
Chapter 8

Loglinear and Logit Models for
Contingency Tables

{ch:loglin}
Loglinear models comprise another special case of generalized linear models designed
for contingency tables of frequencies. They are most easily interpreted through visual-
izations, including mosaic displays and plots of associated logit models. Special cases
arise for ordered categorial variables and square tables that allow more parsimonious
models for associations.

8.1 Introduction
{sec:loglin-intro}

Tables are like cobwebs, like the sieve of Danaides; beautifully
reticulated, orderly to look upon, but which will hold no conclusion.
Tables are abstractions, and the object a most concrete one, so difficult
to read the essence of.

From Chartism by Thomas Carlyle (1840), Chapter II, Statistics

The chapter continues the modeling framework begun in Chapter 7, and takes up the case of
loglinear models for contingency tables of frequencies, when all variables are discrete, another
special case of generalized linear models. These models provide a comprehensive scheme to
describe and understand the associations among two or more categorical variables. Whereas
logistic regression models focus on the prediction of one response factor, loglinear models treat
all variables symmetrically, and attempt to model all important associations among them.

In this sense, loglinear models are analogous to a correlation analysis of continuous variables,
where the goal is to determine the patterns of dependence and independence among a set of vari-
ables. When one variable is a response and the others are explanatory, certain loglinear models
are equivalent to logistic models for that response. Such models are also particularly useful when
there are two or more response variables, a case that would require a multivariate version of the
generalized linear model, for which the current theory and implementations are thin at best.

Chapter 5 and Chapter 6 introduced some basic aspects of loglinear models in connection
with mosaic displays and correspondence analysis. In this chapter, the focus is on fitting and
interpreting loglinear models. The usual analyses, with loglm() and glm() present the re-
sults in terms of tables of parameter estimates. Particularly for larger tables, it becomes difficult
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to understand the nature of these associations from tables of parameter estimates. Instead, we
emphasize plots of observed and predicted frequencies, probabilities or log odds (when there are
one or more response variables), as well as mosaic and other displays for interpreting a given
model. We also illustrate how mosaic displays and correspondence analysis plots may be used in
a complementary way to the usual numerical summaries, to provide additional insights into the
data.

Section 8.2 gives a brief overview of loglinear models in relation to the more familiar ANOVA
and regression models for quantitative data. Methods and software for fitting these models are
discussed in Section 8.3. When one variable is a response, logit models for that response provide
a simpler, but equivalent means for interpreting and graphing results of loglinear models, as we
describe in Section 8.4. Another class of simplified models (Section 8.6) occurs when one or
more of the explanatory variables are ordinal, and discrete levels might be replaced by numer-
ical values. Models for square tables (Section 8.7), with the same row and column categories
comprise another special case giving simpler descriptions than the saturated model of general
association. These important special cases are extended to three-way and higher-dimensional ta-
bles in Section 8.8. Finally, Section 8.9 describes some methods for dealing with situations where
there are several response variables, and it is useful to understand both the marginal relations of
the responses with the predictors as well as how their association varies with the predictors

8.2 Loglinear models for frequencies
{sec:loglin-counts}

Loglinear models have been developed from two formally distinct, but related perspectives. The
first is a discrete analog of familiar ANOVA models for quantitative data, where the multiplicative
relations among joint and marginal probabilities are transformed into an additive one by trans-
forming the counts to logarithms. The second is an analog of regression models, where the log of
the cell frequency is modeled as a linear function of discrete predictors, with a random component
often taken as the Poisson distribution and called Poisson regression; this approach is treated in
more detail as generalized linear models for count data in Chapter 9.

8.2.1 Loglinear models as ANOVA models for frequencies

For two discrete variables, A and B, suppose we have a multinomial sample of nij observations
in each cell i, j of an I × J contingency table. To ease notation, we replace a subscript by +
to represent summation over that dimension, so that ni+ = Σjnij , n+j = Σinij , and n++ =
Σijnij .

Let πij be the joint probabilities in the table, and let mij = n++πij be the expected cell
frequencies under any model. Conditional on the observed total count, n++, each count has a
Poisson distribution, with meanmij . Any loglinear model may be expressed as a linear model for
the logmij . For example, the hypothesis of independence means that the expected frequencies,
mij , obey

mij =
mi+ m+j

m++
.

This multiplicative model can be transformed to an additive (linear) model by taking loga-
rithms of both sides:

log(mij) = log(mi+) + log(m+j)− log(m++) ,
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which is usually expressed in an equivalent form in terms of model parameters,

log(mij) = µ+ λAi + λBj (8.1){eq:lmain}

where µ is a function of the total sample size, λAi is the “main effect” for variable A, λAi =
log πi+−

∑
k(log πk+)/I , and λBj is the “main effect” for variable B, λBj = log π+j−

∑
k(log π+k)/J .

Model Eqn. (8.1) is called the loglinear independence model for a two-way table.

In this model, there are 1+I+J parameters, but only (I−1)+(J−1) are separately estimable.
Hence, the typical ANOVA sum-to-zero restrictions are usually applied to the parameters:

I∑
i

λAi =
J∑
j

λBj = 0 .

These “main effects” in loglinear models pertain to differences among the marginal probabilities
of a variable (which are usually not of direct interest).

Other restrictions to make the parameters identifiable are also used. Setting the first val-
ues, λA1 and λB1 to zero (the default in glm()), defines λAi = log πi+ − log π1+, and λBj =
log π+j − log π+1, as deviations from the first, reference category, but these parameterizations
are otherwise identical. For modeling functions in R (lm(), glm(), etc.) the reference category
parameterization is obtained using contr.treatment(), while the sum-to-zero constraints
are obtained with contr.sum().

Model Eqn. (8.1) asserts that the row and column variables are independent. For a two-way
table, a model that allows an arbitrary association between the variables is the saturated model,
including an additional term, λABij :

log(mij) = µ+ λAi + λBj + λABij , (8.2) {eq:lsat}

where again, restrictions must be imposed for estimation:
I∑
i

λAi = 0,
J∑
j

λBj = 0,
I∑
i

λABij =
J∑
j

λABij = 0 . (8.3) {eq:lrestrict}

There are thus I − 1 linearly independent λAi row parameters, J − 1 linearly independent λBj
column parameters, and (I − 1)(J − 1) linearly independent λABij association parameters. This
model is called the saturated model because the number of parameters in µ, λAi , λBj , and λABij is
equal to the number of frequencies in the two-way table,

1
(µ)

+ I − 1
(λAi )

+ J − 1
(λBj )

+ (I − 1)(J − 1)
(λAB

ij )

= IJ
(nij)

The association parameters λABij express the departures from independence, so large absolute
values pertain to cells that differ from the independence model.

Except for the difference in notation, model Eqn. (8.2) is formally the same as a two-factor
ANOVA model with an interaction, typically expressed asE(yij) = µ+αi+βj+(αβ)ij . Hence,
associations between variables in loglinear models are analogous to interactions in ANOVA mod-
els. The use of superscripted symbols, λAi , λ

B
j , λ

AB
ij rather than separate Greek letters is a con-

vention in loglinear models, and useful mainly for multiway tables.

Models such as Eqn. (8.1) and Eqn. (8.2) are examples of hierarchical models. This means
that the model must contain all lower-order terms contained within any high-order term in the
model. Thus, the saturated model, Eqn. (8.2) contains λABij , and therefore must contain λAi and
λBj . As a result, hierarchical models may be identified by the shorthand notation which lists only
the high-order terms: model Eqn. (8.2) is denoted [AB], while model Eqn. (8.1) is [A][B].
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8.2.2 Loglinear models for three-way tables
{sec:loglin-3way}

Loglinear models for three-way contingency tables were described briefly in Section 5.4.1. Each
type of model allows associations among different sets of variables and each has a different
independence interpretation, as illustrated in Table 5.2.

For a three-way table, the saturated model, denoted [ABC] is

log mijk = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk + λABCijk . (8.4){eq:lsat3}

This model allows all variables to be associated; Eqn. (8.4) fits the data perfectly because the
number of independent parameters equals the number of table cells. Two-way terms, such as
λABij pertain to the conditional association between pairs of factors, controlling for the remaining
variable. The presence of the three-way term, λABCijk , means that the partial association (condi-
tional odds ratio) between any pair varies over the levels of the third variable.

Omitting the three-way term in Model Eqn. (8.4) gives the model [AB][AC][BC],

log mijk = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk , (8.5){eq:lno3way}

in which all pairs are conditionally dependent given the remaining one. For any pair, the condi-
tional odds ratios are the same at all levels of the remaining variable, so this model is often called
the homogeneous association model.

The interpretation of terms in this model may be illustrated using the Berkeley admissions
data (Example 4.10 and Example 4.14), for which the factors are Admit, Gender, and Department,
in a 2× 2× 6 table. In the homogeneous association model,

log mijk = µ+ λAi + λDj + λGk + λADij + λAGik + λDGjk , (8.6){eq:berk1}

the λ-parameters have the following interpretations:

• The main effects, λAi , λ
D
j and λGk pertain to differences in the one-way marginal probabili-

ties. Thus λDj relates to differences in the total number of applicants to these departments,
while λGk relates to the differences in the overall numbers of men and women applicants.

• λADij describes the conditional association between admission and department, that is dif-
ferent admission rates across departments (controlling for gender).

• λAGik relates to the conditional association between admission and gender, controlling for
department. This term, if significant, might be interpreted as indicating gender-bias in
admissions.

• λDGjk , the association between department and gender, indicates whether males and females
apply differentially across departments.

As we discussed earlier (Section 5.4), loglinear models for three-way (and larger) tables often
have an interpretation in terms of various types of independence relations illustrated in Table 5.2.
The model Eqn. (8.5) has no such interpretation, however the smaller model [AC][BC] can be
interpreted as asserting that A and B are (conditionally) independent controlling for C; this
independence interpretation is symbolized as A ⊥ B |C. Similarly, the model [AB][C] asserts
that A and B are jointly independent of C: (A,B) ⊥ C, while the model [A][B][C] is the model
of mutual (complete) independence, A ⊥ B ⊥ C.



8.3 Fitting and testing loglinear models [supp-pdf.mkii ] 351

8.2.3 Loglinear models as GLMs for frequencies
{sec:loglin-glms}

In the GLM approach, a loglinear model may be cast in the form of a regression model for logm,
where the table cells are reshaped to a column vector. One advantage is that models for tables of
any size and structure may be expressed in a compact form.

For a contingency table of variables A,B,C, · · ·, with N = I × J × K × · · · cells, let n
denote a column vector of the observed counts arranged in standard order, and let m denote a
similar vector of the expected frequencies under some model. Then any loglinear model may be
expressed in the form

logm = Xβ ,

where X is a known design or model matrix and β is a column vector containing the unknown
λ parameters.

For example, for a 2 × 2 table, the saturated model Eqn. (8.2) with the usual zero-sum con-
straints Eqn. (8.3) can be represented as

log


m11

m12

m21

m22

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




µ
λA1
λB1
λAB11


Note that only the linearly independent parameters are represented here. λA2 = −λA1 , because
λA1 + λA2 = 0, and λB2 = −λB1 , because λB1 + λB2 = 0, and so forth.

An additional substantial advantage of the GLM formulation is that it makes it easier to
express models with ordinal or quantitative variables. glm(), with a model formula of the
form Freq ~ . involving factors A,B, . . . and quantitative variables x1, x2, . . ., constructs the
model matrixX from the terms given in the formula. A factor with K levels gives rise to K − 1
columns for its main effect and sets of K − 1 columns in each interaction effect. A quantitative
predictor, say x1 (with a linear effect) creates a single column with its values and interactions
with other terms are calculated at the products of the columns for the main effects.

The parameterization for factors is controlled by the contrasts assigned to a given factor (if
any), or by the general contrasts option, that gives the contrast functions used for unordered
and ordered factors:

options("contrasts")

## $contrasts
## unordered ordered
## "contr.treatment" "contr.poly"

This says that, by default, unordered factors use the baseline (first) reference-level parameter-
ization, while ordered factors are given a parameterization based on orthogonal polynomials,
allowing linear, quadratic, ... effects, assuming integer-spacing of the factor levels.

8.3 Fitting and testing loglinear models
{sec:loglin-fitting}

For a given table, possible loglinear models range from the baseline model of mutual indepen-
dence, [A][B][C][. . .] to the saturated model, [ABC . . .] that fits the observed frequencies per-
fectly, but offers no simpler description or interpretation than the data itself.
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Fitting a loglinear model is usually a process of deciding which association terms are large
enough (“significantly different from zero”) to warrant inclusion in a model to explain the ob-
served frequencies. Terms which are excluded from the model go into the residual or error term,
which reflects the overall badness-of-fit of the model. The usual goal of loglinear modeling is
to find a small model (few association terms) which nonetheless achieves a reasonable fit (small
residuals).

8.3.1 Model fitting functions
{sec:loglin-functions}

In R, the most basic function for fitting loglinear models is loglin() in the stats package.
This uses the classical iterative proportional fitting (IPF) algorithm described in ? and ?, §3.4.
It is designed to work with the frequency data in table form, and a model specified in terms of
the (high-order) table margins to be fitted. For example, the model Eqn. (8.5) of homogenous
association for a three-way table is specified as

loglin(mytable, margin=list(c(1, 2), c(1, 3), c(2, 3)))

The function loglm() in MASS provides a more convenient front-end to loglin() to
allow loglinear models to be specified using a model formula. With table variables A, B and C,
the same model can be fit using loglm() as

loglm(~ (A + B + C)^2, data=mytable)

When the data is a frequency data frame with frequencies in Freq, for example, the result of
mydf <- as.data.frame(mytable), you can also use a two-sided formula:

loglm(Freq ~ (A + B + C)^2, data=mydf)

As implied in Section 8.2.3, loglinear models can also be fit using glm(), using family=poisson
which constructs the model for log(Freq). The same model is fit with glm() as:

glm(Freq ~ (A + B + C)^2, data=mydf, family=poisson)

While all of these fit equivalent models, the details of the printed output, model objects, and
available methods differ, as indicated in some of the examples that follow.

