
Chapter 5

Mosaic displays for n-way tables

{ch:mosaic}
Mosaic displays help to visualize the pattern of associations among variables in two-way
and larger tables. Extensions of this technique can reveal partial associations, marginal
associations, and shed light on the structure of loglinear models themselves.

5.1 Introduction
{sec:mosaic-intro}

Little boxes, little boxes, little boxes made of ticky-tacky;
Little boxes, little boxes, little boxes all the same.
There are red ones, and blue ones, and green ones, and yellow ones;
Little boxes, little boxes, and they all look just the same.

Pete Seeger

In Chapter 4, we described a variety of graphical techniques for visualizing the pattern of
association in simple contingency tables. These methods are somewhat specialized for particular
sizes and shapes of tables: 2 × 2 tables (fourfold display), r × c tables (sieve diagram), square
tables (agreement charts), r × 3 tables (trilinear plots), and so forth.

This chapter describes the mosaic display and related graphical methods for n-way frequency
tables, designed to show various aspects of high-dimensional contingency tables in a hierarchical
way. These methods portray the frequencies in an n-way contingency table by a collection of
rectangular “tiles” whose size (area) is proportional to the cell frequency. In this respect, the
mosaic display is similar to the sieve diagram (Section 4.5). However, mosaic plots and related
methods described here:

• generalize more readily to n-way tables. One can usefully examine 3-way, 4-way and even
larger tables, subject to the limitations of resolution in any graph;

• are intimately connected to loglinear models, generalized linear models and generalized
nonlinear models for frequency data.

• provide a method for fitting a series of sequential loglinear models to the various marginal
totals of an n-way table; and

• can be used to illustrate the relations among variables which are fitted by various loglinear
models.
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5.2 Two-way tables
{sec:mosaic-twoway}

The mosaic display (Friendly, 1992, 1994, 1997, Hartigan and Kleiner, 1981, 1984) is like a
grouped barchart, where the heights (or widths) of the bars show the relative frequencies of one
variable, and widths (heights) of the sections in each bar show the conditional frequencies of the
second variable, given the first. This gives an area-proportional visualization of the frequencies
composed of tiles corresponding to the cells created by successive vertical and horizontal splits
of rectangle, representing the total frequency in the table. The construction of the mosaic display,
and what it reveals, are most easily understood for two-way tables.{ex:haireye2a}

EXAMPLE 5.1: Hair color and eye color
Consider the data shown earlier in Table 4.2, showing the relation between hair color and eye

color among students in a statistics course. The basic mosaic display for this 4× 4 table is shown
in Figure 5.1.

## Error in eval(expr, envir, enclos): could not find function "mosaic"

## Error in eval(expr, envir, enclos): could not find function "labeling_cells"

data(HairEyeColor, package="datasets")
haireye <- margin.table(HairEyeColor, 1:2)
mosaic(haireye)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

For such a two-way table, the mosaic in Figure 5.1 is constructed by first dividing a unit
square in proportion to the marginal totals of one variable, say, Hair color.

For these data, the marginal frequencies and proportions of Hair color are calculated below:

(hair <- margin.table(haireye,1))

## Hair
## Black Brown Red Blond
## 108 286 71 127

prop.table(hair)

## Hair
## Black Brown Red Blond
## 0.18243 0.48311 0.11993 0.21453

## Error in eval(expr, envir, enclos): could not find function "mosaic"

## Error in eval(expr, envir, enclos): could not find function "labeling_cells"

## Error in eval(expr, envir, enclos): could not find function "mosaic"

These frequencies can be shown as the mosaic for the first variable (hair color), with the unit
square split according to the marginal proportions as in Figure 5.2 (left). The rectangular tiles
are then shaded to show the residuals (deviations) from a particular model as shown in the right
panel of Figure 5.2. The details of the calculations for shading are:
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• The one-way table of marginal totals can be fit to a model, in this case, the (implausible)
model that all hair colors are equally probable. This model has expected frequencies mi =
592/4 = 148:

expected <- rep(sum(hair)/4, 4)
names(expected) <- names(hair)
expected

## Black Brown Red Blond
## 148 148 148 148

• The Pearson residuals from this model, ri = (ni −mi)/
√
mi, are:

(residuals <- (hair - expected) / sqrt(expected))

## Hair
## Black Brown Red Blond
## -3.2880 11.3435 -6.3294 -1.7262

and these values are shown by color and shading as shown in the legend. The high positive
value for Brown hair indicates that people with brown hair are much more frequent in
this sample than the equiprobability model would predict; the large negative residual for
Red hair shows that red heads are much less common. Further details of the schemes for
shading are described below, but essentially we use increasing intensities of blue (red) for
positive (negative) residuals.

In the next step, the rectangle for each Hair color is subdivided in proportion to the relative
(conditional) frequencies of the second variable— Eye color, giving the following conditional
row proportions:

round(addmargins(prop.table(haireye, 1), 2), 3)

## Eye
## Hair Brown Blue Hazel Green Sum
## Black 0.630 0.185 0.139 0.046 1.000
## Brown 0.416 0.294 0.189 0.101 1.000
## Red 0.366 0.239 0.197 0.197 1.000
## Blond 0.055 0.740 0.079 0.126 1.000

The proportions in each row determine the heights of the tiles in the second mosaic display
in Figure 5.3.

mosaic(haireye, shade=TRUE, suppress=0,
labeling=labeling_residuals, gp_text=gpar(fontface=2))

## Error in eval(expr, envir, enclos): could not find function "mosaic"

• Again, the cells are shaded in relation to standardized Pearson residuals, rij = (nij −
mij)/

√
mij , from a model. For a two-way table, the model is that Hair color and Eye

color are independent in the population from which this sample was drawn. These resid-
uals are calculated as shown below using loglm() to fit the independence model and
residuals().
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HE.mod <- loglm(~ Hair + Eye, data=haireye)
round(resids <- residuals(HE.mod, type="pearson"), 2)

## Re-fitting to get frequencies and fitted values
## Eye
## Hair Brown Blue Hazel Green
## Black 4.40 -3.07 -0.48 -1.95
## Brown 1.23 -1.95 1.35 -0.35
## Red -0.07 -1.73 0.85 2.28
## Blond -5.85 7.05 -2.23 0.61

• Thus, in Figure 5.3, the two tiles shaded deep blue correspond to the two cells, (Black,
Brown) and (Blond, Blue), whose residuals are greater than +4, indicating much greater
frequency in those cells than would be found if Hair color and Eye color were independent.
The tile shaded deep red, (Blond, Brown), corresponds to the largest negative residual =
−5.85, indicating this combination is extremely rare under the hypothesis of independence.

• The overall Pearson χ2 statistic for the independence model is just the sum of squares of
the residuals, with degrees of freedom (r − 1)× (c− 1).

(chisq <- sum(resids^2))

## [1] 138.29

(df <- prod(dim(haireye)-1))

## [1] 9

chisq.test(haireye)

##
## Pearson's Chi-squared test
##
## data: haireye
## X-squared = 138.29, df = 9, p-value < 2.2e-16

4

Shading levels

A variety of schemes for shading the tiles are available in the strucplot framework (Section 5.3),
but the simplest (and default) shading patterns for the tiles are based on the sign and magnitude of
the standardized Pearson residuals, using shades of blue for positive residuals and red for negative
residuals, and two threshold values for their magnitudes, |rij | > 2 and |rij | > 4.

Because the standardized residuals are approximately unit-normal N(0, 1) values, this corre-
sponds to highlighting cells whose residuals are individually significant at approximately the .05
and .0001 level, respectively. Other shading schemes described later provide tests of significance,
but the main purpose of highlighting cells is to draw attention to the pattern of departures of the
data from the assumed model of independence.
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Interpretation and reordering

To interpret the association between Hair color and Eye color, consider the pattern of positive
(blue) and negative (red) tiles in the mosaic display. We interpret positive values as showing
cells whose observed frequency is substantially greater than would be found under independence;
negative values indicate cells which occur less often than under independence.

The interpretation can often be enhanced by reordering the rows or columns of the two-way
table so that the residuals have an opposite corner pattern of signs. This usually helps us interpret
any systematic patterns of association in terms of the ordering of the row and column categories.

In this example, a more direct interpretation can be achieved by reordering the Eye colors as
shown in Figure 5.4. Note that in this rearrangement both hair colors and eye colors are ordered
from dark to light, suggesting an overall interpretation of the association between Hair color and
Eye color.

# re-order Eye colors from dark to light
haireye2 <- haireye[, c("Brown", "Hazel", "Green", "Blue")]
mosaic(haireye2, shade=TRUE)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

In general, the levels of a factor in mosaic displays are often best reordered by arranging
them according to their scores on the first (largest) correspondence analysis dimension (Friendly,
1994); see Chapter 6 for details. Friendly and Kwan (2003) use this as one example of effect
ordering for data displays, illustrated in Chapter 1.

Thus, the mosaic in Figure 5.4 shows that the association between Hair and Eye color is
essentially that:

• people with dark hair tend to have dark eyes,
• those with light hair tend to have light eyes
• people with red hair and hazel eyes do not quite fit this pattern

5.3 The strucplot framework
{sec:mosaic-strucplot}

Mosaic displays have much in common with sieve plots and association plots described in Chap-
ter 4 and with related graphical methods such as doubledecker plots described later in this chapter.
The main idea is to visualize a contingency table of frequencies by “tiles” corresponding to the
table cells arranged in rectangular form. For multiway tables with more than two factors, the vari-
ables are nested into rows and columns using recursive conditional splits, given the table margins.
The result is a “flat” representation that can be visualized in ways similar to a two-dimensional
representation of a table. The structable() function described in Section 2.5 gives the tab-
ular version of a strucplot. The description below follows Meyer et al. (2006), also included as a
vignette, (accessible from R as vignette("strucplot", pkg="vcd")), in vcd.

Rather than implementing each of these methods separately, the strucplot framework in the
vcd package provides a general class of methods of which these are all instances. This framework
defines a class of conditional displays which allows for granular control of graphical appearance
aspects, including:
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Figure 5.1: Components of the strucplot framework. High level functions use those at lower
levels to provide a general system for tile-based plots of frequency tables.{fig:struc}

• the content of the tiles, e.g., observed or expected frequencies
• the split direction for each dimension, horizontal or vertical
• the graphical parameters of the tiles’ content, e.g., color or other visual attributes
• the spacing between the tiles
• the labeling of the tiles

The strucplot framework is highly modularized: Figure 5.1 shows the hierarchical relation-
ship between the various components. For the most part, you will use directly the convenience
and related functions at the top of the diagram, but it is more convenient to describe the framework
from the bottom up.

1. On the lowest level, there are several groups of workhorse and parameter functions that di-
rectly or indirectly influence the final appearance of the plot (see Table 5.1 for an overview).
These are examples of graphical appearance control functions (called grapcon functions).
They are created by generating functions (grapcon generators), allowing flexible parame-
terization and extensibility (Figure 5.1 only shows the generators). The generator names
follow the naming convention group_foo(), where group reflects the group the gen-
erators belong to (strucplot core, labeling, legend, shading, or spacing).

• The workhorse functions (created by struc_foo()) are labeling_foo(), and
legend_foo(). These functions directly produce graphical output (i.e., “add ink
to the canvas”), for labels and legends respectively.

