
Chapter 7

Logistic Regression Models

{ch:logistic}
This chapter introduces the modeling framework for categorical data in the simple sit-

uation where we have a categorical response variable, often binary, and one or more
explanatory variables. A fitted model provides both statistical inference and predic-
tion, accompanied by measures of uncertainty. Data visualization methods for discrete
response data must often rely on smoothing techniques, including both direct, non-
parametric smoothing and the implicit smoothing that results from a fitted parametric
model. Diagnostic plots help us to detect influential observations which may distort our
results.

7.1 Introduction
{sec:logist-intro}

All models are wrong, but some are useful

George E. P. Box, (Box and Draper, 1987, p. 424)

Chapters 4–6 have been concerned primarily with simple, exploratory methods for studying
the relations among categorical variables and with testing hypotheses about their associations
through non-parametric tests and with overall goodness-of-fit statistics.

This chapter begins our study of model-based methods for the analysis of discrete data. These
models differ from those we have examined earlier primarily in that they consider explicitly an
assumed probability distribution for the observations, and make clear distinctions between the
systematic component, which is explained by the model, and the random component, which is
not. More importantly, the model-based approach allows a compact summary of categorical data
in terms of a (hopefully) small number of parameters accompanied by measures of uncertainty
(standard errors), and the ability to estimate predicted values over the range of explanatory vari-
ables.

This model-fitting approach has several advantages: (a) Inferences for the model parameters
include both hypothesis tests and confidence intervals. (b) The former help us to assess which ex-
planatory variables affect the outcome; the size of the estimated parameters and the widths of their
confidence intervals help us to assess the strength and importance of these effects. (c) There are a
variety of methods for model selection, designed to help determine a favorable trade-off between
goodness-of-fit and parsimony. (d) Finally, the predicted values obtained from the model effec-
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Figure 7.1: Overview of fitting and graphing for model-based methods in R. {fig:goverview}

tively smooth the discrete responses, allow predictions for unobserved values of the explanatory
variables, and provide important means to interpret the fitted relationship graphically.

Figure 7.1 provides a visual overview of the steps for fitting and graphing with model-based
methods in R. (a) A modeling function such as glm() is applied to an input data frame. The re-
sult is a model object containing all the information from the fitting process. (b) As is standard in
R, print() and summary() methods give, respectively, basic and detailed printed output. (c)
Many modeling functions have plot()methods that produce different types of summary and di-
agnostic plots. (d) For visualizing the fitted model, most model methods provide a predict()
method that can be used to plot the fitted values from the model over the ranges of the predic-
tors. Such plots can be customized by the addition of points (showing the observations), lines,
confidence bands, and so forth.

In this chapter we consider models for a binary response, such as “success” or “failure”,
or the number of “successes” in a fixed number of “trials”, where we might reasonably assume
a binomial distribution for the random component. These methods extend readily to a polyto-
mous response with more than two outcome categories, such as improvement in therapy, with
categories “none,” “some” and “marked.”

These models can be seen as simple extensions of familiar ANOVA and regression models
for quantitative data. They are also important special cases of a more general approach, the
generalized linear model that subsumes a wide variety of families of techniques within a single,
unified framework. However, rather than starting at the top with the fully general version, this
chapter details the important special cases of models for discrete outcomes, beginning with binary
responses.

This chapter proceeds as follows: in Section 7.2 we introduce the simple logistic regression
model for a binary response and a single quantitative predictor. This model extends directly to
models for grouped, binomial data (Section 7.2.4) and to models with any number of regressors
(Section 7.3), which can be quantitative, discrete factors and more general forms. For interpreting
and understanding the results of a fitted model, we emphasize plotting predicted probabilities and
predicted log odds in various ways, for which effect plots (Section 7.3.3) are particularly useful
for complex models. Individual observations sometimes exert great influence on a fitted model.
Some measures of influence and diagnostic plots are illustrated in Section 7.5. In Section 7.6, we
develop several approaches to modelling a multi-category (polytomous) response.

7.2 The logistic regression model
{sec:logist-model}

The logistic regression model describes the relationship between a discrete outcome variable,
the “response”, and a set of explanatory variables. The response variable is often dichotomous,
although extensions to the model permit multi-category, polytomous outcomes, discussed in Sec-
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tion 7.6. The explanatory variables may be continuous or (with factor variables) discrete.

For a binary response, Y , and a continuous explanatory variable, X , we may be interested in
modeling the probability of a successful outcome, which we denote π(x) ≡ Pr(Y = 1 |X = x).
That is, at a given value X = x, you can imagine that there is a binomial distribution of the
responses, Bin(π(x), nx).

The simplest naive model, called the linear probability model, supposes that this probability,
π(x) varies linearly with the value of x,

E(Y |x) = π(x) = α+ βx , (7.1) {eq:logit0}

where the notation E(Y |x) indicates that the probability π(x) represents the population condi-
tional average of the 1s and 0s for all observations with a fixed value of x. For binary observations,
this is simply the proportion of 1s.

Figure 7.2 illustrates the basic setup for modeling a binary outcome using the Arthritis
data, and described more fully in Example 7.1–Example 7.3. The 0/1 observations are shown as
(jittered) points. The predicted values under the linear probability model Eqn. (7.1) are shown
as the black line. As you can see, this model cannot be right, because it predicts a probability
less than 0 for small values of Age, and would also predict probabilities greater than 1 for larger
values of Age.
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Figure 7.2: Arthritis treatment data, for the relationship of the binary response “Better” to Age.
The blue curve and shaded confidence band show a fitted logistic regression to the observations
shown as jittered points. The black line shows a simple linear regression and the red curve shows
a non-parametric (loess) smoothed curve. {fig:arthritis-age}

The linear probability model is also wrong because it assumes that the distribution of residu-
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als, Yi−π̂(xi) is normal, with mean 0 and constant variance. However, because Y is dichotomous,
the residuals are also dichotomous, and have variance π(xi)(1 − π(xi)), which is maximal for
π = 0.5 and decreases as π goes toward 0 or 1.

One way around the difficulty of needing to constrain the predicted values to the interval [0,
1] is to re-specify the model so that a transformation of π has a linear relation to x, and that
transformation keeps π̂ between 0 and 1 for all x. This idea, of modeling a transformation of
the response that has desired statistical properties is one of the fundamental ones that led to the
development of generalized linear models, which we treat more fully later in Chapter 9.

A particularly convenient choice of the transformation gives the linear logistic regression
model (or linear logit model1 ) which posits a linear relation between the log odds (or logit) of
this probability and x,

logit[π(x)] ≡ log

(
π(x)

1− π(x)

)
= α+ βx . (7.2){eq:logit1}

When β > 0, π(x) and the log odds increase as X increases; when β < 0 they decrease with X .

This model can also be expressed as a model for the probabilities π(x) in terms of the inverse
of the logit transformation used in Eqn. (7.2),

π(x) = logit−1[π(x)] =
1

1 + exp[−(α+ βx)]
(7.3){eq:logit1a}

This transformation uses the cumulative distribution function of the logistic distribution, Λ(p) =
1

1+exp(−p) , giving rise to the term logistic regression.2

From Eqn. (7.2) we see that the odds of a success response can be expressed as

odds(Y = 1) ≡ π(x)

1− π(x)
= exp(α+ βx) = eα(eβ)x , (7.4){eq:logit2}

which is a multiplicative model for the odds. So, under the logistic model,

• β is the change in the log odds associated with a unit increase in x. The odds are multiplied
by eβ for each unit increase in x.

• α is log odds at x = 0; eα is the odds of a favorable response at this x-value (which may
not have a reasonable interpretation if X = 0 is far from the range of the data).

It is easy to explore the relationships among probabilities, odds and log odds using R as we
show below, using the function fractions() in MASS to print the odds corresponding to
probability p as a fraction.

library(MASS)
p <- c(.05, .10, .25, .50, .75, .90, .95)
data.frame(p,

odds=as.character(fractions(p/(1-p))),
logit=log(p/(1-p)))

1Some writers use the term logit model to refer to those using only categorical predictors; we use the terms logistic
regression and logit regression interchangeably.

2Any other cumulative probability transformation serves the purpose of constraining the probabilities to the interval
[0, 1]. The cumulative normal transformation π(x) = Φ(α+ βx) gives the linear probit regression model. We don’t
treat probit models here because: (a) The logistic and probit models give results so similar that it is hard to distinguish
them in practice; (b) The logistic model is simpler to interpret as a linear model for the log odds or multiplicative
model for the odds.
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## p odds logit
## 1 0.05 1/19 -2.9444
## 2 0.10 1/9 -2.1972
## 3 0.25 1/3 -1.0986
## 4 0.50 1 0.0000
## 5 0.75 3 1.0986
## 6 0.90 9 2.1972
## 7 0.95 19 2.9444

Thus, a probability of π = 0.25 represents an odds of 1 to 3, or 1/3, while a probability of
π = 0.75 represents an odds of 3 to 1, or 3. The logits are symmetric around 0, so logit(.25) =
− logit(.75).

Another simple way to interpret the parameter β in the logistic regression model is to consider
the relationship between the probability π(x) and x. From Eqn. (7.3) it can be shown that the
fitted curve (the blue line in Figure 7.2) has slope equal to βπ(1−π). This has a maximum value
of β/4 when π = 1

2 , so taking β/4 gives a quick estimate of the maximum effect of x on the
probability scale.

In Figure 7.2 and other plots later in this chapter we try to show the binary responses (as
jittered points or a rug plot) to help you appreciate how the fitted logistic curve arises from their
distribution across the range a predictor. For didactic purposes this can be seen more readily by
plotting the conditional distributions of x | y = {0, 1} as a histogram, boxplot or density plot.
The function logi.hist.plot() in the probio package is a nice implementation of this idea
(de la Cruz Rot, 2005). The call below produces Figure 7.3, and it is easy to see how increasing
age produces a greater probability of a Better response.

with(Arthritis,
logi.hist.plot(Age, Better, type="hist", counts=TRUE,

ylabel="Probability (Better)", xlab="Age",
col.cur="blue", col.hist="lightblue", col.box="lightblue")

)
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Figure 7.3: Plot of the Arthritis treatment data, showing the conditional distributions of the 0/1
observations of the Better response by histograms and boxplots.
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7.2.1 Fitting a logistic regression model
{sec:logist-fitting}

Logistic regression models are the special case of generalized linear models fit in R using glm()
for a binary response using family=binomial. We first illustrate how simple models can be
fit and interpreted.{ex:arthrit6}

EXAMPLE 7.1: Arthritis treatment
In Chapter 4 we examined the data on treatment for rheumatoid arthritis in relation to two

categorical predictors, sex of patient and treatment. In addition, the Arthritis data gives
the age of each patient in this study, and we focus here on the relationship between Age and
the outcome, Improved. This response variable has three categories (none, some, or marked
improvement), but for now we consider whether the patient showed any improvement at all,
defining the event Better to be some or marked improvement.

data("Arthritis", package="vcd")
Arthritis$Better <- as.numeric(Arthritis$Improved > "None")

The logistic regression model is fit using glm() as shown below, specifying family=binomial
for a binary response.

arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial)

As usual for R modeling functions, the print() method for "glm" objects gives brief
printed output, while the summary() method is more verbose, and includes standard errors
and hypothesis tests for the model coefficients. To save some space, it is convenient to use the
generic function coeftest() from the lmtest package. Then, we can use this instead of the
more detailed summary():

library(lmtest)
coeftest(arth.logistic)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.6421 1.0732 -2.46 0.014 *
## Age 0.0492 0.0194 2.54 0.011 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the output above, the parameter estimates are α = −2.642, and β = 0.0492. So, the
estimated odds of a better response are multiplied by eβ = exp(0.0492) = 1.05 for each one year
increase in age. Equivalently, you can think of this as a 5% increase per year (using 100(eβ − 1)
to convert). Over 10 years, the odds are multiplied by exp(10× 0.0492) = 1.64, a 64% increase,
a substantial effect in the range for these data. You can do these calculations in R using the
coef() method for the "glm" object.

exp(coef(arth.logistic))

## (Intercept) Age
## 0.071214 1.050482

exp(10*coef(arth.logistic)[2])

## Age
## 1.6364
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For comparison with the logistic model, we could fit the linear probability model Eqn. (7.1)
using either lm() or glm() with the default family=gaussian argument.

arth.lm <- glm(Better ~ Age, data=Arthritis)
coef(arth.lm)

## (Intercept) Age
## -0.107170 0.011379

The coefficient for age can be interpreted to indicate that the probability of a better response
increases by 0.011 for each one year increase in age. You can compare this with the β/4 rule of
thumb, that gives 0.0492/4 = 0.0123. Even though the linear probability model is inappropriate
theoretically, you can see in Figure 7.2 (the black line) that it gives similar predicted probabilities
to those of the logistic model between age 25–75, where most of the data points are located.

4

7.2.2 Model tests for simple logistic regression
{sec:logist-tests}

There are two main types of hypothesis tests one might want to perform for a logistic regression
model. We postpone general discussion of this topic until Section 7.3, but introduce the main
ideas here using the analysis of the Arthritis data.

• The most basic test answers the question “How much better is the fitted model, logit(π) =
α + βx than the null model logit(π) = α that includes only the regression intercept?”
One answer to this question is given by the (Wald) test of the coefficient for age testing the
hypothesis H0 : β = 0 that appeared in the output from summary(arth.logistic)
shown above. The more direct test compares the deviance of the fitted model to the de-
viance of the null model, and can be obtained using the anova() function:

anova(arth.logistic, test="Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: Better
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 83 116
## Age 1 7.29 82 109 0.007 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• A second question is “How bad is this model, compared to a model (the saturated model)
that fits the data perfectly?” This is a test of the size of the residual deviance, that is given
by the function Summarise() in vcdExtra.

Summarise(arth.logistic)
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## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## arth.logistic 113 118 109 82 0.024 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The summary of these tests is that linear logistic model Eqn. (7.2) fits significantly better
than the null model, but that model also shows significant lack of fit.

7.2.3 Plotting a binary response
{sec:logist-plotting}

It is often difficult to understand how a binary response can give rise to a smooth, continuous
relation between the predicted response, usually the probability of an event, and a continuous
explanatory variable. Beyond this, plots of the data together with fitted models help you to
interpret what these models imply.

We illustrate two approaches below using the Arthritis data shown in Figure 7.2, first
using R base graphics, and then with the ggplot2 package that makes such graphs somewhat
easier to do.

That plot, which was designed for didactic purposes, has the following features:

• It shows the data, that is, the 0/1 observations of the Better response in relation to age.
To do this effectively and avoid over-plotting, the binary responses are jittered.

• It plots the predicted (fitted) logistic regression relationship on the scale of probability,
together with a 95% confidence band.

• It also plots the predicted probabilities from the linear probability model.
• A smoothed, non-parametric regression curve for the binary observations is also added to

the plot to give some indication of possible non-linearity in the relationship of Better to
age.

{ex:arthrit7}

EXAMPLE 7.2: Arthritis treatment: Plotting logistic regression with base graphics
Here we explain how plots similar to Figure 7.2 can be constructed using R base graphics.

We describe the steps needed to calculate predicted values and confidence bands and how to
add these to a basic plot. These ideas are the basis for the higher-level and more convenient
plotting methods illustrated later in this chapter. The steps detailed below give the plot shown in
Figure 7.4.

First, we set up the basic plot of the jittered values of Better vs. Age, setting xlim to
a larger range than that in the data, only to emphasize where the logistic and linear probability
models diverge.

plot(jitter(Better, .1) ~ Age, data=Arthritis,
xlim = c(15,85), pch=16,
ylab="Probability (Better)")

The fitted logistic curve can be obtained using the predict() method for the "glm" object
arth.logistic. For this example, we wanted to get fitted values for the range of Age from
15–85, which is specified in the newdata argument.3 The argument type="response"

3Omitting the newdata argument would give predicted values using the linear predictors in the data used for the
fitted model. Some care needs to be taken if the predictor(s) contain missing values.
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Figure 7.4: A version of plot of the Arthritis treatment data (Figure 7.2) produced with R base
graphics, showing logistic, linear regression and lowess fits.

fig:arthritis-age2

gives fitted values of the probabilities. (The default, type="link"would give predicted logits.)
Standard errors of the fitted values are not calculated by default, so we set se.fit=TRUE.

xvalues <- seq(15, 85, 5)
pred.logistic <- predict(arth.logistic,

newdata=data.frame(Age=xvalues),
type="response", se.fit=TRUE)

When se.fit=TRUE, the predict() function returns its result in a list, with components
fit for the fitted values and se.fit for the standard errors. From these, we can calculate 95%
pointwise prediction intervals using the standard normal approximation.

upper <- pred.logistic$fit + 1.96 * pred.logistic$se.fit
lower <- pred.logistic$fit - 1.96 * pred.logistic$se.fit

We can then plot the confidence band using polygon() and the fitted logistic curve using
lines. A graphics trick is used here to use a transparent color for the confidence band using
rgb(r, g, b, alpha), where alpha is the transparency value.

polygon(c(xvalues, rev(xvalues)),
c(upper, rev(lower)),
col=rgb(0, 0, 1, .2), border=NA)

lines(xvalues, pred.logistic$fit, lwd=4 , col="blue")

This method, using predict() for calculations and polygon() and lines() for plot-
ting can be used to display the predicted relationships and confidence bands under other models.
Here, we simply used abline() to plot the fitted line for the linear probability model arth.lm
and lowess() to calculate a smoothed, non-parametric curve.
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abline(arth.lm, lwd=2)
lines(lowess(Arthritis$Age, Arthritis$Better, f=.9), col="red", lwd=2)

4
{ex:arthrit8}

EXAMPLE 7.3: Arthritis treatment: Plotting logistic regression with ggplot2
Model-based plots such as Figure 7.2 are relatively more straight-forward to produce using

ggplot2. The basic steps here are to:

• set up the plot frame with ggplot() using Age and Better as (x, y) coordinates;
• use geom_point() to plot the observations, whose positions are jittered with position_jitter();
• use stat_smooth()with method = "glm" and family = binomial to plot the

predicted probability curve and confidence band. By default, stat_smooth() calculates
and plots 95% confidence bands on the response (probability) scale.

library(ggplot2)
# basic logistic regression plot
gg <- ggplot(Arthritis, aes(x=Age, y=Better)) +

xlim(5, 95) + theme_bw() +
geom_point(position = position_jitter(height = 0.02, width = 0)) +
stat_smooth(method = "glm", family = binomial, alpha = 0.1, fill="blue",

size=2.5, fullrange=TRUE)

Finally, we can add other smoothers to the plot, literally by using + to add these to the "ggplot"
object.

# add linear model and loess smoothers
gg <- gg + stat_smooth(method = "lm", se=FALSE,

size=1.2, color="black", fullrange=TRUE)
gg <- gg + stat_smooth(method = "loess", se=FALSE,

span=0.95, colour="red", size=1.2)
gg # show the plot

4

7.2.4 Grouped binomial data
{sec:logist-grouped}

A related case occurs with grouped data, where rather than binary observations, yi ∈ {0, 1}
in case form, the data is given in what is called events/trials form that records the number of
successes, yi that occurred in ni trials associated with each setting of the explanatory variable(s)
xi.4 Case form, with binary observations is the special case where ni = 1.

Data in events/trials form often arises from contingency table data with a binary response. For
example in the UCBAdmissions data, the response variable Admitwith levels "Admitted",
"Rejected" could be treated in this way using the number of applicants as the number of trials.

As before, we can consider yi/ni to estimate the probability of success, πi and the distribution
of Y to be binomial, Bin(πi, ni) at each xi.

In practical applications, there are two main differences between the cases of ungrouped, case
form data and grouped, event/trials form.

4Alternatively, the data may record the number of successes, yi, and number of failures, ni − yi.
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• In fitting models using glm(), the model formula, response ~ terms, can be given
using a response consisting of a two-column matrix, whose columns contain the num-
bers of successes yi and failures ni− yi. Alternatively, the response can be given as the
proportion of successes, yi/ni, but then it is necessary to specify the number of trials as a
weight.

• In plotting the fitted model on the scale of probability, you usually have to explicitly plot
the fraction of successes, yi/ni.

{ex:nasa-temp}

EXAMPLE 7.4: Space shuttle disaster
In Example 1.2 and Example 1.10 we described the background behind the post-mortem

examination of the evidence relating to the disastrous launch of the space shuttle Challenger on
January 28, 1986. Here we consider a simple, but proper analysis of the data available at the
time of launch. We also use this example to illustrate some details of the fitting and plotting of
grouped binomial data. As well, we describe some of the possibilities for dealing with missing
data.

The data set SpaceShuttle in vcd contains data on the failures of the O-rings in 24 NASA
launches preceding the launch of Challenger, as given by Dalal et al. (1989) and Tufte (1997)
also analysed by Lavine (1991).

Each launch used two booster rockets with a total of six O-rings, and the data set records as
nFailures the number of these that were considered damaged after the rockets were recovered
at sea. In one launch (flight # 4), the rocket was lost at sea, so the relevant response variables are
missing.

In this example, we focus on the variable nFailures as a binomial with ni = 6 trials. The
missing data for flight 4 can be handled in several ways in the call to glm()

data("SpaceShuttle", package="vcd")
shuttle.mod <- glm(cbind(nFailures, 6 - nFailures) ~ Temperature,

data = SpaceShuttle, na.action = na.exclude,
family = binomial)

Alternatively, we can add an explicit trials variable, represent the response as the pro-
portion nFailures/trials, and use weight = trials to indicate the total number of
observations.