It should be noted that both the loglin()/loglm() methods based on iterative propor-
tional fitting, and the glm() approach using the Poisson model for log frequency give maximum
likelihood estimates, m̂, of the expected frequencies, as long as all observed frequencies n are
all positive. Some special considerations when there cells with zero frequencies are described in
Section 8.5.

8.3.2 Goodness-of-fit tests
{sec:loglin-goodfit}

For an n-way table, global goodness-of-fit tests for a loglinear model attempt to answer the ques-
tion “How well does the model reproduce the observed frequencies?” That is, how close are the
fitted frequencies estimated under the model to those of the saturated model or the data?

To avoid multiple subscripts for an n-way table, let n = n1, n2, . . . , nN denote the observed
frequencies in a table with N cells, and corresponding fitted frequencies m̂ = m̂1, m̂2, . . . , m̂N
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according to a particular loglinear model. The standard goodness-of-fit statistics are sums over
the cells of measures of the difference between the n and m̂.

The most commonly used are the familiar Pearson chi-square,

X2 =
N∑
i

(ni − m̂i)
2

m̂i
, (8.7){eq:pchi}

and the likelihood-ratio G2 or deviance statistic,

G2 = 2
N∑
i

ni log

(
ni
m̂i

)
. (8.8) {eq:pgsq}

Both of these statistics have asymptotic χ2 distributions (as Σn→∞), reasonably well-approximated
when all expected frequencies are large.1 The (residual) degrees of freedom are the number of
cells (N ) minus the number of estimated parameters. The likelihood-ratio test can also be ex-
pressed as twice the difference in log-likelihoods under saturated and fitted models,

G2 = 2 log

[ L(n;n)

L(m̂;n)

]
= 2[logL(n;n)− logL(m̂;n)] ,

where L(n;n) is the likelihood for the saturated model and L(m̂;n) is the corresponding max-
imized likelihood for the fitted model.

In practice such global tests are less useful for comparing competing models. You may find
that several different models have an acceptable fit or, sadly, that none do (usually because you
are “blessed” with a large sample size). It is then helpful to compare competing models directly,
and two strategies are particularly useful in these cases.

First, the likelihood-ratio G2 statistic has the property in that one can compare two nested
models by their difference in G2 statistics, which has a χ2 distribution on the difference in de-
grees of freedom. Two models, M1 and M2, are nested when one, say, M2, is a special case of
the other. That is, modelM2 (with ν2 residual df) contains a subset of the parameters ofM1 (with
ν1 residual df), the remaining ones being effectively set to zero. Model M2 is therefore more re-
strictive and cannot fit the data better than the more general model M1, i.e., G2(M2) ≥ G2(M2).
The least restrictive of all models, with G2 = 0 and ν = 0 df is the saturated model for which
m̂ = n.

Assuming that the less restrictive model M1 fits, the difference in G2,

∆G2 ≡ G2(M2 |M1) = G2(M2)−G2(M1) (8.9) {eq:gsqnest1}

= 2
∑
i

ni log(m̂i1/m̂i2) (8.10) {eq:gsqnest2}

has a chi-squared distribution with df = ν2 − ν1. The last equality Eqn. (8.10) follows from
substituting in Eqn. (8.8).

Rearranging terms in Eqn. (8.9), we see that we can partition the G2(M2) into two terms,

G2(M2) = G2(M1) +G2(M2 |M1) .

1Except in bizarre or borderline cases, these tests provide the same conclusions when expected frequencies are at
least moderate (all m̂ > 5). However, G2 approaches the theoretical chi-squared distribution more slowly than does
χ2, and the approximation may be poor when the average cell frequency is less than 5.
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The first term measures the difference between the data and the more general model M1. If this
model fits, the second term measures the additional lack of fit imposed by the more restrictive
model. In addition to providing a more focused test, G2(M2 |M1) also follows the chi-squared
distribution more closely when some {mi} are small (?, §10.6.3).

Alternatively, a second strategy uses other measures that combine goodness-of-fit with model
parsimony and may also be used to compare non-nested models. The statistics described below
are all cast in the form of badness-of-fit relative to degrees of freedom, so that smaller values
reflect “better” models.

The simplest idea (?) is to use G2/df (or χ2/df ), which has an asymptotic expected value of
1 for a good-fitting model. This type of measure is not routinely reported by R software, but is
easy to calculate from output.

The Akaike Information Criterion (AIC) statistic (?) is a very general criterion for model
selection with maximum likelihood estimation, based on the idea of maximizing the information
provided by a fitted model. AIC is defined generally as

AIC = −2 logL+ 2k

where logL is the maximized log likelihood and k is the number of parameters estimated in
the model. Better models correspond to smaller AIC. For loglinear models, minimizing AIC is
equivalent to minimizing

AIC? = G2 − 2 ν ,

where ν is the residual df, but the values of AIC and AIC? differ by an arbitrary constant. This
form is easier to calculate by hand from the output of any modeling function if AIC is not re-
ported, or an AIC() method is not available.

A third statistic of this type is the Bayesian Information Criterion (BIC) due to ? and ?,

BIC = G2 − log(n) ν ,

where n is the total sample size. Both AIC and BIC penalize the fit statistic for increasing
number of parameters. BIC also penalizes the fit directly with (log) sample size, and so expresses
a preference for less complex models than AIC as the sample size increases.

8.3.3 Residuals for loglinear models
{sec:loglin-residuals}

Test statistics such as G2 can determine whether a model has significant lack of fit, and model
comparison tests using ∆G2 = G2(M2 |M1) can assess whether the extra term(s) in model M1

significantly improves the model fit. Beyond these tests, the pattern of residuals for individual
cells offers important clues regarding the nature of lack of fit and can help suggests associations
that could be accounted for better.

As with logistic regression models (Section 7.5.1), several types of residuals are available for
loglinear models. For cell i in the vector form of the contingency table, the raw residual is simply
the difference between the observed and fitted frequencies, ei = ni − m̂i.

The Pearson residual is the square root of the contribution of the cell to the Pearson χ2,

ri =
ni − m̂i√

m̂i
(8.11){eq:reschi2}
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Similarly, the deviance residual can be defined as

gi = sign(ni − m̂i)
√

2ni log(ni/m̂i)− 2(ni − m̂i) (8.12){eq:resdev2}

Both of these attempt to standardize the distribution of the residuals to a standard normal,
N(0, 1) form. However, as pointed out by ?, the asymptotic variance of these is less than one
(with average value df/N ) but, worse— the variance decreases with m̂i. That is, residuals for
cells with small expected frequencies have larger sampling variance, as might be expected.

Consequently, Haberman suggested dividing the Pearson residual by its estimated standard
error, giving what are often called adjusted residuals. When loglinear models are fit using the
GLM approach, the adjustment may be calculated using the leverage (“hat value”), hi to give
appropriately standardized residuals,

r?i = ri/
√

1− hi
g?i = gi/

√
1− hi

These standardized versions are generally preferable, particularly for visualizing model lack of
fit using mosaic displays. The reason for preferring adjusted residuals is illustrated in Figure 8.1,
a plot of the factors,

√
1− hi, determining the standard errors of the residuals against the fitted

values, m̂i, in the model for the UCBAdmissions data described in Example 8.2 below. The
values shown in this plot are calculated as:

berkeley <- as.data.frame(UCBAdmissions)
berk.glm1 <- glm(Freq ~ Dept * (Gender+Admit), data=berkeley, family="poisson")
fit <- fitted(berk.glm1)
hat <- hatvalues(berk.glm1)
stderr <- sqrt(1-hat)

In R, raw, Pearson and deviance residuals may be obtained using residuals(model,
type=), where type is one of "raw", "pearson" and "deviance". Standardized (ad-
justed) residuals can be calculated using rstandard(model, type=), for type="pearson"
and type="deviance" versions.

8.3.4 Using loglm()
{loglin-loglin}

Here we illustrate the basics of fitting loglinear models using loglm(). As indicated in Sec-
tion 8.3.1, the model to be fitted is specified by a model formula involving the table variables.
The MASS package provides a coef() method for "loglm" objects that extracts the estimated
parameters and a residuals() method that calculates various types of residuals according to
a type argument, one of "deviance", "pearson", "response". vcd and vcdEx-
tra provide a variety of plotting methods, including assoc(), sieve(), mosaic() and
mosaic3d() for "loglm" objects. {ex:berkeley5}

EXAMPLE 8.1: Berkeley admissions
The UCBAdmissions on admissions to the six largest graduate departments at U.C. Berke-

ley was examined using graphical methods in Chapter 4 (Example 4.14) and in Chapter 5 (Exam-
ple 5.13). We can fit and compare several loglinear models as shown below.

The model of mutual independence, [A][D][G], is not substantively reasonable here, because
the association of Dept and Gender should be taken into account to control for these vari-
ables, but we show it here to illustrate the form of the printed output, giving the Pearson χ2
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Figure 8.1: Standard errors of residuals,
√

1− hi decrease with expected frequencies. This plot
shows why ordinary Pearson and deviance residuals may be misleading. The symbol size in the
plot is proportional to leverage, hi. Labels abbreviate Department, Gender and Admit, colored
by Admit.
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and likelihood-ratio G2 tests of goodness of fit, as well as some optional arguments for saving
additional components in the result.

data("UCBAdmissions")
library(MASS)
berk.loglm0 <- loglm(~ Dept + Gender + Admit, data=UCBAdmissions,

param=TRUE, fitted=TRUE)
berk.loglm0

## Call:
## loglm(formula = ~Dept + Gender + Admit, data = UCBAdmissions,
## param = TRUE, fitted = TRUE)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 2097.7 16 0
## Pearson 2000.3 16 0

The argument param=TRUE stores the estimated parameters in the loglinear model and
fitted=TRUE stores the fitted frequencies m̂ijk. The fitted frequencies can be extracted from
the model object using fitted().

structable(Dept ~ Admit+Gender, fitted(berk.loglm0))

## Dept A B C D E F
## Admit Gender
## Admitted Male 215.10 134.87 211.64 182.59 134.64 164.61
## Female 146.68 91.97 144.32 124.51 91.81 112.25
## Rejected Male 339.63 212.95 334.17 288.30 212.59 259.91
## Female 231.59 145.21 227.87 196.59 144.96 177.23
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Similarly, you can extract the estimated parameters with coef(berk.loglm0), and the
Pearson residuals with residuals(berk.loglm0, type="pearson").

Next, consider the model of conditional independence of gender and admission given de-
partment, [AD][GD] that allows associations of admission with department and gender with
department.

# conditional independence in UCB admissions data
berk.loglm1 <- loglm(~ Dept * (Gender + Admit), data=UCBAdmissions)
berk.loglm1

## Call:
## loglm(formula = ~Dept * (Gender + Admit), data = UCBAdmissions)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 21.736 6 0.0013520
## Pearson 19.938 6 0.0028402

Finally for this example, the model of homogeneous association, [AD][AG][GD] can be fit
as follows.2

berk.loglm2 <-loglm(~(Admit + Dept + Gender)^2, data=UCBAdmissions)
berk.loglm2

## Call:
## loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)
##
## Statistics:
## X^2 df P(> X^2)
## Likelihood Ratio 20.204 5 0.0011441
## Pearson 18.823 5 0.0020740

Neither of these models fits particularly well, as judged by the goodness-of-fit Pearson χ2

and likelihood-ratio G2 test against the saturated model. The anova() method for a nested col-
lection of "loglm" models gives a series of likelihood-ratio tests of the difference, ∆G2 between
each sequential pair of models according to Eqn. (8.9).

anova(berk.loglm0, berk.loglm1, berk.loglm2, test="Chisq")

## LR tests for hierarchical log-linear models
##
## Model 1:
## ~Dept + Gender + Admit
## Model 2:
## ~Dept * (Gender + Admit)
## Model 3:
## ~(Admit + Dept + Gender)^2
##
## Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
## Model 1 2097.671 16
## Model 2 21.736 6 2075.9357 10 0.00000
## Model 3 20.204 5 1.5312 1 0.21593
## Saturated 0.000 0 20.2043 5 0.00114

2It is useful to note here that the added term [AG] allows a general association of admission with gender (con-
trolling for department). A significance test for this term, or for model berk.loglm2 against berk.loglm1 is a
proper test for the assertion of gender bias in admissions.
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The conclusion from these results is that the model berk.loglm1 is not much worse than
model berk.loglm2, but there is still significant lack-of-fit. The next example, using glm(),
shows how to visualize the lack of fit and account for it.

4

8.3.5 Using glm()
{sec:loglin-glm}

Loglinear models fit with glm() require the data in a data frame in frequency form, for example
as produced by as.data.frame() from a table. The model formula expresses the model
for the frequency variable, and uses family=poisson to specify the error distribution. More
general distributions for frequency data are discussed in Chapter 9.{ex:berkeley6}

EXAMPLE 8.2: Berkeley admissions
For the 2× 2× 6 UCBAdmissions table, first transform this to a frequency data frame:

berkeley <- as.data.frame(UCBAdmissions)
head(berkeley)

## Admit Gender Dept Freq
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207

Then, the model of conditional independence corresponding to berk.loglm1 can be fit
using glm() as shown below.

berk.glm1 <- glm(Freq ~ Dept * (Gender+Admit),
data=berkeley, family="poisson")

Similarly, the all two-way model of homogeneous association is fit using

berk.glm2 <- glm(Freq ~ (Dept + Gender + Admit)^2,
data=berkeley, family="poisson")

These models are equivalent to those fit using loglm() in Example 8.1. We get the same
residual G2 as before, and the likelihood-ratio test of ∆G2 given by anova() gives the same
result, that the model berk.glm2 offers no significant improvement over model berk.glm1.

anova(berk.glm1, berk.glm2, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Freq ~ Dept * (Gender + Admit)
## Model 2: Freq ~ (Dept + Gender + Admit)^2
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 6 21.7
## 2 5 20.2 1 1.53 0.22

Among other advantages of using glm() as opposed to loglm() is that an anova()
method is available for individual "glm" models, giving significance tests of the contributions of
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each term in the model, as opposed to the tests for individual coefficients provided by summary().3

anova(berk.glm1, test="Chisq")

## Analysis of Deviance Table
##
## Model: poisson, link: log
##
## Response: Freq
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 23 2650
## Dept 5 160 18 2491 <2e-16 ***
## Gender 1 163 17 2328 <2e-16 ***
## Admit 1 230 16 2098 <2e-16 ***
## Dept:Gender 5 1221 11 877 <2e-16 ***
## Dept:Admit 5 855 6 22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We proceed to consider what is wrong with these models and how they can be improved. A
mosaic display can help diagnose the reason(s) for lack of fit of these models. We focus here on
the model [AD][GD] that allows an association between gender and department (i.e., men and
women apply at different rates to departments).