• The parameter functions (created by spacing_foo() and shading_foo())
compute graphical parameters used by the others. The grapcon functions returned
by struc_foo() implement the core functionality, creating the tiles and their con-
tent.
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Group Grapcon generator Description
strucplot struc_assoc() core function for association plots
core struc_mosaic() core function for mosaic plots

struc_sieve() core function for sieve plots
labeling labeling_border() border labels

labeling_cboxed() centered labels with boxes, all labels clipped,
and on top and left border

labeling_cells() cell labels
labeling_conditional() border labels for conditioning variables

and cell labels for conditioned variables
labeling_doubledecker() draws labels for doubledecker plot
labeling_lboxed() left-aligned labels with boxes
labeling_left() left-aligned border labels
labeling_left2() left-aligned border labels, all labels on top and left border
labeling_list() draws a list of labels under the plot
labeling_residuals() show residuals in cells
labeling_value() show values (observed, expected) in cells

shading shading_binary() visualizes the sign of the residuals
shading_Friendly() implements Friendly shading (based on HSV colors)
shading_hcl() shading based on HCL colors
shading_hsv() shading based on HSV colors
shading_max() shading visualizing the maximum test statistic

(based on HCL colors)
shading_sieve() implements Friendly shading customized for sieve plots

(based on HCL colors)
spacing spacing_conditional() increasing spacing for conditioning variables,

equal spacing for conditioned variables
spacing_dimequal() equal spacing for each dimension
spacing_equal() equal spacing for all dimensions
spacing_highlighting() increasing spacing, last dimension set to zero
spacing_increase() increasing spacing

legend legend_fixed() creates a fixed number of bins (similar to mosaicplot())
legend_resbased() suitable for an arbitrary number of bins

(also for continuous shadings)

Table 5.1: Available graphical appearance control (grapcon) generators in the strucplot frame-
work{tab:grapcons}
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2. On the second level of the framework, a suitable combination of the low-level grapcon
functions (or, alternatively, corresponding generating functions) is passed as “hyperparam-
eters” to strucplot(). This central function sets up the graphical layout using grid
viewports, and coordinates the specified core, labeling, shading, and spacing functions to
produce the plot.

3. On the third level, vcd provides several convenience functions such as mosaic(), sieve(),
assoc(), and doubledecker() which interface to strucplot() through sensible
parameter defaults and support for model formulae.

4. Finally, on the fourth level, there are “related” vcd functions (such as cotabplot()
and the pairs() methods for table objects) arranging collections of plots of the strucplot
framework into more complex displays (e.g., by means of panel functions).

5.3.1 Shading schemes
{sec:mosaic-shading}

Unlike other graphics functions in base R, the strucplot framework allows almost full control over
the graphical parameters of all plot elements. In particular, in association plots, mosaic plots, and
sieve plots, you can modify the graphical appearance of each tile individually.

Built on top of this functionality, the framework supplies a set of shading functions choosing
colors appropriate for the visualization of loglinear models. The tiles’ graphical parameters are
set using the gp argument of the functions of the strucplot framework. This argument basically
expects an object of class "gpar" whose components are arrays of the same shape (length and
dimensionality) as the data table.

For added generality, however, you can also supply a grapcon function that computes such
an object given a vector of residuals, or, alternatively, a generating function that takes certain
arguments and returns such a grapcon function (see Table 5.1). vcd provides several shading
functions, including support for both HSV and HCL colors, and the visualization of significance
tests. TODO: This points to the need for a section, probably in Chapter 1, on color spaces and
color schemes for categorical data graphics.

Specifying graphical parameters for strucplot displays

Strucplot displays in vcd are built using the grid graphics package. There are many graphical
parameters that can be set using gp = gpar(...) in a call to a high-level strucplot function.
Among these, the following are often most useful to control the drawing components:

col Color for lines and borders.
fill Color for filling rectangles, polygons, ...
alpha Alpha channel for transparency of fill color.
lty Line type for lines and borders.
lwd Line width for lines and borders.

In addition, a number of parameters control the display of text labels in these displays:

fontsize The size of text (in points)
cex Multiplier applied to fontsize
fontfamily The font family
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fontface The font face (bold, italic, ...)

See help(gpar) for a complete list and further details.

We illustrate this capability below using the Hair color and Eye color data as reordered in
Figure 5.4. The following example produces a Marimekko chart, or a “poor-man’s mosaic dis-
play” as shown in the left panel of Figure 5.2. This is essentially a divided bar chart where the
eye colors within each horizontal bar for the hair color group are all given the same color. In the
example, the matrix fill_colors is constructed to conform to the haireye2 table, using
color values that approximate the eye colors.

# color by hair color
fill_colors <- c("brown4", "#acba72", "green", "lightblue")
(fill_colors <- t(matrix(rep(fill_colors, 4), ncol=4)))

## [,1] [,2] [,3] [,4]
## [1,] "brown4" "#acba72" "green" "lightblue"
## [2,] "brown4" "#acba72" "green" "lightblue"
## [3,] "brown4" "#acba72" "green" "lightblue"
## [4,] "brown4" "#acba72" "green" "lightblue"

mosaic(haireye2, gp=gpar(fill=fill_colors, col=0))

## Error in eval(expr, envir, enclos): could not find function "mosaic"

Note that because the hair colors and eye colors are both ordered, this shows the decreasing
prevalence of light hair color amongst those with brown eyes and the increasing prevalence of
light hare with blue eyes.

Alternatively, for some purposes,1 we might like to use color to highlight the pattern of di-
agonal cells, and the off-diagonals 1, 2, 3 steps removed. The R function toeplitz() returns
such a patterned matrix, and we can use this to calculate the fill_colors by indexing the
palette() function. The code below produces the right panel in Figure 5.2.

# toeplitz designs
toeplitz(1:4)

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 2 1 2 3
## [3,] 3 2 1 2
## [4,] 4 3 2 1

fill_colors <- palette()[1+toeplitz(1:4)]
mosaic(haireye2, gp=gpar(fill=fill_colors, col=0))

## Error in eval(expr, envir, enclos): could not find function "mosaic"

More simply, to shade a mosaic according to the levels of one variable (typically a response
variable), you can use the highlighting arguments of mosaic(). The first call below
gives a result similar to the left panel of Figure 5.2. Alternatively, using the formula method for
mosaic(), specify the response variable as the left-hand side.

1For example, this would be appropriate for a square table, showing agreement between row and column categories,
as in Section 4.7.



168 [11-26-2014] 5 Mosaic displays for n-way tables

Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Hazel Green Blue
Eye

H
ai

r
B

lo
nd

R
ed

B
ro

w
n

B
la

ck

Brown Hazel Green Blue

Figure 5.2: Mosaic displays for the haireye2 data, using custom colors to fill the tiles. Left:
Marimekko chart, using colors to reflect the eye colors; right: Toeplitz-based colors, reflecting
the diagonal strips in a square table. {fig:HE-fill}

mosaic(haireye2, highlighting="Eye", highlighting_fill=fill_colors)
mosaic(Eye ~ Hair, data=as.table(haireye2))

Residual-based shading

The important idea that differentiates mosaic and other strucplot displays from the “poor-man’s,”
Marimekko versions (Figure 5.2) often shown in other software is that rather than just using
shading color to identify the cells, we can use these attributes to show something more— residuals
from some model, whose pattern helps to explain the association between the table variables.

As described above, the strucplot framework includes a variety of shading_ functions,
and these can be customized with optional arguments. Zeileis et al. (2007) describe a general
approach to residual-based shadings for area-proportional visualizations, used in the development
of the strucplot framework in vcd.{ex:interp}

EXAMPLE 5.2: Interpolation options
One simple thing to do is to modify the interpolate option passed to the default shading_hcl

function, as shown in Figure 5.7.

# more shading levels
mosaic(haireye2, shade=TRUE, gp_args=list(interpolate=1:4))

## Error in eval(expr, envir, enclos): could not find function "mosaic"

# continuous shading
interp <- function(x) pmin(x/6, 1)
mosaic(haireye2, shade=TRUE, gp_args=list(interpolate=interp))

## Error in eval(expr, envir, enclos): could not find function "mosaic"
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For the left panel of Figure 5.7, a numeric vector is passed as interpolate=1:4, defining
the boundaries of a step function mapping the absolute values of residuals to saturation levels in
the HCL color scheme. For the right panel, a user-defined function, interp(), is created which
maps the absolute residuals to saturation values in a continuous way (up to a maximum of 6).

Note that these two interpolation schemes produce quite similar results, differing mainly
in the shading level of residuals within ±1 and in the legend. In practice, the default discrete
interpolation, using cutoffs of ±2,±4 usually works quite well. 4

{ex:shading}

EXAMPLE 5.3: Shading functions
Alternatively, the names of shading functions can be passed as the gp argument, as shown

below, producing Figure 5.8. Two shading function are illustrated here:

• The left panel of Figure 5.8 uses the classical Friendly (1994) shading scheme, shading_Friendly
with HSV colors of blue and red and default cutoffs for absolute residuals, ±2,±4, corre-
sponding to interpolate = c(2, 4). In this shading scheme, all tiles use an outline
color (col) corresponding to the sign of the residual. As well, the border line type (lty)
distinguishes positive and negative residuals, which is useful if a mosaic plot is printed in
black and white.

• The right panel uses the shading_max() function, based on the ideas of Zeileis et al.
(2007) on residual-based shadings for area-proportional visualizations. Instead of using
the cut-offs 2 and 4, it employs the critical values, Mα, for the maximum absolute Pearson
residual statistic,

M = max
i,j
|rij | ,

by default at α = 0.10 and 0.01.2 Only those residuals with |rij | > Mα are colored in the
plot, using two levels for Value (“lightness”) in HSV color space. Consequently, all color
in the plot signals a significant departure from independence at 90% or 99% significance
level, respectively.3

mosaic(haireye2, gp=shading_Friendly, legend=legend_fixed)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

set.seed(1234)
mosaic(haireye2, gp=shading_max)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

In this example, the difference between these two shading schemes is largely cosmetic, in that
the pattern of association is similar in the two panels of Figure 5.8, and the interpretation would
be the same. This is not always the case, as we will see in the next example. 4

2These default significance levels were chosen because this leads to displays where fully colored cells are clearly
significant (p < 0.01), cells without color are clearly non-significant (p > 0.1), and cells in between can be considered
to be weakly significant (0.01 ≤ p ≤ 0.1).

3This computation uses the vcd function coindep_test() to calculate generalized tests of (conditional) inde-
pendence by simulation from the marginal distribution of the input table under (conditional) independence. In these
examples using shading_max, the function set.seed() is used to initialize the random number generators to a
given state for reproducibility.
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{ex:arth-mosaic}

EXAMPLE 5.4: Arthritis treatment
This example uses the Arthritis data, illustrated earlier (Example ??), on the relation

between treatment and outcome for rheumatoid arthritis. To confine this example to a two-way
table, we use only the (larger) female patient group.

art <- xtabs(~ Treatment + Improved, data = Arthritis,
subset = Sex == "Female")

## Error in terms.formula(formula, data = data): object ’Arthritis’ not
found

names(dimnames(art))[2] <- "Improvement"

## Error in names(dimnames(art))[2] <- "Improvement": object ’art’ not
found

The calls to mosaic() below compare shading_Friendly and shading_max, giving
the plots shown in Figure 5.9.

mosaic(art, gp=shading_Friendly, margin = c(right = 1),
labeling=labeling_residuals, suppress=0, digits=2)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

set.seed(1234)
mosaic(art, gp=shading_max, margin = c(right = 1))

## Error in eval(expr, envir, enclos): could not find function "mosaic"

This data set is somewhat paradoxical, in that the standard chisq.test() for association
with these data gives a highly significant result, χ2(2) = 11.3, p = 0.0035, while the shading
pattern using shading_Friendly in the left panel of Figure 5.9 shows all residuals within
±2, and thus unshaded.

On the other hand, the shading_max shading in the right panel of Figure 5.9 shows that
significant deviations from independence occur in the four corner cells, corresponding to more
of the treated group showing marked improvement, and more of the placebo group showing no
improvement.

Some details behind the shading_max method are shown below. The Pearson residuals for
this table are calculated as:

residuals(loglm(~Improvement + Treatment, data=art), type="pearson")

## Error in loglm(~Improvement + Treatment, data = art): object ’art’ not
found

The shading_max() function then calls coindep_test(art) to generate n = 1000
random tables with the same margins, and computes the maximum residual statistic for each.
This gives a non-parametric p-value for the test of independence, p = 0.011 shown in the legend.
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set.seed(1243)
art_max <- coindep_test(art)

## Error in eval(expr, envir, enclos): could not find function "coindep_test"

art_max

## Error in eval(expr, envir, enclos): object ’art_max’ not found

Finally, the 0.90 and 0.99 quantiles of the simulation distribution are used as shading levels,
passed as the value of the interpolate argument.

art_max$qdist(c(0.90, 0.99))

## Error in eval(expr, envir, enclos): object ’art_max’ not found

4

The converse situation can also arise in practice. An overall test for association using Pear-
son’s χ2 may not be significant, but the maximum residual test may highlight one or more cells
worthy of greater attention, as illustrated in the following example. {ex:soccer2}

EXAMPLE 5.5: UK Soccer scores
In Example 3.9, we examined the distribution of goals scored by the home team and the

away team in 380 games in the 1995/96 season by the 20 teams in the UK Football Associa-
tion, Premier League. The analysis there focused on the distribution of the total goals scored,
under the assumption that the number of goals scored by the home team and the away team were
independent.