SpaceShuttle$trials <- 6
shuttle.modw <- glm(nFailures/trials ~ Temperature, weight = trials,

data = SpaceShuttle, na.action = na.exclude,
family = binomial)

These two approaches give identical results for all practical purposes:

all.equal(coef(shuttle.mod), coef(shuttle.modw))

## [1] TRUE

As before, we can test whether temperature significantly improves prediction of failure prob-
ability using anova():
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# testing, vs. null model
anova(shuttle.mod, test="Chisq")

## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: cbind(nFailures, 6 - nFailures)
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 22 24.2
## Temperature 1 6.14 21 18.1 0.013 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The code below gives a ggplot2 version in Figure 7.5 of the plot we showed earlier in Exam-
ple 1.2 (Figure 1.2). The relevant details here are:

• We specify y = nFailures / trials to calculate the failure probabilities.
• Points are jittered in the call to geom_point() to prevent overplotting.
• In the call to geom_smooth(), we need to use weight = trials, just as in the call

to glm() above.
• fullrange = TRUEmakes the fitted regression curve and confidence band extend across

the entire plot

library(ggplot2)
ggplot(SpaceShuttle, aes(x = Temperature, y = nFailures / trials)) +

xlim(30, 81) + theme_bw() +
xlab("Temperature (F)") +
ylab("O-Ring Failure Probability") +
geom_point(position=position_jitter(width=0, height=0.01),

aes(size = 2)) +
theme(legend.position="none") +
geom_smooth(method = "glm", family = binomial, fill="blue",

aes(weight = trials), fullrange = TRUE, alpha=0.2, size=2)

4

7.3 Multiple logistic regression models
{sec:logist-mult}

As is the case in classical regression, generalizing the simple logistic regression to an arbitrary
number of explanatory variables is quite straightforward. We let xi = (xi1, xi2, . . . , xip) denote
the vector of p explanatory variables for case or cluster i. Then the general logistic regression
model can be expressed as

logit(πi) ≡ log
πi

1− πi
= α+ xT

i β (7.5)

= α+ β1xi1 + β2xi2 + · · ·+ βpxip .
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Figure 7.5: Space shuttle data, with fitted logistic regression model{fig:nasa-temp-ggplot}

Equivalently, we can represent this model in terms of probabilities as the logistic transformation
of the linear predictor, ηi = α+ xT

i β,

πi = Λ(ηi) = Λ(α+ xT
i β) (7.6){eq:logistm1}

=
1

1 + exp(α+ β1xi1 + β2xi2 + · · ·+ βpxip)
.

The xs can include any of the following sorts of regressors, as in the general linear model:

• quantitative variables (e.g., age, income)
• polynomial powers of quantitative variables (e.g., age, age2, age3)
• transformations of quantitative variables (e.g., log salary)
• factors, represented as dummy variables for qualitative predictors (e.g., P1, P2, P3 for four

political party affiliations)
• interaction terms (e.g., sex × age, or age × income)

{ex:arthrit-mult}

EXAMPLE 7.5: Arthritis treatment
We continue with the analysis of the Arthritis data, fitting a model containing the main

effects of Age, Sex and Treatment, with Better as the response. This model has the form

logit(πi) = α+ β1xi1 + β2xi2 + β2xi2

where x1 is Age and x2 and x3 are the factors representing Sex and Treatment, respectively.
Using the default (0/1) dummy coding that R uses (“treatment” contrasts against the lowest factor
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level),5 they are defined as:

x2 =

{
0 if Female
1 if Male

x3 =

{
0 if Placebo
1 if Treatment

In this model,

• α doesn’t have a sensible interpretation here, but formally it would be the log odds of
improvement for a person at age x1 = 0 in the baseline or reference group with x2 = 0
and x3 = 0—females receiving the placebo. To make the intercept interpretable, we will
fit the model centering age near the mean, by using x1 − 50 as the first regressor.

• β1 is the increment in log odds of improvement for each one-year increase in age.

• β2 is the increment in log odds for male as compared to female. Therefore, eβ2 gives the
odds of improvement for males relative to females.

• β3 is the increment in log odds for being in the treated group. eβ2 gives the odds of im-
provement for the active treatment group relative to placebo.

We fit the model as follows. In glm() model formulas, “-” has a special meaning, so we
use the identity function, I(Age-50) to center age.

arth.logistic2 <- glm(Better ~ I(Age-50) + Sex + Treatment,
data=Arthritis,
family=binomial)

The parameters defined here are incremental effects. The intercept corresponds to a baseline
group (50 year-old females given the placebo); the other parameters are incremental effects for the
other groups compared to the baseline group. Thus, when α, β1, β2 and β3 have been estimated,
the fitted logits and predicted odds at Age==50 are:

Sex Treatment Logit Odds Improved

Female Placebo α eα

Female Treated α+ β2 eα+β2

Male Placebo α+ β1 eα+β1

Male Treated α+ β1 + β2 eα+β1+β2

We first focus on the interpretation of the coefficients estimated for this model shown below.

coeftest(arth.logistic2)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)

5For factor variables with the default treatment contrasts, you can change the reference level using
relevel(). In this example, you could make male the baseline category using Arthritis$Sex <-
relevel(Arthritis$Sex, ref = "Male").
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## (Intercept) -0.5781 0.3674 -1.57 0.116
## I(Age - 50) 0.0487 0.0207 2.36 0.018 *
## SexMale -1.4878 0.5948 -2.50 0.012 *
## TreatmentTreated 1.7598 0.5365 3.28 0.001 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To interpret these in terms of odds ratios and also find confidence intervals, just use exp()
and confint().

exp(cbind(OddsRatio=coef(arth.logistic2),
confint(arth.logistic2)))

## OddsRatio 2.5 % 97.5 %
## (Intercept) 0.5609 0.26475 1.1323
## I(Age - 50) 1.0500 1.01000 1.0963
## SexMale 0.2259 0.06524 0.6891
## TreatmentTreated 5.8113 2.11870 17.7266

Here,

• α = −0.578: At age 50, females given the placebo have an odds of improvement of
exp−0.578 = 0.56.

• β1 = 0.0487: Each year of age multiplies the odds of improvement by exp(0.0487) =
1.05, or a 5% increase.

• β2 = −1.49: Males are only exp(−1.49) = 0.26 times as likely to show improvement
relative to females. Equivalently, you could say that females are exp(1.49) = 4.437 times
more likely than males to improve.

• β3 = 1.76: People given the active treatment are exp(1.76) = 5.8 times more likely to
show improvement.

As you can see, the interpretation of coefficients in multiple logistic models is straightfor-
ward, though a bit cumbersome. This becomes more difficult in larger models, particularly when
there are interactions. In these cases, you can understand (and explain) a fitted model more easily
through plots of predicted values, either on the scale of response probability or on the logit scale
of the linear predictor. We describe these methods in Section 7.3.1–Section 7.3.3 below.

4

7.3.1 Conditional plots
{sec:logist-condplots}

The simplest kind of plots display the data together with a representation of the fitted relationship
(predicted values, confidence bands) separately for subsets of the data defined by one or more of
the predictors. Such plots can show the predicted values for the response variable on the ordinate
against one chosen predictor on the abscissa, and can use multiple curves and multiple panels to
represent other predictors.

However, these plots are conditional plots, meaning that the data shown in each panel and
used in each fitted curve are limited to the subset of the observations defined by the curve and
panel variables. As well, predictors that are not shown in a given plot are effectively ignored (or
marginalized), as was the case in Figure 7.2 that showed only the effect of age in the Arthritis
data. {ex:arth-cond}
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EXAMPLE 7.6: Arthritis treatment: conditional plots
For the Arthritis data, a basic conditional plot of Better vs. Age, showing the observa-

tions as jittered points (with geom_point()) and the fitted logistic curves (with stat_smooth()
using method="glm") can be produced with ggplot2 as shown below, giving Figure 7.6.

library(ggplot2)
gg <- ggplot(Arthritis, aes(Age, Better, color=Treatment)) +

xlim(5, 95) + theme_bw() +
geom_point(position = position_jitter(height = 0.02, width = 0)) +
stat_smooth(method = "glm", family = binomial, alpha = 0.2,

aes(fill=Treatment), size=2.5, fullrange=TRUE)
gg # show the plot
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Figure 7.6: Conditional plot of Arthritis data showing separate points and fitted curves stratified
by Treatment. A separate fitted curve is shown for the two treatment conditions, ignoring Sex.

fig:arth-cond1

In this call to ggplot(), specifying color=Treatment gives different point and line colors,
but also automatically stratifies the fitted curves using the levels of this variable.

With such a plot, it is easy to add further stratifying variables in the data using facets to
produce separate panels (functions facet_wrap() or facet_grid(), with different options
to control the details). The following line further stratifies by Sex, producing Figure 7.7.

gg + facet_wrap(~ Sex)

However, you can see from this plot how this method breaks down when the sample size is
small in some of the groups defined by the stratifying factors. The panel for males shows a
paradoxical negative relation with age for the treated group and a step function for the placebo
group. The explanation for this is shown in the two-way frequency table of the sex and treatment
combinations:

addmargins(xtabs(~Sex + Treatment, data=Arthritis), 2)

## Treatment
## Sex Placebo Treated Sum
## Female 32 27 59
## Male 11 14 25
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Figure 7.7: Conditional plot of Arthritis data, stratified by Treatment and Sex. The unusual
patterns in the panel for Males signals a problem with this data.

fig:arth-cond2

Less than 1/3 of the sample were males, and of these only 11 were in the placebo group.
glm() cannot estimate the fitted relationship against Age here— the slope coefficient is infinite,
and the fitted probabilities are all either 0 or 1.6

4

7.3.2 Full-model plots
{sec:logist-fullplots}

For a model with two or more explanatory variables, full-model plots display the fitted response
surface for all predictors together, rather than stratified by conditioning variables. Such plots
show the predicted values for the response variable on the ordinate against one chosen predictor
on the abscissa, and can use multiple curves and multiple panels to represent other predictors.

A simple R trick7 makes this method far easier and more general than the naive plotting
method used in Example 7.2. The trick is simply to combine the columns in the original data
frame with the result of the predict() method for the fitted model and plot the calculated fit
value, together with confidence bands (if you use se.fit=TRUE). {ex:arth-full}

EXAMPLE 7.7: Arthritis treatment: full-model plots

arth.fit2 <- cbind(Arthritis,
predict(arth.logistic2, se.fit = TRUE))

The fitted values here are on the logit scale, which means that it takes one more trick to show
the data points on the plot. We simply define a new variable, obs with convenient logit values
corresponding the Better values of 0 and 1.

arth.fit2$obs <- c(-4, 4)[1+arth.fit2$Better]

We can then plot the fitted logit against Age using x=Age, y=fit from the data frame
containing the fitted values. The call to ggplot() below produces Figure 7.8. Here, we

6This is called complete separation, and occurs whenever the responses have no overlap on the predictor variable(s)
used in fitting the logistic regression model.

7Thanks to Dennis Murphy for suggesting this method.



270 [11-26-2014] 7 Logistic Regression Models

used color=Treatment to produce separate points, lines and confidence bands colored by
Treatment. Confidence bands in the plot are constructed using geom_ribbon().

ggplot(arth.fit2, aes(x=Age, y=fit, color=Treatment)) +
geom_line(size = 2) + theme_bw() +
geom_ribbon(aes(ymin = fit - 1.96 * se.fit,

ymax = fit + 1.96 * se.fit,
fill = Treatment), alpha = 0.2,

color = "transparent") +
labs(x = "Age", y = "Log odds (Better)") +
geom_point(aes(y=obs),

position=position_jitter(height=0.25, width=0)) +
facet_wrap(~ Sex)
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Figure 7.8: Full-model plot of Arthritis data, showing fitted logits by Treatment and Sex.
fig:arth-full1

This plot method has several nice features:

• Plotting on the logit scale shows the additive, linear effects of all predictors.
• It provides a visual representation of the information contained in the table of coefficients.

Note, however, that the choice to display Treatment within each panel makes it easier
to judge the size of this effect, compared to the effect of Sex which must be judged across
the panels.

• It shows the data as points, and the fitted lines and confidence bands are restricted to the
range of the data in each. You can easily see the reason for the unusual pattern in the
conditional plot for Males shown in Figure 7.7.

• It generalizes directly to any fitted model, because the same plotting code can be used once
the model predicted values have been calculated.

• Additional predictors, either factors or quantitative variables can easily be accommodated
by including them in the facet_wrap() call. For example, if the patients were also cate-
gorized by education and this had been included in the model, facet_wrap(~ Sex + Education)
would produce separate panels for the combinations of these two variables.

While plots on the logit scale have a simpler form, many people find it easier to think about
such relationships in terms of probabilities, as we have done in earlier plots in this chapter. You
can do the same for full-model plots with a simple extension of this method. All you need to do
is to transform the fit and end points of the confidence band back to the scale of probabilities.
The function plogis() does this for the logistic distribution.
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arth.fit2 <- within(arth.fit2, {
prob <- plogis(fit)
lower <- plogis(fit - 1.96 * se.fit)
upper <- plogis(fit + 1.96 * se.fit)
})

The plot step is then similar to what we used above (but with prob, lower and upper),
producing Figure 7.9.

ggplot( arth.fit2, aes(x=Age, y=prob, color=Treatment)) +
geom_line(size = 2) + theme_bw() +
geom_ribbon(aes(ymin = lower,

ymax = upper,
fill = Treatment), alpha = 0.2,

color = "transparent") +
labs(x = "Age", y = "Probability (Better)") +
geom_point(aes(y=Better),

position=position_jitter(height=0.02, width=0)) +
facet_wrap(~ Sex)
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Figure 7.9: Full-model plot of Arthritis data, showing fitted probabilities by Treatment and Sex.
fig:arth-full2

4

7.3.3 Effect plots
{sec:logist-effplots}

For more than two variables, full-model plots of the fitted response surface can be cumbersome,
particularly when the model contains interactions or when the main substantive interest is focused
on a given main effect or interaction, controlling for all other explanatory variables. The method
of effect displays (tables and graphs), developed by John Fox (1987, 2003) and implemented in
the effects package, is a useful solution to these problems.

The idea of effect plots is quite simple but very general:8 consider a particular subset of pre-
dictors (focal predictors) we wish to visualize in a given linear model or generalized linear model.
The essence is to calculate fitted values (and standard errors) for the model terms involving these

8Less general expression of these ideas include the use of adjusted means in analysis of covariance, and least
squares means or population marginal means (Searle et al., 1980) in analysis of variance; for example, see the
lsmeans package for classical linear models.
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variables and all low-order relatives (e.g., main effects that are marginal to an interaction), as
these variables are allowed to vary over their range. All other variables are “controlled” by being
fixed at typical values. For example a quantitative covariate could be fixed at its mean or median;
a factor could be fixed at equal proportions of its levels or its proportions in the data. The result,
when plotted, shows all effects of the focal predictors and their low-order relatives, but with all
other variables not included controlled or adjusted for.

More formally, assume we have fit a model with a linear predictor ηi = α + xT
i β (on the

logit scale, for logistic regression). Letting β0 = α and x0 = 1, we can rewrite this in matrix
form as η = Xβ where X is the model matrix constructed by the modeling function, such as
glm(). Fitting the model gives the estimated coefficients b and its estimated covariance matrix
V̂(b).

The Effect() function constructs an analogous score model matrix, X∗, where the focal
variables have been varied over their range, and all other variables represented as constant, typical
values. Using this as input (the newdata argument) to the predict() function then gives
the fitted values η∗ = X∗b. Standard errors used for confidence intervals are calculated by
predict() (when se.fit=TRUE) as the square roots of diag (X∗V̂(b)X∗T). Note that
these ideas work not only for glm() models, but potentially for any modeling function that has
a predict() and vcov() method.9

These results are calculated on the scale of the linear predictor η (logits, for logistic regres-
sion) when the type argument to predict() is type="link" or on the response scale
(probabilities, here) when type="response". The latter makes use of the inverse transfor-
mation, Eqn. (7.6).

There are two main calculation functions in the effects package:

• Effect() takes a character vector of the names of a subset of focal predictors and con-
structs the score matrixX∗ by varying these over their ranges, while holding all other pre-
dictors constant at “typical” values. There are many options that control these calculations.
For example, xlevels can be used to specify the values of the focal predictors; typical
or given.values respectively can be used to specify either a function (mean, median)
or a list of specific typical values used for the variables that are controlled. The result is an
object of class "eff", for which there are print(), summary() and (most importantly)
plot() methods. See help(Effect) for a complete description.

• allEffects() takes a model object, and calculates the effects for each high-order term
in the model (including their low-order) relatives. Similar optional arguments control the
details of the computation. The result is an object of class "efflist".

In addition, the plotting methods for "eff" and "efflist" objects offer numerous options to con-
trol the plot details, only a few of which are used in the examples below. For logistic regression
models, they also solve the problem of the trade-off between plots on the logit scale, that have
a simple representation in terms of additive effects, and plots on the probability scale that are
usually simpler to understand. By default, the fitted model effects are plotted on the logit scale,
but the response y axis is labeled with the corresponding probability values.{ex:arthrit-eff}

9For example, the effects package presently provides methods for models fit by lm() (including multivariate
linear response models), glm(), gls(), multinomial (multinom() in the nnet package) and proportional odds
models (polr() in MASS), polytomous latent class models (poLCA package), as well as a variety of multi-level
and mixed-effects linear models fit with lmer() from the lme4 package, or with lme() from the nlme package.
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EXAMPLE 7.8: Arthritis treatment
Here we illustrate the use of the effects package with the simple main effects model which

was fit in Example 7.5. allEffects() is used to calculate the predicted probabilities of the
Better response for Age and the two factors, Sex and Treatment.

library(effects)
arth.eff2 <- allEffects(arth.logistic2)
names(arth.eff2)

## [1] "I(Age-50)" "Sex" "Treatment"

The result, arth.eff2 is a list containing the fitted values (response probabilities, by de-
fault) for each of the model terms. No xlevels argument was specified, so by default the
function calculated the effects for Age at a reasonable selection of equally-spaced values:

arth.eff2[[1]]

##
## Age effect
## Age
## 30 40 50 60 70
## 0.24289 0.34311 0.45959 0.58066 0.69274

The default plot method for the "efflist" object produces one plot for each high-order term,
which are just the main effect in this model. The call below produces Figure 7.10.

plot(arth.eff2, rows=1, cols=3)
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Figure 7.10: Plot of all effects in the main effects model for the Arthritis data
fig:arth-effplot1

You can also produce full-model plots quite easily by using all predictors in the model in a
call to Effect().

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)

Then plotting the result, with some options, gives the plot shown in Figure 7.11.

plot(arth.full, multiline=TRUE, ci.style="bands",
colors = c("red", "blue"), lwd=3,
key.args=list(x=.52, y=.92), grid=TRUE)
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Figure 7.11: Full-model plot of the effects of all predictors in the main effects model for the
Arthritis data, plotted on the logit scale.

fig:arth-effplot2

Alternatively, we can plot these results directly on the scale of probabilities, as shown in
Figure 7.12.

plot(arth.full, multiline=TRUE, ci.style="bands", rescale.axis=FALSE,
colors = c("red", "blue"), lwd=3,
key.args=list(x=.52, y=.92), grid=TRUE)
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Figure 7.12: Full-model plot of the effects of all predictors in the main effects model for the
Arthritis data, plotted on the probability scale.

fig:arth-effplot3

4

7.4 Case studies

The examples below take up some issues of data analysis, model building and visualization in the
context of multiple logistic regression models. We focus on the combination of exploratory plots
to see the data, modeling steps and graphs to interpret a given model.{ex:donner1}
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EXAMPLE 7.9: Donner Party
In Chapter 1, Example 1.3, we described the background behind the sad story of the Donner

Party, perhaps the most famous tragedy in the history of the westward settlement in the United
States. In brief, the party was stranded on the eastern side of the Sierra Nevada mountains by
heavy snow in late October, 1846, and by the time the last survivor was rescued in April, 1847,
nearly half of the members had died from famine and exposure to extreme cold. Figure 1.3
showed that survival decreased strongly with age.

Here we consider a more detailed analysis of these data, which are contained in the data set
Donner in vcdExtra. This data set lists 90 people in the Donner Party by name, together with
age, sex, survived (0/1) and the date of death for those who died.10

data("Donner", package="vcdExtra") # load the data
library(car) # for some() and Anova()
some(Donner, 8)

## family age sex survived death
## Breen, Peter Breen 3 Male 1 <NA>
## Donner, Jacob Donner 65 Male 0 1846-12-21
## Foster, Jeremiah MurFosPik 1 Male 0 1847-03-13
## Graves, Nancy Graves 9 Female 1 <NA>
## McCutchen, Harriet McCutchen 1 Female 0 1847-02-02
## Reed, James Reed 46 Male 1 <NA>
## Reinhardt, Joseph Other 30 Male 0 1846-12-21
## Wolfinger, Doris FosdWolf 20 Female 1 <NA>

The main purpose of this example is to try to understand, through graphs and models, how
survival was related to age and sex. However, first, we do some data preparation and exploration.
The response variable, survived is a 0/1 integer, and it is more convenient for some purposes
to make it a factor.

Donner$survived <- factor(Donner$survived, labels=c("no", "yes"))

Some historical accounts (Grayson, 1990) link survival in the Donner Party to kinship or fam-
ily groups, so we take a quick look at this factor here. The variable family reflects a recoding
of the last names of individuals to reduce the number of factor levels. The main families in the
Donner party were: Donner, Graves, Breen and Reed. The families of Murphy, Foster and Pike
are grouped as "MurFosPik", those of Fosdick and Wolfinger are coded as "FosdWolf", and
all others as "Other".

xtabs(~family, data=Donner)

## family
## Breen Donner Eddy FosdWolf Graves Keseberg
## 9 14 4 4 10 4
## McCutchen MurFosPik Other Reed
## 3 12 23 7

10Most historical sources count the number in the Donner Party at 87 or 89. An exact accounting of the members
of the Donner Party is difficult, because: (a) several people joined the party in mid-route, at Fort Bridger and in
the Wasatch Mountains; (b) several rode ahead to search for supplies and one (Charles Stanton) brought two more
with him (Luis and Salvador); (c) five people died before reaching the Sierra Nevada mountains. It incorporates
updated information from Kristin Johnson’s listing, http://user.xmission.com/~octa/DonnerParty/
Roster.htm.
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For the present purposes, we reduce these 10 family groups further, collapsing some of the
small families into "Other", and reordering the levels. Assigning new values to the levels()
of a factor is a convenient trick for recoding factor variables.

