){!is.function(get(n))})])
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