Here, the rows and columns of the table UKSoccer are both ordered, so it is convenient and
compact to carry out all the CMH tests taking ordinality into account.

data("UKSoccer", package="vcd")
CMHtest(UKSoccer)

## Error in eval(expr, envir, enclos): could not find function "CMHtest"

All of these are non-significant, so that might well be the end of the story, as far as indepen-
dence of goals in home and away games is concerned. Yet, one residual, r42 = 3.08 stands out,
corresponding to 4 or more goals by the home team and only 2 goals by the away team, which
accounts for nearly half of the χ2(16) = 18.7 for general association.

set.seed(1234)
mosaic(UKSoccer, gp=shading_max, labeling=labeling_residuals, digits=2)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

This occurrence may or may not turn out to have some explanation, but at least the mosaic
plot draws it to our attention. 4
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5.4 Three-way and larger tables
{sec:mosaic-threeway}

The mosaic displays and other graphical methods within the strucplot framework extend quite
naturally to three-way and higher-way tables. The essential idea is that for the variables in a mul-
tiway table in a given order, each successive variable is used to subdivide the tile(s) in proportion
to the relative (conditional) frequencies of that variable, given all previous variables. This process
continues recursively until all table variables have been included.

For simplicity, we continue with the running example of Hair color and Eye color. Imagine
that each cell of the two-way table for Hair and Eye color is further classified by one or more addi-
tional variables—sex and level of education, for example. Then each rectangle can be subdivided
horizontally to show the proportion of males and females in that cell, and each of those horizontal
portions can be subdivided vertically to show the proportions of people at each educational level
in the hair-eye-sex group.{ex:HEC1}

EXAMPLE 5.6: Hair color, eye color and sex
Figure 5.11 shows the mosaic for the three-way table, with Hair and Eye color groups di-

vided according to the proportions of Males and Females. As explained in the next section (Sec-
tion 5.4.1) there are different models for “independence” we could display. Here, we show resid-
uals for the model of joint independence, [HairEye][Sex] , which asserts that the combinations of
Hair color and Eye color are independent of Sex. This model, and the corresponding mosaic plot
does not show the (overall) association between Hair color and Eye color we explored in earlier
examples (see Figure 5.3). It merely shows how where the Hair color–Eye color combinations
might differ by Sex.

In the call to mosaic() below, the model of joint independence is specified as the argument
expected = ~ Hair*Eye + Sex. The strucplot labeling function labeling_residuals
is used to display the residuals in the highlighted cells.

HEC <- HairEyeColor[, c("Brown", "Hazel", "Green", "Blue"),]
mosaic(HEC, expected = ~ Hair*Eye + Sex,

labeling=labeling_residuals, digits=2)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

In Figure 5.11 it is easy to see that there is no systematic association between sex and the
combinations of Hair and Eye color—except among blue-eyed blonds, where there are an over-
abundance of females.

The model of joint independence has a non-significant Pearson χ2(15) = 19.567, p = 0.189.
Yet, the two largest residuals highlighted in the plot account for nearly half (−2.152 + 2.032 =
8.74) of the lack of fit, and so are worthy of attention here. An easy (probably facile) interpretation
is that among the blue-eyed blonds, some of the females benefited from hair products. 4

5.4.1 Fitting models
{sec:mosaic-fitting}

When three or more variables are represented in a table, we can fit several different models of
types of “independence” and display the residuals from each model. We treat these models as
null or baseline models, which may not fit the data particularly well. The deviations of observed
frequencies from expected ones, displayed by shading, will often suggest terms to be added to an
explanatory model that achieves a better fit.
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For a three-way table, with variables A, B and C, some of the hypothesized models which
can be fit are described below and summarized in Table 5.2. Here we use [•] notation to list
the high-order terms in a hierarchical loglinear model; these correspond to the margins of the
table which are fitted exactly, and which translate directly into R formulas used in loglm() and
mosaic(..., expected=). TODO: Tweak the association diagrams here to use smaller
circles, allowing longer connecting lines.

The notation [AB][AC] , for example, is shorthand for the model loglm(~ A*B + A*C)
that implies

log mijk = µ+ λAi + λBj + λCk + λABij + λACik , (5.1) {eq:AB-AC}

(as described in Section 8.2) and reproduces the {AB} and {AC} marginal subtables.4 That
is, the calculated expected frequencies in these margins are always equal to the corresponding
observed frequencies, mij+ = nij+ and mi+k = ni+k.

Table 5.2: Fitted margins, model symbols and interpretations for some hypotheses for a three-way
table. {tab:hyp3way}

Hypothesis
Fitted

margins
Model
symbol

Independence
interpretation

Association
graph

H1 ni++, n+j+, n++k [A][B][C] A ⊥ B ⊥ C A B

C

H2 nij+, n++k [AB][C] (A,B) ⊥ C A B

C

H3 ni+k, n+jk [AC][BC] A ⊥ B | C A B

C

H4 nij+, ni+k, n+jk [AB][AC][BC] NA
A B

C

In this table, A ⊥ B is read, “A is independent of B.” The independence interpretation of the
model Eqn. (5.1) is B ⊥ C |A, which can be read as “B is independent of C, given (conditional
on) A.” Table 5.2 also depicts the relations among variables as an association graph, where
associated variables are connected by an edge and variables that are asserted to be independent
are unconnected. In mosaic-like displays, other associations present in the data will appear in the
pattern of residuals.

For a three-way table, there are four general classes of independence models illustrated in

4The notation here uses curly braces, {•} to indicate a marginal subtable summed over all other variables.
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Table 5.2, as described below.5 Not included here is the saturated model, [ABC] , which fits the
observed data exactly.

H1: Complete independence. The model of complete (mutual) independence, symbolizedA ⊥
B ⊥ C, with model formula ~ A + B + C, asserts that all joint probabilities are prod-
ucts of the one-way marginal probabilities:

πijk = πi++ π+j+ π++k ,

for all i, j, k in a three-way table. This corresponds to the log-linear model [A][B][C] .
Fitting this model puts all higher terms, and hence all association among the variables, into
the residuals.

H2: Joint independence. Another possibility is to fit the model in which variable C is jointly
independent of variables A and B, ({A,B} ⊥ C), with model formula ~ A*B + C,
where

πijk = πij+ π++k .

This corresponds to the loglinear model [AB][C] . Residuals from this model show the
extent to which variable C is related to the combinations of variables A and B but they do
not show any association between A and B, since that association is fitted exactly. For this
model, variable C is also independent of A and B in the marginal {AC} table (collapsing
over B) and in the marginal {BC}.

H3: Conditional independence. Two variables, say A and B are conditionally independent
given the third (C) if A and B are independent when we control for C, symbolized as
A ⊥ B |C, and model formula ~ A*C + B*C. This means that conditional probabilities,
πij|k obey

πij|k = πi+|k π+j|k ,

where πij|k = πijk/πij+, πi+|k = πi+k/πi++, and π+j|k = π+jk/π+j+. The correspond-
ing loglinear models is denoted [AC][BC] . When this model is fit, the mosaic display
shows the conditional associations between variables A and B, controlling for C, but does
not show the associations between A and C, or B and C.

H4: No three-way interaction. For this model, no pair is marginally or conditionally indepen-
dent, so there is no independence interpretation. Nor is there a closed-form expression for
the cell probabilities. However, the association between any two variables is the same at
each level of the third variable. The corresponding loglinear model formula is [AB][AC][BC]
, indicating that all two-way margins are fit exactly and so only the three-way association
is shown in the mosaic residuals.

TODO: Add a textbox or text describing the general scheme for translating among loglinear
shorthand, R model formulas and independence interpretations.{ex:HEC2}

EXAMPLE 5.7: Hair color, eye color and sex
We continue with the analysis of the HairEyeColor data from Example 5.6. Figure 5.11

showed the fit of the joint-independence model [HairEye][Sex], testing whether the joint distri-
bution of hair color and eye color is associated with sex.

5For H2 and H3, permutation of the variables A, B, and C gives other members of each class.
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Any other model fit to this table will have the same size tiles in the mosaic since the areas
depend on the observed frequencies; the residuals, and hence the shading of the tiles will differ.
Figure 5.12 shows mosaics for two other models. Shading in the left panel shows residuals from
the model of mutual independence, [Hair][Eye][Sex], and so includes all sources of association
among these three variables. The right panel shows the conditional independence model, [Hair-
Sex][EyeSex] testing whether, given sex, hair color and eye color are independent. Note that the
pattern of residuals here is similar to that in the two-way display, Figure 5.4, that collapsed over
sex.

abbrev <- list(abbreviate=c(FALSE, FALSE, 1))
mosaic(HEC, expected = ~ Hair + Eye + Sex, labeling_args=abbrev,

main="Model: ~Hair + Eye + Sex")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

mosaic(HEC, expected = ~ Hair*Sex + Eye*Sex, labeling_args=abbrev,
main="Model: ~Hair*Sex + Eye*Sex")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

Compared with Figure 5.11 for the joint independence model, [HairEye][Sex], it is easy to see
that both of these models fit very poorly.

We consider loglinear models in more detail in Chapter 8, but for now note that these models
are fit using loglm() in the MASS package, with the model formula given in the expected
argument. The details of these models can be seen by fitting these models explicitly, and the fit
of several models can be summarized compactly using Summarise() in vcdExtra.

library(MASS)
mod1 <- loglm(~ Hair + Eye + Sex, data=HEC) # mutual independence
mod2 <- loglm(~ Hair*Sex + Eye*Sex, data=HEC) # conditional independence
mod3 <- loglm(~ Hair*Eye + Sex, data=HEC) # joint independence
Summarise(mod1, mod2, mod3)

## Error in eval(expr, envir, enclos): could not find function "Summarise"

Alternatively, you can get the Pearson and likelihood ratio (LR) tests for a given model using
anova(), or compare a set of models using LR tests on the difference in LR χ2 from one model
to the next, when a list of models is supplied to anova().

anova(mod1)

## Call:
## loglm(formula = ~Hair + Eye + Sex, data = HEC)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 166.30 24 0
## Pearson 164.92 24 0

anova(mod1, mod2, mod3, test="chisq")

## LR tests for hierarchical log-linear models
##
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## Model 1:
## ~Hair + Eye + Sex
## Model 2:
## ~Hair * Sex + Eye * Sex
## Model 3:
## ~Hair * Eye + Sex
##
## Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
## Model 1 166.300 24
## Model 2 156.678 18 9.6222 6 0.14149
## Model 3 19.857 15 136.8213 3 0.00000
## Saturated 0.000 0 19.8566 15 0.17750

4

5.4.2 Sequential plots and models
{sec:mosaic-seq}

As described in Section 5.2, we can think of the mosaic display for an n-way table as being
constructed in stages, with the variables listed in a given order, and the unit tile decomposed
recursively as each variable is entered in turn. This process turns out to have the useful property
that it provides an additive (hierarchical) decomposition of the total association in a table, in a
way analogous to sequential fitting with Type I sum of squares in regression models.

Typically, we just view the mosaic and fit models to the full n-way table, but it is useful to
understand the connection with models for the marginal subtables, defined by summing over all
variables not yet entered. For example for a three-way table with variables, A,B,C, the marginal
subtables {A} and {AB} are calculated in the process of constructing the three-way mosaic. The
{A} marginal table can be fit to a model where the categories of variable A are equiprobable as
shown in Figure 5.2 (or some other discrete distribution); the independence model can be fit to
the {AB} subtable as in Figure 5.2 and so forth.

This connection can be seen in the following formula that decomposes the joint cell proba-
bility in an n-way table with variables v1, v2, . . . vn as a sequential product of conditional proba-
bilities,

pijk`··· =

{v1v2}︷ ︸︸ ︷
pi × pj|i× pk|ij︸ ︷︷ ︸

{v1v2v3}

× p`|ijk × · · · × pn|ijk··· (5.2){eq:seqprod}

In Eqn. (5.2), the first term corresponds to the one-way mosaic for v1, the first two terms to the
mosaic for v1 and v2, the first three terms to the mosaic for v1, v2 and v2, and so forth.