# collapse small families into "Other"
fam <- Donner$family
levels(fam)[c(3,4,6,7,9)] <- "Other"

# reorder, putting Other last
fam = factor(fam,levels(fam)[c(1, 2, 4:6, 3)])
Donner$family <- fam
xtabs(~family, data=Donner)

## family
## Breen Donner Graves MurFosPik Reed Other
## 9 14 10 12 7 38

xtabs() then shows the counts of survival by these family groups:

xtabs(~survived+family, data=Donner)

## family
## survived Breen Donner Graves MurFosPik Reed Other
## no 0 7 3 6 1 25
## yes 9 7 7 6 6 13

Plotting this distribution of survival by family with a formula gives a spineplot, a special case
of the mosaic plot, or a generalization of a stacked bar plot, shown in Figure 7.13. The widths
of the bars are proportional to family size, and the shading highlights in light blue the proportion
who survived in each family.

plot(survived ~ family, data=Donner, col=c("pink", "lightblue"))
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Figure 7.13: Spineplot of survival in the Donner Party by family.
fig:donner1-spineplot

A generalized pairs plot (Section 5.5.1), shown in Figure 7.14 gives a visual overview of the
data. The diagonal panels here show the marginal distributions of the variables as bar plots, and
highlight the skewed distribution of age and the greater number of males than females in the
party. The boxplots and barcode plots for survived and age show that those who survived were
generally younger than those who perished.



7.4 Case studies [supp-pdf.mkii ] 277

library(gpairs)
library(vcd)
gpairs(Donner[,c(4,2,3,1)],

diag.pars=list(fontsize=20, hist.color="gray"),
mosaic.pars=list(gp=shading_Friendly), outer.rot=c(45,45)
)
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Figure 7.14: Generalized pairs plot for the Donner data
fig:donner1-gpairs

From an exploratory perspective, we now proceed to examine the relationship of survival
to age and sex, beginning with the kind of conditional plots we illustrated earlier (in Exam-
ple 7.6). Figure 7.15 shows a plot of survived, converted back to a 0/1 variable as required
by ggplot(), together with the binary responses as points and the fitted logistic regressions
separately for males and females.

ggplot(Donner, aes(age, as.numeric(survived=="yes"), color = sex)) +
theme_bw() + ylab("Survived") +
geom_point(position = position_jitter(height = 0.02, width = 0)) +
stat_smooth(method = "glm", family = binomial, formula = y ~ x,

alpha = 0.2, size=2, aes(fill = sex))

It is easy to see that survival among women was greater that for men, perhaps narrowing the
gap among the older people, but the data gets thin towards the upper range of age.

The curves plotted in Figure 7.15 assume a linear relationship between the log odds of survival
and age (expressed as formula = y ~ x in the call to stat_smooth()). One simple way
to check whether the relationship between survival and age is non-linear is to re-do this plot, but
now allow a quadratic relationship with age, using formula = y ~ poly(x,2). The result
is shown in the left panel of Figure 7.16.
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Figure 7.15: Conditional plot of the Donner data, showing the relationship of survival to age and
sex. The smoothed curves and confidence bands show the result of fitting separate linear logistic
regressions on age for males and females.

fig:donner1-cond1

gg <- ggplot(Donner, aes(age, as.numeric(survived=="yes"), color = sex)) +
theme_bw() + ylab("Survived") +
geom_point(position = position_jitter(height = 0.02, width = 0))

gg + stat_smooth(method = "glm", family = binomial, formula = y ~ poly(x,2),
alpha = 0.2, size=2, aes(fill = sex))

gg + stat_smooth(method = "loess", span=0.9, alpha = 0.2, size=2,
aes(fill = sex)) + coord_cartesian(ylim=c(-.05,1.05))
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Figure 7.16: Conditionals plot of the Donner data, showing the relationship of survival to age and
sex. Left: The smoothed curves and confidence bands show the result of fitting separate quadratic
logistic regressions on age for males and females. Right: Separate loess smooths are fit to the
data for males and females

fig:donner1-cond3

This plot is quite surprising. It suggests quite different regimes relating to survival for men
and women. Among men, survival probability decreases steadily with age, at least after age 20.
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For women, those in the age range 10–35 were very likely to have lived, while those over 40 were
almost all predicted to perish.

Another simple technique is to fit a non-parametric loess smooth, as shown in the right panel
of Figure 7.16. The curve for females is similar to that of the quadratic fit in the left panel, but
the curve for males suggests that survival also has a peak around the teenage years. One lesson
to be drawn from these graphs is that a linear logistic regression, such as shown in Figure 7.16
may tell only part of the story, and, for a binary response it is not easy to discern whether the true
relationship is linear. If it really is, all these graphs would look much more similar. As well, we
usually obtain a more realistic smoothing of the data using full-model plots or effect plots.

The suggestions from these exploratory graphs can be used to define and test some models
for survival in the Donner Party. The substantive questions of interest are:

• Is relationship the same for men and women? This is, is it necessary to allow for an
interaction of age with sex, or separate fitted curves for men and women?

• Is the relationship between survival and age well-represented in a linear logistic regression
model?

The first question is the easiest to deal with: we can simply fit a model allowing an interaction
of age (or some function of age) and sex,

survived ~ age * sex
survived ~ f(age) * sex

and compare the goodness of fit with the analogous additive, main-effects models.

From a modeling perspective, there is a wide variety of approaches for testing for non-linear
relationships. We only scratch the surface here, and only for a single quantitative predictor, x,
such as age in this example. One simple approach, illustrated in Figure 7.16 is to allow a quadratic
(or higher-power, e.g., cubic) function to describe the relationship between the log odds and x,

logit(πi) = α+ β1xi + β2x
2
i

logit(πi) = α+ β1xi + β2x
2
i + β3x

3
i

. . .

In R, these model terms can be fit using poly(x, 2), poly(x, 3) . . ., which generate
orthogonal polynomials for the powers of x. A simple way to test for non-linearity is a likelihood
ratio test comparing the more complex model to the linear one. This method is often sufficient
for a hypothesis test, and, if the relationship truly is linear, the fitted logits and probabilities will
not differ greatly from what they would be under a linear model. A difficulty with this approach
is that polynomial models are often unrealistic, particularly for data that approach an asymptote.

Another simple approach is to use a regression spline, that fits the relationship with x in
terms of a set of piecewise polynomials, usually cubic, joined at a collection of points, called
knots so that the overall fitted relationship is smooth and continuous. See Fox (2008, §17.2) for a
cogent, brief description of these methods.

One particularly convenient method is a natural spline, implemented in the splines package
in the ns() function. This method constrains the fitted cubic spline to be linear at lower and
upper limits of x, and, for k knots, fits df = k + 1 parameters not counting the intercept. The k
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knots can be conveniently chosen as k cutpoints in the percentiles of the distribution of x. For
example, with k = 1, the knot would be placed at the median, or 50th percentile; with k = 3,
the knots would be placed at the quartiles of the distribution of x; k = 0 corresponds to no knots,
i.e., a simple linear regression.

In the ns() function, you can specify the locations of knots or the number of knots with
the knots argument, but it is conceptually simpler to specify the number of degrees of freedom
used in the spline fit. Thus, ns(x, 2) and poly(x, 2) both specify a term in x of the same
complexity, the former a natural spline with k = 1 knot and the later a quadratic function in x.

We illustrate these ideas in the remainder of this example, fitting a 2× 2 collection of models
to the Donner data corresponding to: (a) whether or not age and sex effects are additive; (b)
whether the effect is linear on the logit scale or non-linear (quadratic, here). A brief summary
of each model is given using the Anova() in the car package, providing Type II tests of each
effect. As usual, summary() would give more detailed output, including tests for individual
coefficients. First, we fit the linear models, without and with an interaction term:

donner.mod1 <- glm(survived ~ age + sex,
data=Donner, family=binomial)

Anova(donner.mod1)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
## LR Chisq Df Pr(>Chisq)
## age 5.52 1 0.0188 *
## sex 6.73 1 0.0095 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

donner.mod2 <- glm(survived ~ age * sex,
data=Donner, family=binomial)

Anova(donner.mod2)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
## LR Chisq Df Pr(>Chisq)
## age 5.52 1 0.0188 *
## sex 6.73 1 0.0095 **
## age:sex 0.40 1 0.5269
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The main effects of age and sex are both significant here, but the interaction term, age:sex
is not in model donner.mod2.

Next, we fit non-linear models, representing the linear and non-linear trends in age by poly(age,2).
Alternatively, we could use the term ns(age,2) or higher-degree polynomials or natural splines
with more knots, but we don’t do this here.

donner.mod3 <- glm(survived ~ poly(age,2) + sex,
data=Donner, family=binomial)

Anova(donner.mod3)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
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## LR Chisq Df Pr(>Chisq)
## poly(age, 2) 9.91 2 0.0070 **
## sex 8.09 1 0.0044 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

donner.mod4 <- glm(survived ~ poly(age,2) * sex,
data=Donner, family=binomial)

Anova(donner.mod4)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
## LR Chisq Df Pr(>Chisq)
## poly(age, 2) 9.91 2 0.0070 **
## sex 8.09 1 0.0044 **
## poly(age, 2):sex 8.93 2 0.0115 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now, in model donner.mod4, the interaction term poly(age, 2):sex is significant, in-
dicating that the fitted quadratics for males and females differ in “shape,” meaning either their
linear (slope) or quadratic (curvature) components.

These four models address the questions posed earlier. A compact summary of these mod-
els, giving the likelihood ratio tests of goodness of fit, together with AIC and BIC statistics are
shown below, using the Summarise() method in vcdExtra for a list of "glm" models. TODO:
Summarise gives the wrong pvalues

library(vcdExtra)
Summarise(donner.mod1, donner.mod2, donner.mod3, donner.mod4)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## donner.mod1 117 125 111.1 87 0.042 *
## donner.mod2 119 129 110.7 86 0.038 *
## donner.mod3 115 125 106.7 86 0.064 .
## donner.mod4 110 125 97.8 84 0.144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By AIC and BIC, donner.mod4 is best, and it is also the only model with a non-significant
LR χ2 (residual deviance). Because these models comprise a 2× 2 set of hypotheses, it is easier
to compare models by extracting the LR statistics and arranging these in a table, together with
the their row and column differences. The entries in the table below are calculated as follows.

mods <- list(donner.mod1, donner.mod2, donner.mod3, donner.mod4)
LR <- sapply(mods, function(x) x$deviance)
LR <- matrix(LR, 2, 2)
rownames(LR) <- c("additive", "non-add")
colnames(LR) <- c("linear", "non-lin")
LR <- cbind(LR, diff= LR[,1]-LR[,2])
LR <- rbind(LR, diff= c(LR[1,1:2]-LR[2,1:2],NA))
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linear non-linear ∆χ2 p-value
additive 111.128 106.731 4.396 0.036
non-additive 110.727 97.799 12.928 0.000
∆χ2 0.400 8.932
p-value 0.527 0.003

Thus, the answer to our questions seems to be that: (a) there is evidence that the relationship
of survival to age differs for men and women in the Donner Party; (b) these relationships are not
well-described by a linear logistic regression.

For simplicity, we used a quadratic effect, poly(age,2), to test for non-linearity here. An
alternative test of the same complexity could use a regression spline, ns(age,2), also with 2
degrees of freedom for the main effect and interaction, or allow more knots. To illustrate, we fit
two natural spline modes models with 2 and 4 df, and compare these with the quadratic model
(donner.mod4), all of which include the interaction of age and sex.

library(splines)
donner.mod5 <- glm(survived ~ ns(age,2) * sex, data=Donner,

family=binomial)
Anova(donner.mod5)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
## LR Chisq Df Pr(>Chisq)
## ns(age, 2) 9.28 2 0.0097 **
## sex 7.98 1 0.0047 **
## ns(age, 2):sex 8.71 2 0.0129 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

donner.mod6 <- glm(survived ~ ns(age,4) * sex, data=Donner,
family=binomial)

Anova(donner.mod6)

## Analysis of Deviance Table (Type II tests)
##
## Response: survived
## LR Chisq Df Pr(>Chisq)
## ns(age, 4) 22.05 4 0.0002 ***
## sex 10.49 1 0.0012 **
## ns(age, 4):sex 8.54 4 0.0737 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Summarise(donner.mod4, donner.mod5, donner.mod6)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## donner.mod4 110 125 97.8 84 0.14
## donner.mod5 111 126 98.7 84 0.13
## donner.mod6 106 131 86.1 80 0.30

With four more parameters, donner.mod6 fits better and has a smaller AIC.

We conclude this example with an effect plot for the spline model donner.mod6 shown
in Figure 7.17. The complexity of the fitted relationships for men and women is intermediate
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between the two conditional plots shown in Figure 7.16. (However, note that the fitted effects are
plotted on the logit scale in Figure 7.17 and labeled with the corresponding probabilities, whereas
the conditional plots are plotted directly on the probability scale.)

library(effects)
donner.eff6 <- allEffects(donner.mod6, xlevels=list(age=seq(0,50,5)))
plot(donner.eff6, ticks=list(at=c(0.001, 0.01, 0.05, 0.1, 0.25,

0.5, 0.75, 0.9, 0.95, 0.99, 0.999)))
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Figure 7.17: Effect plot for the Donner data
fig:donner-effect

This plot confirms that for women in the Donner Party, survival was greatest for those aged
10-30. Survival among men was overall much less and there is a hint of greater survival for men
aged 10-15.

Of course, this statistical analysis does not provide explanations for these effects, and it ig-
nores the personal details of the Donner Party members and the individual causes and circum-
stances of death, which are generally well-documented in the historical record (Johnson, 1996).
See http://user.xmission.com/~octa/DonnerParty/ for a comprehensive collec-
tion of historical sources.

Grayson (1990) attributes the greater survival of women of intermediate age to demographic
arguments that women are overall better able to withstand conditions of famine and extreme cold,
and high age-specific mortality rates among the youngest and oldest members of human societies.
He also concludes (without much analysis) that members with larger social and kinship networks
would be more likely to survive. 4

{ex:arrests}

EXAMPLE 7.10: Racial profiling: Arrests for marijuana possession
In the summer of 2002, the Toronto Star newspaper launched an investigation on the topic of

possible racial profiling by the Toronto police service. Through freedom of information requests,
they obtained a data base of over 600,000 arrest records on all potential charges in the period from
1996–2002, the largest data bases on crime arrests and disposition ever assembled in Canada. An
initial presentation of this study was given in Example 1.4.
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In order to examine the issue of racial profiling (different treatment as a function of race) they
excluded all charges such as assault, robbery, speeding and driving under the influence, where
the police have no discretion regarding the laying of a charge. They focused instead on a subset
of arrests, where the police had various options.

Among these, for people arrested for a single charge of simple possession of a small amount
of marijuana, police have the option of releasing the arrestee, with a summons (“Form 9”) to
appear in court (similar to a parking ticket), or else the person could be given harsher treatment–
brought to a police station or held in jail for a bail hearing (“Show cause”). The main question
for the Toronto Star was whether the subject’s skin color had any influence on the likelihood that
the person would be released with a summons.11

Their results, published in a week-long series of articles in December 2002, concluded that
there was strong evidence that black and white subjects were treated differently. For example, the
analysis showed that blacks were 1.5 times more likely than whites to be given harsher treatment
than release with a summons; if the subject was taken to the police station, a black was 1.6 times
more likely to be held in jail for a bail hearing. An important part of the analysis and the public
debate that ensued was to show that other variables that might account for these differences had
been controlled or adjusted for.12

The data set Arrests in the effects package gives a simplified version of the Star database,
containing records for 5226 cases of arrest on the charge of simple possession of marijuana an-
alyzed by the newspaper. The response variable here is released (Yes/No) and the main
predictor of interest is skin color of the person arrested, colour (Black/White).13 A random
subset of the data set is shown below.

library(effects)
data("Arrests", package="effects")
Arrests[sample(nrow(Arrests), 6),]

## released colour year age sex employed citizen checks
## 3768 Yes Black 2000 23 Male No Yes 4
## 4576 Yes Black 2001 17 Male Yes Yes 0
## 3976 No White 2002 20 Male No Yes 3
## 4629 Yes White 2000 18 Male Yes Yes 1
## 2384 No Black 2000 19 Male Yes Yes 3
## 869 Yes White 2001 15 Male Yes Yes 1

Other available predictors, to be used as control variables included the year of the arrest,
age and sex of the person, and binary indicators of whether the person was employed and a
citizen of Canada. In addition, when someone is stopped by police, his/her name is checked
in six police data bases that record previous arrests, convictions, whether on parole, etc. The
variable checks records the number, 0–6, in which the person’s name appeared.

11Another discretionary charge they investigated was police stops for non-moving violations under the Ontario
Highway Traffic Act, such as being pulled over for a faulty muffler or having an expired license plate renewal sticker.
A disproportionate rate of charges against blacks is sometimes referred to as “driving while black” (DWB). This
investigation found that the number of blacks so charged, but particularly young black males, far out-weighed their
representation in the population.

12The Toronto Police Service launched a class-action libel law suit against the Toronto Star and the first author of
this book, who served as their statistical consultant, claiming damages of $5,000 for every serving police officer in the
city, a total of over 20 million dollars. The suit was thrown out of court, and the Toronto police took efforts to enhance
training programs to combat the perception of racial profiling.

13The original data set also contained the categories Brown and Other, but these appeared with small frequencies.
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A variety of logistic models were fit to these data including all possible main effects and some
two-way interactions. To allow for possible non-linear effects of year, this variable was treated
as a factor rather than as a (linear) numeric variable, but the effects of age and checks were
reasonably linear on the logit scale. A reasonable model included the interactions of colour
with both year and age, as fit below:

Arrests$year <- as.factor(Arrests$year)
arrests.mod <- glm(released ~ employed + citizen + checks

+ colour*year + colour*age,
family=binomial, data=Arrests)

For such models, significance tests for the model terms are best carried out using the Anova()
function in the car package that uses Type II tests ...

library(car)
Anova(arrests.mod)

## Analysis of Deviance Table (Type II tests)
##
## Response: released
## LR Chisq Df Pr(>Chisq)
## employed 72.7 1 < 2e-16 ***
## citizen 25.8 1 3.8e-07 ***
## checks 205.2 1 < 2e-16 ***
## colour 19.6 1 9.7e-06 ***
## year 6.1 5 0.29785
## age 0.5 1 0.49827
## colour:year 21.7 5 0.00059 ***
## colour:age 13.9 1 0.00019 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The difficulty in interpreting these results from tables of coefficients can be seen in the output
below:

coeftest(arrests.mod)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.34443 0.31007 1.11 0.26665
## employedYes 0.73506 0.08477 8.67 < 2e-16 ***
## citizenYes 0.58598 0.11377 5.15 2.6e-07 ***
## checks -0.36664 0.02603 -14.08 < 2e-16 ***
## colourWhite 1.21252 0.34978 3.47 0.00053 ***
## year1998 -0.43118 0.26036 -1.66 0.09770 .
## year1999 -0.09443 0.26154 -0.36 0.71805
## year2000 -0.01090 0.25921 -0.04 0.96647
## year2001 0.24306 0.26302 0.92 0.35541
## year2002 0.21295 0.35328 0.60 0.54664
## age 0.02873 0.00862 3.33 0.00086 ***
## colourWhite:year1998 0.65196 0.31349 2.08 0.03756 *
## colourWhite:year1999 0.15595 0.30704 0.51 0.61152
## colourWhite:year2000 0.29575 0.30620 0.97 0.33411
## colourWhite:year2001 -0.38054 0.30405 -1.25 0.21073
## colourWhite:year2002 -0.61732 0.41926 -1.47 0.14091
## colourWhite:age -0.03737 0.01020 -3.66 0.00025 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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By direct calculation (e.g., using exp(coef(arrests.mod))) you can find that the odds
of a quick release was exp(0.735) = 2.08 times greater for someone employed, exp(0.586) =
1.80 times more likely for a Canadian citizen and exp(1.21) = 3.36 times more likely for a white
than a black person. It is much more difficult to interpret the interaction terms.

The primary question for the newspaper concerned the overall difference between the the
treatment of blacks and whites– the main effect of colour. We plot this as shown below, giving
the plot shown in Figure 7.18. This supports the claim by the Star because the 95% confidence
limits for blacks and whites do not overlap, and all other relevant predictors that could account
for this effect have been controlled or adjusted for.

plot(Effect("colour", arrests.mod),
lwd=3, ci.style="bands", main="",
xlab = list("Skin color of arrestee", cex=1.25),
ylab = list("Probability(released)", cex=1.25)

)
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Figure 7.18: Effect plot for the main effect of skin color in the Arrests data.
fig:arrests-eff1

Of course, one should be very wary of interpreting main effects when there are important
interactions, and the story turned out to be far more nuanced than was reported in the newspaper.
In particular, the interactions of color with with age and year provided a more complete account.
Effect plots for these interactions are shown in Figure 7.19.

# colour x age interaction
plot(Effect(c("colour","age"), arrests.mod),

lwd=3, multiline=TRUE,
xlab=list("Age", cex=1.25),
ylab=list("Probability(released)", cex=1.25),
key.args=list(x=.05, y=.99, cex=1.2)
)

# colour x year interaction
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plot(Effect(c("colour","year"), arrests.mod),
lwd=3, multiline=TRUE,
xlab=list("Year", cex=1.25),
ylab=list("Probability(released)", cex=1.25),
key.args=list(x=.7, y=.99, cex=1.2)
)
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Figure 7.19: Effect plots for the interactions of color with age (left) and year (right) in the Arrests
data.

fig:arrests-eff2

From the left panel in Figure 7.19, it is immediately apparent that the effect of age was in
opposite directions for blacks and whites: Young blacks were indeed treated more severely than
young whites; however for older people, blacks were treated less harshly than whites, controlling
for all other predictors.