The mosaic() method for "glm" objects in vcdExtra provides a residuals_type argu-
ment, allowing residuals_type="rstandard" for standardized residuals. The formula
argument here pertains to the order of the variables in the mosaic, not a model formula.

library(vcdExtra)
mosaic(berk.glm1, shade=TRUE, formula=~Admit+Dept+Gender,

residuals_type="rstandard", labeling=labeling_residuals,
main="Model: [AdmitDept][GenderDept]")

The mosaic display, shown in Figure 8.2, indicates that this model fits well (residuals are
small) except in Department A. This suggests a model which allows an association between
Admission and Gender in Department A only,

log mijk = µ+ λAi + λDj + λGk + λADij + λDGjk + I(j = 1)λAGik , (8.13) {eq:berk2}

where the indicator function I(j = 1) equals 1 for Department A (j = 1) and is zero otherwise.
This model asserts that Admission and Gender are conditionally independent, given Department,
except in Department A. It has one more parameter than the conditional independence model,
[AD][GD], and forces perfect fit in the four cells for Department A.

Model Eqn. (8.13) may be fit with glm() by constructing a variable equal to the interaction
of gender and admit with a dummy variable having the value 1 for Department A and 0 for
other departments.

3Unfortunately, in the historical development of R, the anova() methods for linear and generalized linear models
provide only sequential (“Type I”) tests that are computationally easy, but useful only under special circumstances.
The car package provides an analogous Anova() method that gives more generally useful partial (“Type II”) tests
for the additional contribution of each term beyond the others, taking marginal relations into account.
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Figure 8.2: Mosaic display for the model [AD][GD], showing standardized residuals for the cell
contributions to G2 fig:berk-glm1-mosaic

berkeley <- within(berkeley,
dept1AG <- (Dept=='A')*(Gender=='Female')*(Admit=='Admitted'))

head(berkeley)

## Admit Gender Dept Freq dept1AG
## 1 Admitted Male A 512 0
## 2 Rejected Male A 313 0
## 3 Admitted Female A 89 1
## 4 Rejected Female A 19 0
## 5 Admitted Male B 353 0
## 6 Rejected Male B 207 0

Fitting this model with the extra term dept1AG gives berk.glm3

berk.glm3 <- glm(Freq ~ Dept * (Gender+Admit) + dept1AG,
data=berkeley, family="poisson")

This model does indeed fit well, and represents a substantial improvement over model berk.glm1:

vcdExtra::Summarise(berk.glm3)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## berk.glm3 200 222 2.68 5 0.75

anova(berk.glm1, berk.glm3, test="Chisq")
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## Analysis of Deviance Table
##
## Model 1: Freq ~ Dept * (Gender + Admit)
## Model 2: Freq ~ Dept * (Gender + Admit) + dept1AG
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 6 21.74
## 2 5 2.68 1 19.1 1.3e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The parameter estimate for the dept1AG term, λ̂AGik = 1.052 may be interpreted as the
log odds ratio of admission for females as compared to males in Dept. A. The odds ratio is
exp(1.052) = 2.86, the same as the value calculated from the raw data (see Section 4.4.2).

coef(berk.glm3)[["dept1AG"]]

## [1] 1.0521

exp(coef(berk.glm3)[["dept1AG"]])

## [1] 2.8636

Finally, Figure 8.3 shows the mosaic for this revised model. The absence of shading indicates
a well-fitting model.

mosaic(berk.glm3, shade=TRUE, formula=~Admit+Dept+Gender,
residuals_type="rstandard", labeling=labeling_residuals,
main="Model: [DeptGender][DeptAdmit] + DeptA*[GA]")

4

8.4 Equivalent logit models
{sec:loglin-logit}

Because loglinear models are formulated as models for the log (expected) frequency, they make
no distinction between response and explanatory variables. In effect, they treat all variables as
responses and describe their associations.

Logit (logistic regression) models, on the other hand, describe how the log odds for one
variable depends on other, explanatory variables. There is a close connection between the two:
When there is a response variable, each logit model for that response is equivalent to a loglinear
model.

This relationship often provides a simpler way to formulate and test the model, and to plot
and interpret the fitted results. Even when there is no response variable, the logit representation
for one variable helps to interpret a loglinear model in terms of odds ratios. The price paid for this
simplicity is that associations among the explanatory variables are not expressed in the model.

Consider, for example, the model of homogeneous association, [AB][AC][BC], Eqn. (8.5)
for a three-way table, and let variable C be a binary response. Under this model, the logit for
variable C is

Lij = log

(
πij|1
πij|2

)
= log

(
mij1

mij2

)
= log(mij1)− log(mij2) .



362 [11-26-2014] 8 Loglinear and Logit Models for Contingency Tables

−1

 0

 1
rstandard

p−value =
0.0564

Model: [DeptGender][DeptAdmit] + DeptA*[GA]
Dept

A
dm

it

G
en

de
r

R
ej

ec
te

d

F
em

al
e

M
al

e

A
dm

itt
ed

A B C D E F

F
em

al
e

M
al

e

Figure 8.3: Mosaic display for the model berk.glm3, allowing an association of gender and
admission in Department A. This model now fits the data well.

fig:berk-glm3-mosaic

Substituting from Eqn. (8.5), all terms which do not involve variable C cancel, and we are left
with

Lij = log(mij1/mij2) = (λC1 − λC2 ) + (λACi1 − λACi2 ) + (λBCj1 − λBCj2 )

= 2λC1 + 2λACi1 + 2λBCj1 , (8.14){eq:logitab1}

because all λ terms sum to zero. We are interested in how these logits depend on A and B, so
we can simplify the notation by replacing the λ parameters with more familiar ones, α = 2λC1 ,
βAi = 2λACi1 , etc., which express this relation more directly,

Lij = α+ βAi + βBj . (8.15){eq:logitab2}

In the logit model Eqn. (8.15), the response, C, is affected by both A and B, which have ad-
ditive effects on the log odds of response category C1 compared to C2. The terms βAi and βBj
correspond directly to [AC] and [BC] in the loglinear model Eqn. (8.5). The association among
the explanatory variables, [AB] is assumed in the logit model, but this model provides no ex-
plicit representation of that association. The logit model Eqn. (8.14) is equivalent to the loglinear
model [AB][AC][BC] in goodness-of-fit and fitted values, and parameters in the two models
correspond directly.

Table 8.1 shows the equivalent relationships between all loglinear and logit models for a
three-way table when variable C is a binary response. Each model necessarily includes the [AB]
association involving the predictor variables. The most basic model, [AB][C], is the intercept-
only model, asserting constant odds for variable C. The saturated loglinear model [ABC], allows
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Table 8.1: Equivalent loglinear and logit models for a three-way table, withC as a binary response
variable.{tab:loglin-logit}

Loglinear model Logit model Logit formula
[AB][C] α C ~ 1
[AB][AC] α+ βAi C ~ A
[AB][BC] α+ βBj C ~ B
[AB][AC][BC] α+ βAi + βBj C ~ A + B
[ABC] α+ βAi + βBj + βABij C ~ A * B

an interaction in the effects ofA andB onC, meaning that theAC association or odds ratio varies
with B.

More generally, when there is a binary response variable, sayR, and one or more explanatory
variables, A,B,C, . . ., any logit model for R has an equivalent loglinear form. Every term in the
logit model, such as βACik , corresponds to an association of those factors with R, that is, [ACR]
in the equivalent loglinear model.

The equivalent loglinear model must also include all associations among the explanatory
factors, the term [ABC . . .]. Conversely, any loglinear model which includes all associations
among the explanatory variables has an equivalent logit form. When the response factor has
more than two categories, models for generalized logits (Section 7.6.4) also have an equivalent
loglinear form. {ex:berkeley7}

EXAMPLE 8.3: Berkeley admissions
The homogeneous association model, [AD][AG][DG] did not fit the UCBadmissions data

very well, and we saw that the term [AG] was unnecessary. Nevertheless, it is instructive to
consider the equivalent logit model. We illustrate the features of the logit model which lead to
the same conclusions and simplified interpretation from graphical displays.

Because Admission is a binary response variable, model Eqn. (8.6) is equivalent to the logit
model,

Lij = log

(
mAdmit(ij)

mReject(ij)

)
= α+ β

Dept
i + βGender

j . (8.16) {eq:berk3}

That is, the logit model Eqn. (8.16) asserts that department and gender have additive effects on
the log odds of admission. A significance test for the term βGender

j here is equivalent to the test of
the [AG] term for gender bias in the loglinear model. The observed log odds of admission here
can be calculated as:

(obs <- log(UCBAdmissions[1,,] / UCBAdmissions[2,,]))

## Dept
## Gender A B C D E F
## Male 0.4921 0.5337 -0.5355 -0.704 -0.957 -2.770
## Female 1.5442 0.7538 -0.6604 -0.622 -1.157 -2.581

With the data in the form of the frequency data frame berkeley we used in Example 8.2,
the logit model Eqn. (8.16) can be fit using glm() as shown below. In the model formula,
the binary response is Admit=="Admitted". The weights argument gives the frequency,
Freq in each table cell.4

4Using weights gives the same fitted values, but not the same LR tests for model fit.
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berk.logit2 <- glm(Admit=="Admitted" ~ Dept + Gender,
data=berkeley, weights=Freq, family="binomial")

summary(berk.logit2)

##
## Call:
## glm(formula = Admit == "Admitted" ~ Dept + Gender, family = "binomial",
## data = berkeley, weights = Freq)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -25.342 -13.058 -0.163 16.017 21.320
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.5821 0.0690 8.44 <2e-16 ***
## DeptB -0.0434 0.1098 -0.40 0.69
## DeptC -1.2626 0.1066 -11.84 <2e-16 ***
## DeptD -1.2946 0.1058 -12.23 <2e-16 ***
## DeptE -1.7393 0.1261 -13.79 <2e-16 ***
## DeptF -3.3065 0.1700 -19.45 <2e-16 ***
## GenderFemale 0.0999 0.0808 1.24 0.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6044.3 on 23 degrees of freedom
## Residual deviance: 5187.5 on 17 degrees of freedom
## AIC: 5201
##
## Number of Fisher Scoring iterations: 6

As in logistic regression models, parameter estimates may be interpreted as increments in
the log odds, or exp(β) may be interpreted as the multiple of the odds associated with the ex-
planatory categories. Because glm() uses a baseline category parameterization (by default) the
coefficients of the first category of Dept and Gender are set to zero. You can see from the
summary() output that the coefficients for the departments decline steadily from A–F.5 The co-
efficient βGender

F = 0.0999 for females indicates that, overall, women were exp(0.0999) = 1.105
times as likely as male applicants to be admitted to graduate school at U.C. Berkeley, a 10%
advantage.

Similarly, the logit model equivalent of the loglinear model Eqn. (8.13) berk.glm3 con-
taining the extra 1 df term for an effect of gender in Department A is

Lij = α+ β
Dept
i + I(j = 1)βGender . (8.17){eq:berk4}

This model can be fit as follows:

berkeley <- within(berkeley,
dept1AG <- (Dept=='A')*(Gender=='Female'))

berk.logit3 <- glm(Admit=="Admitted" ~ Dept + Gender + dept1AG,
data=berkeley, weights=Freq, family="binomial")

In contrast to the tests for individual coefficients, the Anova() method in the car package
gives likelihood-ratio tests of the terms in a model. As mentioned earlier, this provides partial
(“Type II”) tests for the additional contribution of each term beyond all others.

5In fact, the departments were labeled A–F in decreasing order of rate of admission.
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library(car)
Anova(berk.logit2)

## Analysis of Deviance Table (Type II tests)
##
## Response: Admit == "Admitted"
## LR Chisq Df Pr(>Chisq)
## Dept 763.4 5 <2e-16 ***
## Gender 1.5 1 0.216
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Anova(berk.logit3)

## Analysis of Deviance Table (Type II tests)
##
## Response: Admit == "Admitted"
## LR Chisq Df Pr(>Chisq)
## Dept 646.7 5 < 2e-16 ***
## Gender 0.1 1 0.724
## dept1AG 17.6 1 2.66e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plotting logit models

Logit models are easier to interpret than the corresponding loglinear models because there are
fewer parameters, and because these parameters pertain to the odds of a response category rather
than to cell frequency. Nevertheless, interpretation is often easier still from a graph than from the
parameter values.