It can be shown (Friendly, 1994) that this sequential product of probabilities corresponds to
a set of sequential models of joint independence, whose likelihood ratio G2 statistics provide an
additive decomposition of the total association, G2

[v1][v2]...[vn]
for the mutual independence model

in the full table:

G2
[v1][v2]...[vn]

= G2
[v1][v2]

+G2
[v1v2][v3]

+G2
[v1v2v3][v4]

+ · · ·+G2
[v1...vn−1][vn]

(5.3){eq:seqgsq}

For example, for the hair-eye data, the mosaic displays for the [Hair] [Eye] marginal table
(Figure 5.4) and the [HairEye] [Sex] table (Figure 5.11) can be viewed as representing the partition
of G2 shown as a table below:
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Model Model symbol df G2

Marginal [Hair] [Eye] 9 146.44
Joint [Hair, Eye] [Sex] 15 19.86
Mutual [Hair] [Eye] [Sex] 24 166.30

## Error in eval(expr, envir, enclos): could not find function "mosaic"

## Error in eval(expr, envir, enclos): could not find function "mosaic"

## Error in eval(expr, envir, enclos): could not find function "mosaic"

The decomposition in this table reflecting Eqn. (5.3) is shown as a visual equation in Fig-
ure 5.3. You can see from the shading how the two sequential submodels contribute to overall
association in the model of mutual independence.
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Figure 5.3: Visual representation of the decomposition of the G2 for mutual independence (total)
as the sum of marginal and joint independence. {fig:HEC-seq}

Although sequential models of joint independence have the nice additive property illustrated
above, other classes of sequential models are possible, and sometimes of substantive interest. The
main types of these models are illustrated in Table 5.3 for 3-, 4-, and 5- way tables, with variables
A, B, ... E. In all cases, the natural model for the one-way margin is the equiprobability model,
and that for the two-way margin is [A][B] .

The vcdExtra package provides a collection of convenience functions that generate the log-
linear model formulae symbolically, as indicated in the function column. The functions mutual(),
joint(), conditional(), markov() and so forth simply generate a list of terms suitable
for a model formula for loglin(). See help(loglin-utilities) for further details.

Wrapper functions loglin2string() and loglin2formula() convert these to char-
acter strings or model formulae respectively, for use with loglm() and mosaic()-related
functions in vcdExtra. Some examples are shown below.

for(nf in 2:5) {
print(loglin2string(joint(nf, factors=LETTERS[1:5])))

}
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Table 5.3: Classes of sequential models for n-way tables {tab:seqmodels}

function 3-way 4-way 5-way
mutual [A] [B] [C] [A] [B] [C] [D] [A] [B] [C] [D] [E]
joint [AB] [C] [ABC] [D] [ABCE] [E]
joint (with=1) [A] [BC] [A] [BCD] [A] [BCDE]
conditional [AC] [BC] [AD] [BD] [CD] [AE] [BE] [CE] [DE]
conditional (with=1) [AB] [AC] [AB] [AC] [AD] [AB] [AC] [AD] [AE]
markov (order=1) [AB] [BC] [AB] [BC] [CD] [AB] [BC] [CD] [DE]
markov (order=2) [A] [B] [C] [ABC] [BCD] [ABC] [BCD] [CDE]
saturated [ABC] [ABCD] [ABCDE]

## Error in print(loglin2string(joint(nf, factors = LETTERS[1:5]))): could
not find function "loglin2string"

for(nf in 2:5) {
print(loglin2string(conditional(nf, factors=LETTERS[1:5]), sep=""))

}

## Error in print(loglin2string(conditional(nf, factors = LETTERS[1:5]),
: could not find function "loglin2string"

for(nf in 2:5) {
print(loglin2formula(conditional(nf, factors=LETTERS[1:5])))

}

## Error in print(loglin2formula(conditional(nf, factors = LETTERS[1:5]))):
could not find function "loglin2formula"

Applied to data, these functions take a table argument, and deliver the string or formula
representation of a type of model for that table:

loglin2formula(joint(3, table=HEC))

## Error in eval(expr, envir, enclos): could not find function "loglin2formula"

loglin2string(joint(3, table=HEC))

## Error in eval(expr, envir, enclos): could not find function "loglin2string"

Their main use, however, is within higher-level functions, such as seq_loglm(), which fit
the collection of sequential models of a given type.

HEC.mods <- seq_loglm(HEC, type="joint")

## Error in eval(expr, envir, enclos): could not find function "seq_loglm"

Summarise(HEC.mods)

## Error in eval(expr, envir, enclos): could not find function "Summarise"
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In this section we have described a variety of models which can be fit to higher-way tables,
some relations among those models, and the aspects of lack-of-fit which are revealed in the mo-
saic displays. The following examples illustrate the process of model fitting, using the mosaic as
an interpretive guide to the nature of associations among the variables. In general, we start with
a minimal baseline model.6 The pattern of residuals in the mosaic will suggest associations to be
added to an adequate explanatory model. As the model achieves better fit to the data, the degree
of shading decreases, so we may think of the process of model fitting as “cleaning the mosaic.”

5.4.3 Causal models
{sec:causal}

The sequence of models of joint independence has another interpretation when the ordering of the
variables is based on a set of ordered hypotheses involving causal relationships among variables
(Goodman (1973), Fienberg (1980, §7.2)). Suppose, for example, that the causal ordering of four
variables is A → B → C → D, where the arrow means “is antecedent to.” Goodman suggests
that the conditional joint probabilities of B, C, and D given A can be characterized by a set of
recursive logit models which treat (a) B as a response to A, (b) C as a response to A and B
jointly, (c) and D as a response to A, B and C. These are equivalent to the loglinear models
which we fit as the sequential baseline models of joint independence, namely [A][B] , [AB][C] ,
and [ABC][D] . The combination of these models with the marginal probabilities of A gives a
characterization of the joint probabilities of all four variables, as in Eqn. (5.2). In application,
residuals from each submodel show the associations that remain unexplained. {ex:marital1}

EXAMPLE 5.8: Marital status and pre- and extramarital sex
A study of divorce patterns in relation to premarital and extramarital sex by Thornes and

Collard (1979) reported the 24 table shown below, and included in vcd as PreSex.

data("PreSex", package="vcd")
structable(Gender+PremaritalSex+ExtramaritalSex ~ MaritalStatus, PreSex)

## Error in eval(expr, envir, enclos): could not find function "structable"

These data were analysed by Agresti (2013, §6.1.7) and by Friendly (1994, 2000), from which
this account draws. A sample of about 500 people who had petitioned for divorce, and a similar
number of married people were asked two questions regarding their pre- and extramarital sexual
experience: (1) “Before you married your (former) husband/wife, had you ever made love with
anyone else?,” (2) “During your (former) marriage (did you) have you had any affairs or brief
sexual encounters with another man/woman?” The table variables are thus gender (G), reported
premarital (P ) and extramarital (E) sex, and current marital status (M ).

In this analysis we consider the variables in the order G, P , E, and M , and first reorder the
table variables for convenience.

PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M

That is, the first stage treats P as a response to G and examines the [Gender][Pre] mosaic to
assess whether gender has an effect on premarital sex. The second stage treats E as a response to

6When one variable, R is a response, this normally is the model of joint independence, [E1E2 . . .] [R], where
E1, E2, . . . are the explanatory variables. Better-fitting models will often include associations of the form [Ei R],
[Ei Ej R] . . ..
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G and P jointly; the mosaic for [Gender, Pre] [Extra] shows whether extramarital sex is related
to either gender or premarital sex. These are shown in Figure 5.14.

# (Gender Pre)
mosaic(margin.table(PreSex, 1:2), shade=TRUE,

main = "Gender and Premarital Sex")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

## (Gender Pre)(Extra)
mosaic(margin.table(PreSex, 1:3),

expected = ~Gender * PremaritalSex + ExtramaritalSex ,
main = "Gender*Pre + ExtramaritalSex")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

Finally, the mosaic for [Gender, Pre, Extra] [Marital] is examined for evidence of the de-
pendence of marital status on the three previous variables jointly. As noted above, these models
are equivalent to the recursive logit models whose path diagram is G → P → E → M .7 The
G2 values for these models shown below provide a decomposition of the G2 for the model of
complete independence fit to the full table.

Model df G2

[G] [P] 1 75.259
[GP] [E] 3 48.929

[GPE] [M] 7 107.956
[G] [P] [E] [M] 11 232.142

The [Gender] [Pre] mosaic in the left panel of Figure 5.14 shows that men are much more
likely to report premarital sex than are women; the sample odds ratio is 3.7. We also see that
women are about twice as prevalent as men in this sample. The mosaic for the model of joint
independence, [Gender Pre] [Extra] in the right panel of Figure 5.14 shows that extramarital sex
depends on gender and premarital sex jointly. From the pattern of residuals in Figure 5.14 we see
that men and women who have reported premarital sex are far more likely to report extramarital
sex than those who have not. In this three-way marginal table, the conditional odds ratio of
extramarital sex given premarital sex is nearly the same for both genders (3.61 for men and 3.56
for women). Thus, extramarital sex depends on premarital sex, but not on gender.

oddsratio(margin.table(PreSex, 1:3), stratum=1, log=FALSE)

## Error in eval(expr, envir, enclos): could not find function "oddsratio"

## (Gender Pre Extra)(Marital)
mosaic(PreSex,

expected = ~Gender*PremaritalSex*ExtramaritalSex
+ MaritalStatus,

main = "Gender*Pre*Extra + MaritalStatus")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

7Agresti (2013, Figure 6.1) considers a slightly more complex, but more realistic model in which premarital sex
affects both the propensity to have extramarital sex and subsequent marital status.
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## (GPE)(PEM)
mosaic(PreSex,

expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,

main = "G*P*E + P*E*M")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

4

TODO: Complete this section with other examples: Titanic

5.4.4 Partial association
{sec:mospart}

In a three-way (or larger) table it may be that two variables, say A and B, are associated at
some levels of the third variable, C, but not at other levels of C. More generally, we may wish
to explore whether and how the association among two (or more) variables in a contingency
table varies over the levels of the remaining variables. The term partial association refers to the
association among some variables within the levels of the other variables.

Partial association represents a useful “divide and conquer” statistical strategy: it allows you
to refine the question you want to answer for complex relations by breaking it down to smaller,
easier questions.8 It is a statistically happy fact that an answer to the larger, more complex
question can be expressed as an algebraic sum of the answers to the smaller questions, just as was
the case with sequential models of joint independence.

For concreteness, consider the case where you want to understand the relationship between
attitude toward corporal punishment of children by parents or teachers (Never, Moderate use OK)
and memory that the respondent had experiences corporal punishment as a child (Yes, No). But
you also have measured other variables on the respondents, including their level of education
and age category. In this case, the question of association among all the table variables may
be complex, but we can answer a highly relevant, specialized question precisely, “is there an
association between attitude and memory, controlling for education and age?” The answer to
this question can be thought of as the sum of the answers to the simpler question of association
between attitude and memory across the education, age categories.

A simpler version of this idea is considered first below (Example 5.9): among workers who
were laid off due to either the closure of a plant or business vs. replacement by another worker,
the (conditional) relationship of employment status (new job vs. still unemployed) and duration
of unemployment can be studied as a sum of the associations between these focal variables over
the separate tables for cause of layoff.

To make this idea precise, consider for example the model of conditional independence, A ⊥
B |C for a three-way table. This model asserts that A and B are independent within each level
of C. Denote the hypothesis that A and B are independent at level C(k) by A ⊥ B |C(k), k =
1, . . .K. Then one can show (Andersen, 1991) that

G2
A⊥B |C =

K∑
k

G2
A⊥B |C(k) (5.4) {eq:partial1}

8This is an analog, for categorical data, of the ANOVA strategy for “probing interactions” by testing simple effects
at the levels of one or more of the factors involved in a two- or higher-way interaction.