The right panel of Figure 7.19 shows the changes over time in the treatment of blacks and
whites. It can be seen that up to the year 2000 there was strong evidence for differential treatment
on these charges, again controlling for other predictors. There was also evidence to support the
claim by the police that in the year 2001 they began training of officers to reduce racial effects in
treatment.

Finally, the effects package provides a convenience function, allEffects(), that calcu-
lates the effects for all high-order terms in a given model. The plot() method for the "efflist"
object can be used to plot individual terms selectively from a graphic menu, or plot all terms
together in one comprehensive display using ask=FALSE.

arrests.effects <- allEffects(arrests.mod,
xlevels=list(age=seq(15,45,5)))

plot(arrests.effects,
ylab="Probability(released)", ci.style="bands", ask=FALSE)

The result, shown in Figure 7.20 is a relatively compact and understandable summary of the
arrests.mod model: (a) people were more likely to be released if they were employed and
citizens. (b) each additional police check decreased the likelihood of release with a summons.
(c) the effect of skin color varied with age and year of arrest, in ways that tell a far more nuanced
story than reported in the newspaper.
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Figure 7.20: Effect plot for all high-order terms in the model for the Arrests data
fig:arrests-all

Finally, another feature of this plot bears mention: by default, the scales for each effect plot
are determined separately for each effect, to maximize use of the plot region. However, you have
to read the Y scale values to judge the relative sizes of these effects. An alternative plot, using
the same scale in each subplot14 would show the relative sizes of these effects.

4

7.4.1 More complex models: Model selection and visualization
{sec:complex}

Models with more predictors or more complex terms (interactions, non-linear terms) present
additional challenges for model fitting, summarization, and visualization and interpretation. A
very complicated model, with many terms and interactions may fit the data at hand quite well.
However, because goodness-of-fit is optimized in the sample, terms that appear significant are
less likely to be important in a future sample, and we need to worry about inflation of Type I
error rates that accompany multiple significance tests. As well, it becomes increasingly difficult
to visualize and understand a fitted model as the model becomes increasingly complex.

On the other hand, a very simple model may omit important predictors, interactions, or non-
linear relationships with the response and give an illusion of a comfortable interpretation.

TODO: Complete this brief introduction to model selection and define AIC/BIC,{ex:icu1}

EXAMPLE 7.11: Death in the ICU
In this example we examine briefly some aspects of logistic regression related to model selec-

tion and graphical display with a large collection of potential predictors, including both quantita-
tive and discrete variables. We use data from a classic study by Lemeshow et al. (1988) of patients
admitted to an intensive care unit at Baystate Medical Center in Springfield, Massachusetts. The
major goal of this study was to develop a model to predict the probability of survival (until hos-
pital discharge) of these patients and to study the risk factors associated with ICU mortality. The

14With the effects package, you can set the ylim argument to equate the vertical range for all plots. For this plot,
ylim = c(0.5, 1) would work.
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data, contained in the data set ICU in vcdExtra, gives the results for a sample of 200 patients that
was presented in Hosmer et al. (2013) (and earlier editions).

The ICU contains 22 variables of which the first, died is a factor. Among the predictors, two
variables (race, coma) were represented initially as 3-level factors, but then recoded to binary
variables (white, uncons).

data("ICU", package="vcdExtra")
names(ICU)

## [1] "died" "age" "sex" "race" "service"
## [6] "cancer" "renal" "infect" "cpr" "systolic"
## [11] "hrtrate" "previcu" "admit" "fracture" "po2"
## [16] "ph" "pco" "bic" "creatin" "coma"
## [21] "white" "uncons"

ICU <- ICU[,-c(4, 20)] # remove redundant race, coma

Removing the 3-level versions leaves 19 predictors, of which three (age, heart rate, systolic
blood pressure) are quantitative and the remainder are either binary (service, cancer) or had pre-
viously been dichotomized (ph<7.25).

As an initial step, and a basis for comparison, we fit the full model containing all 19 predic-
tors.

icu.full <- glm(died ~ ., data=ICU, family=binomial)
summary(icu.full)

##
## Call:
## glm(formula = died ~ ., family = binomial, data = ICU)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8040 -0.5606 -0.2044 -0.0863 2.9773
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.72670 2.38551 -2.82 0.0048 **
## age 0.05639 0.01862 3.03 0.0025 **
## sexMale 0.63973 0.53139 1.20 0.2286
## serviceSurgical -0.67352 0.60190 -1.12 0.2631
## cancerYes 3.10705 1.04585 2.97 0.0030 **
## renalYes -0.03571 0.80165 -0.04 0.9645
## infectYes -0.20493 0.55319 -0.37 0.7110
## cprYes 1.05348 1.00661 1.05 0.2953
## systolic -0.01547 0.00850 -1.82 0.0686 .
## hrtrate -0.00277 0.00961 -0.29 0.7732
## previcuYes 1.13194 0.67145 1.69 0.0918 .
## admitEmergency 3.07958 1.08158 2.85 0.0044 **
## fractureYes 1.41140 1.02971 1.37 0.1705
## po2<=60 0.07382 0.85704 0.09 0.9314
## ph<7.25 2.35408 1.20880 1.95 0.0515 .
## pco>45 -3.01844 1.25345 -2.41 0.0160 *
## bic<18 -0.70928 0.90978 -0.78 0.4356
## creatin>2 0.29514 1.11693 0.26 0.7916
## whiteNon-white 0.56573 0.92683 0.61 0.5416
## unconsYes 5.23229 1.22630 4.27 2e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 200.16 on 199 degrees of freedom
## Residual deviance: 120.78 on 180 degrees of freedom
## AIC: 160.8
##
## Number of Fisher Scoring iterations: 6

You can see that a few predictors are individually significant, but many are not.
However, it is useful to carry out a simultaneous global test of H0 : β = 0 that all regression

coefficients are zero. If this test is not significant, it makes little sense to use selection meth-
ods to choose individually significant predictors. For convenience, we define a simple function,
LRtest(), to calculate the likelihood ratio test from the model components.

LRtest <- function(model)
c(LRchisq=(model$null.deviance - model$deviance),

df=(model$df.null - model$df.residual))

(LR <- LRtest(icu.full))

## LRchisq df
## 79.383 19.000

(pvalue=1-pchisq(LR[1],LR[2]))

## LRchisq
## 2.3754e-09

At this point, it is tempting to examine the output from summary(icu.full) shown above
and eliminate those predictors which fail significance at some specified level such as the conven-
tional α = 0.05. This is generally a bad idea for many reasons.15

A marginally better approach is to remove non-significant variables whose coefficients have
signs that don’t make sense from the substance of the problem. For example, in the full model,
both renal (history of chronic renal failure) and infect (infection probable at ICU admission)
have negative signs, meaning that their presence decreases the odds of death. We remove those
variables using update(); as expected they make little difference.

icu.full1 <- update(icu.full, . ~ . - renal - fracture)
anova(icu.full1, icu.full, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: died ~ age + sex + service + cancer + infect + cpr + systolic +
## hrtrate + previcu + admit + po2 + ph + pco + bic + creatin +
## white + uncons
## Model 2: died ~ age + sex + service + cancer + renal + infect + cpr +
## systolic + hrtrate + previcu + admit + fracture + po2 + ph +
## pco + bic + creatin + white + uncons
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 182 122
## 2 180 121 2 1.7 0.43

15It ignores the facts of (a) an arbitrary cutoff value for significance, (b) the strong likelihood that chance features
of the data or outliers influence the result, (c) problems of collinearity, etc. See Harrell (2001, §4.3) for a useful
discussion of these issues.
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Before proceeding to consider model selection, it is useful to get a better visual overview
of the current model than is available from a table of coefficients and significance tests. Some
very useful print(), summary() and plot() methods are available in the rsm package.
Unfortunately, these require that the logistic model is fitted with lrm() in that package rather
than with glm(). We pause here to refit the same model as icu.full1 in order to show a plot
of odds ratios for the terms in this model.

library(rms)
dd <- datadist(ICU[,-1])
options(datadist="dd")
icu.lrm1 <- lrm(died ~ ., data=ICU)
icu.lrm1 <- update(icu.lrm1, . ~ . - renal - fracture)

The summary() method for "rms" objects produces a much more detailed descriptive sum-
mary of a fitted model, and the plot() method for that summary object gives a sensible plot of
the odds ratios for the model terms together with confidence intervals, at levels (0.9, 0.95, 0.99)
by default. The following lines produce Figure 7.21.

sum.lrm1 <- summary(icu.lrm1)
plot(sum.lrm1, log=TRUE, main="Odds ratio for 'died'", cex=1.25,

col = rgb(0.1, 0.1, 0.8, alpha = c(0.3, 0.5, 0.8)))

Odds ratio for 'died'

   0.10    1.00  500.00
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hrtrate − 118:80
sex − Female:Male

service − Medical:Surgical
cancer − Yes:No

infect − Yes:No
cpr − Yes:No

previcu − Yes:No
admit − Elective:Emergency

po2 − <=60:>60
ph − <7.25:>=7.25

pco − >45:<=45
bic − <18:>=18

creatin − >2:<=2
white − White:Non−white

uncons − Yes:No

Figure 7.21: Odds ratios for the terms in the model for the ICU data. Each line shows the odds
ratio for a term, together with lines for 90, 95 and 99% confidence intervals in progressively
darker shades. {fig:icu1-odds-ratios}

In this plot, continuous variables are shown at the top, followed by the discrete predictors. In
each line, the range or levels of the predictors are given in the form a : b, such that the value a
corresponds to the numerator of the odds ratio plotted. Confidence intervals that don’t overlap
the vertical line for odds ratio = 1 are significant, but this graph shows those at several confidence
levels, allowing you to decide what is “significant” visually. As well, the widths of those intervals
convey the precision of these estimates.
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Among several stepwise selection methods in R for "glm" models, stepAIC() in the MASS
package implements a reasonable collection of methods for forward, backward and stepwise
selection using penalized AIC-like criteria that balance goodness of fit against parsimony. The
method takes an argument, scope, which is a list of two model formulae; upper defines the
largest (most complex) model to consider and lower defines the smallest (simplest) model, e.g.,
lower = ~ 1 is the intercept-only model.

By default, the function produces verbose printed output showing the details of each step, but
we suppress that here to save space. It returns the final model as its result, along with an anova
component that summarises the deviance and AIC from each step.

library(MASS)
icu.step1 <- stepAIC(icu.full1, trace = FALSE)
icu.step1$anova

## Stepwise Model Path
## Analysis of Deviance Table
##
## Initial Model:
## died ~ age + sex + service + cancer + infect + cpr + systolic +
## hrtrate + previcu + admit + po2 + ph + pco + bic + creatin +
## white + uncons
##
## Final Model:
## died ~ age + cancer + systolic + admit + ph + pco + uncons
##
##
## Step Df Deviance Resid. Df Resid. Dev AIC
## 1 182 122.48 158.48
## 2 - po2 1 0.062446 183 122.54 156.54
## 3 - creatin 1 0.059080 184 122.60 154.60
## 4 - hrtrate 1 0.072371 185 122.67 152.67
## 5 - infect 1 0.122772 186 122.79 150.79
## 6 - white 1 0.334999 187 123.13 149.13
## 7 - service 1 0.671313 188 123.80 147.80
## 8 - bic 1 0.377521 189 124.18 146.18
## 9 - cpr 1 1.148260 190 125.33 145.33
## 10 - sex 1 1.543523 191 126.87 144.87
## 11 - previcu 1 1.569976 192 128.44 144.44

Alternatively, we can use the BIC criterion, by specifying k=log(n), which generally will
select a smaller model when the sample size is reasonably large.

icu.step2 <- stepAIC(icu.full, trace = FALSE, k=log(200))
icu.step2$anova

## Stepwise Model Path
## Analysis of Deviance Table
##
## Initial Model:
## died ~ age + sex + service + cancer + renal + infect + cpr +
## systolic + hrtrate + previcu + admit + fracture + po2 + ph +
## pco + bic + creatin + white + uncons
##
## Final Model:
## died ~ age + cancer + admit + uncons
##
##
## Step Df Deviance Resid. Df Resid. Dev AIC
## 1 180 120.78 226.74
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## 2 - renal 1 0.0019881 181 120.78 221.45
## 3 - po2 1 0.0067968 182 120.79 216.16
## 4 - creatin 1 0.0621463 183 120.85 210.92
## 5 - hrtrate 1 0.0658870 184 120.92 205.69
## 6 - infect 1 0.2033221 185 121.12 200.59
## 7 - white 1 0.3673180 186 121.49 195.66
## 8 - bic 1 0.6002993 187 122.09 190.96
## 9 - service 1 0.7676303 188 122.85 186.43
## 10 - fracture 1 1.3245086 189 124.18 182.46
## 11 - cpr 1 1.1482598 190 125.33 178.31
## 12 - sex 1 1.5435228 191 126.87 174.55
## 13 - previcu 1 1.5699762 192 128.44 170.83
## 14 - ph 1 4.4412370 193 132.88 169.97
## 15 - pco 1 2.7302934 194 135.61 167.40
## 16 - systolic 1 3.5231028 195 139.13 165.63

This model differs from model icu.step1 selected using AIC in the last three steps, that
also removed ph, pco and systolic.

coeftest(icu.step2)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.8698 1.3188 -5.21 1.9e-07 ***
## age 0.0372 0.0128 2.91 0.00360 **
## cancerYes 2.0971 0.8385 2.50 0.01238 *
## admitEmergency 3.1022 0.9186 3.38 0.00073 ***
## unconsYes 3.7055 0.8765 4.23 2.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These two models are nested, so we can compare them directly using a likelihood ratio test
from anova().

anova(icu.step2, icu.step1, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: died ~ age + cancer + admit + uncons
## Model 2: died ~ age + cancer + systolic + admit + ph + pco + uncons
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 195 139
## 2 192 128 3 10.7 0.013 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The larger model is significantly better by this test, but the smaller model is simpler to in-
terpret. We retain these both as “candidate models” to be explored furth, but for ease in this
example, we do so using the smaller model, icu.step2.

Another important step is to check for non-linearity of quantitative predictors such as age
and interactions among the predictors. This is easy to do using update() and anova() as
shown below. First, allow a non-linear term in age, and all two-way interactions of the binary
predictors.
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icu.glm3 <- update(icu.step2, . ~ . -age + ns(age,3) + (cancer+admit+uncons)^2)
anova(icu.step2, icu.glm3, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: died ~ age + cancer + admit + uncons
## Model 2: died ~ cancer + admit + uncons + ns(age, 3) + cancer:admit +
## cancer:uncons + admit:uncons
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 195 139
## 2 191 135 4 3.73 0.44

Next, we can check for interactions with age:

icu.glm4 <- update(icu.step2, . ~ . + age*(cancer+admit+uncons))
anova(icu.step2, icu.glm4, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: died ~ age + cancer + admit + uncons
## Model 2: died ~ age + cancer + admit + uncons + age:cancer + age:admit +
## age:uncons
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 195 139
## 2 192 134 3 5.37 0.15

None of these additional terms have much effect.

So, we will tentatively adopt the simple main effects model, icu.step2, and consider
how to visualize in interpret this result. One interesting display is a nomogram that shows how
values on the various predictors translate into a predicted value of the log odds, and the relative
strengths of their effects on this prediction. This kind of plot is shown in Figure 7.22, produced
using nomogram() in the rms package as follows. It only works with models fit using lrm(),
so we have to refit this model.

icu.lrm2 <- lrm(died ~ age + cancer + admit + uncons, data=ICU)
plot(nomogram(icu.lrm2), cex.var=1.2, lplabel="Log odds death")

In this nomogram, each predictor is scaled according to the size of its effect on a common
scale of 0–100 “points.” A representative observation is shown by the marked points, correspond-
ing to a person of age 60, without cancer, who was admitted to emergency and was unconscious
at that time. Adding the points associated with each variable value gives the result shown on the
scale of total points. For this observation, the result is 50 + 0 + 84 + 100 = 234, for which the
scale of log odds at the bottom gives a predicted logit of 2.2, or a predicted probability of death
of 1/(1 + exp(−2.2)) = 0.90.

This leaves us with the problem of how to visualize the fitted model compactly and compre-
hensively. Full-model plots and effect plots, as we have used them, are somewhat unwieldy with
four or more predictors if we want to view all effects simultaneously because it is more difficult
to make comparisons across multiple panels (particularly if the vertical scales differ).

One way to reduce the visual complexity of such graphs is to combine some predictors that
would otherwise be shown in separate panels into a recoding that can be shown as multiple curves
for their combinations in fewer panels. In general, this can be done by combining some predictors
interactively; for example with sex and education as factors, their combinations, M:Hi, M:Lo,
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Figure 7.22: Nomogram for predicted values in the simple main effects model for the ICU data.
Each predictor is scaled in relation to its effect on the outcome in terms of “points”, 0–100.
Adding the points for a given case gives total points that have a direct translation to log odds. The
marked points show the prediction for someone of age 60, admitted to the emergency ward and
unconscious.{fig:icu-nomogram}

etc. could be used to define a new variable, group used as the curves in one plot, rather than
separate panels.

In this case, because age is continuous, it makes sense to plot fitted values against age. With
cancer, admit and uncons as binary factors associated with risk of death, it is also sensible
to combine them all into a single variable, risks, indicating which one or more risk factors are
present for each case. We first convert each variable to an abbreviation for the risk, if present, or
"", and paste these together.

# combine categorical risk factors to a single string
risks <- ICU[, c("cancer", "admit", "uncons")]
risks[,1] <- ifelse(risks[,1]=="Yes", "Cancer", "")
risks[,2] <- ifelse(risks[,2]=="Emergency", "Emerg", "")
risks[,3] <- ifelse(risks[,3]=="Yes", "Uncons", "")
risks <- apply(risks, 1, paste, collapse="")
risks[risks==""] <- "(none)"

table(risks)

## risks
## (none) Cancer CancerEmerg Emerg EmergUncons
## 37 15 5 128 14
## Uncons
## 1

The frequency counts of the risk combinations show that admission to the emergency ward
alone was most frequent, and only one patient had unconsciousness as the only risk.
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As done before, we can then get the fitted logit values for the chosen model, and combine
these with the data and the risks variable.

icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
data=ICU, family=binomial)

icu.fit <- cbind(ICU, predict(icu.glm2, se=TRUE), risks)

In the plot step below, we use geom_ribbon() to plot a one standard error confidence
band around the fitted logits. color=risks gives separate curves for each level of the risks
factor.

gg <- ggplot( icu.fit, aes(x=age, y=fit, color=risks)) +
geom_line(size = 1.2) + theme_bw() +
geom_ribbon(aes(ymin = fit - se.fit,

ymax = fit + se.fit,
fill = risks),

alpha = 0.2,
color = "transparent") +

theme_bw() +
labs(x = "Age", y = "Log odds (died)") +
geom_point(size=2)

By default, ggplot() uses a legend to display the labels for the curve variable, but the
graph is more readable using directlabels, giving the plot shown in Figure 7.23.

library(directlabels)
direct.label(gg+xlim(10,100), last.points)
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Figure 7.23: Fitted log odds of death in the ICU data. Each line shows the relationship with age,
for patients having various combinations of risk factors.

fig:icu1-fit-plot

From this graph, it is apparent that the log odds of mortality increases with age in all cases.
Relative to the line labeled (none), mortality is higher when any of these risk factors are present,
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particularly when the patient is admitted to Emergency; it is highest when the patient is also un-
conscious at admission. The vertical gaps between lines that share a common risk (e.g., Cancer,
CancerEmerg) indicate the additional increment from one more risk. Finally, the plotted points
show the number and age distribution of these various combinations.

Before concluding that this model provides an adequate description of the data, we should
examine whether any individual cases are unduly influencing the predicted results, and more
importantly, the choice of variables in the model. We examine this question in Section 7.5 where
we return to these data (Example 7.13).

4

7.5 Influence and diagnostic plots
{sec:logist-infl}

In ordinary least squares (OLS) regression, measures of influence (leverage, Cook’s D, DFBE-
TAs, etc.) and associated plots help you to determine whether individual cases (or cells in grouped
data) have undue impact on the fitted regression model and the coefficients of individual predic-
tors. Analogs of most of these measures have been suggested for logistic regression and general-
ized linear models. Pregibon (1981) provided the theoretical basis for these methods, exploiting
the relationship between logistic models and weighted least squares. Some additional problems
occur in practical applications to logistic regression because the response is discrete, and because
the leave-one-out diagnostics are more difficult to compute, but the ideas are essentially the same.

7.5.1 Residuals and leverage
{sec:logist-resids}

As in ordinary least squares regression, the influence (actual impact) of an observation in logistic
models depends multiplicatively on its residual (disagreement between yi and ŷi) and its leverage
(how unusual xi is in the space of the explanatory variables). A conceptual formula is

Influence = Leverage× Residual

This multiplicative definition implies that a case is influential to the extent that it is both poorly
fit and has unusual values of the predictors.

Residuals

In logistic regression, the simple raw residual is just ei ≡ yi−p̂i, where p̂i = 1/[1+exp(−xT
i b)].

The Pearson and deviance residuals are more useful for identifying poorly fitted observations,
and are components of overall goodness-of-fit statistics. The (raw) Pearson residual is defined
as

ri ≡
ei√

p̂i(1− p̂i)
(7.7) {eq:reschi}

and the Pearson chi-square is therefore χ2 =
∑
r2i . The deviance residual is

gi ≡ ±−2[yi log p̂i + (1− yi) log(1− p̂i)]1/2 (7.8) {eq:resdev}

where the sign of gi is the same as that of ei. Likewise, the sum of squares of the deviance
residuals gives the overall deviance, G2 = −2 logL(b) =

∑
g2i .
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When yi is a binomial count based on ni trials (grouped data), the Pearson residuals Eqn. (7.7)
then become

ri ≡
yi − nip̂i√
nip̂i(1− p̂i)

with similar modifications made to Eqn. (7.8).