The simple interpretation of these logit models can be seen by plotting the logits for a given
model. To do that, it is necessary to construct a data frame containing the observed (obs) and
fitted (fit) for the combinations of gender and department.

pred2 <- cbind(berkeley[,1:3], fit=predict(berk.logit2))
pred2 <- cbind(subset(pred2, Admit=="Admitted"), obs=as.vector(obs))
head(pred2)

## Admit Gender Dept fit obs
## 1 Admitted Male A 0.58205 0.49212
## 3 Admitted Female A 0.68192 1.54420
## 5 Admitted Male B 0.53865 0.53375
## 7 Admitted Female B 0.63852 0.75377
## 9 Admitted Male C -0.68055 -0.53552
## 11 Admitted Female C -0.58068 -0.66044

In this form, these results can be plotted as a line plot of the fitted logits vs. department, with
separate curves for males and females, and adding points to show the observed values. Here, we
use ggplot2 as shown below, with the aes() arguments group=Gender, color=Gender.
This produces the left panel in Figure 8.4. The same steps for the model berk.logit3 gives
the right panel in this figure. The observed logits, of course, are the same in both plots.
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library(ggplot2)
ggplot(pred2, aes(x=Dept, y=fit, group=Gender, color=Gender)) +

geom_line(size=1.2) +
geom_point(aes(x=Dept, y=obs, group=Gender, color=Gender), size=4) +
ylab("Log odds (Admitted)") + theme_bw() +
theme(legend.position=c(.8, .9),

legend.title=element_text(size=14),
legend.text=element_text(size=14))
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Figure 8.4: Observed (points) and fitted (lines) log odds of admissions in the logit models for the
UCBAdmissions data. Left: the logit model Eqn. (8.16) corresponding to the loglinear model
[AD] [AG] [DG]. Right: the logit model Eqn. (8.17), allowing only a 1 df term for Department
A.{fig:berk-logit}

The effects seen in our earlier analyses (Examples 5.13, 5.14 and 8.2) may all be observed in
these plots. In the left panel of Figure 8.4, corresponding to the loglinear model [AD][AG][DG],
the effect of gender, βGender

j , in the equivalent logit model is shown by the constant separation
between the two curves. From the plot we see that this effect is very small (and nonsignificant).
In the right panel, corresponding to the logit model Eqn. (8.17), there is no effect of gender on
admission, except in department A, where the extra parameter allows perfect fit.

4

8.5 Zero frequencies
{sec:loglin-zeros}

Cells with frequencies of zero create problems for loglinear and logit models. For loglinear mod-
els, most of the derivations of expected frequencies by maximum likelihood and other quantities
that depend on these (e.g.,G2 tests) assume that all nijk··· > 0. In analogous logit models, the ob-
served log odds (e.g., for a three-way table), log(nij1/nij2), will be undefined if either frequency
is zero.

Zero frequencies may occur in contingency tables for two different reasons:

• structural zeros (also called fixed zeros) will occur when it is impossible to observe values
for some combinations of the variables. For these cases we should have m̂i = 0 wherever
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ni = 0. For example, suppose we have three different methods of contacting people at risk
for some obscure genetically inherited disease: newspaper advertisement, telephone cam-
paign, and radio appeal. If each person contacted in any way is classified dichotomously by
the three methods of contact, there can never be a non-zero frequency in the ‘No-No-No’
cell.6 Similarly, in a tabulation of seniors by gender and health concerns, there can never
be males citing menopause or females citing prostate cancer. Square tables, such as wins
and losses for sporting teams often have structural zeros in the main diagonal.

• sampling zeros (also called random zeros) occur when the total size of the sample is not
large enough in relation to the probabilities in each of the cells to assure that someone
will be observed in every cell. Here, it is permissible to have m̂i > 0 when ni = 0.
This problem increases with the number of table variables. For example, in a European
survey of religious affiliation, gender and occupation, we may not happen to observe any
female Muslim vineyard-workers in France, although such individuals surely exist in the
population. Even when zero frequencies do not occur, tables with many cells relative to
the total frequency tend to produce small expected frequencies in at least some cells, which
tends to make the G2 statistics for model fit and likelihood-ratio statistics for individual
terms unreliable.

Following ?, ? and many others (e.g., ?) identified conditions under which the maximum
likelihood estimate for a given loglinear model does not exist, meaning that the algorithms used
in loglin() and glm() do not converge to a solution. The problem depends on the number
and locations of the zero cells, but not on the size of the frequencies in the remaining cells. ?
give a historical overview of the problem and current approaches and ?, §10.6 gives a compact
summary.

In R, the mechanism to handle structural zeros in the IPF approach of loglin() and
loglm() is to supply the argument start, giving a table conforming to the data, containing
values of 0 in the locations of the zero cells, and non-zero elsewhere.7 In the glm() approach,
the argument subset=Freq > 0 can be used to remove the cells with zero frequencies from
the data, or else, zero frequencies can be set to NA. This usually provides the correct degrees of
freedom, however some estimated coefficients may be infinite.

For a complete table, the residual degrees of freedom are determined as

df = # of cells− # of fitted parameters

For tables with structural zeros, an analogous general formula is

df = (# cells− # of parameters)− (# zero cells− # of NA parameters) (8.18) {eq:dfzeros}

where NA parameters refers to parameters that cannot be estimated due to zero marginal totals in
the model formula.

In contrast, sampling zeros are often handled by some modification of the data frequencies to
ensure all non-zero cells. Some suggestions are:

6Yet, if we fit an unsaturated model, expected frequencies may be estimated for all cells, and provide a means to
estimate the total number at risk in the population. See ?, Section 5.4.

7If structural zeros are present, the calculation of degrees of freedom may not be correct. loglm() deducts one
degree of freedom for each structural zero, but cannot make allowance for patterns of zeros based on the fitted margins
that lead to gains in degrees of freedom due to smaller dimension in the parameter space. loglin() makes no such
correction.
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• Add a small positive quantity (0.5 is often recommended) to every cell in the contingency
table (?), as is often done in calculating empirical log odds (Example 8.13); this simple ap-
proach over-smooths the data for unsaturated models, and should be deprecated, although
widely used in practice.

• Replace sampling zeros by some small number, typically 10−10 or smaller (?).
• Add a small quantity, like 0.1, to all zero cells, sampling or structural (?).

In complex, sparse tables, a sensitivity analysis, comparing different approaches can help deter-
mine if the substantive conclusions vary with the approach to zero cells.{ex:health}

EXAMPLE 8.4: Health concerns of teenagers
?, Table 8-3 presented a classic example of structural zeros in the analysis of the 4×2×2 table

shown in Table 8.2. The data come from a survey of health concerns among teenagers, originally
from ?. Among the health concerns, the two zero entries for menstrual problems among males are
clearly structural zeros and there therefore one structural zero in the concern by gender marginal
table. As usual, we abbreviate the table variables concern, age, gender by their initial letters, C,
A, G below.

Table 8.2: Results from a survey of teenagers, regarding their health concerns. Two cells with
structural zeros are highlighted. Source: ?, Table 8-3{tab:health}

Health Gender: Male Female
Concerns Age: 12-15 16-17 12-15 16-17
sex, reproduction 4 2 9 7
menstrual problems 0 0 4 8
how healthy I am 42 7 19 10
nothing 57 20 71 21

The Health data is created as a frequency data frame as follows.

Health <- expand.grid(concerns = c("sex", "menstrual",
"healthy", "nothing"),

age = c("12-15", "16-17"),
gender = c("M", "F"))

Health$Freq <- c(4, 0, 42, 57, 2, 0, 7, 20,
9, 4, 19, 71, 7, 8, 10, 21)

In this form, we first use glm() to fit two small models, neither of which involves the
{CG} margin. Model health.glm0 is the model of mutual independence, [C][A][G]. Model
health.glm1 is the model of joint independence, [C][AG], allowing an association between
age and gender, but neither with concern. As noted above, the argument subset=(Freq>0)
is used to eliminate the structural zero cells.

health.glm0 <-glm(Freq ~ concerns + age + gender, data=Health,
subset=(Freq>0), family=poisson)

health.glm1 <-glm(Freq ~ concerns + age * gender, data=Health,
subset=(Freq>0), family=poisson)

Neither of these fits the data well. To conserve space, we show only the results of theG2 tests
for model fit.
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vcdExtra::Summarise(health.glm0, health.glm1)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## health.glm0 100.7 105 27.7 8 0.00053 ***
## health.glm1 99.9 104 24.9 7 0.00080 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To see why, Figure 8.5 shows the mosaic display for model health.glm1, [C][AG]. Note
that mosaic() takes care to make cells of zero frequency more visible by marking them with a
small “o”, as these have an area of zero.

mosaic(health.glm1, ~concerns+age+gender, residuals_type="rstandard")
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Figure 8.5: Mosaic display for the Health data, model health.glm1
fig:health-mosaic

This suggests that there are important associations at least between concern and gender
([CG]) and between concern and age ([CA]). These are incorporated into the next model:

health.glm2 <-glm(Freq ~ concerns*gender + concerns*age, data=Health,
subset=(Freq>0), family=poisson)

vcdExtra::Summarise(health.glm2)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## health.glm2 87.7 94.7 4.66 3 0.2

The degrees of freedom are correct here. Eqn. (8.18), with 2 zero cells and 1 NA parameter
due to the zero in the {CG}margin gives df = (16−12)−(2−1) = 3. The loss of one estimable
parameter can be seen in the output from summary.

summary(health.glm2)
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##
## Call:
## glm(formula = Freq ~ concerns * gender + concerns * age, family = poisson,
## data = Health, subset = (Freq > 0))
##
## Deviance Residuals:
## 1 3 4 5 7 8 9 10 11 12
## 0.236 0.585 -0.173 -0.300 -1.202 0.302 -0.149 0.000 -0.795 0.158
## 13 14 15 16
## 0.176 0.000 1.348 -0.282
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.266 0.445 2.84 0.0045 **
## concernsmenstrual -0.860 0.586 -1.47 0.1425
## concernshealthy 2.380 0.471 5.05 4.4e-07 ***
## concernsnothing 2.800 0.462 6.07 1.3e-09 ***
## genderF 0.981 0.479 2.05 0.0405 *
## age16-17 -0.368 0.434 -0.85 0.3964
## concernsmenstrual:genderF NA NA NA NA
## concernshealthy:genderF -1.505 0.533 -2.82 0.0047 **
## concernsnothing:genderF -0.803 0.503 -1.60 0.1105
## concernsmenstrual:age16-17 1.061 0.750 1.41 0.1574
## concernshealthy:age16-17 -0.910 0.513 -1.77 0.0761 .
## concernsnothing:age16-17 -0.771 0.469 -1.64 0.1005
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 252.4670 on 13 degrees of freedom
## Residual deviance: 4.6611 on 3 degrees of freedom
## AIC: 87.66
##
## Number of Fisher Scoring iterations: 4

In contrast, loglm() reports the degrees of freedom incorrectly for models containing zeros
in any fitted margin. For use with loglm(), we convert it to a 4× 2× table.

health.tab <- xtabs(Freq ~ concerns + age + gender, data = Health)

The same three models are fitted with loglm() as shown below. The locations of the pos-
itive frequencies are marked in the array nonzeros and supplied as the value of the start
argument.

nonzeros <- ifelse(health.tab>0, 1, 0)
health.loglm0 <- loglm(~ concerns + age + gender,

data = health.tab, start = nonzeros)
health.loglm1 <- loglm(~ concerns + age * gender,

data = health.tab, start = nonzeros)
# df is wrong
health.loglm2 <- loglm(~ concerns*gender + concerns*age,

data = health.tab, start = nonzeros)
Summarise(health.loglm0, health.loglm1, health.loglm2)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## health.loglm0 104.7 111 27.74 8 0.00053 ***
## health.loglm1 103.9 111 24.89 7 0.00080 ***
## health.loglm2 93.7 104 4.66 2 0.09724 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The results agree with those of glm(), except for the degrees of freedom for the last model.

4

8.6 Models for ordinal variables
{sec:loglin-ordinal}

Standard loglinear models treat all classification variables as nominal, unordered factors. In these
models, all statistical tests are identical and parameter estimates are equivalent if the categories
of any of the table variable are reordered. Yet we have seen that the ordering of categories often
provides important information about the nature of associations and we showed (Section 4.2.4)
that non-parametric tests which take into account the ordered nature of a factor are more powerful.

Correspondence analysis plots (Chapter 6) make it easy to see the relationships between or-
dinal variables, because the method assigns quantitative scores to the table variables which max-
imally account for their association. As we saw for the hair-eye color data (Figure 6.1) and the
mental impairment data (Figure 6.2), an association can be interpreted in terms of ordered cate-
gories when the points for two factors are ordered similarly, usually along the first CA dimension.

Similarly, in a mosaic display, an ordered associative effect is seen when the residuals have
an opposite-corner pattern of positive and negative signs and magnitudes (e.g., for the hair-eye
color data, Figure 5.4). In these cases loglinear and logit models which use the ordered nature of
the factors offer several advantages.

• Because they are more focused, tests which use the ordinal structure of the table variables
are more powerful when the association varies systematically with the ordered values of a
factor.

• Because they consume fewer degrees of freedom, we can fit unsaturated models where
the corresponding model for nominal factors would be saturated. In a two-way table, for
example, a variety of models for ordinal factors may be proposed which are intermediate
between the independence model and the saturated model.

• Parameter estimates from these models are fewer in number, are easier to interpret, and
quantify the nature of effects better than corresponding quantities in models for nominal
factors. Estimating fewer parameters typically gives smaller standard errors.

These advantages are analogous to the use of tests for trends or polynomial contrasts in ANOVA
models. More importantly, in some research areas in the social sciences (where categorical data
is commonplace), models for ordinal variables have proved crucial in theory construction and
debates, giving more precise tests of hypotheses than available from less focused or descriptive
methods (?).

8.6.1 Loglinear models for ordinal variables
{sec:loglin-ordlog}

For a two-way table, when either the row variable or the column variable, or both, are ordinal,
one simplification comes from assigning ordered scores, a = {ai}, a1 ≤ a2 ≤ · · · aI , and/or
b = {bj}, b1 ≤ b2 ≤ · · · bJ to the categories so that the ordinal relations are necessarily included
in the model. Typically, equally spaced scores are used, for example, integer scores, {ai} = i, or
the zero-sum equivalent, {ai} = i− (I + 1)/2 (e.g., {ai} = {−1, 0, 1} for I = 3).
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Using such scores gives simple interpretations of the association parameters in terms of local
odds ratios for adjacent 2× 2 subtables,

θij =
mij mi+1,j+1

mi,j+1 mi+1,j
, (8.19) {eq:loddsratios}

which is the odds ratio for pairs of adjacent rows and adjacent columns.