182 [11-26-2014] 5 Mosaic displays for n-way tables

That is, the overall likelihood ratio G2 for the conditional independence model with (I − 1)(J −
1)K degrees of freedom is the sum of the values for the ordinary association between A and B
over the levels ofC (each with (I−1)(J−1) degrees of freedom). The same additive relationship
holds for the Pearson χ2 statistics: χ2

A⊥B |C =
∑K
k χ

2
A⊥B |C(k).

Thus, (a) the overall G2 (χ2) may be decomposed into portions attributable to the AB asso-
ciation in the layers of C, and (b) the collection of mosaic displays for the dependence of A and
B for each of the levels of C provides a natural visualization of this decomposition. These pro-
vide an analog, for categorical data, of the conditioning plot, or coplot, that Cleveland (1993) has
shown to be an effective display for quantitative data. See Friendly (1999a) for further details.

Mosaic and other displays in the strucplot framework for partial association can be produced
in several different ways. One way is to use a model formula in the call to mosaic() which lists
the conditioning variables after the "|" (given) symbol, as in
~ Memory + Attitude | Age + Education. Another way is to use cotabplot().
This takes the same kind of conditioning model formula, but presents each panel for the condi-
tioning variables in a separate frame within a trellis-like grid.9{ex:employ}

EXAMPLE 5.9: Employment status data
Data from a 1974 Danish study of 1314 employees who had been laid off are given in the

data table Employment in vcd (from Andersen (1991, Table 5.12)). The workers are classified
by: (a) their employment status, on January 1, 1975 ("NewJob" or still "Unemployed), (b)
the length of their employment at the time of layoff, (c) the cause of their layoff ("Closure",
etc. or "Replaced").

data("Employment", package = "vcd")
structable(Employment)

## Error in eval(expr, envir, enclos): could not find function "structable"

In this example, it is natural to regard EmploymentStatus (variable A) as the response
variable, and EmploymentLength (B) and LayoffCause (C) as predictors. In this case,
the minimal baseline model is the joint independence model, [A] [BC], which asserts that em-
ployment status is independent of both length and cause. This model fits quite poorly, as shown
in the output from loglm() below.

loglm(~ EmploymentStatus + EmploymentLength*LayoffCause, data=Employment)

## Call:
## loglm(formula = ~EmploymentStatus + EmploymentLength * LayoffCause,
## data = Employment)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 172.28 11 0
## Pearson 165.70 11 0

The residuals, shown in Figure 5.16, indicate an opposite pattern for the two categories of
LayoffCause: those who were laid off as a result of a closure are more likely to be unem-
ployed, regardless of length of time they were employed. Workers who were replaced, however,

9Depending on your perspective, this has the advantage of adjusting for the total frequency in each conditional
panel, or the disadvantage of ignoring these differences.
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apparently are more likely to be employed, particularly if they were employed for 3 months or
more.

# baseline model [A][BC]
mosaic(Employment, shade=TRUE,

expected = ~ EmploymentStatus + EmploymentLength*LayoffCause,
main = "EmploymentStatus + Length * Cause")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

Beyond this baseline model, it is substantively more meaningful to consider the conditional
independence model, A ⊥ B |C, (or [AC][BC] in shorthand notation), which asserts that em-
ployment status is independent of length of employment, given the cause of layoff. We fit this
model as shown below:

loglm(~ EmploymentStatus*LayoffCause + EmploymentLength*LayoffCause,
data=Employment)

## Call:
## loglm(formula = ~EmploymentStatus * LayoffCause + EmploymentLength *
## LayoffCause, data = Employment)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 24.630 10 0.0060927
## Pearson 26.072 10 0.0036445

This model fits far better (G2(10) = 24.63), but the lack of fit is still significant. The resid-
uals, shown in Figure 5.17, still suggest that the pattern of association between employment and
length is different for replaced workers and those laid off due to closure of their workplace.

mosaic(Employment, shade=TRUE, gp_args=list(interpolate=1:4),
expected = ~ EmploymentStatus*LayoffCause + EmploymentLength*LayoffCause,
main = "EmploymentStatus * Cause + Length * Cause")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

To explain this result better, we can fit separate models for the partial relationship between
EmploymentStatus and EmploymentLength for the two levels of LayoffCause. In
R, with the Employment data as in table form, this is easily done using apply() over the
LayoffCause margin, giving a list containing the two loglm() models.

mods.list <- apply(Employment, "LayoffCause",
function(x) loglm(~EmploymentStatus + EmploymentLength, data=x))

mods.list

## $Closure
## Call:
## loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 1.4786 5 0.91553
## Pearson 1.4835 5 0.91497
##
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## $Replaced
## Call:
## loglm(formula = ~EmploymentStatus + EmploymentLength, data = x)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 23.151 5 0.00031578
## Pearson 24.589 5 0.00016727

Extracting the model fit statistics for these partial models and adding the fit statistics for
the overall model of conditional independence, [AC][BC] gives the table below, illustrating the
additive property of G2, (Eqn. (5.4)) and χ2.

Model df G2 χ2

A ⊥ B |C1 5 1.49 1.48
A ⊥ B |C2 5 23.15 24.59
A ⊥ B |C 10 24.63 26.07

One simple way to visualize these results is to call mosaic() separately for each of the
layers corresponding to LayoffCause. The result is shown in Figure 5.18.

mosaic(Employment[,,"Closure"], shade=TRUE, gp_args=list(interpolate=1:4),
margin = c(right = 1), main = "Layoff: Closure")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

mosaic(Employment[,,"Replaced"], shade=TRUE, gp_args=list(interpolate=1:4),
margin = c(right = 1), main = "Layoff: Replaced")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

The simple summary from this example is that for workers laid off due to closure of their
company, length of previous employment is unrelated to whether or not they are re-employed.
However, for workers who were replaced, there is a systematic pattern: those who had been
employed for three months or less are likely to remain unemployed, while those with longer job
tenure are somewhat more likely to have found a new job. 4

The statistical methods and R techniques described above for three-way tables extend natu-
rally to higher-way tables, as can be seen in the next example.{ex:punish}

EXAMPLE 5.10: Corporal punishment data
Here we use the Punishment data from vcd which contains the results of a study by the

Gallup Institute in Denmark in 1979 about the attitude of a random sample of 1,456 persons
towards corporal punishment of children (Andersen, 1991, pp. 207-208). As shown below, this
data set is a frequency data frame representing a 2 × 2 × 3 × 3 table, with table variables (a)
attitude toward use of corporal punishment (approve of “moderate” use or “no” approval) (b)
memory of whether the respondent had experienced corporal punishment as a child (yes/no); (c)
education level of respondent (elementary, secondary, high); (d) age category of respondent.

data("Punishment", package = "vcd")
str(Punishment)
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## 'data.frame': 36 obs. of 5 variables:
## $ Freq : num 1 3 20 2 8 4 2 6 1 26 ...
## $ attitude : Factor w/ 2 levels "no","moderate": 1 1 1 1 1 1 1 1 1 1 ...
## $ memory : Factor w/ 2 levels "yes","no": 1 1 1 1 1 1 1 1 1 2 ...
## $ education: Factor w/ 3 levels "elementary","secondary",..: 1 1 1 2 2 2 3 3 3 1 ...
## $ age : Factor w/ 3 levels "15-24","25-39",..: 1 2 3 1 2 3 1 2 3 1 ...

Of main interest here is the association between attitude toward corporal punishment as an
adult (A) and memory of corporal punishment as a child (B), controlling for age (C) and educa-
tion (D); that is, the model A ⊥ B | (C,D), or [ACD][BCD] in shorthand notation.

As noted above, this conditional independence hypothesis can be decomposed into the 3× 3
partial tests of A ⊥ B | (Ck, D`).

These tests and the associated graphics are somewhat easier to carry out with the data in table
form (pun) constructed below. While we’re at it, we recode the variable names and factor levels
for nicer graphical displays.

pun <- xtabs(Freq ~ memory + attitude + age + education, data = Punishment)
dimnames(pun) <- list(

Memory = c("yes", "no"),
Attitude = c("no", "moderate"),
Age = c("15-24", "25-39", "40+"),
Education = c("Elementary", "Secondary", "High"))

Then, the overall test of conditional independence can be carried using loglm() out as

(mod.cond <- loglm(~ Memory*Age*Education + Attitude*Age*Education,
data = pun))

## Call:
## loglm(formula = ~Memory * Age * Education + Attitude * Age *
## Education, data = pun)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 39.679 9 8.6851e-06
## Pearson 34.604 9 6.9964e-05

Alternatively, coindep_test() in vcd provides tests of conditional independence of two
variables in a contingency table by simulation from the marginal permutation distribution of the
input table. The version reporting a Pearson χ2 statistic is given by

set.seed(1071)
coindep_test(pun, margin=c("Age", "Education"),

indepfun = function(x) sum(x^2), aggfun=sum)

## Error in eval(expr, envir, enclos): could not find function "coindep_test"

These tests all show substantial association between attitude and memory of corporal punish-
ment. How can we understand and explain this?

As in Example 5.9, we can partition the overall G2 or χ2 to show the contributions to this
association from the combinations of age and education. The call to apply() below returns a
3×3 matrix, each of whose elements is the list of results returned by loglm(). The Pearson χ2

statistics for each subtable can be extracted using sapply() as shown below.
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mods.list <- apply(pun, c("Age", "Education"),
function(x) loglm(~Memory + Attitude, data=x))

XSQ <- matrix( sapply(mods.list, function(x)x$pearson), 3, 3)
dimnames(XSQ) <- dimnames(mods.list)
addmargins(XSQ)

## Education
## Age Elementary Secondary High Sum
## 15-24 3.5907 0.078782 0.091429 3.7609
## 25-39 8.5844 0.934669 0.480000 9.9990
## 40+ 11.6256 6.094854 3.123714 20.8442
## Sum 23.8006 7.108305 3.695143 34.6041

One visual analog of this table of χ2 statistics is a cotabplot() of the (conditional)
association of attitude and memory over the age and education cells, shown in Figure 5.19.
cotabplot() is very general, allowing a variety of functions of the residuals to be used for
shading (Zeileis et al., 2007). Here we use the (Pearson) sum of squares statistic,

∑
k,` χ

2
k,`.

set.seed(1071)
pun_cotab <- cotab_coindep(pun, condvars = 3:4, type = "mosaic",

varnames = FALSE, margins = c(2, 1, 1, 2),
test = "sumchisq", interpolate = 1:2)

## Error in eval(expr, envir, enclos): could not find function "cotab_coindep"

cotabplot(~ Memory + Attitude | Age + Education, data =
pun, panel = pun_cotab)

## Error in eval(expr, envir, enclos): could not find function "cotabplot"

Alternatively, the pattern of conditional association can be shown somewhat more directly
in a conditional mosaic plot (Figure 5.20), using the same model formula to condition on age
and education. This simply organizes the display to split on the conditioning variables first, with
larger spacings.

mosaic(~ Memory + Attitude | Age + Education, data = pun,
shade=TRUE, gp_args=list(interpolate=1:4))

## Error in eval(expr, envir, enclos): could not find function "mosaic"

Both Figure 5.19 and Figure 5.20 reveal that the association between attitude and memory
becomes stronger with increasing age among those with the lowest education (first column).
Among those in the highest age group (bottom row), the strength of association decreases with
increasing education. These two displays differ in that in the cotabplot() of Figure 5.19
the marginal frequencies of age and education are not shown, whereas in the mosaic() of
Figure 5.20 they determine the relative sizes of the tiles for the combinations of age and education.

The divide-and-conquer strategy of partial association using statistical tests and visual dis-
plays now provides a simple, coherent explanation for this table: memory of experienced vio-
lence as a child tends to engender a more favorable attitude toward corporal punishment as an
adult, but this association varies directly with both age and education. 4
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5.5 Mosaic matrices for categorical data
{sec:mosmat}

One reason for the wide usefulness of graphs of quantitative data has been the development of
effective, general techniques for dealing with high-dimensional data set. The scatterplot matrix
shows all pairwise (marginal) views of a set of variables in a coherent display, whose design goal
is to show the interdependence among the collection of variables as a whole. It combines multiple
views of the data into a single display which allows detection of patterns which could not readily
be discerned from a series of separate graphs. In effect, a multivariate data set in p dimensions
(variables) is shown as a collection of p(p−1) two-dimensional scatterplots, each of which is the
projection of the cloud of points on two of the variable axes. These ideas can be readily extended
to categorical data.

A multiway contingency table of p categorical variables, A,B,C, . . ., contains the interde-
pendence among the collection of variables as a whole. The saturated loglinear model, [ABC . . .]
fits this interdependence perfectly, but is often too complex to describe or understand.