In R, residuals() is the generic function for obtaining (raw) residuals from a model fit-
ted with glm() (or lm()). However standardized residuals, given by rstandard(), and
studentized residuals, provided by rstudent() are often more useful because they rescale the
residuals to have unit variance. They use, respectively, an overall estimate, σ̂2 of error variance,
and the leave-one-out estimate, σ̂2(−i), omitting the ith observation; the studentized version is usu-
ally to be preferred in model diagnostics because it also accounts for the impact of the observation
on residual variance.

Leverage

Leverage measures the potential impact of an individual case on the results, which is directly
proportional to how far an individual case is from the centroid in the space of the predictors.
Leverage is defined as the diagonal elements, hii, of the “Hat” matrix,H ,

H = X?(X?TX?)
−1
X?T

where X? = V 1/2X , and V = diag [p̂(1− p̂)]. As in OLS, leverage values are between 0 and
1, and a leverage value, hii > {2 or 3}k/n is considered “large”; here, k = p + 1 is the number
of coefficients including the intercept and n is the number of cases. In OLS, however, the hat
values depend only on the Xs, whereas in logistic regression, they also depend on the dependent
variable values and the fitted probabilities (through V ). As a result, an observation may be
extremely unusual on the predictors, yet not have a large hat value, if the fitted probability is near
0 or 1. The function hatvalues() calculates these values for a fitted "glm" model object.

7.5.2 Influence diagnostics
{sec:logist-infldiag}

Influence measures assess the effect that deleting an observation has on the regression parameters,
fitted values, or the goodness-of-fit statistics. In OLS, these measures can be computed exactly
from a single regression. In logistic regression, the exact effect of deletion requires refitting
the model with each observation deleted in turn, a time-intensive computation. Consequently,
Pregibon (1981) showed how analogous deletion diagnostics may be approximated by performing
one additional step of the iterative procedure. Most modern implementations of these methods
for generalized linear models follow Williams (1987).

The simplest measure of influence of observation i is the standardized change in the coef-
ficient for each variable due to omitting that observation, termed DFBETAs. From the relation
(Pregibon, 1981, p. 716)

b− b(−i) = (XTV X)−1xi(yi − p̂i)/(1− hii) ,

the estimated standardized change in the coefficient for variable j is

DFBETAij ≡
b(−i)j − bj
σ̂(bj)

, (7.9){eq:dfbeta}
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where σ̂(bj) is the estimated standard error of bj . With k regressors, there are k + 1 sets of
DFBETAs, which makes their examination burdensome. Graphical displays ease this burden, as
do various summary measures considered below.

The most widely used summary of the overall influence of observation i on the estimated
regression coefficients is Cook’s distance, which measures the average squared distance between
b for all the data and b(−i) estimated without observation i. It is defined as

Ci ≡ (b− b(−i))TXTV X (b− b(−i))/kσ̂2 .

However, Pregibon (1981) showed that Ci could be calculated simply as

Ci =
r2i hii

k(1− hii)2
, (7.10) {eq:cookd2}

where ri = yi − p̂i/
√
vii(1− hii) is the ith standardized Pearson residual and vii is the ith

diagonal element of V . Rules of thumb for noticeably “large” values of Cook’s D are only
rough indicators, and designed so that only “noteworthy” observations are nominated as unusually
influential. One common cutoff for an observation to be treated as influential is Ci > 1. Others
refer the values of Ci to a χ2

k or Fk,n−k distribution.

Another commonly used summary statistic of overall influence is the DFFITS statistic, a
standardized measure of the difference between the predicted value ŷi using all the data and the
predicted value ŷ(−i) calculated omitting the ith observation.

DFFITSi =
ŷi − ŷ(−i)
σ̂(−i)

√
hii

,

where σ̂(−i) is the estimated standard error with the ith observation deleted. For computation,
DFFITS can be expressed in terms of the standardized Pearson residual and leverage as

DFFITSi = ri

√
hii

(1− hii)
vii
v(−ii)

. (7.11) {eq:dffits}

From Eqn. (7.10) and Eqn. (7.11) it can be shown that Cook’s distance is nearly the square of
DFFITS divided by k,

Ci =
v2(−ii)

v2ii

DFFITS2
i

k
. (7.12) {eq:cook-dffits}

Noteworthy values of DFFITS are often nominated by the rule-of-thumb DFFITSi > 2 or 3
√
k/n− k.

In R, these influence measures are calculated for a fitted "glm" model using cooks.distance()
and dffits(). The dfbeta() function calculates and returns the matrix of all standardized
changes in the model coefficients (Eqn. (7.9)) due to omitting each observation in turn.16 A con-
venience function, influence.measures() gives a tabular display showing the DFBETAij

for each model variable, DFFITS, Cook’s distances and the diagonal elements of the hat matrix.
Cases which are influential with respect to any of these measures are marked with an asterisk.17

Beyond printed output of these numerical summaries, plots of these measures can shed light
on potential problems due to influential or other noteworthy cases. By highlighting them, such

16TODO: Not quite true: dfbeta() doesn’t have a "glm" method. Either omit this or write a dfbeta.glm()
method that gives the same results as influence.measures().

17See help(influence.measures) for the description of all of these functions for residuals, leverage and
influence diagnostics in generalized linear models.
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plots provide the opportunity to determine if and how any of these affect your conclusions, or to
take some corrective action.

A basic collection of diagnostic plots is provided by the plot() method for a "glm" model
object. The car package contains a variety of other functions for model diagnostic plots. We
illustrate some of these in the examples below.{ex:donner2}

EXAMPLE 7.12: Donner Party
This example re-visits the data on the Donner Party examined in Example 7.9. For illustrative

purposes, we consider the influence measures and diagnostic plots for one specific model, the
model donner.mod3, that included a quadratic effect of age and a main effect of sex, but no
interaction.

The simplest overview of the adequacy of a fitted model is provided by the plot() method
for a "glm" (or "lm") object. This function can produce up to six different plots that can be plotted
individually or selected (using the argument which) and composed into a single overview figure
using par(mfrow=c(rows,cols)) as shown below.

It is useful to see the entire collection because, by default, only four are plotted (which=
c(1:3,5)) and this selection (sometimes called the regression quartet of diagnostic plots)
is tuned more to classical linear models for quantitative data. Important feature of these plots
are that (a) plot annotations are added to each showing trends or expected behaviour under the
assumptions of a fitted model; (b) noteworthy observations are labeled individually.

caption = list("(1) Residuals vs Fitted",
"(2) Normal Q-Q",
"(3) Scale-Location",
"(4) Cook's distance",
"(5) Residuals vs Leverage",
expression("(6) Cook's dist vs Leverage "

* h[ii] / (1 - h[ii])))
op <- par(mfrow=c(3,2), mar=c(4,4,2,1)+.1, cex.lab=1.2, cex=1)
plot(donner.mod3, which=1:6, caption=caption)
par(op)

The six plots, corresponding to the values of which, shown in Figure 7.24 for the donner.mod3
model are:

1. a plot of residuals against fitted values. In a classical linear model, this plot should appear
unstructured (random around the zero line), but for logistic regression there will always be
two sequences of points, corresponding to the 0/1 observations.

2. a normal Q-Q plot of ordered residuals vs. the corresponding quantiles of the gaussian
distribution. In a classical linear model, all points should follow the dotted reference line,
but this will rarely hold for logistic regression models.

3. a Scale-Location plot of
√
|residuals| against fitted values, with a loess smoothed curve

showing the trend for variance of the residual to change with the predicted value. This
is useful to detect non-constant residual variance in classical models, but in logistic re-
gression, you will almost always see a U-shaped pattern corresponding to the fact that the
variance around the fitted value is a function of

√
p̂i(1− p̂i).

4. an index plot of Cook’s distances versus observation numbers, with the largest id.n values
labeled.

5. a plot of residuals against leverages, showing contours of Cook’s distances. Among all of
these plots, this is probably the most useful for assessment of influence in both classical
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Figure 7.24: Diagnostic plots for a glm object, using the fitted model donner.mod3 for the
Donner Party data. Each plot shows some additional annotations or smoothed curves and labels
observations considered noteworthy in terms of influence.

fig:donner2-plot
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and generalized linear models. The function influencePlot() in car provides a better
version of this plot, using the size of a bubble symbol to also show Cook’s distance directly.

6. a plot of Cook’s distances against leverage/(1-leverage). In this plot contours of standard-
ized residuals that are equal in magnitude are lines through the origin, and labeled with
their absolute values. Consequently, more influential observations appear toward the top.

In all these plots, three observations are labeled as noteworthy, by one criterion or another with
a default number given by id.n=3. Plotting just the residual-leverage graph (which=5) with
some additional annotations to show the conventional cutoff values gives Figure 7.25.

op <- par(mar=c(5,4,4,2)+.1)
plot(donner.mod3, which=5, cex.id=1, cook.levels=c(0.25, 0.5), id.n=3)
abline(h=c(-2, 2), col="gray")
k <- length(coef(donner.mod3))
n <- nrow(Donner)
abline(v=c(2, 3)*k/n, col="gray")
text(x=c(2, 3)*k/n, y=-2.3, c("2k/n", "3k/n"))
par(op)
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Figure 7.25: Residual vs. Leverage plot for the Donner data model. Horizontal and vertical
reference lines show typical cutoff values for noteworthy residuals and leverage.

fig:donner2-plot5

Details of all the diagnostic measures for a given model including the DFBETAs for individ-
ual coefficients can be obtained using influence.measures. This can be useful for custom
plots not provided elsewhere (see Example 7.13).

infl <- influence.measures(donner.mod3)
names(infl)

## [1] "infmat" "is.inf" "call"

The summary() method for the "infl" object prints those observations considered notewor-
thy on one or more of these statistics, as indicated by a "*" next to the value.
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summary(infl)

## Potentially influential observations of
## glm(formula = survived ~ poly(age, 2) + sex, family = binomial, data = Donner) :
##
## dfb.1_ dfb.p(,2)1 dfb.p(,2)2 dfb.sxMl dffit cov.r cook.d hat
## Breen, Patrick 0.08 0.65 0.56 0.23 0.69_* 0.93 0.32 0.09
## Donner, Elizabeth -0.26 -0.34 -0.22 0.12 -0.40 1.15_* 0.03 0.14_*
## Graves, Elizabeth C. -0.24 -0.37 -0.26 0.10 -0.42 1.20_* 0.03 0.16_*

The function influencePlot() in the car package gives a similar plot, but uses the size
(area) of the plotting symbol to also show the value of Cook’s D as shown in Figure 7.26. Like
other diagnostic plots in car, it is considerably more general than illustrated here, because it al-
lows for different id.methods to label noteworthy points, including id.method="identify"
for interactive point identification by clicking with the mouse. The id.n argument works differ-
ently than with plot(), because it selects the most extreme id.n observations on each of the
studentized residual, hat value and Cook’s D, and labels all of these.

library(car)
res <- influencePlot(donner.mod3, id.col="blue", scale=8, id.n=2)
text(x=c(2, 3)*k/n, y=-1.8, c("2k/n", "3k/n"))
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Figure 7.26: Influence plot (residual vs. leverage) for the Donner data model, showing Cook’s
D as the size of the bubble symbol. Horizontal and vertical reference lines show typical cutoff
values for noteworthy residuals and leverage.

fig:donner2-inflplot

Conveniently, influencePlot() returns a data frame containing the influence statistics
for the points identified in the plot (res in the call above). We can combine this with the data
values to help learn why these points are considered influential.
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# show data together with diagnostics for influential cases
idx <- which(rownames(Donner) %in% rownames(res))
cbind(Donner[idx,2:4], res)

## age sex survived StudRes Hat CookD
## Breen, Patrick 51 Male yes 2.501 0.09148 0.5688
## Donner, Elizabeth 45 Female no -1.114 0.13541 0.1846
## Graves, Elizabeth C. 47 Female no -1.019 0.16322 0.1849
## Reed, James 46 Male yes 2.098 0.08162 0.3790

We can see that Patrick Breen and James Reed18 are unusual because they were both older
men who survived, and have large positive residuals; Breen is the most influential by Cook’s D,
but this value is not excessively large. The two women were among the older women who died.
They are selected here because they have the largest hat values, meaning they are unusual in terms
of the distribution of age and sex, but they are not particularly influential in terms of Cook’s D.

A related graphical display is the collection of index plots provided by influenceIndexPlot()
in car, which plots various influence diagnostics against the observation numbers in the data. The
id.n argument here works to label that number of the most extreme observations individually
for each measure plotted. The following call produces Figure 7.27.

influenceIndexPlot(donner.mod3, vars=c("Cook", "Studentized", "hat"),
id.n=4)
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Figure 7.27: Index plots of influence measures for the Donner data model. The four most extreme
observations on each measure are labeled.

fig:donner2-indexinfl

18Breen and Reed, both born in Ireland, were the leaders of their family groups. Among others, both kept detailed
diaries of their experiences, from which most of the historical record derives. Reed was also the leader of two relief
parties sent out to find rescue or supplies over the high Sierra mountains, so it is all the more remarkable that he
survived.
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In our opinion, separate index plots are often less useful than combined plots such as the
leverage-influence plot that shows residuals, leverage and Cook’s D together. However, the car
version in Figure 7.27 does that too, and allows us to consider how unusual the labeled observa-
tions are both individually and in combination.

4
{ex:icu2}

EXAMPLE 7.13: Death in the ICU
In Example 7.11 we examined several models to account for death in the ICU data set. We

continue this analysis here, with a focus on the simple main effects model, icu.glm2, for which
the fitted logits were shown in Figure 7.23. For ease of reference, we restate that model here:

icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
data=ICU , family=binomial)

The plot of residual vs. leverage for this model is shown in Figure 7.28.

library(car)
res <- influencePlot(icu.glm2, id.col="red", scale=8, id.cex=1.5, id.n=3)
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Figure 7.28: Influence plot for the main effects model for the ICU data
fig:icu2-inflplot

Details for the cases identified in the figure are shown below, again using rownames(res)
to select the relevant observations from the ICU data.

idx <- which(rownames(ICU) %in% rownames(res))
cbind(ICU[idx,c("died", "age", "cancer", "admit", "uncons")], res)

## died age cancer admit uncons StudRes Hat CookD
## 84 No 59 No Emergency Yes -2.258 0.06781 0.3626
## 371 No 46 Yes Emergency No -1.277 0.16408 0.2210
## 766 No 31 Yes Emergency No -1.028 0.17062 0.1719
## 881 No 89 No Emergency Yes -2.718 0.03081 0.4106
## 127 Yes 19 No Emergency No 2.565 0.01679 0.2724
## 208 Yes 70 No Elective Yes 1.662 0.29537 0.4568
## 380 Yes 20 No Emergency No 2.548 0.01672 0.2668
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None of the cases are particularly influential on the model coefficients overall: the largest
Cook’s D is only 0.45 for case 208. This observation also has the largest hat value. It is unusual
on the predictors in this sample: a 70 year old man without cancer, admitted on an elective basis,
who nonetheless died. However, this case is also highly unusual in having been unconscious on
admission for an elective procedure, and signals that there might have been a coding error or
other anomaly for this observation.

Another noteworthy observation identified here is case 881, an 89 year old male, admitted
unconscious as an emergency; this case is poorly predicted because he survived. Similarly, two
other cases (127, 380) with large studentized residuals are poorly predicted because they died,
although they were young, did not have cancer, and conscious at admission. However, these
cases have relatively small Cook’s D values. From this evidence we might conclude that, case
208 bears further scrutiny, but none of these cases greatly affects the model, its coefficients, or
interpretation.

For comparison with Figure 7.28, the related index plot of these measures is shown in Fig-
ure 7.29.

influenceIndexPlot(icu.glm2, vars=c("Cook", "Studentized", "hat"), id.n=4)
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Figure 7.29: Index plots of influence measures for the ICU data model. The four most extreme
observations on each measure are labeled.

fig:icu2-infl-index

Cook’s D and DFFITS are overall measures of the total influence that cases have on the
regression coefficients and fitted values respectively. It might be that some cases have a large
impact on some individual regression coefficients, but don’t appear particularly unusual in these
aggregate measures.
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One way to study this is to make plots of the DFBETAij statistics. Such plots are not available
(as far as we know) in R packages, but it is not hard to construct them from the result returned by
influence.measures(). To do this, we select the appropriate columns from the infmat
component returned by that function.

infl <- influence.measures(icu.glm2)
dfbetas <- data.frame(infl$infmat[,2:5])
colnames(dfbetas) <- c("dfb.age", "dfb.cancer", "dfb.admit", "dfb.uncons")
head(dfbetas)

## dfb.age dfb.cancer dfb.admit dfb.uncons
## 8 0.047340 0.013418 0.004067 0.009254
## 12 0.018988 0.018412 -0.004174 0.018106
## 14 -0.001051 0.014882 0.026278 0.005555
## 28 0.031562 0.018424 -0.001511 0.016640
## 32 -0.164084 0.003788 -0.036505 0.023488
## 38 -0.021525 0.016539 -0.011937 0.020803

To illustrate this idea, plotting an individual column of dfbetas using type = "h" gives
an index plot against the observation number. This is shown in Figure 7.30 for the impact on the
coefficient for age. The lines and points are colored blue or red according to whether the patient
lived or died. Observations for which the |DFBETAage| > 0.2 (an arbitrary value) are labeled.

cols=ifelse (ICU$died=="Yes", "red", "blue")
op <- par(mar=c(5,5,1,1)+.1)
plot(dfbetas[,1], type = "h", col=cols,

xlab="Observation index",
ylab=expression(Delta * beta[Age]),
cex.lab=1.3)

points(dfbetas[,1], col=cols)
# label some points
big <- abs(dfbetas[,1]) > .25
idx <- 1:nrow(dfbetas)
text(idx[big], dfbetas[big,1], label=rownames(dfbetas)[big],

cex=0.9, pos=ifelse(dfbetas[big,1]>0, 3, 1),
xpd=TRUE)

abline(h=c(-.25, 0, .25), col="gray")
par(op)

None of the labeled points here are a cause for concern, since the standardized DFBETAs are
all relatively small. However, the plot shows that patients who died have generally larger impacts
on this coefficient.

An alternative to individual index plots is a scatterplot matrix, that shows the pairwise changes
in the regression coefficients for the various predictors. Here we use scatterplotMatrix()
from car that offers features for additional plot annotations, including identifying the most un-
usual points in each pairwise plot. In each off-diagonal panel, a 95% data ellipse and linear
regression line helps to show the marginal relationship between the two measures and highlight
why the labeled points are atypical in each plot.19

scatterplotMatrix(dfbetas, smooth=FALSE, id.n=2,
ellipse=TRUE, levels=0.95, robust=FALSE,
diagonal="histogram",
groups=ICU$died, col=c("blue", "red"))

4
19This plot uses the id.method="mahal" method to label the most extreme observations according to the Ma-

halanobis distance of each point from the centroid in the plot.
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Figure 7.30: Index plot for DFBETA (Age) in the ICU data model. The observations are colored
blue or red according to whether the patient lived or died.

fig:icu2-dbage

7.5.3 Other diagnostic plots
{sec:logist-partial}

The graphical methods described in this section are relatively straight-forward indicators of the
adequacy of a particular model, with a specified set of predictors, each expressed in a given
way. More sophisticated methods have also been proposed, which focus on the need to include
a particular predictor and whether its relationship is linear. These include the component-plus-
residual plot, the added-variable plot, and the constructed variable plot, which are all analogous
to techniques developed in OLS.

Component-plus-residual plots
{sec:component-plus-residual}

The component-plus-residual plot (also called a partial residual plot) proposed originally by
Larsen and McCleary (1972) is designed to show whether a given quantitative predictor, xj ,
included linearly in the model, actually shows a nonlinear relation, requiring transformation. The
essential idea is to move the linear term for xj back into the residual, by calculating the partial
residuals,

r?j = r + βjxj

Then, a plot of r?j against xj will have the same slope, βj , as the full model including it among
other predictors. However, any non-linear trend will be shown in the pattern of the points, usually
aided by a smoothed non-parametric curve.

As adapted to logistic regression by Landwehr et al. (1984), the partial residual for variable
xj is defined as

r?j = V −1r + βjxj

The partial residual plot is then a plot of r?j against xj , possibly with the addition of a smoothed
lowess curve (Fowlkes, 1987) and a linear regression line to aid interpretation. The linear regres-
sion of the partial residuals on xj has the same slope, βj , as in the full model.
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Figure 7.31: Scatterplot matrix for DFBETAs from the model for the ICU data. Those who lived
or died are shown with blue circles and red triangles, respectively. The diagonal panels show
histograms of each variable.

fig:icu2-dbscatmat
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If xj affects the binary response linearly, the plot should be approximately linear with a slope
approximately equal to βj . A nonlinear plot suggests that xj needs to be transformed, and the
shape of the relation gives a rough guide to the required transformation. For example, a parabolic
shape would suggest a term in x2

j . These plots complement the conditional data plots described
earlier (Section 7.3.1), and are most useful when there several quantitative predictors, so that it is
more convenient and sensible to examine their relationships individually.