When both variables are assigned scores, this gives the linear-by-linear model (L× L)

log(mij) = µ+ λAi + λBj + γ aibj . (8.20){eq:linlin}

Because the scores a and b are fixed, this model has only one extra parameter, γ, compared to the
independence model, which is the special case, γ = 0. In contrast, the saturated model, allowing
general association λABij uses (I − 1)(J − 1) additional parameters.

The terms γaibj in Eqn. (8.20) describe a pattern of association where deviations from inde-
pendence increase linearly with ai and bj in opposite directions towards the opposite corners of
the table, as we have often observed in mosaic displays.

In the linear-by-linear association model, the local log odds ratios are

log(θij) = γ(ai+1 − ai)(bj+1 − bj) ,

which reduces to
log(θij) = γ

for integer-spaced scores, so γ is the common local log odds ratio. As a result, the linear-by-linear
model is sometimes called the uniform association model (?).

Generalizations of the linear-by-linear model result when only one variable is assigned scores.
In the row effects model (R), the row variable,A, is treated as nominal, while the column variable,
B, is assigned ordered scores {bj}. The loglinear model is then

log(mij) = µ+ λAi + λBj + αibj , (8.21){eq:roweff}

where the αi parameters are the row effects. An additional constraint,
∑
i αi = 0 or α1 = 0

is imposed, so that model Eqn. (8.21) has only (I − 1) more parameters than the independence
model. The linear-by-linear model is the special case where the row effects are equally spaced,
and the independence model is the special case where all αi = 0.

The row-effects model Eqn. (8.21) also has a simple odds ratio interpretation. The local log
odds ratio for adjacent pairs of rows and columns is

log(θij) = αi+1 − αi ,

which is constant for all pairs of adjacent columns. Plots of the local log odds ratio against i
would appear as a set of parallel curves.

In the analogous column effects model (C), (J − 1) linearly independent column effect pa-
rameters βj are estimated for the column variable, while fixed scores {ai} are assigned to the row
variable. It is also possible to fit a row plus column effects model (R+C), that assigns specified
scores to both the rows and column variables.

Nesting relationships among these models and others described in Section 8.6.2 are shown in
Figure 8.6. Any set of models connected by a path can be directly compared with likelihood-ratio
tests of the form G2(M2|M1).

In R, the L×L, row effects and column effects models can all be fit using glm() simply by
replacing the appropriate table factor variable(s) with their as.numeric() equivalents.{ex:mental4}
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Figure 8.6: Nesting relationships among some association models for an I × J table specifying
the association parameters, λijAB . Model 0 is the independence model. Formulas near the boxes
give the number of identifiable association parameters. Arrows point from one nested model to
another that is a more general version.{fig:assoc-models}

EXAMPLE 8.5: Mental impairment and parents’ SES
The Mental data on the mental health status of young New York residents in relation to

their parents’ socioeconomic status was examined in Example 4.6 using CMH tests for ordinal
association and in Example 6.2 using correspondence analysis. Figure 6.2 showed that nearly all
of the association in the table was accounted for by a single dimension along which both factors
were ordered, consistent with the view that mental health increased in relation to parents’ SES.

Because these models provide their interpretations in terms of local odds ratios, Eqn. (8.19),
it is helpful to see these values for the observed data, corresponding to the saturated model. The
values log(θij) are calculated by loddsratio() in vcdExtra, with the data in table form.

(mental.tab <- xtabs(Freq ~ mental+ses, data=Mental))

## ses
## mental 1 2 3 4 5 6
## Well 64 57 57 72 36 21
## Mild 94 94 105 141 97 71
## Moderate 58 54 65 77 54 54
## Impaired 46 40 60 94 78 71

loddsratio(mental.tab)

## log odds ratios for mental and ses
##
## ses
## mental 1:2 2:3 3:4 4:5 5:6
## Well:Mild 0.1158 0.1107 0.0612 0.3191 0.227
## Mild:Moderate -0.0715 0.0747 -0.1254 0.0192 0.312
## Moderate:Impaired -0.0683 0.2201 0.2795 0.1682 -0.094

A simple plot of these values, using area- and color-proportional shaded squares is shown in
Figure 8.7. This plot is drawn using the corrplot package. It is easy to see that most of the local
odds ratios are mildly positive.
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Figure 8.7: Shaded-square plot of the local odds ratios in the Mental data. {fig:mental-lorplot}

M <- as.matrix(loddsratio(mental.tab))
library(corrplot)
corrplot(M, method="square", is.corr=FALSE,

tl.col="black", tl.srt=0, tl.offset=1)

For comparison with the L× L model fitted below, the mean local log odds ratio is 0.103.

mean(loddsratio(mental.tab)$coefficients)

## [1] 0.10323

As a baseline, we first fit the independence model (testing H0 : log(θij) = 0) with glm().
As expected, this model fits quite badly, with G2 (15) = 47.418.

indep <- glm(Freq ~ mental + ses,
family = poisson, data = Mental)

vcdExtra::Summarise(indep)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## indep 210 220 47.4 15 3.2e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The mosaic display of standardized residuals from this model is shown in Figure 8.8. The
argument labeling=labeling_residuals is used to show the numerical values in the
cells with absolute values greater than suppress=1.

long.labels <- list(set_varnames = c(mental="Mental Health Status",
ses="Parent SES"))

mosaic(indep,
gp=shading_Friendly,
residuals_type="rstandard",
labeling_args = long.labels,
labeling=labeling_residuals, suppress=1,
main="Mental health data: Independence")
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fig:mental-indep

This figure shows the classic opposite-corner pattern of the signs and magnitudes of the resid-
uals that would arise if the association between mental health and SES was could be explained
by the ordinal relation of these factors using one of the L× L, R or C models.

To fit such ordinal models, you can use as.numeric() on a factor variable to assign integer
scores, or assign other values if integer spacing is not appropriate.

Cscore <- as.numeric(Mental$ses)
Rscore <- as.numeric(Mental$mental)

Then, the L × L, R and C models can be fit as follows, where beyond the main effects of
mental and ses, their association is represented as the interaction of the numeric score(s) or
factor(s), as appropriate in each case.

linlin <- glm(Freq ~ mental + ses + Rscore:Cscore,
family = poisson, data = Mental)

roweff <- glm(Freq ~ mental + ses + mental:Cscore,
family = poisson, data = Mental)

coleff <- glm(Freq ~ mental + ses + Rscore:ses,
family = poisson, data = Mental)

Goodness-of-fit tests for these models are shown below. They show that all of the L × L, R
and C models are acceptable in terms of the likelihood-ratio G2. The L × L model, with only
one more parameter than the independence model is judged the best by both AIC and BIC.

vcdExtra::Summarise(indep, linlin, roweff, coleff)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## indep 209.6 220.2 47.42 15 3.16e-05 ***
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## linlin 174.1 185.8 9.90 14 0.770
## roweff 174.4 188.6 6.28 12 0.901
## coleff 179.0 195.5 6.83 10 0.741
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In cases where such overall tests are unclear, you can carry out tests of nested sets of models
using anova(), giving tests of ∆G2.

anova(indep, linlin, roweff, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Freq ~ mental + ses
## Model 2: Freq ~ mental + ses + Rscore:Cscore
## Model 3: Freq ~ mental + ses + mental:Cscore
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 15 47.4
## 2 14 9.9 1 37.5 9e-10 ***
## 3 12 6.3 2 3.6 0.16
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(indep, linlin, coleff, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Freq ~ mental + ses
## Model 2: Freq ~ mental + ses + Rscore:Cscore
## Model 3: Freq ~ mental + ses + Rscore:ses
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 15 47.4
## 2 14 9.9 1 37.5 9e-10 ***
## 3 10 6.8 4 3.1 0.55
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Under the L× L model, the estimate of the coefficient of Rscore:Cscore is γ̂ = 0.0907
(s.e.=0.015) with unit-spaced scores, as shown below.

# interpret linlin association parameter
coef(linlin)[["Rscore:Cscore"]]

## [1] 0.090687

exp(coef(linlin)[["Rscore:Cscore"]])

## [1] 1.0949

This corresponds to a local odds ratio, θ̂ij = exp(0.0907) = 1.095. This single number describes
the association succinctly: each step down the socioeconomic scale increases the odds of being
classified one step poorer in mental health by 9.5%.

4
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8.6.2 Log-multiplicative (RC) models
{sec:RCmodels}

The association models described above are all more parsimonious and easier to interpret than
the saturated model. However, they depend on assigning fixed and possibly arbitrary scores to the
variable categories. A generalization of the L× L model that treats both row and column scores
as parameters is the row-and-column effects model (RC(1)) suggested by ?,

log(mij) = µ+ λAi + λBj + γ αiβj , (8.22) {eq:RC1}

where γ, α and β comprise additional parameters to be estimated beyond the independence
model.8 This model has a close connection with correspondence analysis (?), where the estimated
scores α and β are analogous to correspondence analysis scores on a first dimension.9 γ, called
the intrinsic association coefficient is analogous to the same parameter in the L× L model.

For identifiability and interpretation it is necessary to impose some normalization constraints
on the α and β. An unweighted, unit standardized solution forces

∑
i αi =

∑
j βj = 0 and∑

i α
2
i =

∑
j β

2
j = 1. Alternatively, and more akin to correspondence analysis solutions, the

marginally weighted solution uses the marginal probabilities πi+ of the row variable and π+j of
the columns as weights. ∑

i

αiπi+ =
∑
j

βjπ+j = 0 (8.23) {eq:RC-constraints}

∑
i

α2
i πi+ =

∑
j

β2j π+j = 1

? generalized this to multiple bilinear terms of the form γk αikβjk, withM terms (the RC(M)
model) and showed that all associations in the saturated model could be expressed exactly as

λABij =
M∑
k=1

γk αikβjk M = min (I − 1, J − 1) . (8.24) {eq:RCm}

In practice, models with fewer terms usually suffice. For example, an RC(2) model with two
multiplicative terms is analogous to a two-dimensional correspondence analysis solution. In ad-
dition to the normalization constraints for the RC(1) model, parameters in an RC(M) model must
satisfy the additional constraints that the (possibly weighted) scores for distinct dimensions are
orthogonal (uncorrelated), similar to correspondence analysis solutions.

The RC model is not a loglinear model because it contains a multiplicative term in the pa-
rameters. This model and a wide variety of other nonlinear models for categorical data can be fit
using gnm() in the gnm package. This provides the basic machinery for extending glm()mod-
els to nonlinear terms, quite generally. The function rc() in the logmult package uses gnm()
for fitting, and offers greater convenience in normalizing the category scores, calculating standard
errors and plotting. {ex:mental5}

EXAMPLE 8.6: Mental impairment and parents’ SES
The gnm package provides a number of functions that can be used in model formulas for non-

linear association terms. Among these, Mult() expresses a multiplicative association in terms
8In contrast to the R, C and R+C models, RC models do not assume that the categories are appropriately ordered

because the category scores are estimated from the data.
9However, when estimated by maximum likelihood, the RC(1) model allows likelihood-ratio tests of parameters

and model fit, AIC and BIC statistics, and methods for estimating standard errors of the parameters. Such model-based
methods are not available for correspondence analysis.
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of two (or more) factors. The RC(1) model for factors A, B uses Mult(A,B) for the associ-
ation term in Eqn. (8.22). Multiple multiplicative RC terms, as in Eqn. (8.24) can be expressed
using instances(Mult(A,B), m).

To illustrate, we fit the RC(1) and RC(2) models to the Mental data using gnm(). In this
table, both factors are ordered, but we don’t want to use the default polynomial contrasts, so we
set their contrast attributes to treatment.

library(gnm)
Mental$mental <- C(Mental$mental, treatment)
Mental$ses <- C(Mental$ses, treatment)
RC1 <- gnm(Freq ~ mental + ses + Mult(mental, ses),

family = poisson, data = Mental, verbose=FALSE)
RC2 <- gnm(Freq ~ mental + ses + instances(Mult(mental, ses),2),

family = poisson, data = Mental, verbose=FALSE)

For comparison with the loglinear association models fit in Example 8.5 we show the G2

goodness of fit tests for all these models. The ordinal loglinear models and the RC models all fit
well, with the L× L model preferred on the basis of parsimony by AIC and BIC.

vcdExtra::Summarise(indep, linlin, roweff, coleff, RC1, RC2)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## indep 209.6 220.2 47.42 15 3.16e-05 ***
## linlin 174.1 185.8 9.90 14 0.770
## roweff 174.4 188.6 6.28 12 0.901
## coleff 179.0 195.5 6.83 10 0.741
## RC1 179.7 198.6 3.57 8 0.894
## RC2 186.7 211.4 0.52 3 0.914
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The substantive difference between the L × L model and the RC(1) model is whether the
categories of mental health status and SES can be interpreted as equally spaced along some latent
continua, versus the alternative that category spacing is unequal. We can test this directly using
the likelihood-ratio test, G2(L × L |RC(1)) Similarly, model RC1 is nested within model RC2,
so G2(RC(1) |RC(2)) gives a direct test of the need for a second dimension.

anova(linlin, RC1, RC2, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Freq ~ mental + ses + Rscore:Cscore
## Model 2: Freq ~ mental + ses + Mult(mental, ses)
## Model 3: Freq ~ mental + ses + Mult(mental, ses, inst = 1) + Mult(mental,
## ses, inst = 2)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 14 9.90
## 2 8 3.57 6 6.32 0.39
## 3 3 0.52 5 3.05 0.69

We see that estimated scores for the categories in the model RC1 do not provide a significantly
better fit, and there is even less evidence for a second dimension of category parameters in the
RC2 model.