By summing the table over all variables except two, A and B, say, we obtain a two-variable
(marginal) table, showing the bivariate relationship between A and B, which is also a projection
of the p-variable relation into the space of two (categorical) variables. If we do this for all p(p−1)
unordered pairs of categorical variables and display each two-variable table as a mosaic, we have
a categorical analog of the scatterplot matrix, called a mosaic matrix. Like the scatterplot matrix,
the mosaic matrix can accommodate any number of variables in principle, but in practice is
limited by the resolution of our display to three or four variables.

In R, the main implementation of this idea is in the generic function pairs(). The vcd
package extends this to mosaic matrices with methods for "table" and "structable" objects. The
gpairs package provides a generalized pairs plot, with appropriate graphics for a mixture of
quantitative and categorical variables. {ex:bartlett}

EXAMPLE 5.11: Bartlett data on plum root cuttings
The simplest example of what you can see in a mosaic matrix is provided by the 2 × 2 × 2

table used by Bartlett (1935) to illustrate a method for testing for no three-way interaction in a
contingency table (hypothesis H4 in Table 5.2).

The data set Bartlett in vcdExtra gives the result of an agricultural experiment to investi-
gate the survival of plum root cuttings (Alive) in relation to two factors: Time of planting and
the Length of the cutting. In this experiment, 240 cuttings were planted for each of the 2 × 2
combinations of these factors, and their survival (Alive, Dead) was later recorded.

pairs(Bartlett, gp=shading_Friendly)

## Error in pairs(Bartlett, gp = shading_Friendly): object ’Bartlett’ not
found

The mosaic matrix for these data, showing all twoway marginal relations, is shown in Fig-
ure 5.21. It can immediately be seen that Time and Length are independent by the design of
the experiment; we use gp=shading_Friendly here to emphasize this.

The top row and left column show the relation of survival to each of time of planting and
cutting length. It is easily seen that greater survival is associated with cuttings taken now (vs.
spring) and those cut long (vs. short), and the degree of association is stronger for planting time
than for cutting length. 4



188 [11-26-2014] 5 Mosaic displays for n-way tables

{ex:marital2}

EXAMPLE 5.12: Marital status and pre- and extramarital sex
In Example 5.8 we examined a series of models relating marital status to reported premarital

and extramarital sexual activity and gender in the PreSex data. Figure 5.22 shows the mosaic
matrix for these data. The diagonal panels show the labels for the category levels as well as the
one-way marginal totals.

data("PreSex", package="vcd")
pairs(PreSex, gp=shading_Friendly, gp_args=list(interpolate=1:4), space=0.25)

## Error in pairs.table(PreSex, gp = shading_Friendly, gp_args = list(interpolate
= 1:4), : could not find function "grid.newpage"

If we view gender, premarital sex and extramarital sex as explanatory, and marital status
(Divorced vs. still Married) as the response, then the mosaics in row 1 (and in column 1)10 shows
how marital status depends on each predictor marginally. The remaining panels show the relations
within the set of explanatory variables.

Thus, we see in row 1, column 4, that marital status is independent of gender (all residuals
equal zero, here), by design of the data collection. In the (1, 3) panel, we see that reported
premarital sex is more often followed by divorce, while non-report is more prevalent among
those still married. The (1, 2) panel shows a similar, but stronger relation between extramarital
sex and marriage stability. These effects pertain to the associations of P and E with marital status
(M)—the terms [PM] and [EM] in the loglinear model. We saw earlier that an interaction of P
and E (the term [PEM]) is required to fully account for these data. This effect is not displayed in
Figure 5.22.

Among the background variables (the loglinear term [GPE]), the (2, 3) panel shows a strong
relation between premarital sex and subsequent extramarital sex, while the (2, 4) and (3, 4) panels
show that men are far more likely to report premarital sex than women in this sample, and also
more likely to report extramarital sex.

Even though the mosaic matrix shows only pairwise, bivariate associations, it provides an
integrated view of all of these together in a single display.

4
{ex:berkeley4}

EXAMPLE 5.13: Berkeley admissions
In Chapter 4 we examined the relations among the variables Admit, Gender and Department

in the Berkeley admissions data (Example 4.1, Example 4.10, Example 4.14) using fourfold
displays (Figure 4.3 and Figure 4.4) and sieve diagrams (Figure 4.10). These displays showed
either a marginal relation (e.g., Admit, Gender) or the full three-way table.

In contrast, Figure 5.23 shows all pairwise marginal relations among these variables, pro-
duced using pairs(). Some additional arguments are used to control the details of labels for
the diagonal and off-diagonal panels.

10Rows and columns in a mosaic matrix are identified as in a table or numerical matrix, with row 1, column 1 in the
upper left corner.
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largs <- list(labeling = labeling_border(varnames = FALSE,
labels = c(T, T, F, T), alternate_labels = FALSE))

## Error in eval(expr, envir, enclos): could not find function "labeling_border"

dargs <- list(gp_varnames = gpar(fontsize = 20), offset_varnames = -1,
labeling = labeling_border(alternate_labels = FALSE))

## Error in eval(expr, envir, enclos): could not find function "gpar"

pairs(UCBAdmissions, shade = TRUE, space = 0.25,
diag_panel_args = dargs,
upper_panel_args = largs, lower_panel_args = largs)

## Error in pairs.table(UCBAdmissions, shade = TRUE, space = 0.25, diag_panel_args
= dargs, : could not find function "grid.newpage"

The panel in row 2, column 1 shows that Admission and Gender are strongly associated
marginally, as we saw in Figure 4.3, and overall, males are more often admitted. The diagonally-
opposite panel (row 1, column 2) shows the same relation, splitting first by gender.11

The panels in the third column (and third row) provide the explanation for the paradoxical
result (see Figure 4.4) that, within all but department A, the likelihood of admission is equal for
men and women, yet, overall, there appears to be a bias in favor of admitting men (see Figure ??).
The (1,3) and (3, 1) panels show the marginal relation between Admission and Department, that
is, how admission rate varies across departments. Departments A and B have the greatest overall
admission rate, departments E and F the least. The (2, 3) and (3,2) panels show how men and
women apply differentially to the various departments. It can be seen that men apply in much
greater numbers to departments A and B, with higher admission rates, while women apply in
greater numbers to the departments C–F, with the lowest overall rate of admission.

4

5.5.1 Generalized mosaic matrices and pairs plots
{sec:condmat}

We need not show only the marginal relation between each pair of variables in a mosaic matrix.
(Friendly, 1999b) describes the extension of this idea to conditional, partial, and other views of a
contingency table.

In pairs.table(), different panel functions can be used to specify what is displayed in
the upper, lower and diagonal panels. For the off-diagonal panels, a type argument can be used
to plot mosaics showing various kinds of independence relations:

type="pairwise" Shows bivariate marginal relations, collapsed over all other variables.
type="total" Shows mosaic plots for mutual independence.
type="conditional" Shows mosaic plots for conditional independence given all other

variables.
type="joint" Shows mosaic plots for joint independence of all pairs of variables from the

others.
11Note that this is different than just the transpose or interchange of horizontal and vertical dimensions as in a

scatterplot matrix, because the mosaic display splits the total frequency first by the horizontal variable and then (con-
ditionally) by the vertical variable. The areas of all corresponding tiles are the same in each diagonally opposite pair,
however, as are the residuals shown by color and shading.
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{ex:berkeley4b}

EXAMPLE 5.14: Berkeley admissions
Figure 5.24 shows the generalized mosaic matrix for the UCBAdmissions data, using 3-

way mosaics for all the off-diagonal cells. The observed frequencies, of course, are the same
in all these cells. However, in the lower panels, the tiles are shaded according to models of
joint independence, while in the upper panels, they are shaded according to models of mutual
independence.

pairs(UCBAdmissions,
lower_panel = pairs_mosaic(type = "joint", shade=TRUE),
upper_panel = pairs_mosaic(type = "total", shade=TRUE),
space=0.2)

## Error in pairs.table(UCBAdmissions, lower_panel = pairs_mosaic(type =
"joint", : could not find function "grid.newpage"

TODO: Replace this with a figure using type = "conditional", once we can get this to
work.

In this example, it is more useful to fit and display the models of conditional independence
for each pair of row, column variables given the remaining one, as shown in Figure 5.25.

pairs(UCBAdmissions,
lower_panel = pairs_mosaic(type = "conditional", shade=TRUE),
upper_panel = pairs_mosaic(type = "conditional", shade=TRUE),
space=0.2)

## Error in pairs.table(UCBAdmissions, lower_panel = pairs_mosaic(type =
"conditional", : could not find function "grid.newpage"

Thus, the shading in the (1,2) and (2,1) panels show the fit of the model [Admit, Dept] [Gen-
der, Dept], which asserts that Admission and Gender are independent, given (controlling for)
Department. Except for Department A, this model fits quite well, again indicating lack of gender
bias. The (1,3) and (3,1) panels show the relation between admission and department controlling
for gender, highlighting the differential admission rates across departments. TODO: This isn’t
quite right!

4

Beyond this, the framework of pairs plots can be further generalized to mixtures of quanti-
tative and categorical variables, as first described in Friendly (2003) and then in a wider context
by Emerson et al. (2013), Friendly (2013). The essential idea is to consider the combination of
two variables, each of which can be either categorical (C) or quantitative (Q), and various ways
to render that combination in a graphical display:

CC: mosaic display, sieve diagram, doubledecker plot, faceted or divided bar chart;
CQ: side-by-side boxplots, stripplots, faceted histograms, aligned density plots;
QQ: scatterplot, corrgram, data ellipses, etc.

In R some of these possibilities are provided in the gpairs package (using grid graphics and the
vcd strucplot framework), and the GGally package (an extension to ggplot2).{ex:arthritis-gpairs}
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EXAMPLE 5.15: Arthritis treatment
We illustrate these ideas with the Arthritis data using the gpairs package in Figure 5.26.

In this data, the variables Treatment, Sex and Improved are categorical, and Age is quanti-
tative. The call to gpairs() below reorders the variables to put the response variable Improved
in row 1, column 1. Various options can be passed to mosaic() using the mosaic.pars ar-
gument.

library(gpairs)
data("Arthritis", package="vcd")
gpairs(Arthritis[,c(5,2,3,4)],

diag.pars=list(fontsize = 20),
mosaic.pars=list(gp=shading_Friendly,

gp_args=list(interpolate=1:4)))

## Error in gpairs(Arthritis[, c(5, 2, 3, 4)], diag.pars = list(fontsize
= 20), : object ’shading_Friendly’ not found

gpairs() provides a variety of options for the CQ and QQ combinations, as well as the
diagonal cells, but only the defaults are used here. The bottom row, corresponding to Age uses
boxplots to show the distributions of age for each of the categorical variables. The last column
shows these same variables as stripplots (or “barcodes”), which show all the individual observa-
tions. In the (1,4) and (4,1) panels, it can be seen that younger patients are more likely to report
no improvement. The other panels in the first row (and column) show that improvement is more
likely in the treated condition and greater among women than men. 4

5.6 3D mosaics
{sec:3D}

Mosaic-like displays use the idea of recursive partitioning of a unit square to portray the frequen-
cies in an n-way table by the area of rectangular tiles with (x, y) coordinates. The same idea
extends naturally to a 3D graphic. This starts with a unit cube, which is successively subdivided
into 3D cuboids along (x, y, z) dimensions, and the frequency in a table cell is then represented
by volume.

As in the 2D versions, each cuboid can be shaded to represent some other feature of the
data, typically the residual from some model of independence. In principle, the display can
accommodate more than 3 variables by using a sequence of split directions along the (x, y, z)
axes.

One difficulty in implementing this method is that, short of using a 3D printer, the canvas
for a 3D plot on a screen or printer is still projected on a two-dimensional surface, and graphical
elements (volumes, lines, text) toward the front of the view will obscure those in the back. In
R, a major advance in 3D graphics is available in the rgl package, that mitigates these problems
by: (a) providing an interactive graphic window that can be zoomed and rotated manually with
the mouse; (b) allowing dynamic graphics under program control, for example to animate a plot
or make a movie; (c) providing control of the details of 3D rendering, including transparency of
shapes, surface shading, lighting and perspective.