The car package implements these plots in the crPlots() and crPlot() functions. They
also work for models with factor predictors (using parallel boxplots for the factor levels) but not
for those with interaction terms.{ex:donner3}

EXAMPLE 7.14: Donner Party
In Example 7.12, we fit several models for the Donner Party data, and we recall two here

to illustrate component-plus-residual plots. Both assert additive effects of age and sex, but the
model donner.mod3 allows a quadratic effect of age.

donner.mod1 <- glm(survived ~ age + sex, data=Donner, family=binomial)
donner.mod3 <- glm(survived ~ poly(age,2) + sex, data=Donner, family=binomial)

Had we not made exploratory plots earlier (Example 7.12), and naively fit only the linear
model in age, donner.mod1, we could use crPlots() to check for a non-linear relationship
of survival with age as follows, giving Figure 7.32.

crPlots(donner.mod1, ~age, id.n=2)
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Figure 7.32: Component-plus-residual plot for the simple additive linear model, donner.mod1.
The dashed red line shows the slope of age in the full model; the smoothed green curve shows a
loess fit with span = 0.5.

fig:donner-cr1

The smoothed loess curve in this plot closely resembles the trend we saw in the conditional
plot for age by sex (Figure 7.16), suggesting the need to include a non-linear term for age. The
points identified in this plot, by default, are those with either the most extreme x values (giving
them high leverage) or the largest absolute Pearson residuals in the full model. The four structured
bands of points in the plot correspond to the combinations of sex and survival.
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For comparison, you can see the result of allowing for a non-linear relationship in age in a
partial residual plot for the model donner.mod.3 that includes the effect poly(age, 2)
for age. Note that the syntax of the crPlots() function requires that you specify a term in the
model, rather than just a predictor variable.

crPlots(donner.mod3, ~poly(age,2), id.n=2)
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Figure 7.33: Component-plus-residual plot for the non-linear additive model, donner.mod3
fig:donner-cr2

Except possibly at the extreme right, this plot (Figure 7.33) shows no indication of a non-
linear relationship.

4

Added-variable plots

Added-variable plots (Cook and Weisberg, 1999, Wang, 1985) (also called partial-regression
plots) are another important tool for diagnosing problems in logistic regression and other linear
or generalized linear models. These are essentially plots, for each xi, of an adjusted response,
y?i = y | othersi, against an adjusted predictor, x?i = xi | othersi, where othersi = X /∈ xi ≡
X(−i) indicates all other predictors excluding xi. As such, they show the conditional relationship
between the response and the predictor xi, controlling for, or adjusting for, all other predictors.
Here, y?i and x?i represent respectively the residuals from the regressions of y and xi on all the
other xs excluding xi.

It might seem from this description that each added-variable plot requires two additional
auxiliary logistic regressions to calculate the residuals y?i and x?i . However, Wang (1985) showed
that the added-variable plot may be constructed by following the logistic regression for the model
y ∼ X(−i) with one weighted least squares regression of xi on X(−i) to find the residual part,
x?i , of x not predicted by the other regressors.

Let r be the vector of Pearson residuals from the initial logistic fit of y on the variables in
X(−i), and let H and V = diag [p̂(1 − p̂)] be the hat matrix and V matrix from this analysis.
Then, the added-variable plot is a scatterplot of the residuals r against the xi-residuals,

x?i = (I −H)V 1/2x .
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There are several important uses of added-variable plots:

First, marginal plots of the response variable y against the predictor variables xi can con-
ceal or misrepresent the relationships in a model including several predictors together due to
correlations or associations among the predictors. This problem is compounded by the fact that
graphical methods for discrete responses (boxplots, mosaic plots) cannot easily show influential
observations or non-linear relationships. Added-variable plots solve this problem by plotting the
residuals, y?i = y | othersi, which are less discrete than the marginal responses in y.

Second, the numerical measures and graphical methods for detecting influential observations
described earlier in this section are based on the idea of single-case deletion, comparing coef-
ficients or fitted values for the full data, with those that result from deleting each case in turn.
Yet, it is well-known (Lawrance, 1995), that sets of two (or more) observations can have joint
influence, that greatly exceeds their individual influential. Similarly, the influence of one dis-
crepant point can be offset by another influential point in an opposite direction, a phenomenon
called masking. The main cases of joint influence are illustrated in Figure 7.34. Added-variable
plots, showing the partial regression for one predictor controlling all others can make such cases
visually apparent.
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Figure 7.34: Jointly influential points in regression models. In each panel, the thick black line
shows the regression of y on x using all the data points. The solid purple line shows the regres-
sion deleting both the red and blue points and the broken and dotted lines show the regression
retaining only the point in its color in addition to the constant gray points. (a) Two points whose
joint influence enhance each other; (b) two points where the influence of one is masked by that
of the other; (c) two points whose combined influence greatly exceeds the effect of either one
individually.{fig:joint}

Finally, given a tentative model using predictors x, the added-variable plot for another re-
gressor, z can provide a useful visual assessment of its additional contribution. An overall test
could be based on the difference in G2 for the enlarged model logit(p) = Xβ + γz, compared
to the reduced model logit(p) = Xβ. But the added-variable plot shows whether the evidence
for including z is spread throughout the sample or confined to a small subset of observations. The
regressor z may be a new explanatory variable, or a higher-order term for variable(s) already in
the model.

The car package implements these plots with the function avPlot() for a single term and
avPlots() for all terms in a linear or generalized linear model, as shown in the example(s)
below. See http://www.datavis.ca/gallery/animation/duncanAV/ for an ani-
mated graphic showing the transition between a marginal plot of the relationship of y to x and
the added-variable plot of y? to x? for the case of multiple linear regression with a quantitative
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response.{ex:donner4}

EXAMPLE 7.15: Donner Party
The simple additive model donner.mod1 for the Donner Party data can be used to illustrate

some features of added-variable plots. In the call to avPlots() below, we use color the plotting
symbol to distinguish those who survived vs. died, shape to distinguish men from women.

col <- ifelse(Donner$survived=="yes", "blue", "red")
pch <- ifelse(Donner$sex=="Male", 16, 17)
avPlots(donner.mod1, id.n=2, col=col, pch=pch, col.lines="darkgreen")
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Figure 7.35: Added-variable plots for age (left) and sex (right) in the Donner Party main effects
model. Those who survived are shown in blue; those who died in red. Men are plotted with filled
circles; women with filled triangles.

fig:donner4-avp

These plots have the following properties:

1. The slope in the simple regression of y?i on x?i is the same as the partial coefficient βi in the
full multiple regression model including both predictors here (or all predictors in general).

2. The residuals from this regression line are the same as the residuals in the full model.

3. Because the response, survived, is binary, the vertical axis y?age in the left panel for
age is the part of the logit for survival that cannot be predicted from sex. Similarly, the
vertical axis in the right panel is the part of survival that cannot be predicted from age.
This property allows the clusters of points corresponding to discrete variables to be seen
more readily, particularly if they are distinguished by visual attributes such as color and
shape, as in Figure 7.35.

4
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{ex:icu3}

EXAMPLE 7.16: Death in the ICU
We illustrate some of the uses of added-variable plots using the main effects model, icu.glm2,

predicting death in the ICU from the variables age, cancer, admit and uncons.

To see why marginal plots of the discrete response against each predictor are often unreveal-
ing for the purpose of model assessment, consider the collection of plots in Figure 7.36 showing
the default plots (spineplots) for the factor response, died against each predictor. These show
the marginal distribution of each predictor by the widths of the bars, and highlight the proportion
who died by color. Such plots are useful for some purposes, but not for assessing the adequacy
of the fitted model.

op <- par(mfrow=c(2,2), mar=c(4,4,1,2.5)+.1, cex.lab=1.4)
plot(died ~ age, data=ICU, col=c("lightblue", "red"))
plot(died ~ cancer, data=ICU, col=c("lightblue", "red"))
plot(died ~ admit, data=ICU, col=c("lightblue", "red"))
plot(died ~ uncons, data=ICU, col=c("lightblue", "red"))
par(op)
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Figure 7.36: Marginal plots of the response died against each of the predictors in the model
icu.glm2 for the ICU data

fig:icu3-marginal

The added-variable plot for this model is shown in Figure 7.37. In each plot, the solid red
line shows the partial slope, βj for the focal predictor, controlling for all others.

pch <- ifelse(ICU$died=="No", 1, 2)
avPlots(icu.glm2, id.n=2, pch=pch, cex.lab=1.3)

The labeled points in each panel use the default id.method for avPlots(), selecting
those with either large absolute model residuals or extreme x?i residuals, given all other predic-
tors. Cases 127 and 881, identified earlier as influential stand out in all these plots.



7.5 Influence and diagnostic plots [supp-pdf.mkii ] 315

−40 −20 0 20

−
3

−
1

0
1

2
3

age | others

di
ed

  |
 o

th
er

s

● ●
●

● ●●
●

● ●
●

●
●

●
● ●

●●

●

●
●

●
●

●
●

●●
●●

●●
●

● ●●
●

● ●●
●

●
●

●
●● ●● ● ●●

●●
●●

●●
●

●
●

●
●

●
●●

●
●● ●●

●

● ●●●
● ●

● ●
●

● ●● ●
●

●
● ●
●● ●● ●● ●

●
●
●●

●
●● ●

●
●

●● ●●
●

●
●

●●
●
● ●●● ●●● ●● ●● ●●●

● ●
●

● ●

●

●
● ●●●● ●

●
●● ●

●
● ● ● ●●

●

●●● ●
●

● ●●●

881

127

333
102

−0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

cancerYes | others

di
ed

  |
 o

th
er

s

● ●
●

●
●●

● ●● ●● ●●
●●

●●

●

●
●

●
● ●●

●●●●
●●

●
●

●
● ●●●●

●
●● ●●●

●●●●●
●●

●●
●●●

●
●● ●●

●●
●

●
●

●● ●● ●●●●● ●
●

●
●●

●●●
●

●●
●●●●●●

●
● ●

●
●●

●
●

●
●● ●●

●●
●

●
●

●●●
●●

●●
●●

●
●●
●

●
●●●

●● ●● ● ●●●●●●
●

●
● ●●● ●●

●●●
●

●

●●●
●

● ●
●●●

881

127

346752

−1.0 −0.5 0.0 0.5

−
4

−
2

0
2

4

admitEmergency | others

di
ed

  |
 o

th
er

s

●●● ●
●●● ●●

●
● ●● ●●●●

●

●● ●●
●● ●●

●● ●●● ●●
●

●
●●● ●●● ●

●● ●●●●●●● ●●●●● ●●
●

●●
●●● ●

●
●● ●●●●●

●●
●●● ●●

●●● ●●● ●●●●●●
●● ● ●

●
● ●

●
●●

● ●●
●●● ●● ●●● ●●●●
●●

●
●●●●●●●●● ●

●● ●
●

●●●●●
●

● ●●●
●

● ●●●
●

●

●●●
●●

●
●●●

881

127

333816

−0.2 0.2 0.6 1.0

0
2

4
6

unconsYes | others

di
ed

  |
 o

th
er

s

●
●

●
●

●
●

●
●●●

● ●●
●●

●●
●●

●
●

● ●●
●

●
●●

●
●

●

●
●

●●
●●●

●
●● ●●●
●●●●●

●●

●●
●●●

●

●● ●
●

●
●

●

●

●
●

●

●

●
●

●●●●
●

●

●

●●

●●
●

●

●●
●●●●●●

●

● ●
●

●●

●

●
●

●●
●●
●●

●
●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●●●

●● ●●
●

●
●●●●●

●
●

●
●●●●●

●●
●

●

●
●●

●
●

● ●
●●

●

881

127

881

299

Added−Variable Plots

Figure 7.37: Added-variable plots for the predictors in the model for the ICU data. Those who
died and survived are shown by triangles (4) and circles (©) respectively.

fig:icu3-avp1

Next, we illustrate the use of added-variable plots for checking the effect of influential obser-
vations on the decision to include an additional predictor in some given model. In the analysis of
the ICU data using model selection methods, the variable systolic (systolic blood pressure at
admission) was nominated by several different procedures. Here we take a closer look at the evi-
dence for inclusion of this variable in a predictive model. We fit a new model adding systolic
to the others and test the improvement with a likelihood ratio test:

icu.glm2a <- glm(died ~ age + cancer + admit + uncons + systolic,
data=ICU, family=binomial)

anova(icu.glm2, icu.glm2a, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: died ~ age + cancer + admit + uncons
## Model 2: died ~ age + cancer + admit + uncons + systolic
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 195 139
## 2 194 136 1 3.52 0.061 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, the addition of systolic blood pressure is nearly significant at the conventional α = 0.05
level. The added-variable plot for this variable in Figure 7.38 shows the strength of evidence for
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its contribution, above and beyond the other variables in the model, as well as the partial leverage
and influence of individual points.

avPlot(icu.glm2a, "systolic", id.n=3, pch=pch)
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Figure 7.38: added-variable plot for the effect of adding systolic blood pressure to the main
effects model for the ICU data.

fig:icu3-avp2

In this plot, cases 331 and 921 have high partial leverage, but they are not influential. Case
84, however, has high leverage and a large residual, so is possibly influential on the evidence for
inclusion of systolic in the model. Note also that the partial regression line in this plot nicely
separates nearly all the patients who died from those who survived.

4

TODO: This chapter is quite long. Could start a new chapter here, but that would require re-
numbering file names, or introduce Ch07a.

7.6 Polytomous response models
{sec:logist-poly}

Polytomous response data arise when the outcome variable, Y , takes on m > 2 discrete values.
For example, (a) patients may record that their improvement after treatment is “none,” “some” or
“marked;” (b) high school students may choose a general, vocational or academic program; (c)
women’s labor force participation may be recorded in a survey as not working outside the home,
working part-time, or working full-time; (d) Canadian voters may express a preference for the
Conservative, Liberal, NDP, Green party. These response categories may be considered ordered
or simply nominal.

In this situation, there are several different ways to model the response probabilities. Let
πij ≡ πj (xi) be the probability of response j for case or group i, given the predictors xi.
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Because
∑
j πij = 1, only m− 1 of these probabilities are independent. The essential idea here

is to construct a model for the polytomous (or multinomial) response composed of m − 1 logit
comparisons among the response categories in a similar way to how factors are treated in the
predictor variables.

The simplest approach uses the proportional odds model, described in Section 7.6.1. This
model applies only when the response is ordinal (as in improvement after therapy) and an addi-
tional assumption (the proportional odds assumption) holds. This model can be fit using polr()
in the MASS package, lrm() in the rms package, and vglm() in VGAM.

However, if the response is purely nominal (e.g., vote Conservative, Liberal, NDP, Green), or
if the proportional odds assumption is untenable, another particularly simple strategy is to fit sepa-
rate models to a set ofm−1 nested dichotomies derived from the polytomous response (described
in Section 7.6.3). This method allows you to resolve the differences among the m response cat-
egories into independent statistical questions (similar to orthogonal contrasts in ANOVA). For
example, for women’s labor force participation, it might be substantively interesting to contrast
not working vs. (part-time and full-time) and then part-time vs. full-time for women who are
working. You fit such nested dichotomies by running the m− 1 binary logit models and combin-
ing the statistical results.

The most general approach is the generalized logit model, also called the multinomial logit
model. This model fits simultaneously the m − 1 simple logit models against a baseline or
reference category, for example, the last category, m. With a 3-category response, there are two
generalized logits, Li1 = log(πi1/πi3) and Li2 = log(πi2/πi3), contrasting response categories
1 and 2 against category 3. In this approach, it doesn’t matter which response category is chosen
as the baseline, because all pairwise comparisons can be recovered from whatever is estimated.
This model is conveniently fitted using multinom() in nnet.

7.6.1 Ordinal Response: Proportional Odds Model
{sec:ordinal}

For an ordered response Y , with categories j = 1, 2, . . .m, the ordinal nature of the response can
be taken into account by forming logits based on the m− 1 adjacent category cutpoints between
successive categories. That is, if the cumulative probabilities are

Pr(Y ≤ j |x) = π1(x) + π2(x) + · · ·πj(x) ,

then the cumulative logit for category j is defined as

Lj ≡ logit[Pr(Y ≤ j |x)] = log
Pr(Y ≤ j |x)

Pr(Y > j |x)
= log

Pr(Y ≤ j |x)

1− Pr(Y ≤ j |x)
(7.13) {eq:cumlogit}

for j = 1, 2, . . .m− 1.

In our running example of responses to arthritis treatment, the actual response variable is
Improved, with ordered levels "None" < "Some" < "Marked". In this case, the cumu-
lative logits would be defined as

L1 = log
π1(x)

π2(x) + π3(x)
= logit ( None vs. [Some or Marked] )

L2 = log
π1(x) + π2(x)

π3(x)
= logit ( [None or Some] vs. Marked) ,

where x represents the predictors (sex, treatment and age).
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Figure 7.39: Proportional odds model for an ordinal response. The model assumes equal slopes
for the cumulative response logits. Left: logit scale; right: probability scale.{fig:podds}

The proportional odds model (PO) (McCullagh, 1980) proposes a simple and parsimonious
account of these effects, where the predictors in (x) are constrained to have the same slopes for
all cumulative logits,

Lj = αj + xTβ j = 1, . . . ,m− 1 . (7.14){eq:propodds}

That is, the effect of the predictor xi is the same, βi, for all cumulative logits. The cumula-
tive logits differ only in their intercepts. In this formulation, the {αj} increase with j, because
Pr(Y ≤ j |x) increases with j for fixed x.20 Figure 7.39 portrays the PO model for a single
quantitative predictor x with m = 4 response categories.

The name “proportional odds” stems from the fact that under Eqn. (7.14), for fixed x, the
cumulative log odds (logits) for categories j and j′ are constant, (αj−αj′), so the odds, exp(αj−
αj′) have a constant ratio, or are proportional. Similarly, the ratio of the cumulative odds of
making a response Y ≤ j at values of the predictors x = x1 are exp((x1 − x2)

Tβ) times the
odds of this response at x = x2, so the log cumulative odds ratio is proportional to the difference
between x1 and x2.

Latent variable interpretation

For a binary response, an alternative motivation for logistic regression regards the relation of the
observed Y as arising from a continuous, unobserved, (latent) response variable, ξ representing
the propensity for a “success” (1) rather than “failure” (0). The latent response is assumed to be
linearly related to the predictors x according to

ξi = α+ xT
i β + εi = α+ β1xi1 + · · ·+ βpxip + εi (7.15){eq:latent}

However, we can only observe Yi = 1 when ξi passes some threshold, that with some convenient
scaling can be taken as ξi > 0 =⇒ Yi = 1.21

20Some authors and some software describe the PO model in terms of logit[Pr(Y > j |x)], so the signs and order
of the intercepts, αj are reversed.

21The latent variable derivation of logistic regression (and the related probit model) was fundamental in the history
of statistical methods for discrete response outcomes. An early example was Thurstone’s (1927) Law of comparative
judgment designed to account for psychological preference by assuming an underlying latent continuum of “hedonic
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Figure 7.40: Latent variable representation of the proportional odds model for m = 4 response
categories and a single quantitative predictor, x. Source: Adapted from Fox (2008, Fig 14.10),
using code provided by John Fox. {fig:latent}

The latent variable motivation extends directly to an ordinal response under the PO model.
We now assume that there is a set of m − 1 thresholds, α1 < α2 < · · · < αm−1 for the latent
variable ξi in Eqn. (7.15) and we observe

Yi = j if αj−1 < ξi ≤ αj ,

with appropriate modifications to the inequalities at the end points.

This is illustrated in Figure 7.40 for a response with m = 4 ordered categories and a single
quantitative predictor, x. The observable response Y categories are shown on the right vertical
axis, and the corresponding latent continuous variable ξ on the left axis together with the thresh-
olds α1, α2, α3. The (conditional) logistic distribution of ξ is shown at two values of x, and the
shaded areas under the curve give the conditional probabilities Pr(Y = 4 |xi) for the two values
x1 and x2.

Fitting the proportional odds model

As mentioned earlier, there are a number of different R packages that provide facilities for fit-
ting the PO model. These have somewhat different capabilities for reporting results, testing
hypotheses and plotting, so we generally use polr() in the MASS package, except where other
packages offer greater convenience.

Unless the response variable has numeric values, it is important to ensure that it has been
defined as an ordered factor (using ordered()). In the Arthritis data, the response,
Improved was setup this way, as we can check by printing some of the values.22

values.” Similarly, the probit model arose from does-response studies in toxicology (Bliss, 1934, Finney, 1947) where
the number killed by some chemical agent was related to its’ type, dose or concentration. The idea of a latent variable
was also at the heart of the development of factor analysis TODO: citation? and latent class analysis (Lazarsfeld,
1950, 1954) was developed to treat the problem of classifying individuals into discrete latent classes from fallible
measurements. See Bollen (2002) for a useful overview of latent variable models in the social sciences.