Nevertheless, for cases where RC models do provide some advantage, it is useful to know how
to visualize the estimated category parameters. The key to this is the function getContrasts()
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which computes contrasts or scaled contrasts for a set of (non-eliminated) parameters from a
"gnm" model, together with standard errors for the estimated contrasts following the methods of
??. The details are explained in help(getContrasts) and in vignette("gnmOverview")
that comes with the gnm package.

The coefficients in the marginally-weighted solution Eqn. (8.23) can be obtained as follows.

rowProbs <- with(Mental, tapply(Freq, mental, sum) / sum(Freq))
colProbs <- with(Mental, tapply(Freq, ses, sum) / sum(Freq))
mu <- getContrasts(RC1, pickCoef(RC1, "[.]mental"),

ref = rowProbs, scaleWeights = rowProbs)
nu <- getContrasts(RC1, pickCoef(RC1, "[.]ses"),

ref = colProbs, scaleWeights = colProbs)

In our notation, the coefficients α and β can be extracted as the qvframe component of the
"qv" object returned by getContrasts().

(alpha <- mu$qvframe)

## Estimate Std. Error
## Mult(., ses).mentalWell 1.67378 0.19043
## Mult(., ses).mentalMild 0.14009 0.20018
## Mult(., ses).mentalModerate -0.13669 0.27948
## Mult(., ses).mentalImpaired -1.41055 0.17418

(beta <- nu$qvframe)

## Estimate Std. Error
## Mult(mental, .).ses1 1.111361 0.29921
## Mult(mental, .).ses2 1.120459 0.31422
## Mult(mental, .).ses3 0.370752 0.31915
## Mult(mental, .).ses4 -0.027006 0.27328
## Mult(mental, .).ses5 -1.009480 0.31470
## Mult(mental, .).ses6 -1.816647 0.28095

For plotting this RC(1) solution for the scaled category scores together with their estimated
standard errors, a dotchart(), shown in Figure 8.9 provides a reasonable visualization.

To create this plot, first combine the row and column scores in a data frame, and add columns
lower, upper corresponding to ±1 standard error (or some other multiple).

scores <- rbind(alpha, beta)
scores <- cbind(scores,

factor=c(rep("mental", 4), rep("ses", 6)) )
rownames(scores) <- c(levels(Mental$mental), levels(Mental$ses))
scores$lower <- scores[,1]-scores[,2]
scores$upper <- scores[,1]+scores[,2]
scores

## Estimate Std. Error factor lower upper
## Well 1.674 0.190 mental 1.4834 1.864
## Mild 0.140 0.200 mental -0.0601 0.340
## Moderate -0.137 0.279 mental -0.4162 0.143
## Impaired -1.411 0.174 mental -1.5847 -1.236
## 1 1.111 0.299 ses 0.8121 1.411
## 2 1.120 0.314 ses 0.8062 1.435
## 3 0.371 0.319 ses 0.0516 0.690



380 [11-26-2014] 8 Loglinear and Logit Models for Contingency Tables

1
2
3
4
5
6

Well
Mild
Moderate
Impaired

●

●

●

●

●

●

●

●

●

●

mental

ses

−2 −1 0 1 2

RC1 Score

Figure 8.9: Dotchart of the scaled category scores for the RC(1) model fit the mental health data.
Error bars show ±1 standard error. {fig:mental-RC1}

## 4 -0.027 0.273 ses -0.3003 0.246
## 5 -1.009 0.315 ses -1.3242 -0.695
## 6 -1.817 0.281 ses -2.0976 -1.536

The dotchart shown in Figure 8.9 is then a plot of Estimate, grouped by factor, with
arrows showing the range of lower to upper for each parameter.

with(scores, {
dotchart(Estimate, groups=factor, labels=rownames(scores),

cex=1.2, pch=16, xlab="RC1 Score",
xlim=c(min(lower), max(upper)))

arrows(lower, c(8+(1:4), 1:6), upper, c(8+(1:4), 1:6),
col="red", angle=90, length=.05, code=3, lwd=2)

})

In this plot, the main substantive difference from the L × L model is in the spacing of the
lowest two categories of ses and the middle two categories of mental which are not seen to
differ in the RC1 model.

The coefficients in the RC2 model can also be plotted (in a 2D plot) by extracting the
coefficients from the "gnm" object and reshaping them to 2-column matrices. The function
pickCoef() is handy here to get the indices of a subset of parameters by matching a pattern in
their names. TODO: Maybe delete some of this, in favor of using logmult.

alpha <- coef(RC2)[pickCoef(RC2, "[.]mental")]
alpha <- matrix(alpha, ncol=2)
rownames(alpha) <- levels(Mental$mental)
colnames(alpha) <- c("Dim1", "Dim2")
alpha
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## Dim1 Dim2
## Well 0.402881 0.5894343
## Mild -0.064351 0.1811739
## Moderate 0.302641 -0.3053344
## Impaired -0.786251 0.0079087

beta <- coef(RC2)[pickCoef(RC2, "[.]ses")]
beta <- matrix(beta, ncol=2)
rownames(beta) <- levels(Mental$ses)
colnames(beta) <- c("Dim1", "Dim2")
beta

## Dim1 Dim2
## 1 0.34333 0.270062
## 2 0.36747 0.240103
## 3 0.12906 0.042341
## 4 -0.10056 0.138049
## 5 -0.35257 -0.188469
## 6 -0.44252 -0.810078

The simple, unweighted scaling to mean 0, variance 1 can be obtained with scale():

alpha <- scale(alpha)
beta <- scale(beta)

Alternatively, the marginal-weighted scaling of Eqn. (8.23) is obtained by centering at the weighted
mean and dividing by the weighted sum of squares. We use this scaling here.

alpha <- apply(alpha, 2, function(x) x - sum(x*rowProbs))
alpha <- apply(alpha, 2, function(x) x/sqrt(sum(x^2 * rowProbs)))
beta <- apply(beta, 2, function(x) x - sum(x*colProbs))
beta <- apply(beta, 2, function(x) x/sqrt(sum(x^2 * colProbs)))

To plot these category scores, first combine them into a single data frame,

scores <- data.frame(rbind(alpha,beta))
scores$factor <- c(rep("mental", 4), rep("ses", 6))
scores$probs <- c(rowProbs, colProbs)
scores

## Dim1 Dim2 factor probs
## Well 1.07293 1.650 mental 0.185
## Mild 0.00623 0.245 mental 0.363
## Moderate 0.84408 -1.430 mental 0.218
## Impaired -1.64188 -0.351 mental 0.234
## 1 1.17216 0.848 ses 0.158
## 2 1.25302 0.760 ses 0.148
## 3 0.45452 0.179 ses 0.173
## 4 -0.31449 0.460 ses 0.231
## 5 -1.15851 -0.499 ses 0.160
## 6 -1.45978 -2.325 ses 0.131

Then, we use xyplot() to plot the scores on Dim2 against Dim1, with separate lines and
colors for the two factors. The resulting plot is shown in Figure 8.10.

library(lattice)
xyplot(Dim2 ~ Dim1, groups=factor, data=scores, type="b",
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Figure 8.10: Scaled category scores for the RC(2) model fit the mental health data. {fig:mental-RC2}

cex=1.3, pch=16, lwd=2, aspect="iso",
panel=function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.text(x=x, y=y, labels=rownames(scores), pos=1, cex=1.2)
panel.abline(h=0, col="gray")
panel.abline(v=0, col="gray")
}

)

The patterns of the row and column category scores here are quite similar to the 2D corre-
spondence analysis solution shown in Figure 6.2. The main difference is in the relative scaling of
the axes. In Figure 8.10, the variances of the two dimensions are equated; in the correspondence
analysis plot, the axes are scaled in relation to their contributions to Pearson χ2, allowing an
interpretation of distance between points in terms of χ2-distance.

4

Using logmult

From the previous example, you can see that it takes a fair bit of work to extract the coefficients
from "gnm" objects and carry out the scaling necessary for informative plots. Much of this effort
is now performed by the logmult package with several convenience functions that do the heavy
lifting.

rc() fits the class of RC(M) models, allowing an argument nd to specify the number of di-
mensions, and also providing for standard errors estimated using jackknife and bootstrap
methods (?), which are computationally intensive. For square tables, a symmetric ar-
gument constrains the row and column scores to be equal, and a diagonal option fits
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parameters for each diagonal cell, providing for models of quasi-independence and quasi-
symmetry (see Section 8.7).

It returns an object of class "rc" with the components of the "gnm" object. An assoc
component is also returned, containing the normalized association parameters for the cate-
gories.

rcL() fits extensions of RC models to tables with multiple layers, called RC(M)-L models by
?.

plot.rc() is a plot method for visualizing scores for RC(M) models in two selected dimen-
sions. Among other options, it can plot confidence ellipses for the category scores, using
the estimated covariance matrix (assuming a normal distribution of the category scores).
The plot method returns (invisibly) the coordinates of the scores as plotted, facilitating
additional plot annotation.

{ex:mental6}

EXAMPLE 8.7: Mental impairment and parents’ SES
Here we use rc() to estimate the RC(1) and RC(2) models for the Mental data. In contrast

to gnm(), which has a formula interface for a data argument, rc() requires the input in the
form of a two-way table, given here as mental.tab.

library(logmult)
rc1 <- rc(mental.tab, verbose=FALSE, weighting="marginal",

se="jackknife")
rc2 <- rc(mental.tab, verbose=FALSE, weighting="marginal", nd=2,

se="jackknife")

The option weighting="marginal" gives the marginally-weighted solution and se="jackknife"
estimates the covariance matrix using the leave-one-out jackknife.10

A plot of the scaled category scores similar to Figure 8.10, with 1 standard error confidence
ellipses (making them comparable to the 1D solution shown in Figure 8.9) but no connecting
lines can then be easily produced with the plot() method for "rc" objects.

coords <- plot(rc2, conf.ellipses=0.68, cex=1.5, rev.axes=c(TRUE, FALSE))

The orientation of the axes is arbitrary in RC(M) models, so the horizontal axis is reversed here
to conform with Figure 8.10.

This produces (in Figure 8.11) a symmetric biplot in which the scaled coordinates of points
for rows (αik) and columns (βjk) on both axes are the product of normalized scores and the square
root of the intrinsic association coefficient (γk) corresponding to each dimension.

Such plots can be customized using the category coordinates (coords) returned by the
plot() method. As in other biplots, joining the row and column points by lines (sorted by
the first dimension) makes it easier to see their relationships across the two dimensions. The
following code draws the lines shown in Figure 8.11.

10? recommend using unweighted solutions, weighting="none" (they call them “uniformly weighted”) to
preserve independence of inferences about association and marginal effects and estimates of the intrinsic association
parameters, γk. That choice makes very little difference in the plots for this example, but the γk parameters are affected
considerably.
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Figure 8.11: Scaled category scores for the RC(2) model fit and plotted using the logmult pack-
age. The 68% confidence ellipses correspond to bivariate±1 confidence intervals for the category
parameters. {fig:mental-logmult-rc2}

scores <- rbind(coords$row, coords$col)
lines(scores[1:4,], col="blue", lwd=2)
lines(scores[-(1:4),], col="red", lwd=2)

We saw earlier that there was not strong evidence supporting the need for a second RC di-
mension to describe the relationship between mental health and SES. This is apparent in the sizes
of the confidence ellipses, which overlap much more along Dimension 2 than Dimension 1. 4

8.7 Square tables
{sec:loglin-square}

Square tables, where the row and column variables have the same categories comprise an impor-
tant special case for loglinear models that can account for associations more parsimoniously than
the saturated model. Some examples are the data on visual acuity in Example 4.13, categorical
ratings of therapy clients by two observers, and mobility tables, tracking the occupational cate-
gories between generations in the same families or migration tables, giving movement of people
between regions. The latter topics has been important in sociological and geographic research and
has spurred the development of a wide range of specialized loglinear models for this purpose.
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8.7.1 Quasi-independence, symmetry, quasi-symmetry and topological mod-
els

{sec:sq-quasi}

In many square tables, such as the Vision data, independence is not a credible hypothesis
because the diagonal cells, representing equal values of the row and column variables tend to be
very large and often contribute most of the lack of fit. A substantively more interesting hypothesis
is whether the table exhibits independence, ignoring the diagonal cells. This leads to what is
called the quasi-independence model, that specifies independence only in the off-diagonal cells.

For a two-way table, quasi-independence can be expressed as

πij = πi+π+j for i 6= j

or in loglinear form as
logmij = µ+ λAi + λBj + δiI(i = j) .

This model effectively adds one parameter, δi, for each main diagonal cell which fits those fre-
quencies perfectly.

Another hypothesis of substantive interest for square tables, particularly those concerning
occupational and geographical mobility is that the joint distribution of row and column variables
is symmetric, that is, πij = πji for all i 6= j. For example, this symmetry model (S) asserts
that sons are as likely to move from their father’s occupation i to another, j, as the reverse. This
form of symmetry is quite strong, because it also implies marginal homogeneity (MH), that the
marginal probabilities of the row and column variables are equal, πi+ =

∑
j πij =

∑
j πji = π+i

for all i.

To separate marginal homogeneity from symmetry of the association terms per se, the model
of quasi-symmetry (QS) uses the standard main-effect terms in the loglinear model,

logmij = µ+ λAi + λBj + λij , (8.25) {eq:quasi-symm}

where λij = λji. It can be shown (?) that

symmetry = quasi-symmetry + marginal homogeneity

G2(S) = G2(QS) +G2(MH)

where G2(MH) is defined by the likelihood-ratio test of the difference between the S and QS
models,

G2(MH) ≡ G2(S |QS) = G2(S)−G2(QS) . (8.26) {eq:mh}

The gnm package provides several model building convenience functions that facilitate fitting
these and related models:

• Diag(row, col, ...) constructs a diagonals association factor for two (or more)
factors with integer levels where the original factors are equal, and "." otherwise.