The vcdExtra package implements 3D mosaics using rgl graphics. mosaic3d() provides
methods for "loglm" as well as "table" (or "structable") objects. At the time of writing, only
some features of 2D mosaics are available. {ex:bartlett-3d}

EXAMPLE 5.16: Bartlett data on plum root cuttings
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In Example 5.11 we showed the mosaic matrix for the Bartlett, fitting the model of mutual
independence to show all associations among the table variables, Alive, Time of planting and
Length of cutting. Figure 5.4 shows the 3D version, produced using mosaic3d():

mosaic3d(Bartlett)

Figure 5.4: 3D mosaic plot of the Bartlett data, according to the model of mutual independence{fig:mos3d-bartlett}

In the view of this figure, it can be seen that cuttings are more likely to be alive when planted
Now and when cut Long. These relations can more easily be appreciated by rotating the 3D
display. 4

5.7 Parallel coordinate plots for categorical data
{sec:parallel}

Beyond pairwise plots, parallel coordinate plots (Inselberg, 1985, 1989, Wegman, 1990) provide
another means to extend visualization methods beyond 2/3D. With the cartesian coordinate sys-
tem, we run out of axes in 3D. Parallel coordinates overcome this limitation by plotting multiple
axes in parallel. The geometry of parallel coordinates is the dual of cartesian geometry in stan-
dard plots: points in cartesian space appear as lines in parallel coordinates and vice versa. We first
illustrate this visual framework for quantitative data, and then describe extensions to categorical
data.{ex:iris1}

EXAMPLE 5.17: Iris data
The classic iris data set (Anderson, 1935, Fisher, 1936) gives the measurements in cen-

timeters of the variables sepal length and width and petal length and width, respectively, for 50
flowers from each of 3 species of iris, Iris setosa, versicolor, and virginica.

Standard parallel coordinate plots are easily constructed in R using parallelplot() from
the lattice package.
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library(lattice)
data("iris", package="datasets")
vnames <- gsub("\\.", "\\\n", names(iris))
key = list(

columns = 3,
lines = list(col=c("red", "blue", "green3"), lwd=4),
col=c("red", "blue", "green3"),
text = list(c("Setosa", "Versicolor", "Virginica")))

parallelplot(~iris[1:4], iris, groups = Species,
varnames = vnames[1:4], key=key,
horizontal.axis = FALSE, lwd=2,
col=c("red", "blue", "green3"))

Min

Max

Sepal
Length

Sepal
Width

Petal
Length

Petal
Width

Setosa Versicolor Virginica

Figure 5.5: Parallel coordinates plot of the Iris data
fig:iris1

Figure 5.5 shows the typical parallel coordinate plot for quantitative variables, where each
variable axis represents the range of the corresponding variable, and observation values for the
iris flowers are connected by lines. It can readily be seen that the flowers within each species
vary systematically on the four variables, with the setosa flowers smaller on all except sepal
width. Moreover, the patterns of the cases are positively correlated on all except sepal width,
which is negatively related to the other three variables.

The transition to such plots for categorical data can be illustrated as shown in Figure 5.6. In
the left panel, we have tried to show the density of a discrete variable visually, by (a) making
the connecting lines thicker, but coloring them using transparent colors, so that more data “ink”
corresponds to increasing frequency. (b) showing the categorical variable Species itself.

# alpha-blending, and showing species
parallelplot(~iris[1:5], data=iris, groups = Species,

varnames = vnames, key = key,
horizontal.axis = FALSE, lwd=8,
col=c(rgb(1,0,0,.2), rgb(0,0,1,.2), rgb(0,1,0,.2) )
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Figure 5.6: Discretized versions of parallel coordinate plots. Left: frequency shown by intensity
of shading, along with a categorical variable; right: A less useful parallel coordinate plot for all
categorical variables.{fig:iris2}

)

Alternatively, we can cut() the quantitative variables into (ordered) categorical variables as
shown in Figure 5.6 (right panel). However, although parallelplot() does handle discrete
variables, the resulting plot is relatively uninformative.

# make ordered factors
iris2 <- within(iris, {

sepalL <- cut(Sepal.Length, 3)
sepalW <- cut(Sepal.Width, 3)
petalL <- cut(Petal.Length, 3)
petalW <- cut(Petal.Width, 3)
})

parallelplot(~iris2[6:9], data=iris2, groups = Species,
varnames = vnames[1:4],
horizontal.axis = FALSE, lwd=8, key=key,
col=c(rgb(1,0,0,.2), rgb(0,0,1,.2), rgb(0,1,0,.2) )
)

Note that, just as in the mosaic display, parallel coordinate plots are influenced by the order
of the variable axes, because only adjacent pairs of variables are connected by lines. You can see
this yourself by reordering the iris variables to place sepal width last (or first), as in this call.
The result (another example of effect ordering for data displays) was shown in Figure 1.11, and
is a more coherent display than Figure 5.5.

# effect of order of variables
parallelplot(~iris[c(1,3,4,2)], data=iris, groups = Species,

varnames = vnames[c(1,3,4,2)], key=key,
horizontal.axis = FALSE, lwd=8,
col=c(rgb(1,0,0,.2), rgb(0,0,1,.2), rgb(0,205/255,0,.2) )
)

4
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5.7.1 Parallel set plots: Hammock plots and common angle plots

The right panel of Figure 5.6 is unsuccessful in showing the relations among the four categori-
cal iris measures because the individual observations are shown; their discrete nature results on
much overplotting, obscuring the visual interpretation of frequency, and making unusual points
(outliers) more dominant. A simple way to circumvent this is to a use parallel sets (Kosara
et al., 2006) representation, that shows data frequencies instead of the individual data points. The
method is based on the same axis layout of parallel coordinates, but with boxes representing the
categories and parallelograms between the axes showing the relations between categories.

In implementations, the sizes of the boxes typically represent the frequencies of the cate-
gories, and the total length of each axis is subdivided according to their relative frequencies. We
illustrate these methods below using the ggparallel package, which provides two other varieties:
hammock plots (Schonlau, 2003) and common angle plots (Hofmann and Vendettuoli, 2013).
These have better perceptual properties, as we describe below. {ex:titanic-par1}

EXAMPLE 5.18: Titanic data
In this example, we use the Titanic, converted to a frequency data frame. In the call to

ggparallel(), we use the Freq variable to weight the categories. order=0 says to keep the
order of the factor levels unchanged (rather than sorting them by frequency); method="parset"
gives the basic parallel sets version.

library(RColorBrewer)
library(ggparallel)
titanic <- as.data.frame(Titanic)
vars <- names(titanic)[c(1, 4, 2)]
ggparallel(vars, titanic, order=0, weight="Freq", method="parset") +

scale_fill_brewer(palette="Paired", guide="none") +
scale_colour_brewer(palette="Paired", guide="none")

In this example, we positioned the variable Survived between Class and Sex to focus
attention on the relation of each of these with survival. The bands between the first two axes
show, for each class, the number who lived and the number who died. Yet, it is hard to accurately
compare the relative frequencies of the various bands, because a perceptual illusion called the line
width illusion makes the less slanted bands appear wider than more slanted bands that represent
equal frequencies.12 The main reason for this is that there is a strong visual bias toward evaluating
the width of lines orthogonal to their slopes as opposed to vertically, which is the representation
of frequency in this plot.

4

One solution to this problem is the hammock plot (Schonlau, 2003), which adjusts the width
of the line by a factor (sin θ) to make the perceived orthogonal line proportional in width to the
number of observations it represents. This works, but may overcorrect, because it assumes that
everyone is governed 100% by the line width illusion.

In contrast, the common angle plot (Hofmann and Vendettuoli, 2013) tries to draw all lines in
a plot with the same angle. To achieve this, instead of drawing straight lines between variables, it

12You can see this for yourself with the following task: From Figure 5.7, write down the order of the
classes according to the number who survived. Don’t be too cocky: in one experimental study (Hofmann and
Vendettuoli, 2013), only 6% of respondents could do so correctly. You can find the correct answer by running
sort(margin.table(Titanic[„,"Yes"], 1 ), dec=TRUE).
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Figure 5.7: Parallel sets plot of the Titanic data. This graphic aims to show the frequencies of
categorical variables in a parallel coordinates format. {fig:titanic-par1}

uses ribbons composed of connected line segments where at least one line segment is drawn with
the same angle. {ex:titanic-par2}

EXAMPLE 5.19: Titanic data
With ggparallel(), hammock plots are obtained using method="hammock" and com-

mon angle plots using method="angle" (the default). Figure 5.8 (left) shows a hammock plot
designed to explore relations of Sex and Survived with Class, by plotting Class twice, on
outside axes. The analogous common angle plot is shown in the right panel.

The labels for variables and factor levels are easier to read when the parallel axes are hori-
zontal rather than vertical; in the ggplot2 framework, this is done with coord_flip().

# define colors for factor levels
cols <- c(brewer.pal(name="Blues", 6)[-c(1,2)],

rev(brewer.pal(name="Reds", 3)[-1]),
rev(brewer.pal(name="Greens",3)[-1]))

# hammock plot
vars <- names(titanic)[c(1, 4, 2, 1)]
ggparallel(vars, data=titanic, weight="Freq", method="hammock",

order=c(0,1,1,0), ratio=.25, text.angle=0) +
scale_fill_manual(values=cols, guide="none") +
scale_colour_manual(values=cols, guide="none") + coord_flip()

# angle plot
ggparallel(vars, data=titanic, weight="Freq", method="angle",

order=c(0,1,1,0), text.angle=0) +
scale_fill_manual(values=cols, guide="none") +
scale_colour_manual(values=cols, guide="none") + coord_flip()

4
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Figure 5.8: Hammock plot and common angle plot of the Titanic data, with coordinate axes
flipped. The hammock plot (left) tries to adjust the width of lines by a factor designed counter
the line width illusion. The common angle plot (right) uses ribbons, where at least one segment
has the same angle.{fig:titanic-par2}

5.8 Visualizing the structure of loglinear models
{sec:mosaic-struc}

For quantitative response data, it is easy to visualize a fitted model— for linear regression, this is
just a plot of the fitted line; for multiple regression or non-linear regression with two predictors,
this is a plot of the fitted response surface. For a categorical response variable, an analog of such
plots is provided by effect plots, described later in this book.

For contingency table data, mosaic displays can be used in a similar manner to illuminate
the relations among variables in a contingency table represented in various loglinear models, a
point described by Theus and Lauer (1999). In fact, each of the model types depicted in Table 5.2
has a characteristic shape and structure in a mosaic display. This, in turn, leads to a clearer
understanding of the structure which appears in real data when a given model fits, the relations
among the models, and the use of mosaic displays. The essential idea is a simple extension of
what we do for more traditional models: show the expected (fitted) frequencies under a given
model rather than observed frequencies in a mosaic-like display.

To illustrate, we use some artificial data on the relations among age, sex and symptoms of
some disease shown in the 2× 2× 2 table struc below.

struc <- array(c(6, 10, 312, 44,
37, 31, 192, 76),

dim = c(2,2,2),
dimnames = list(Age=c("Young", "Old"),

Sex=c("F", "M"),
Disease=c("No", "Yes"))

)
struc <- as.table(struc)
structable(Sex+Age ~ Disease, struc)

## Error in eval(expr, envir, enclos): could not find function "structable"
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First, note that there are substantial associations in this table, as shown in Figure 5.32, fitting
the (default) mutual independence model.

mosaic(struc, shade=TRUE)

## Error in eval(expr, envir, enclos): could not find function "mosaic"

The first split by Age shows strong partial associations between Sex and Disease for both
young and old. However the residuals have an opposite pattern for young and old, suggesting a
more complex relationship among these variables.

In this section we are asking a different question: what would mosaic displays look like if
the data were in accord with simpler models? One way to do this is simply to use the expected
frequencies to construct the tiles, as in sieve diagrams. The result, in Figure 5.33, shows that
the tiles for sex and disease align for each of the age groups, but it is harder to see the relations
among all three variables in this plot.

mosaic(struc, type="expected")

## Error in eval(expr, envir, enclos): could not find function "mosaic"

We can visualize the model-implied relations among all variables together more easily using
mosaic matrices.