22As an unordered factor, the levels would be treated as ordered alphabetically, i.e., Marked, None, Some.
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head(Arthritis$Improved, 8)

## [1] Some None None Marked Marked Marked None Marked
## Levels: None < Some < Marked

We fit the main effects model for the ordinal response using polr() as shown below. We
also specify Hess=TRUE to have the function return the observed information matrix (called the
Hessian), that is used in other operations to calculate standard errors.

arth.polr <- polr(Improved ~ Sex + Treatment + Age,
data=Arthritis, Hess=TRUE)

summary(arth.polr)

## Call:
## polr(formula = Improved ~ Sex + Treatment + Age, data = Arthritis,
## Hess = TRUE)
##
## Coefficients:
## Value Std. Error t value
## SexMale -1.2517 0.5464 -2.29
## TreatmentTreated 1.7453 0.4759 3.67
## Age 0.0382 0.0184 2.07
##
## Intercepts:
## Value Std. Error t value
## None|Some 2.532 1.057 2.395
## Some|Marked 3.431 1.091 3.144
##
## Residual Deviance: 145.46
## AIC: 155.46

The output from the summary() method, shown above, gives the estimated coefficients (β)
and intercepts (αj) labeled by the cutpoint on the ordinal response. It provides standard errors
and t-values (βi/SE(βi)), but no significance tests or p-values.

library(car)
Anova(arth.polr)

## Analysis of Deviance Table (Type II tests)
##
## Response: Improved
## LR Chisq Df Pr(>Chisq)
## Sex 5.69 1 0.01708 *
## Treatment 14.71 1 0.00013 ***
## Age 4.57 1 0.03251 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Testing the proportional odds assumption

The simplicity of the PO model is achieved only when the proportional odds model holds for a
given data set. In essence, a test of this assumption involves a contrast between the PO model
and a generalized logit NPO model that allows different effects (slopes) of the predictors across
the response categories:

PO : Lj = αj + xTβ j = 1, . . . ,m− 1 (7.16){eq:po}

NPO : Lj = αj + xTβj j = 1, . . . ,m− 1 (7.17){eq:npo}
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The most general test involves fitting both models and testing the difference in the residual
deviance by a likelihood ratio test or using some other measure (such as AIC) for model compari-
son. The PO model (Eqn. (7.16)) has (m−1)+p parameters, while the NPO model (Eqn. (7.17))
has (m− 1)(1 + p) = m(1 + p) parameters, which may be difficult to fit if this is large relative
to the number of observations. An intermediate model, the partial proportional odds model (Pe-
terson and Harrell, 1990) allows one subset of predictors, xpo, to satisfy the proportional odds
assumption (equal slopes), while the remaining predictors xnpo have slopes varying with the
response level:

PPO : Lj = αj + xT
poβ + xT

npoβj j = 1, . . . ,m− 1 . (7.18) {eq:ppo}

In R, the PO and NPO models can be readily contrasted by fitting them both using vglm() in
the VGAM package. This defines the cumulative family of models and allows a parallel
option. With parallel=TRUE, this is equivalent to the polr() model, except that the signs
of the coefficients are reversed.

library(VGAM)
arth.po <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,

family = cumulative(parallel=TRUE))
arth.po

## Call:
## vglm(formula = Improved ~ Sex + Treatment + Age, family = cumulative(parallel = TRUE),
## data = Arthritis)
##
## Coefficients:
## (Intercept):1 (Intercept):2 SexMale
## 2.531990 3.430988 1.251671
## TreatmentTreated Age
## -1.745304 -0.038163
##
## Degrees of Freedom: 168 Total; 163 Residual
## Residual deviance: 145.46
## Log-likelihood: -72.729

The more general NPO model can be fit using parallel=FALSE.

arth.npo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
family = cumulative(parallel=FALSE))

arth.npo

## Call:
## vglm(formula = Improved ~ Sex + Treatment + Age, family = cumulative(parallel = FALSE),
## data = Arthritis)
##
## Coefficients:
## (Intercept):1 (Intercept):2 SexMale:1
## 2.618539 3.431175 1.509827
## SexMale:2 TreatmentTreated:1 TreatmentTreated:2
## 0.866434 -1.836929 -1.704011
## Age:1 Age:2
## -0.040866 -0.037294
##
## Degrees of Freedom: 168 Total; 160 Residual
## Residual deviance: 143.57
## Log-likelihood: -71.787
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The VGAM package defines a coef() method that can print the coefficients in a more
readable matrix form giving the category cutpoints:

coef(arth.po, matrix=TRUE)

## logit(P[Y<=1]) logit(P[Y<=2])
## (Intercept) 2.531990 3.430988
## SexMale 1.251671 1.251671
## TreatmentTreated -1.745304 -1.745304
## Age -0.038163 -0.038163

coef(arth.npo, matrix=TRUE)

## logit(P[Y<=1]) logit(P[Y<=2])
## (Intercept) 2.618539 3.431175
## SexMale 1.509827 0.866434
## TreatmentTreated -1.836929 -1.704011
## Age -0.040866 -0.037294

In most cases, nested models can be tested using an anova() method, but the VGAM pack-
age has not implemented this for "vglm" objects. Instead, it provides an analogous function,
lrtest():

VGAM::lrtest(arth.npo, arth.po)

## Likelihood ratio test
##
## Model 1: Improved ~ Sex + Treatment + Age
## Model 2: Improved ~ Sex + Treatment + Age
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 160 -71.8
## 2 163 -72.7 3 1.88 0.6

The LR test can be also calculated as “manually” shown below using the difference in residual
deviance for the two models.

tab <- cbind(
Deviance = c(deviance(arth.npo), deviance(arth.po)),

df = c(df.residual(arth.npo), df.residual(arth.po))
)

tab <- rbind(tab, diff(tab))
rownames(tab) <- c("GenLogit", "PropOdds", "LR test")
tab <- cbind(tab, pvalue=1-pchisq(tab[,1], tab[,2]))
tab

## Deviance df pvalue
## GenLogit 143.5741 160 0.81966
## PropOdds 145.4579 163 0.83435
## LR test 1.8838 3 0.59686

The vglm() can also fit partial proportional odds models, by specifying a formula giving the
terms for which the PO assumption should be taken as TRUE or FALSE. Here we illustrate this
using parallel=FALSE ~ Sex, to fit separate slopes for males and females, but parallel lines
for the other predictors. The same model would be fit using parallel=TRUE ~ Treatment + Age.
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arth.ppo <- vglm(Improved ~ Sex + Treatment + Age, data=Arthritis,
family = cumulative(parallel=FALSE ~ Sex))

coef(arth.ppo, matrix=TRUE)

## logit(P[Y<=1]) logit(P[Y<=2])
## (Intercept) 2.542452 3.615561
## SexMale 1.483336 0.867362
## TreatmentTreated -1.775742 -1.775742
## Age -0.039622 -0.039622

Graphical assessment of proportional odds

There are several graphical methods for visual assessment of the proportional odds assumption.
These are all marginal methods, in that they treat the predictors one at a time. However, that
provides one means to determine if a partial proportional odds model might be more appropriate.
Harrell’s 2001, Ch. 13-14 Regression Modeling Strategies and the corresponding rms package
provide an authoritative treatment and methods in R.

One simple idea is to plot the conditional mean or expected value E(X |Y ) of a given pre-
dictor, X , at each level of the ordered response Y . If the response behaves ordinally in relation
to X , these means should be strictly increasing or decreasing with Y . For comparison, one can
also plot the estimated conditional means Ê(X |Y = j) under the fitted PO model X as the only
predictor. If the PO assumption holds for this X , the model-mean curve should be close to the
data mean curve.

library(rms)
arth.po2 <- lrm(Improved ~ Sex + Treatment + Age, data=Arthritis)
arth.po2

##
## Logistic Regression Model
##
## lrm(formula = Improved ~ Sex + Treatment + Age, data = Arthritis)
##
## Model Likelihood Discrimination Rank Discrim.
## Ratio Test Indexes Indexes
## Obs 84 LR chi2 24.46 R2 0.291 C 0.750
## None 42 d.f. 3 g 1.335 Dxy 0.500
## Some 14 Pr(> chi2) <0.0001 gr 3.801 gamma 0.503
## Marked 28 gp 0.280 tau-a 0.309
## max |deriv| 1e-07 Brier 0.187
##
## Coef S.E. Wald Z Pr(>|Z|)
## y>=Some -2.5320 1.0570 -2.40 0.0166
## y>=Marked -3.4310 1.0911 -3.14 0.0017
## Sex=Male -1.2517 0.5464 -2.29 0.0220
## Treatment=Treated 1.7453 0.4759 3.67 0.0002
## Age 0.0382 0.0184 2.07 0.0382

The plot of conditional X means is produced using the plot.xmean.ordinaly() as
shown below. It produces one marginal panel for each predictor in the model. For categori-
cal predictors, it plots only the overall most frequent category. The resulting plot is shown in
Figure 7.41.
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op <- par(mfrow=c(1,3))
plot.xmean.ordinaly(Improved ~ Sex + Treatment + Age, data=Arthritis,

lwd=2, pch=16, subn=FALSE)
par(op)
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Figure 7.41: Visual assessment ordinality and the proportional odds assumption for predictors in
the Arthritis data. Solid lines connect the stratified means of X given Y. Dashed lines show the
estimated expected value of X given Y=j if the proportional odds model holds for X.

fig:arth-rmsplot

In Figure 7.41, there is some evidence that the effect of Sex is non-monotonic and the means
differ from their model-implied values under the PO assumption. The effect of Treatment
looks good by this method, and the effect of Age hints that the upper two categories may not be
well-distinguished as an ordinal response.

Of course, this example has only a modest total sample size, and this method only examines
the marginal effects of the predictors. Nevertheless, it is a useful supplement to the statistical
methods described earlier.

7.6.2 Visualizing results for the proportional odds model
{sec:vis-propodds}

Results from the PO model (and other models for polytomous responses) can be graphed using the
same ideas and methods shown earlier for a binary or binomial response. In particular, full-model
plots (described earlier in Section 7.3.2) and effect plots (Section 7.3.3) are still very helpful.

But now there is the additional complication that the response variable has m > 2 levels and
so needs to be represented by m− 1 curves or panels in addition to those related to the predictor
variables.

Full-model plots
{sec:po-fullplots}

For full-model plots, we continue the idea of appending the fitted response probabilities (or logits)
to the data frame and plotting these in relation to the predictors. The predict()method returns
the highest probability category label by default (with type="class"), so to get the fitted
probabilities you have to ask for type="probs", as shown below.

arth.fitp <- cbind(Arthritis,
predict(arth.polr, type="probs"))

head(arth.fitp)
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## ID Treatment Sex Age Improved Better None Some Marked
## 1 57 Treated Male 27 Some 1 0.73262 0.13806 0.12932
## 2 46 Treated Male 29 None 0 0.71740 0.14443 0.13816
## 3 77 Treated Male 30 None 0 0.70960 0.14763 0.14277
## 4 17 Treated Male 32 Marked 1 0.69363 0.15400 0.15237
## 5 36 Treated Male 46 Marked 1 0.57025 0.19504 0.23471
## 6 23 Treated Male 58 Marked 1 0.45634 0.21713 0.32653

For plotting, it is most convenient to reshape these from wide to long format using melt()
in the reshape2 package. The response category is named Level.

library(reshape2)
plotdat <- melt(arth.fitp,

id.vars = c("Sex", "Treatment", "Age", "Improved"),
measure.vars=c("None", "Some", "Marked"),
variable.name = "Level",
value.name = "Probability")

## view first few rows
head(plotdat)

## Sex Treatment Age Improved Level Probability
## 1 Male Treated 27 Some None 0.73262
## 2 Male Treated 29 None None 0.71740
## 3 Male Treated 30 None None 0.70960
## 4 Male Treated 32 Marked None 0.69363
## 5 Male Treated 46 Marked None 0.57025
## 6 Male Treated 58 Marked None 0.45634

We can now plot Probability against Age, using Level to assign different colors to the
lines for the response categories. facet_grid() is used to split the plot into separate panels
by Sex and Treatment. In this example, the directlabels package is also used replace the
default legend created by ggplot() with category labels on the curves themselves, which is
easier to read.

library(ggplot2)
library(directlabels)
gg <- ggplot(plotdat, aes(x = Age, y = Probability, colour = Level)) +

geom_line(size=2.5) + theme_bw() + xlim(10,80) +
geom_point(color="black", size=1.5) +
facet_grid(Sex ~ Treatment,

labeller = function(x, y) sprintf("%s = %s", x, y)
)

direct.label(gg)

Although we now have three response curves in each panel, this plot is relatively easy to
understand: (a) In each panel, the probability of no improvement decreases with age, while that
for marked improvement increases. (b) It is easy to compare the placebo and treated groups in
each row, showing that no improvement decreases, while marked improvement increases with the
active treatment. (On the other hand, this layout makes it harder to compare panels vertically for
males and females in each condition.) (c) The points show where the observations are located in
each panel; so, we can see that the data is quite thin for males given the placebo.23

23One way to improve (pun intended) this graph would be to show the points on the lines only for the actual level
of Improve for each observation.
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Figure 7.42: Predicted probabilities for the proportional odds model fit to the Arthritis data
fig:arth-polr1



7.6 Polytomous response models [supp-pdf.mkii ] 327

Effect plots
{sec:po-effplots}

For PO models fit using polr(), the effects package provides two different styles for plotting
a given effect. By default, curves are plotted in separate panels for the different response levels
of a given effect, together with confidence bands for predicted probabilities. This form provides
confidence bands and rug plots for the observations, but the default vertical arrangement of the
panels makes it harder to compare the trends for the different response levels. The alternative
stacked format shows the changes in response level more directly, but doesn’t provide confidence
bands.

Figure 7.43 shows these two styles for the main effect of Age in the proportional odds model,
arth.polr fit earlier.

plot(Effect("Age", arth.polr))
plot(Effect("Age", arth.polr), style='stacked',

key.args=list(x=.55, y=.9))
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Figure 7.43: Effect plots for the effect of Age in the proportional odds model for the Arthritis
data. Left: responses shown in separate panels. Right: responses shown in stacked format

fig:arth-po-eff1

Even though this model includes only main effects, you can still plot the higher-order effects
for more focal predictors in a coherent display. Figure 7.44 shows the predicted probabilities for
all three predictors together. Again, visual comparison is easier horizontally for placebo versus
treated groups, but you can also see that the prevalence of marked improvement is greater for
females than for males.

plot(Effect(c("Treatment", "Sex", "Age"), arth.polr),
style="stacked", key.arg=list(x=.8, y=.9))

Finally, the latent variable interpretation of the PO model provides for simpler plots on the
logit scale. Figure 7.45 shows this plot for the effects of Treatment and Age (collapsed over
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Figure 7.44: Effect plot for the effects of Treatment, Sex and Age in the Arthritis data.
fig:arth-po-eff2

Sex) produced with the argument latent=TRUE to Effect(). In this plot, there is a single
line in each panel for the effect (slope) of Age on the log odds. The dashed horizontal lines give
the thresholds between the adjacent response categories corresponding to the intercepts.

plot(Effect(c("Treatment", "Age"), arth.polr, latent=TRUE), lwd=3)
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Figure 7.45: Latent variable effect plot for the effects of Treatment and Age in the Arthritis data.
fig:arth-po-eff3
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7.6.3 Nested dichotomies
{sec:nested}

The method of nested dichotomies provides another simple way to analyse a polytomous re-
sponse in the framework of logistic regression (or other generalized linear models). This method
does not require an ordinal response or special software. Instead, it uses the familiar binary logis-
tic model and fits m − 1 separate models for each of a hierarchically nested set of comparisons
among the response categories.

Taken together, this set of models for the dichotomies comprises a complete model for the
polytomous response. As well, these models are statistically independent, so test statistics such
as G2 or Wald tests can be added to give overall tests for the full polytomy.

For example, the response categories Y = {1,2,3,4} could be divided first as {1,2} vs. {3,4},
as shown in the left side of Figure 7.46. Then these two dichotomies could be divided as {1} vs.
{2}, and {3} vs. {4}. Alternatively, these response categories could be divided as shown in the
right side of Figure 7.46: first, {1} vs. {2,3,4}, then {2} vs {3,4}, and finally {3} vs. {4}.

Figure 7.46: Nested dichotomies. The boxes show two different ways a four-category response
can be represented as three nested dichotomies. Adapted from Fox (2008). {fig:nested2}

Such models make the most sense when there are substantive reasons for considering the
response categories in terms of such dichotomies. Two examples are shown in Figure 7.47.

• For the Arthritis data, it is sensible to consider one dichotomy (“better”), with logit
L1, between the categories of "None" compared to "Some" or "Marked". A second
dichotomy, with logit L2, would then distinguish between the some and marked response
categories.

• For a second case where patients are classified into m = 4 psychiatric diagnostic cate-
gories, the first dichotomy, with logit L1 distinguishes those considered normal from all
others given a clinical diagnosis. Two other dichotomies are defined to further divide the
non-normal categories.

Then, consider the separate logit models for thesem−1 dichotomies, with different intercepts
αj and slopes βj for each dichotomy,

L1 = α1 + xTβ1

L2 = α2 + xTβ2

... =
...

Lm−1 = αm−1 + xTβm−1

{ex:wlfpart1}
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Figure 7.47: Examples of nested dichotomies and the corresponding logits {fig:nested1}

EXAMPLE 7.17: Women’s labor force participation
The data set Womenlf in the car package gives the result of a 1977 Canadian survey. It

contains data for 263 married women of age 21–30 who indicated their working status (outside
the home) as not working, working part time or working full time, together with their husband’s
income and a binary indicator of whether they had one or more young children in their household.
(Another variable, region of Canada, had no effects in these analyses, and is not examined here.)
This example follows Fox and Weisberg (2011, §5.8).

library(car) # for data and Anova()
data("Womenlf", package="car")
some(Womenlf)

## partic hincome children region
## 6 not.work 7 present Ontario
## 25 not.work 23 present Ontario
## 36 not.work 19 absent Ontario
## 83 fulltime 17 present Ontario
## 138 not.work 13 present Ontario
## 166 not.work 9 present Atlantic
## 168 fulltime 13 absent Ontario
## 173 not.work 7 present Ontario
## 229 parttime 23 present Quebec
## 233 fulltime 15 absent Quebec

In this example, it makes sense to consider a first dichotomy (working) between women
who are not working, vs. those who are (full time or part time). A second dichotomy (fulltime)
contrasts full time work vs. part time work, among those women who are working at least part
time. These two binary variables are created in the data frame using the recode() function
from the car package.

# create dichotomies
Womenlf <- within(Womenlf,{
working <- recode(partic, " 'not.work' = 'no'; else = 'yes' ")
fulltime <- recode(partic,

" 'fulltime' = 'yes'; 'parttime' = 'no'; 'not.work' = NA")})
some(Womenlf)
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## partic hincome children region fulltime working
## 1 not.work 15 present Ontario <NA> no
## 10 not.work 23 present Ontario <NA> no
## 11 not.work 23 present Ontario <NA> no
## 24 fulltime 11 absent Ontario yes yes
## 67 not.work 15 present Ontario <NA> no
## 98 fulltime 15 absent Ontario yes yes
## 122 not.work 23 present Atlantic <NA> no
## 167 not.work 15 present Ontario <NA> no
## 208 fulltime 11 absent Quebec yes yes
## 241 not.work 13 present Quebec <NA> no

The tables below show how the response partic relates to the recoded binary variables,
working and fulltime. Note that the fulltime variable is recoded to NA for women who
are not working.

with(Womenlf, table(partic, working))

## working
## partic no yes
## fulltime 0 66
## not.work 155 0
## parttime 0 42

with(Womenlf, table(partic, fulltime, useNA="ifany"))

## fulltime
## partic no yes <NA>
## fulltime 0 66 0
## not.work 0 0 155
## parttime 42 0 0

We proceed to fit two separate binary logistic regression models for the derived dichotomous
variables. For the working dichotomy, we get the following results:

mod.working <- glm(working ~ hincome + children, family=binomial,
data=Womenlf)

summary(mod.working)

##
## Call:
## glm(formula = working ~ hincome + children, family = binomial,
## data = Womenlf)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.677 -0.865 -0.777 0.929 1.997
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.3358 0.3838 3.48 0.0005 ***
## hincome -0.0423 0.0198 -2.14 0.0324 *
## childrenpresent -1.5756 0.2923 -5.39 7e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 356.15 on 262 degrees of freedom
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## Residual deviance: 319.73 on 260 degrees of freedom
## AIC: 325.7
##
## Number of Fisher Scoring iterations: 4

And, similarly for the fulltime dichotomy:

mod.fulltime <- glm(fulltime ~ hincome + children, family=binomial,
data=Womenlf)

summary(mod.fulltime)

##
## Call:
## glm(formula = fulltime ~ hincome + children, family = binomial,
## data = Womenlf)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.405 -0.868 0.395 0.621 1.764
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.4778 0.7671 4.53 5.8e-06 ***
## hincome -0.1073 0.0392 -2.74 0.0061 **
## childrenpresent -2.6515 0.5411 -4.90 9.6e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 144.34 on 107 degrees of freedom
## Residual deviance: 104.49 on 105 degrees of freedom
## (155 observations deleted due to missingness)
## AIC: 110.5
##
## Number of Fisher Scoring iterations: 5

Although these were fit separately, we can view this as a combined model for the three-level
response, with the following coefficients:

cbind(working=coef(mod.working), fulltime=coef(mod.fulltime))

## working fulltime
## (Intercept) 1.335830 3.47777
## hincome -0.042308 -0.10727
## childrenpresent -1.575648 -2.65146

Writing these out as equations for the logits, we have:

L1 = log
Pr(working)

Pr(notworking)
= 1.336− 0.042 hincome− 1.576 children (7.19){eq:wlf-logits}

L2 = log
Pr(fulltime)

Pr(parttime)
= 3.478− 0.1072 hincome− 2.652 children (7.20)

For both dichotomies, increasing income of the husband and the presence of young children
decrease the log odds of a greater level of work. However, for those women who are working the
effects of husband’s income and and children are greater on the choice between full time and part
time work than they are for all women on the choice between working and not working.
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As we mentioned above, the use of nested dichotomies implies that the models fit to the
separate dichotomies are statistically independent. Thus, we can additively combine χ2 statistics
and degrees of freedom to give overall tests for the polytomous response.

For example, here we define a function, LRtest() to calculate the likelihood ratio test of
the hypothesis H0 : β = 0 for all predictors simultaneously. We then use this to display these
tests for each sub-model, as well as the combined model based on the sums of the test statistic
and degrees of freedom.

LRtest <- function(model)
c(LRchisq=(model$null.deviance - model$deviance),

df=(model$df.null - model$df.residual))
tab <- rbind(working=LRtest(mod.working),

fulltime=LRtest(mod.fulltime))
tab <- rbind(tab, All = colSums(tab))
tab <- cbind(tab, pvalue = 1- pchisq(tab[,1], tab[,2]))
tab

## LRchisq df pvalue
## working 36.418 2 1.2355e-08
## fulltime 39.847 2 2.2252e-09
## All 76.265 4 1.1102e-15

Similarly, you can carry out tests of individual predictors, H0 : βi = 0 for the polytomy by
adding the separate χ2s from Anova().