• Symm(row, col, ...) constructs an association factor giving equal levels to sets of
symmetric cells. The QS model is specified using Diag() + Symm().

• Topo(row, col, ..., spec) creates an association factor for two or more factors,
as specified by an array of levels, which may be arbitrarily structured. Both Diag() and
Symm() factors are special cases of Topo().
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The factor levels representing these association effects for a 4 × 4 table are shown below by
their unique values in each array.

Diag4×4 =


1 . . .
. 2 . .
. . 3 .
. . . 4

 Symm4×4 =


11 12 13 14
12 22 23 24
13 23 33 34
14 24 34 44

 Topo4×4 =


2 3 4 4
3 3 4 4
4 4 5 5
4 4 5 1


{ex:vision-glm}

EXAMPLE 8.8: Visual acuity
Example 4.13 presented the data on tests of visual acuity in the left and right eyes of a large

sample of women working in the Royal Ordnance factories in World War II. A sieve diagram
(Figure 4.8) showed that, as expected, most women had the same acuity in both eyes, but the
off-diagonal cells had a pattern suggesting some form of symmetry.

The data set VisualAcuity contains data for both men and women in frequency form and
for this example we subset this to include only the 4× 4 table for women.

data("VisualAcuity", package="vcd")
women <- subset(VisualAcuity, gender=="female", select=-gender)

The four basic models of independence, quasi-independence, symmetry and quasi-symmetry
for square tables are fit as shown below. We use update() to highlight the relations among
these models in two pairs.

#library(vcdExtra)
indep <- glm(Freq ~ right + left, data = women, family = poisson)
quasi <- update(indep, . ~ . + Diag(right, left))

symm <- glm(Freq ~ Symm(right, left), data = women, family = poisson)
qsymm <- update(symm, . ~ right + left + .)

The brief summary of goodness of fit of these models below shows that the QS model fits
reasonably well, but none of the others do by likelihood-ratio tests or AIC or BIC.

vcdExtra::Summarise(indep, quasi, symm, qsymm)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## indep 6803 6808 6672 9 <2e-16 ***
## quasi 338 347 199 5 <2e-16 ***
## symm 157 164 19 6 0.0038 **
## qsymm 151 161 7 3 0.0638 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Beyond just saying that the QS model fits best, the reasons why it does can be seen in mosaic
displays. Figure 8.12 compares the mosaics for the models of quasi-independence (accounting
only for the diagonal cells) and quasi-symmetry (also accounting for symmetry). It can be seen
in the left panel that the non-diagonal associations are largely symmetric, and also that when they
differ, visual acuity in the two eyes are most likely to differ by only one eye grade.
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labs <- c("High", "2", "3", "Low")
largs <- list(set_varnames = c(right="Right eye grade",

left="Left eye grade"),
set_labels=list(right=labs, left=labs))

mosaic(quasi, ~right + left, residuals_type="rstandard",
gp=shading_Friendly,
labeling_args=largs,
main="Quasi-Independence (women)")

mosaic(qsymm, ~right + left, residuals_type="rstandard",
gp=shading_Friendly,
labeling_args=largs,
main="Quasi-Symmetry (women)")
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Figure 8.12: Mosaic displays comparing the models of quasi-independence and quasi-symmetry
for visual acuity in women.

fig:vision-mosaics

Finally, as usual, anova() can be used to carry out specific tests of nested models. For
example, the test of marginal homogeneity Eqn. (8.26) compares models S and QS and shows
here that the marginal probabilities for the left and right eyes differ.

anova(symm, qsymm, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Freq ~ Symm(right, left)
## Model 2: Freq ~ right + left + Symm(right, left)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 6 19.25
## 2 3 7.27 3 12 0.0075 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4
{ex:hauser1}

EXAMPLE 8.9: Hauser’s occupational mobility table
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The data Hauser79 in vcdExtra, from ?, gives a 5 × 5 table in frequency form cross-
classifying 19,912 individuals in the United States by father’s occupation and son’s first occu-
pation. The occupational categories are represented by abbreviations, of Upper Non-Manual
(UpNM), Lower Non-Manual (LoNM), Upper Manual (UpM), Lower Manual (LoM) and Farm.
These data were also analysed by ?.

data("Hauser79", package="vcdExtra")
structable(~Father+Son, data=Hauser79)

## Son UpNM LoNM UpM LoM Farm
## Father
## UpNM 1414 521 302 643 40
## LoNM 724 524 254 703 48
## UpM 798 648 856 1676 108
## LoM 756 914 771 3325 237
## Farm 409 357 441 1611 1832

Before fitting any models, it is useful to calculate and plot the observed local log odds ratios,
as we did in Example 8.5 to see the patterns in the data that need to be accounted for. These are
calculated using loddsratio().

hauser.tab <- xtabs(Freq ~ Father+Son, data=Hauser79)
(lor.hauser <- loddsratio(hauser.tab))

## log odds ratios for Father and Son
##
## Son
## Father UpNM:LoNM LoNM:UpM UpM:LoM LoM:Farm
## UpNM:LoNM 0.67513 -0.17883 0.26230 0.093109
## LoNM:UpM 0.11508 1.00254 -0.34613 -0.057878
## UpM:LoM 0.39801 -0.44852 0.78964 0.100869
## LoM:Farm -0.32577 0.38145 -0.16597 2.769718

This 4× 4 table is graphed using matplot(), giving Figure 8.13.

matplot(as.matrix(lor.hauser), type='b', lwd=2,
ylab='Local log odds ratio',
xlab="Son's status comparisons",
xaxt='n', cex.lab=1.2,
xlim=c(1,4.5), ylim=c(-.5,3)
)

abline(h=0, col='gray') # independence
abline(h=mean(lor.hauser$coefficients)) # mean
axis(side=1, at=1:4, labels=colnames(lor.hauser))
text(4, as.matrix(lor.hauser)[4,], rownames(lor.hauser),

pos=4, col=1:4, xpd=TRUE, cex=1.2)
text(4, 3, "Father's status", cex=1.2)

Amonst the features here, you can see that there is a tendency for the odds ratio contrasting
fathers in the non-manual categories (UpNM:LoNM) to decline with the adjacent comparisons of
their sons’ occupations. As well, the 2 × 2 table for fathers and sons in the LoM:Farm stands
out as deserving some attention. These observed features will be smoothed by fitting models, as
described below. For additional interpretation, you can always construct similar plots of the log
odds ratios using the fitted() values from any of the models described below.

We begin by fitting the independence model and the quasi-independence model, where the
diagonal parameters in the latter are specified as Diag(Father,Son). As expected, given the
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large frequencies in the diagonal cells, the quasi-independence model is a considerable improve-
ment, but the fit is still very poor.

hauser.indep <- gnm(Freq ~ Father + Son, data=Hauser79, family=poisson)
hauser.quasi <- update(hauser.indep, ~ . + Diag(Father,Son))
vcdExtra::Summarise(hauser.indep, hauser.quasi)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## hauser.indep 6391 6402 6170 16 <2e-16 ***
## hauser.quasi 914 931 683 11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The pattern of associations can be seen in the mosaic displays for both models, shown in
Figure 8.14.

mosaic(hauser.indep, ~Father+Son, main="Independence model",
gp=shading_Friendly)

mosaic(hauser.quasi, ~Father+Son, main="Quasi-independence model",
gp=shading_Friendly)

The mosaic for quasi-independence shows an approximately symmetric pattern of residuals,
so we proceed to add Symm(Father,Son) to the model to specify quasi-symmetry.

hauser.qsymm <- update(hauser.indep,
~ . + Diag(Father,Son) + Symm(Father,Son))

vcdExtra::Summarise(hauser.qsymm)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
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Figure 8.14: Mosaic displays for the Hauser79 data. Left: independence model; right:quasi-
independence model.

fig:hauser-mosaic1

## hauser.qsymm 268 291 27.4 6 0.00012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This model represents a huge improvement in goodness of fit. With such a large sample size,
it might be considered an acceptable fit. The remaining lack of fit is shown in the mosaic for this
model, Figure 8.15.

mosaic(hauser.qsymm, ~Father+Son, main="Quasi-symmetry model",
gp=shading_Friendly, residuals_type="rstandard")

The cells with the largest lack of symmetry (using standardized residuals) are those for the
upper and lower non-manual occupations, where the son of an upper manual worker is less likely
to move to lower non-manual work than the reverse.

For cases like this involving structured associations in square tables, ? developed the more
general idea of grouping the row and column categories into levels of an association factor based
on similar values of residuals or local odds ratios observed from the independence model. Such
models are called topological models or levels models, which are implemented in the Topo().

To illustrate, Hauser suggested the following matrix of levels to account for the pattern of
associations seen in Figure 8.14. The coding here takes the diagonal cell for the Farm category
as the reference cell. Four other parameters are assigned by the numbers 2–5 to account for lack
of independence.

levels <- matrix(c(
2, 4, 5, 5, 5,
3, 4, 5, 5, 5,
5, 5, 5, 5, 5,
5, 5, 5, 4, 4,
5, 5, 5, 4, 1
), 5, 5, byrow=TRUE)
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Figure 8.15: Mosaic display for the model of quasi-symmetry fit to the Hauser79 data.
fig:hauser-mosaic2

This models is fit using Topo() as shown below. It also provides a huge improvement over
the independence model, with 4 additional parameters.

hauser.topo <- update(hauser.indep, ~ . + Topo(Father, Son, spec=levels))
vcdExtra::Summarise(hauser.topo)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## hauser.topo 295 311 66.6 12 1.4e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As with other models fit using gnm(), you can extract the coefficients for particular terms
using pickCoef().

as.vector((coef(hauser.topo)[pickCoef(hauser.topo, "Topo")]))

## [1] -1.8128 -2.4973 -2.8035 -3.4026

The models fit in this example are summarized below. Note that AIC prefers the quasi-
symmetry model, hauser.quasi, while, because of the large sample size, BIC prefers the
topological model, hauser.topo.

vcdExtra::Summarise(hauser.indep, hauser.quasi, hauser.qsymm, hauser.topo)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## hauser.indep 6391 6402 6170 16 < 2e-16 ***
## hauser.quasi 914 931 683 11 < 2e-16 ***
## hauser.qsymm 268 291 27 6 0.00012 ***
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## hauser.topo 295 311 67 12 1.4e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4

8.7.2 Ordinal square tables
{sec:sq-ordinal}

The theory presented in Section 8.7.1 treats the row and column variables as nominal. In many
instances, such as Example 8.9, the variable categories are also ordered, yet these models do
not exploit their ordinal nature. In such cases, the models such as uniform association (L ×
L), row effects, RC and others discussed in Section 8.6 can be combined with terms for quasi-
independence and symmetry of the remaining associations.

For example, the L × L model Eqn. (8.20) of uniform association applies directly to square
tables, and, for square tables, can also be amended to include a diagonals term, Diag(), giving
a model of quasi-uniform association. In this model, all adjacent 2 × 2 sub-tables not involving
diagonal cells have a common local odds ratio.

A related model is the crossings model (?). This hypothesizes that there are different diffi-
culty parameters for crossing from one category to the next, and that the associations between
categories decreases with their separation. In the crossings model for an I × I table, there are
I − 1 crossings parameters, ν1, ν2, . . . , νI−1. The association parameters, λABij have the form of
the product of the intervening ν parameters,

λABij =



k=i−1∏
k=j

νk : i > j

k=j−1∏
k=i

νk : i < j

This model can also be cast in quasi form, by addition of a Diag term to fit the main diagonal
cells. See ?, §4.4.7 for further details of this model. The Crossings() function in vcdExtra
implements such crossings terms.{ex:hauser2}

EXAMPLE 8.10: Hauser’s occupational mobility table
Without much comment or detail, for reference we first fit some of the ordinal models to the

Hauser79 data: Uniform association (L× L), row effects, and the RC(1) model.

Fscore <- as.numeric(Hauser79$Father) # numeric scores
Sscore <- as.numeric(Hauser79$Son) # numeric scores

# uniform association
hauser.UA <- update(hauser.indep, ~ . + Fscore*Sscore)
# row effects model
hauser.roweff <- update(hauser.indep, ~ . + Father*Sscore)
# RC model
hauser.RC <- update(hauser.indep, ~ . + Mult(Father, Son), verbose=FALSE)

All of these fit very poorly, yet they are all substantial improvements over the independence
model.
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vcdExtra::Summarise(hauser.indep, hauser.UA, hauser.roweff, hauser.RC)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## hauser.indep 6391 6402 6170 16 <2e-16 ***
## hauser.UA 2503 2516 2281 15 <2e-16 ***
## hauser.roweff 2309 2325 2080 12 <2e-16 ***
## hauser.RC 920 940 685 9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The L×L model, hauser.UA might be improved by ignoring the diagonals, and, indeed it
is.

hauser.UAdiag <- update(hauser.UA, ~ . + Diag(Father,Son))
anova(hauser.UA, hauser.UAdiag, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Freq ~ Father + Son + Fscore + Sscore + Fscore:Sscore
## Model 2: Freq ~ Father + Son + Fscore + Sscore + Fscore:Sscore + Diag(Father,
## Son)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 15 2281
## 2 10 73 5 2208 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this model, the estimated common local log odds ratio— the coefficient for the linear-by-
linear term Fscore:Sscore is

coef(hauser.UAdiag)[["Fscore:Sscore"]]

## [1] 0.1584

For comparisons not involving the diagonal cells, each step down the scale of occupational cat-
egories for the father multiplies the odds that the son will also be in one lower category by
exp(0.158) = 1.172, an increase of 17%.