5.8.1 Mutual independence

For example, to show the structure of a table which exactly fits the model of mutual independence,
H1, use the loglm() to find the fitted values, fit, as shown below. The function fitted()
extracts these from the "loglm" object.

mutual <- loglm(~Age+Sex+Disease, data=struc, fitted=TRUE)
fit <- as.table(fitted(mutual))
structable(Sex+Age ~ Disease, fit)

## Error in eval(expr, envir, enclos): could not find function "structable"

These fitted frequencies then have the same one-way margins as the data in struc, but
have no two-way or higher associations. Then, pairs() for this table, using type="total"
shows the three-way mosaic for each pair of variables, giving the result in Figure 5.33. We use
gp=shading_Friendly to explicitly indicate the zero residuals in the display.

pairs(fit, gp=shading_Friendly, type="total")

## Error in pairs.table(fit, gp = shading_Friendly, type = "total"): could
not find function "grid.newpage"

In this figure the same data are shown in all the off-diagonal panels and the mutual inde-
pendence model was fitted in each case, but with the table variables permuted. All residuals are
exactly zero in all cells, by construction. We see that in each view, the four large tiles, correspond-
ing to the first two variables align, indicating that these two variable are marginally independent.
For example, in the (1,2) panel, age and sex are independent, collapsed over disease.
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Moreover, comparing the top half to the bottom half in any panel we see that the divisions
by the third variable are the same for both levels of the second variable. In the (1, 2) panel, for
example, age and disease are independent for both males and females. This means that age and
sex are conditionally independent given disease (age ⊥ sex |disease).

Because this holds in all six panels, we see that mutual independence implies that all pairs
of variables are conditionally independent, given the remaining one, (X ⊥ Y |Z) for all permu-
tations of variables. A similar argument can be used to show that joint independence also holds,
i.e., ((X,Y ) ⊥ Z) for all permutations of variables.

Alternatively, you can also visualize these relationships interactively in a 3D mosaic using
mosaic3d() that allows you to rotate the mosaic to see all views. In Figure 5.9, all of the 3D
tiles are unshaded and you can see that the 3D unit cube has been sliced according to the marginal
frequencies.

mosaic3d(fit)

Figure 5.9: 3D mosaic plot of frequencies according to the model of mutual independence {fig:struct-mos3d1}

5.8.2 Joint independence

The model of joint independence,H2 : (A,B) ⊥ C, or equivalently, the loglinear model [AB][C]
may be visualized similarly by a mosaic matrix in which the data are replaced by fitted values
under this model. We illustrate this for the model [Age Sex][Disease], calculating the fitted values
in a similar way as before.

joint <- loglm(~Age*Sex + Disease, data=struc, fitted=TRUE)
fit <- as.table(fitted(joint))
structable(Sex+Age ~ Disease, fit)

## Error in eval(expr, envir, enclos): could not find function "structable"

The pairs.table() plot, now using simpler pairwise plots (type="pairwise"), is
shown in Figure 5.36.
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pairs(fit, gp=shading_Friendly)

## Error in pairs.table(fit, gp = shading_Friendly): could not find function
"grid.newpage"

This shows, in row 3 and column 3, the anticipated independence of both age and sex with
disease, collapsing over the remaining variable. The (1,2) and (2,1) panels show that age and sex
are still associated when disease is ignored.

5.9 Chapter summary
{sec:mosaic-summary}

• The mosaic display depicts the frequencies in a contingency table by a collection of rectan-
gular “tiles” whose area is proportional to the cell frequency. The residual from a specified
model is portrayed by shading the tile to show the sign and magnitude of the deviation from
the model.

• For two-way tables, the tiles for the second variable align at each level of the first variable
when the two variables are independent (see Figure 5.10).

• The perception and understanding of patterns of association (deviations from indepen-
dence) are enhanced by reordering the rows or columns to give the shading of the residuals
a more coherent pattern. An opposite-corner pattern “explains” the association in terms of
the ordering of the factor levels.

• For three-way and larger tables, a variety of models can be fit and visualized. Starting
with a minimal baseline model, the pattern of residuals will often suggest additional terms
which must be added to “clean the mosaic.”

• It is often useful to examine the sequential mosaic displays for the marginal subtables
with the variables in a given order. Sequential models of joint independence provide a
breakdown of the total association in the full table, and are particularly appropriate when
the last variable is a response.

• Partial association, which refers to the associations among a subset of variables, within
the levels of other variables, may be easily studied by constructing separate mosaics for
the subset variables for the levels of the other, “given” variables. These displays provide
a breakdown of a model of conditional association for the whole table, and serve as an
analog of coplots for quantitative data.

• Mosaic matrices, consisting of all pairwise plots of an n-way table, provide a way to visu-
alize all marginal, joint, or conditional relations simultaneously. Parallel set plots provide
another method to visualize n-way tables.

• The structural relations among model terms in various loglinear models themselves can also
be visualized by mosaic matrices showing the expected, rather than observed, frequencies
under different models.
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5.10 Further reading
{sec:mosaic-reading}

5.11 Lab exercises
{sec:mosaic-lab}{lab:5.1}

Exercise 5.1 The data set criminal in the package logmult gives the 4 × 5 table below of
the number of men aged 15-19 charged with a criminal case for whom charges were dropped in
Denmark from 1955–1958.

data("criminal", package="logmult")
criminal

## Age
## Year 15 16 17 18 19
## 1955 141 285 320 441 427
## 1956 144 292 342 441 396
## 1957 196 380 424 462 427
## 1958 212 424 399 442 430

(a) Use loglm() to test whether there is an association between Year and Age. Is there
evidence that dropping of charges in relation to age changed over the years recorded here?

(b) Use mosaic() with the option shade=TRUE to display the pattern of signs and magni-
tudes of the residuals. Compare this with the result of mosaic() using “Friendly shading,”
from the option gp=shading_Friendly. Describe verbally what you see in each re-
garding the pattern of association in this table.

{lab:5.2}

Exercise 5.2 The Lahman package contains comprehensive data on baseball statistics for Major
League Baseball from 1871 through 2012. For all players, the Master table records the handed-
ness of players, in terms of throwing (L, R) and batting (B, L, R), where B indicates “both.” The
table below was generated using the following code:

library(Lahman)
data("Master", package="Lahman")
basehands <- with(Master, table(throws, bats))

Bats
Throws B L R

L 177 2640 527
R 924 1962 10442

• Use the code above, or else enter these data into a frequency table in R.
• Construct mosaic displays showing the relation of batting and throwing handedness, split

first by batting and by throwing.
• From these displays, what can be said about players who throw with their left or right hands

in terms of their batting handedness?
{lab:5.3}

Exercise 5.3 ? A related analysis concerns differences in throwing handedness among baseball
players according to the fielding position they play. The following code calculates a such a
frequency table.
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library(Lahman)
MasterFielding <- data.frame(merge(Master, Fielding, by="playerID"))
throwPOS <- with(MasterFielding, table(POS, throws))

(a) Make a mosaic display of throwing hand vs. fielding position.
(b) Calculate the percentage of players throwing left-handed by position. Make a sensible graph

of this data.
(c) Re-do the mosaic display with the positions sorted by percentage of left-handers.
(d) Is there anything you can say about positions that have very few left-handed players?

{lab:5.4}

Exercise 5.4 For the Bartlett data described in Example 5.11, fit the model of no three-way
association, H4 in Table 5.2.

(a) Summarize the goodness of fit for this model, and compare to simpler models that omit one
or more of the two-way terms.

(b) Use a mosaic-like display to show the lack of fit for this model.
{lab:5.5}

Exercise 5.5 Red core disease, caused by a fungus, is not something you want if you are a
strawberry. The data set jansen.strawberry from the agridat package gives a frequency
data frame of counts of damage from this fungus from a field experiment reported by Jansen
(1990). See the help file for details. The following lines create a a 3× 4× 3 table of crossings of
3 male parents with 4 (different) female parents, recording the number of plants in four blocks of
9 or 10 plants each showing red core disease in three ordered categories, C1, C2 or C3.

data("jansen.strawberry", package="agridat")

dat <- jansen.strawberry
dat <- transform(dat, category=ordered(category, levels=c('C1','C2','C3')))
levels(dat$male) <- paste0("M", 1:3)
levels(dat$female) <- paste0("F", 1:4)

jansen.tab <- xtabs(count~male + female + category, data=dat)
names(dimnames(jansen.tab)) <- c("Male parent", "Female parent",

"Disease category")
ftable(jansen.tab)

(a) Use pairs(jansen.tab, shade=TRUE) to display the pairwise associations among
the three variables. Describe how disease category appears to vary with male and female
parent? Why is there no apparent association between male and female parent?

(b) As illustrated in Figure 5.2, use mosaic to prepare a 3-way mosaic plot with the tiles colored
in increasing shades of some color according to disease category. Describe the pattern of
category C3 in relation to male and female parent. (Hint: the highlighting arguments
are useful here.)

(c) With category as the response variable, the minimal model for association is [MF ][C],
or ~ 1*2 + 3. Fit this model using loglm() and display the residuals from this model
with mosaic(). Describe the pattern of lack of fit of this model.

{lab:5.6}

Exercise 5.6 The data set caith in MASS gives another classic 4 × 5 table tabulating hair
color and eye color, this for people in Caithness, Scotland, originally from Fisher (1940). The
data is stored as a data frame of cell frequencies, whose rows are eye colors and whose columns
are hair colors.
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data("caith", package="MASS")
caith

## fair red medium dark black
## blue 326 38 241 110 3
## light 688 116 584 188 4
## medium 343 84 909 412 26
## dark 98 48 403 681 85

(a) The loglm() and mosaic() functions don’t understand data in this format, so use
Caith <- as.matrix(caith) to convert to array form. Examine the result, and use
names(dimnames(Caith))<-c() to assign appropriate names to the row and column
dimensions.

(b) Fit the model of independence to the resulting matrix using loglm().
(c) Calculate and display the residuals for this model.
(d) Create a mosaic display for this data.

{lab:5.7}

Exercise 5.7 The HairEyePlace data in vcdExtra, gives similar data on hair color and eye
color, for both Caithness and Aberdeen as a 4× 5× 2 table.

(a) Prepare separate mosaic displays, one for each of Caithness and Aberdeen. Comment on
any difference in the pattern of residuals.

(b) Construct condition mosaic plots, using the formula ~Hair+Eye | Place and both
mosaic() and cotabplot(). It is probably more useful here to suppress the legend
in these plots. Comment on the difference in what is shown in the two displays.

{lab:5.8}{lab:mosaic-accident}

Exercise 5.8 Bertin (1983, p. 30–31) used a 4-way table of frequencies of traffic accident vic-
tims in France in 1958 to illustrate his scheme for classifying data sets by numerous variables,
each of which could have various types and could be assigned to various visual attributes. His data
are contained in Accident in vcdExtra, a frequency data frame representing his 5× 2× 4× 2
table of the variables age, result (died or injured), mode of transportation and gender.

data("Accident", package="vcdExtra")
str(Accident)

## 'data.frame': 80 obs. of 5 variables:
## $ age : Ord.factor w/ 5 levels "0-9"<"10-19"<..: 5 5 5 5 5 5 5 5 5 5 ...
## $ result: Factor w/ 2 levels "Died","Injured": 1 1 1 1 1 1 1 1 2 2 ...
## $ mode : Factor w/ 4 levels "4-Wheeled","Bicycle",..: 4 4 2 2 3 3 1 1 4 4 ...
## $ gender: Factor w/ 2 levels "Female","Male": 2 1 2 1 2 1 2 1 2 1 ...
## $ Freq : int 704 378 396 56 742 78 513 253 5206 5449 ...

(a) Use loglm() to fit the model of mutual independence, Freq ~ age+mode+gender+result
to this data.

(b) Use mosaic() to produce an interpretable mosaic plot of the associations among all vari-
ables under the model of mutual independence. Try different orders of the variables in
the mosaic. (Hint: the abbreviate component of the labeling_args argument to
mosaic() will be useful to avoid some overlap of the category labels.)

(c) Treat result ("Died" vs. "Injured") as the response variable, and fit the model
Freq ~ age*mode*gender + result that asserts independence of result from
all others jointly.
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(d) Construct a mosaic display for the residual associations in this model. Which combinations
of the predictor factors are more likely to result in death?

#detach(package:ggtern)
.locals$ch05 <- setdiff(ls(), .globals)
#.locals$ch05
remove(list=.locals$ch05[sapply(.locals$ch05,function(n){!is.function(get(n))})])
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