Anova(mod.working)

## Analysis of Deviance Table (Type II tests)
##
## Response: working
## LR Chisq Df Pr(>Chisq)
## hincome 4.82637 1 0.028028 *
## children 31.32288 1 2.1849e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Anova(mod.fulltime)

## Analysis of Deviance Table (Type II tests)
##
## Response: fulltime
## LR Chisq Df Pr(>Chisq)
## hincome 8.9813 1 0.0027275 **
## children 32.1363 1 1.4373e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For example, the test for husband’s income gives χ2 = 4.826 + 8.981 = 13.807 with 2 df.

As before, you can plot the fitted values from such models, either on the logit scale (for the
separate logit equations) or in terms of probabilities for the various responses. The general idea
is the same: obtain the fitted values from predict() using data frame containing the values of
the predictors. However, now we have to combine these for each of the sub-models.

We calculate these values below, on both the logit scale and the response scale of probabili-
ties. The newdata argument to predict() is constructed as the combinations of values for
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hincome and children.24

predictors <- expand.grid(hincome=1:50,
children=c('absent', 'present'))

fit <- data.frame(predictors,
p.working = predict(mod.working, predictors, type='response'),
p.fulltime = predict(mod.fulltime, predictors, type='response'),
l.working = predict(mod.working, predictors, type='link'),
l.fulltime = predict(mod.fulltime, predictors, type='link')

)
print(some(fit, 5), digits=3)

## hincome children p.working p.fulltime l.working l.fulltime
## 12 12 absent 0.696 0.899 0.828 2.191
## 17 17 absent 0.649 0.839 0.617 1.654
## 40 40 absent 0.412 0.307 -0.357 -0.813
## 65 15 present 0.294 0.314 -0.874 -0.783
## 94 44 present 0.109 0.020 -2.101 -3.893

One wrinkle here is that the probabilities for working full time and part time are conditional
on working. We calculate the unconditional probabilities as shown below and choose to display
the probability of not working as the complement of working.

fit <- within(fit, {
full <- p.working * p.fulltime
part <- p.working * (1 - p.fulltime)
not <- 1 - p.working
})

Plotting these fitted values using ggplot2 would require reshaping the fit data frame from
wide to long format. Instead, we use R base graphics to produce plots of the probabilities and
log odds. This method doesn’t automatically give plots in separate panels, so a for-loop is used
to generate panels for the levels of children. We set up an empty plot frame (type="n") for
each panel and then use lines() to plot the fitted probabilities. Using par(mfrow=c(1,2))
places these plots in two side-by-side panels in a single display. The lines below give the plot
shown in Figure 7.48.

op <- par(mfrow=c(1,2), mar=c(5,4,4,1)+.1)
Hinc <- 1:max(fit$hincome)
for ( kids in c("absent", "present") ) {
dat <- subset(fit, children==kids)
plot( range(Hinc), c(0,1), type="n", cex.lab=1.25,

xlab="Husband's Income", ylab='Fitted Probability',
main = paste("Children", kids))

lines(Hinc, dat$not, lwd=3, col="black", lty=1)
lines(Hinc, dat$part, lwd=3, col="blue", lty=2)
lines(Hinc, dat$full, lwd=3, col="red", lty=3)
if (kids=="absent") {

legend("topright", lty=1:3, lwd=3, col=c("black", "blue", "red"),
legend=c('not working', 'part-time', 'full-time'))

}
}
par(op)

We can see how that the decision not to work outside the home increases strongly with hus-
band’s income, and is higher when there are children present. As well, among working women,

24Alternatively, using the predictor values in the Womenlf data would give the fitted values for the cases in the
data, and allow a more data-centric plot as shown in Figure 7.42.
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Figure 7.48: Fitted probabilities from the models for nested dichotomies fit to the data on
women’s labor force participation.

fig:wlf-fitted-prob

the decision to work full time as opposed to part time decreases strongly with husband’s income,
and is less likely with young children.

Similarly, we plot the fitted logits for the two dichotomies in l.working and l.fulltime
as shown below, giving Figure 7.49.

op <- par(mfrow=c(1,2), mar=c(5,4,1,1)+.1)
for ( kids in c("absent", "present") ) {

dat <- subset(fit, children==kids)
plot( range(Hinc), c(-4,5), type="n", cex.lab=1.25,

xlab="Husband's Income", ylab='Fitted log odds')
lines(Hinc, dat$l.working, lwd=3, col="black", lty=1)
lines(Hinc, dat$l.fulltime, lwd=3, col="blue", lty=2)
text(25, 4.5, paste("Children", kids), cex=1.4)
if (kids=="absent") {

legend("bottomleft", lty=1:3, lwd=3, col=c("black", "blue"),
legend=c('working', 'full-time'))

}
}
par(op)

This is essentially a graph of the fitted equations for L1 and L2 shown in Eqn. (7.19). It shows
how the choice of full time work as opposed to part time depends more strongly on husband’s
income among women who are working than does the choice of working at all among all women.
It also illustrates why the proportional odds assumption would not be reasonable for this data:
that would require equal slopes for the two lines within each panel.

4

7.6.4 Generalized logit model
{sec:genlogit}

The generalized logit (or multinomial logit) approach models the probabilities of the m response
categories directly as a set of m − 1 logits. These compare each of the first m − 1 categories to
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Figure 7.49: Fitted log odds from the models for nested dichotomies fit to the data on women’s
labor force participation.

fig:wlf-fitted-logit

the last category, which serves as the baseline.25 The logits for any other pair of categories can
be retrieved from the m− 1 fitted ones.

When there are p predictors, x1, x2, . . . , xp, which may be quantitative or categorical, the
generalized logit model expresses the logits as

Ljm ≡ log
πij
πim

= β0j + β1j xi1 + β2j xi2 + · · ·+ βkj xip j = 1, . . . ,m− 1

= xi
Tβj (7.21){eq:glogit1}

Thus, there is one set of fitted coefficients, βj for each response category except the last. Each
coefficient, βhj , gives the effect, for a unit change in the predictor xh, on the log odds that an
observation had a response in category Y = j, as opposed to category Y = m.

The probabilities themselves can be expressed as

πij =
exp(xi

Tβj)

1 +
∑m−1
`=1 exp(xiTβj)

j = 1, 2, . . .m− 1

πim = 1−
m−1∑
i=1

πij for Y = m

Parameters in the m − 1 equations Eqn. (7.21) can be used to determine the probabilities or
the predicted log odds for any pair of response categories by subtraction. For instance, for an
arbitrary pair of categories, a and b, and two predictors, x1 and x2,

Lab = log
πia/πim
πib/πim

= log
πia
πim
− log

πib
πim

= (β0a − β0b) + (β1a − β1b)xi1 + (β2a − β2b)xi2
25When the response is a factor, any category can be selected as the baseline level using relevel().
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For example, the coefficient for xi1 in Lab is just (β1a − β1b). Similarly, the predicted logit for
any pair of categories can be calculated as

L̂ab = L̂am − L̂bm .

The generalized logit model can be fit most conveniently in R using the function multinom()
in the nnet package and the effects package has a set of methods for "multinom" models. These
models can also be fit using VGAM and the mlogit package. {ex:wlfpart2}

EXAMPLE 7.18: Women’s labor force participation
To illustrate this method, we fit the generalized logit model to the women’s labor force par-

ticipation data as explained below. The response, partic is a character factor, and, by default
multinom() treats these in alphabetical order and uses the first level as the baseline category.

levels(Womenlf$partic)

## [1] "fulltime" "not.work" "parttime"

Although the multinomial model does not depend on the baseline category, it makes interpre-
tation easier to choose "not.work" as the reference level, which we do with relevel().26

# choose not working as baseline category
Womenlf$partic <- relevel(Womenlf$partic, ref="not.work")

We fit the main effects model for husband’s income and children as follows. As we did with
polr() (Section 7.6.1), specifying Hess=TRUE saves the Hessian and facilitates calculation of
standard errors and hypothesis tests.

library(nnet)
wlf.multinom <- multinom(partic ~ hincome + children,

data=Womenlf, Hess=TRUE)

## # weights: 12 (6 variable)
## initial value 288.935032
## iter 10 value 211.454772
## final value 211.440963
## converged

The summary() method for "multinom" objects doesn’t calculate test statistics for the esti-
mated coefficients by default. The option Wald=TRUE produces Wald z-test statistics, calculated
as z = β/SE(β).

summary(wlf.multinom, Wald=TRUE)

## Call:
## multinom(formula = partic ~ hincome + children, data = Womenlf,
## Hess = TRUE)
##
## Coefficients:
## (Intercept) hincome childrenpresent
## fulltime 1.9828 -0.0972321 -2.558605

26Alternatively, we could declare partic an ordered factor, using ordered().
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## parttime -1.4323 0.0068938 0.021456
##
## Std. Errors:
## (Intercept) hincome childrenpresent
## fulltime 0.48418 0.028096 0.36220
## parttime 0.59246 0.023455 0.46904
##
## Value/SE (Wald statistics):
## (Intercept) hincome childrenpresent
## fulltime 4.0953 -3.46071 -7.064070
## parttime -2.4176 0.29392 0.045744
##
## Residual Deviance: 422.88
## AIC: 434.88

Notice that the coefficients, their standard errors and the Wald test z values are printed in separate
tables. The first line in each table pertains to the logit comparing full time work with the not
working reference level; the second line compares part time work against not working.

For those who like p-values for significance tests, you can calculate these from the results re-
turned by the summary()method in the Wald.ratios component, using the standard normal
asymptotic approximation:

stats <- summary(wlf.multinom, Wald=TRUE)
z <- stats$Wald.ratios
p <- 2 * (1 - pnorm(abs(z)))
zapsmall(p)

## (Intercept) hincome childrenpresent
## fulltime 0.00004 0.00054 0.00000
## parttime 0.01562 0.76882 0.96351

The interpretation of these tests is that both husband’s income and presence of children have
highly significant effects on the comparison of working full time as opposed to not working,
while neither of these predictors are significant for the comparison of working part time vs. not
working.

So far, we have assumed that the effects of husband’s income and presence of young children
are additive on the log odds scale. We can test this assumption by allowing an interaction of those
effects and testing it for significance.

wlf.multinom2 <- multinom(partic ~ hincome * children,
data=Womenlf, Hess=TRUE)

## # weights: 15 (8 variable)
## initial value 288.935032
## iter 10 value 210.797079
## final value 210.714841
## converged

Anova(wlf.multinom2)

## Analysis of Deviance Table (Type II tests)
##
## Response: partic
## LR Chisq Df Pr(>Chisq)
## hincome 15.2 2 0.00051 ***
## children 63.6 2 1.6e-14 ***



7.6 Polytomous response models [supp-pdf.mkii ] 339

## hincome:children 1.5 2 0.48378
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The test for the interaction term, hincome:children is not significant, so we can abandon
this model.

Full model plots of the fitted values can be plotted as shown earlier in Example 7.17: obtain
the fitted values over a grid of the predictors and plot these.

predictors <- expand.grid(hincome=1:50,
children=c('absent', 'present'))

fit <- data.frame(predictors,
predict(wlf.multinom, predictors, type='probs')
)

Plotting these fitted values gives the plot shown in Figure 7.50.

op <- par(mfrow=c(1,2), mar=c(5,4,4,1)+.1)
Hinc <- 1:max(fit$hincome)
for ( kids in c("absent", "present") ) {

dat <- subset(fit, children==kids)
plot( range(Hinc), c(0,1), type="n", cex.lab=1.25,

xlab="Husband's Income", ylab='Fitted Probability',
main = paste("Children", kids))

lines(Hinc, dat$not.work, lwd=3, col="black", lty=1)
lines(Hinc, dat$parttime, lwd=3, col="blue", lty=2)
lines(Hinc, dat$fulltime, lwd=3, col="red", lty=3)

if (kids=="absent") {
legend("topright", lty=1:3, lwd=3, col=c("black", "blue", "red"),
legend=c('not working', 'part-time', 'full-time'))
}

}
par(op)
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Figure 7.50: Fitted probabilities from the generalized logit model fit to the data on women’s labor
force participation.
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The results shown in this plot are roughly similar to those obtained from the nested dichotomy
models, graphed in Figure 7.48. However, the predicted probabilities of not working under the
generalized logit model rise more steeply with husband’s income for women with no children and
level off sooner for women with young children.

The effects package has special methods for "multinom" models. It treats the response
levels in the order given by levels(), so before plotting we use ordered() to arrange
levels in their natural order. The update() method provides a simple way to get a new fit-
ted model; in the call, the model formula . ~ . means to fit the same model as before, i.e.,
partic ~ hincome + children.

levels(Womenlf$partic)

## [1] "not.work" "fulltime" "parttime"

Womenlf$partic <- ordered(Womenlf$partic,
levels=c('not.work', 'parttime', 'fulltime'))

wlf.multinom <- update(wlf.multinom, . ~ .)

## # weights: 12 (6 variable)
## initial value 288.935032
## iter 10 value 211.454772
## final value 211.440963
## converged

As illustrated earlier, you can use plot(allEffects(model), ...) to plot all the
high-order terms in the model, either with separate curves for each response level (style="lines")
or as cumulative filled polygons (style="stacked"). Here, we simply plot the effects for the
combinations of husband’s income and children in stacked style, giving a plot (Figure 7.51) that
is analogous to the full-model plot shown in Figure 7.50.

plot(Effect(c("hincome", "children"), wlf.multinom),
style="stacked", key.args=list(x=.05, y=.9))

4

7.7 Chapter summary
{sec:ch07-summary}

• Model-based methods for categorical data provide confidence intervals for parameters and
predicted values for observed and unobserved values of the explanatory variables. Graph-
ical displays of predicted values help us to interpret the fitted relations by smoothing a
discrete response.

• The logistic regression model (Section 7.2) describes the relationship between a categorical
response variable, usually dichotomous, and a set of one or more quantitative or discrete
explanatory variables (Section 7.3) It is conceptually convenient to specify this model as
a linear model predicting the log odds (or logit) of the probability of a success from the
explanatory variables.

• The relationship between a discrete response and a quantitative predictor may be explored
graphically by plotting the binary observations against the predictor with some smoothed
curve(s), either parametric or non-parametric, possibly stratified by other predictors.
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Figure 7.51: Effect plot for the probabilities of not working and working part time and full time
from the generalized logit model fit to the women’s labor force data.
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• For both quantitative and discrete predictors, the results of a logistic regression are most
easily interpreted from full-model plots of the fitted values against the predictors, either on
the scale of predicted probabilities or log odds (Section 7.3.2). In these plots, confidence
intervals provide a visual indication of the precision of the predicted results.

• When there are multiple predictors and/or higher-order interaction terms, effect plots (Sec-
tion 7.3.3) provide an important method for constructing simplified displays, focusing on
the higher-order terms in a given model.

• Influence diagnostics (Section 7.5) assess the impact of individual cases or groups on the
fitted model, predicted values, and the coefficients of individual predictors. Among other
displays, plots of residuals against leverage showing Cook’s D are often most useful.

• Other diagnostic plots (Section 7.5.3) include component-plus-residual plots, that are use-
ful for detecting non-linear relationships for a quantitative predictor, and added-variable
plots, that show the partial relations of the response to a given predictor, controlling or
adjusting for all other predictors.

• Polytomous responses may be handled in several ways as extensions of binary logistic
regression (Section 7.6): (a) The proportional odds model (Section 7.6.1) is simple and
convenient, but its validity depends on an assumption of equal slopes for adjacent-category
logits. (b) Nested dichotomies (Section 7.6.3) among the response categories give a set of
models which may be regarded as a single, combined model for the polytomous response.
(c) Generalized logit models (Section 7.6.4) may be used to construct models comparing
any pair of categories.
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7.8 Further reading
{sec:ch07-reading}

7.9 Lab exercises
{sec:ch07-exercises}{lab:7.1}

Exercise 7.1 Arbuthnot’s data on the sex ratio of births in London was examined in Example 3.1.
Use a binomial logistic regression model to assess whether the proportion of male births varied
with the variables Year, Plague and Mortality in the Arbuthnot data set. Produce effect
plots for the terms in this model. What do you conclude?

{lab:7.2}

Exercise 7.2 For the Donner Party data in Donner, examine Grayson’s 1990 claim that survival
in the Donner Party was also mediated by the size of the family unit. This takes some care,
because the family variable in the Donner data is a simplified grouping based on the person’s
name and known alliances among families from the historical record. Use the following code to
compute a family.size variable from each individual’s last name:

data("Donner", package="vcdExtra")
Donner$survived <- factor(Donner$survived, labels=c("no", "yes"))
# use last name for family
lame <- strsplit(rownames(Donner), ",")
lame <- sapply(lame, function(x) x[[1]])
Donner$family.size <- as.vector(table(lname)[lname])

(a) Choose one of the models (donner.mod4, donner.mod6) from Example 7.9 that in-
clude the interaction of age and sex and non-linear terms in age. Fit a new model that adds
a main effect of family.size. What do you conclude about Grayson’s claim?

(b) Produce an effect plot for this model.
(c) Continue, by examining whether the effect of family size can be taken as linear, or whether

a non-linear term should be added.
{lab:7.3}

Exercise 7.3 Use component+residual plots (Section 7.5.3) to examine the additive model for
the ICU data given by

icu.glm2 <- glm(died ~ age + cancer + admit + uncons,
data=ICU, family=binomial)

(a) What do you conclude about the linearity of the (partial) relationship between age and death
in this model?

(b) An alternative strategy is to allow some non-linear relation for age in the model using a
quadratic (or cubic) term like poly(age, 2) (or poly(age, 3)) in the model for-
mula. Do these models provide evidence for a non-linear effect of age on death in the ICU?

{lab:7.4}

Exercise 7.4 Explore the use of other marginal and conditional plots to display the relationships
among the variables predicting death in the ICU in the model icu.glm2. For example, you
might begin with a marginal gpairs() plot showing all bivariate marginal relations, something
like this:

library(gpairs)
gpairs(ICU[,c("died", "age", "cancer", "admit", "uncons")],

diag.pars=list(fontsize=16, hist.color="lightgray"),
mosaic.pars=list(gp=shading_Friendly,

gp_args=list(interpolate=1:4)))
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{lab:7.5}

Exercise 7.5 For the women’s labor force participation data (Womenlf) the response variable,
partic, can be treated as ordinal by using

Womenlf$partic <- ordered(Womenlf$partic,
levels=c('not.work', 'parttime', 'fulltime'))

Use the methods in Section 7.6.1 to test whether the proportional odds model holds for these data.
{lab:7.6}

Exercise 7.6 The data set housing in the MASS package gives a 3 × 3 × 4 × 2 table in
frequency form relating (a) satisfaction (Sat) of residents with their housing (High, Medium,
Low), (b) perceived degree of influence (Infl) they have on the management of the property
(High, Medium, Low), (c) Type of rental (Tower, Atrium, Apartment, Terrace), and (d) contact
(Cont) residents have with other residents (Low, High). Consider satisfaction as the ordinal
response variable.

(a) Fit the proportional odds model with additive (main) effects of housing type, influence in
management and contact with neighbors to this data. (Hint: Using polr(), with the data
in frequency form, you need to use the weights argument to supply the Freq variable.)

(b) Investigate whether any of the two-factor interactions among Infl, Type and Cont add
substantially to goodness of fit of this model. (Hint: use stepAIC(), with the scope
formula ~ .^2 and direction="forward".)

(c) For your chosen model from the previous step, use the methods of Section 7.6.2 to plot the
probabilities of the categories of satisfaction.

(d) Write a brief summary these analyses, interpreting how satisfaction with housing depends
on the predictor variables.

{lab:7.7}

Exercise 7.7 The data TV on television viewing was analyzed using correspondence analysis in
Example 6.4, ignoring the variable Time and extended in Exercise 6.7. Treating Network as a
three-level response variable, fit a generalized logit model (Section 7.6.4) to explain the variation
in viewing in relation to Day and Time. The TV data is a three-way table, so you will need to
convert it to a frequency data frame first.

data("TV", package="vcdExtra")
TV.df <- as.data.frame.table(TV)

(a) Fit the main-effects model, Network ~ Day + Time with multinom(). Note that
you will have to supply the weights argument because each row of TV.df represents the
number of viewers in the Freq variable.

(b) Prepare an effects plot for the fitted probabilities in this model.
(c) Interpret these results in comparison to the correspondence analysis analysis in Example 6.4.

{lab:7.8}

Exercise 7.8 Refer to Exercise 5.8 for a description of the Accident data. The interest here is
to model the probability that an accident resulted in death rather than injury from the predictors
age, mode and gender. With glm(), and the data in the form of a frequency table, you can
use the argument weight=Freq to take cell frequency into account.

(a) Fit the main effects model, result=="Died" ~ age + mode + gender. Use car::Anova()
to assess the model terms.
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(b) Fit the model that allows all two-way interactions. Use anova() to test whether this model
is significantly better than the main effects model.

(c) Fit the model that also allows the three-way interaction of all factors. Does this offer any
improvement over the two-way model?

(d) Interpret the results of the analysis using effect plots for the two-way model, separately for
each of the model terms. Describe verbally the nature of the age*gender effect. Which
mode of transportation leads to greatest risk of death?

.locals$ch07 <- setdiff(ls(), .globals)
#.locals$ch07
remove(list=.locals$ch07[sapply(.locals$ch07,function(n){!is.function(get(n))})])
detach(package:gpairs)
detach(package:rms)
detach(package:VGAM)
.pkgs$ch07 <- setdiff(.packages(), .pkgs$ch07)
.pkgs$ch07

## [1] "Hmisc" "nnet" "reshape2" "stats4"
## [5] "proto" "directlabels" "quadprog" "SparseM"
## [9] "Formula" "survival" "splines" "vcdExtra"
## [13] "gnm" "vcd" "car" "effects"
## [17] "colorspace" "grid" "lmtest" "zoo"
## [21] "ca" "Lahman" "lattice" "ggplot2"
## [25] "MASS" "gmodels"
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