The crossings model, with and without the diagonal cells can be fit as follows:

hauser.CR <- update(hauser.indep, ~ . + Crossings(Father,Son))
hauser.CRdiag <- update(hauser.CR, ~ . + Diag(Father,Son))
vcdExtra::Summarise(hauser.CR, hauser.CRdiag)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## hauser.CR 319 334 89.9 12 5.1e-14 ***
## hauser.CRdiag 299 318 64.2 9 2.0e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The quasi-crossings model hauser.CRdiag has a reasonable G2 fit statistic, and its inter-
pretation and lack of fit is worth exploring further. The crossings coefficients ν can be extracted
as follows.
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nu <- coef(hauser.CRdiag)[pickCoef(hauser.CRdiag, "Crossings")]
names(nu) <- gsub("Crossings(Father, Son)C", "nu", names(nu), fixed=TRUE)
nu

## nu1 nu2 nu3 nu4
## -0.42275 -0.38768 -0.27500 -1.40244

They indicate the steps between adjacent categories in terms of the barriers for a son moving
to a lower occupational category. The numerically largest gap separates the lower non-manual
category from farming.

In contrast to the UAdiag model, the quasi-crossing model with diagonal terms implies that
all 2 × 2 off-diagonal sub-tables are independent, i.e., the local odds ratios are all equal to 1.0.
The reasons for lack of fit of this model can be seen in the corresponding mosaic display, shown
in Figure 8.16

mosaic(hauser.CRdiag, ~Father+Son,
gp=shading_Friendly, residuals_type="rstandard",
main="Crossings() + Diag()")

−5.1

−4.0

−2.0

 0.0

 2.0

 4.0

 6.5
rstandard

Crossings() + Diag()

Son

Fa
th

er
Fa

rm
Lo

M
U

pM
Lo

N
M

U
pN

M

UpNM LoNM UpM LoM Farm

Figure 8.16: Mosaic display for the quasi-crossings model fit to the Hauser79 data.
fig:hauser-mosaic3

It can be seen that lack of fit for this model is largely concentrated in the lower triangle, where
the father’s occupation is lower than that of his son.

In this example and the last, we have fit quite a few different models to the ? data. In
presentations, articles and books it is common to summarize such a collection in a table, sorted
by G2, degrees of freedom, AIC or BIC, to show their ordering along some metric. For instance,
here we collect all the models fit in Example 8.9 and this example in a glmlist() and sort in
decreasing order of BIC to show model fit by this measure.
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modlist <- glmlist(hauser.indep, hauser.roweff, hauser.UA, hauser.UAdiag,
hauser.quasi, hauser.qsymm, hauser.topo,
hauser.RC, hauser.CR, hauser.CRdiag)

Summarise(modlist, sortby="BIC")

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## hauser.indep 6391 6402 6170 16 < 2e-16 ***
## hauser.UA 2503 2516 2281 15 < 2e-16 ***
## hauser.roweff 2309 2325 2080 12 < 2e-16 ***
## hauser.RC 920 940 685 9 < 2e-16 ***
## hauser.quasi 914 931 683 11 < 2e-16 ***
## hauser.CR 319 334 90 12 5.1e-14 ***
## hauser.UAdiag 306 324 73 10 1.2e-11 ***
## hauser.CRdiag 299 318 64 9 2.0e-10 ***
## hauser.topo 295 311 67 12 1.4e-09 ***
## hauser.qsymm 268 291 27 6 0.00012 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When there are more than just a few models, a more useful display is a model comparison
plot of measures like G2/df , AIC or BIC against degrees of freedom. For example, Figure 8.17
plots BIC against Df from the result of Summarise(). Because interest is focused on the
smallest values of BIC and these values span a large range, BIC is shown on the log scale using
log="y".

sumry <- Summarise(modlist)
mods <- substring(rownames(sumry),8)
with(sumry, {

plot(Df, BIC, cex=1.3, pch=19,
xlab='Degrees of freedom', ylab='BIC (log scale)',
log="y", cex.lab=1.2)

pos <- ifelse(mods=="UAdiag", 1, 3)
text(Df, BIC+55, mods, pos=pos, col='red', xpd=TRUE, , cex=1.2)
})

Compared with the sorted tabular display shown above, such a plot sorts the models both
by a measure of fit and by model complexity (degrees of freedom). Figure 8.17 shows that the
quasi-symmetry model is best by BIC, but also shows that the next four best models by this
measure are quite similar in terms of BIC. Similar plots for AIC and G2/df show that the model
of quasi-symmetry is favored by these measures.

4

8.8 Three-way and higher-dimensional tables
{sec:loglin-3wayord}

The models and methods for ordinal factors and square tables described in Section 8.6 and Sec-
tion 8.7 extend readily to multidimensional tables with these properties for some of the factors.
In three-way tables, these models provide a more parsimonious account than the saturated model,
[ABC], and also allow simpler models than the general model of homogeneous association,
[AB][AC][BC] using scores for ordinal factors or terms for symmetry and diagonal factors in
square layers.

For example, consider the case where all three factors are ordinal and the model of homoge-
neous association [AB][AC][BC] fits poorly. In this case we can generalize the model of uniform
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Figure 8.17: Model comparison plot for the models fit to the Hauser79 data
fig:hauser-sumry-plot

association by assigning scores a, b and c and model the three-way association, λABCijk as

λABCijk = γaibjck

with only one more parameter. This gives the model of uniform interaction (or homogeneous
uniform association)

log(mijk) = µ+ λAi + λBj + λCk + λABij + λACik + λBCjk + γaibjck . (8.27){eq:uni-inter}

This model posits that (with equally spaced scores) all local odds ratios θijk in adjacent rows,
columns and layers are constant,

log(θijk) = γ ∀ i, j, k

The homogeneous association model is the special case of log θijk = γ = 0.

A less restricted model of heterogeneous uniform association retains the linear-by-linear
form of association for factors A and B, but allows the strength of this association to vary over
layers, C, representing λABCijk as

λABCijk = (γ + γk)aibj

with the constraint
∑
k γk = 0. This model is equivalent to fitting separate models of uniform

association at each level k of factor C and gives estimates of the conditional local log odds ratios,
log θij(k) = γ + γk.

Following the development in Section 8.6 there is a large class of other models for ordinal
factors (see Figure 8.6), where not all factors are assigned scores. For three-way tables, these can
be represented in homogeneous form when the two-way association of A and B is the same for
all levels of C, or in a heterogeneous form, when it varies over C.
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Similarly, the models for square tables described in Section 8.7 extend to three-way tables
with several layers (strata), allowing both homogeneous and heterogeneous terms for diagonals
and symmetry describing the AB association over levels of C.{ex:vision-glm2}

EXAMPLE 8.11: Visual acuity
We continue the analysis of the VisualAcuity data, but now consider the three-way, 4×

4 × 2 table comprising both men and women. The main questions here are whether the pattern
of quasi-symmetry observed in the analysis for women also pertains to men and whether there is
heterogeneity of the association between right, left acuity across gender.

A useful first step for n-dimensional tables is to consider the models composed of all 1-way,
2-way, . . . n-way terms as a quick overview. The function Kway() in vcdExtra package does
this automatically, returning a "glmlist" object containing the fitted models.11

vis.kway <-Kway(Freq ~ right + left + gender, data=VisualAcuity)
vcdExtra::Summarise(vis.kway)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## kway.0 13857 13858 13631 31 < 2e-16 ***
## kway.1 9925 9937 9686 24 < 2e-16 ***
## kway.2 298 332 28 9 0.00079 ***
## kway.3 287 334 0 0 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This shows that the model of homogeneous association kway.2 ([RL][RG][LG]) does not
fit well, but it doesn’t account for diagonal agreement or symmetry to simplify the associations.

As a basis for comparison, we first fit the simple models of quasi-independence and quasi-
symmetry that do not involve gender, asserting the same pattern of diagonal and off-diagonal
cells for males and females.

vis.indep <- glm(Freq ~ right + left + gender, data = VisualAcuity,
family=poisson)

vis.quasi <- update(vis.indep, . ~ . + Diag(right, left))
vis.qsymm <- update(vis.indep, . ~ . + Diag(right, left) + Symm(right, left))

Summarise(vis.indep, vis.quasi, vis.qsymm)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## vis.indep 9925 9937 9686 24 <2e-16 ***
## vis.quasi 696 714 449 20 <2e-16 ***
## vis.qsymm 435 456 184 18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model of homogeneous quasi-symmetry fits quite badly, even worse than the all two-way
association model. We can see why in the mosaic for this model, shown in Figure 8.18.

11For completeness, this also fits the 0-way model, corresponding to logmijk... = µ, or the model formula Freq
∼ 1.



398 [11-26-2014] 8 Loglinear and Logit Models for Contingency Tables

mosaic(vis.qsymm, ~ gender + right + left, condvars="gender",
residuals_type="rstandard", gp=shading_Friendly,
labeling_args=largs,
main="Homogeneous quasi-symmetry")
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Figure 8.18: Mosaic display for the model of homogeneous quasi-symmetry fit to the VisualAcu-
ity data.

fig:vision2-qsymm

It can be seen in Figure 8.18 that the pattern of residuals for men and women are nearly
completely opposite in the upper and lower portions of the plot: men have positive residuals in
the same right, left cells where women have negative residuals, and vice-versa. In particular,
the diagonal cells of both tables have large absolute residuals, because the term Diag(right,
left) fits a common set of diagonals for both men and women.

We can correct for this by allowing separate diagonal and symmetry terms, given as interac-
tions of gender with Diag() and Symm().

vis.hetdiag <- update(vis.indep, . ~ . + gender*Diag(right, left) +
Symm(right, left))

vis.hetqsymm <- update(vis.indep, . ~ . + gender*Diag(right, left) +
gender*Symm(right, left))

#vis.hetmodels <- glmlist(vis.qsymm, vis.hetdiag, vis.hetqsymm)
Summarise(vis.qsymm, vis.hetdiag, vis.hetqsymm)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## vis.qsymm 435 456 183.7 18 < 2e-16 ***
## vis.hetdiag 312 338 52.3 14 2.5e-06 ***
## vis.hetqsymm 287 321 17.7 9 0.038 *
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the model vis.hetqsymm fits better than the model vis.hetdiag in absolute
terms and by AIC, but the latter, with fewer parameters, fits better by BIC. The mosaic for the
model vis.hetqsymm is shown in Figure 8.19.

mosaic(vis.hetqsymm, ~ gender + right + left, condvars="gender",
residuals_type="rstandard", gp=shading_Friendly,
labeling_args=largs,
main="Heterogeneous quasi-symmetry")
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Figure 8.19: Mosaic display for the model of heterogeneous quasi-symmetry fit to the VisualAcu-
ity data.

fig:vision2-hetqsymm

As in the two-way case, this model now fits the diagonal cells in each table exactly, effectively
ignoring this part of the association between right and left eye acuity. All remaining residuals are
relatively small in magnitude, except for the two opposite off-diagonal cells (Low, High) and
(High, Low) in the table for women.

The substantive interpretation of this example is that visual acuity is largely the same (diag-
onal cells) in the right and left eyes of both men and women. Ignoring the diagonal cells, when
visual acuity differs, both men and women exhibit approximately symmetric associations. How-
ever, deviations from symmetry (Figure 8.18) are such that men are slightly more likely to have
a lower grade in the right eye, while women are slightly more likely to have a higher grade in the
right eye.

4
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8.9 Multivariate responses
{sec:loglin-multiv}

In many studies, there may be several categorical responses observed along with one or more
explanatory variables. In a clinical trial, for example, the efficacy of a drug might be the primary
response, but the occurrence of side-effects might give rise to additional response variables of
substantive interest. Or, in a study of occupational health, the occurrence of two or more distinct
symptoms might be treated as response variables.

If there are no explanatory variables, then the problem is simply to understand the joint dis-
tribution of the response categories, and the loglinear models and graphical displays described
earlier are sufficient. Otherwise, in these cases we usually wish to understand how the vari-
ous responses are affected by the explanatory variables. Moreover, it may also be important to
understand how the association between the categorical responses depends on the explanatory
variables. That is, we would like to study how both the marginal distributions of the responses,
and their joint distribution depends on the predictors. In the occupational health example, the
goal might be to understand both how the prevalence of several symptoms varies with one or
more predictors, and how the association (loosely, “correlation”) among those symptoms varies
with those predictors.

Although the general loglinear model is often used in these situations, there are special repa-
rameterizations that may be used to separate the marginal dependence of each response on the
explanatory variables from the relationship of the association among the responses on the ex-
planatory variables.

Let us say that categorical responses, Y1, Y2, . . . have been observed, together with possible
explanatory variables, X1, X2, . . ., and let πij··· be the joint probability of all the responses and
explanatory variables; we also use x to refer to the values of X1, X2, . . ..

Note that the minimal model of independence of all responses from each other and from the
explanatory variables is the loglinear model [Y1][Y2] · · · [X1X2 · · ·] (i.e., all associations among
the Xi must be included). A no-effect model, in which the responses do not depend on the ex-
planatory variables, but may be associated among themselves is [Y1Y2 · · ·][X1X2 · · ·]. However,
these models do not separate the individual (marginal) effects ofX1, X2 . . . on each Yi from their
associative effects on the joint relationships among the Yi.

There are three useful general approaches which do separate these effects:

1. Model the marginal dependence of each response, Yi separately on X1, X2, . . ., and, in
addition, model the interdependence among the responses, Y1, Y2, . . ..12

2. Model the joint dependence of all responses on X1, X2, . . ., but parameterized so that
marginal and associative effects are delineated.

3. Construct simultaneous models, estimated together, for the marginal and joint dependence
of the responses on the explanatory variables.

The first approach is the simplest, an informative starting place, and is satisfactory in the
(often unlikely) case that the responses are not associated, or if the associations among responses
do not vary much over the explanatory variables (i.e., no terms like [Y1Y2Xj ] are required). In
the clinical trial example, we would construct separate loglinear or logit models for efficacy

12For quantitative responses, this is roughly analogous to fitting univariate response models for each Yi, followed
by something like a principal component analysis of the relationships among the Yi. But in this case, the multivariate
linear model, Y = XB +E provides a general solution.
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of the drug, and for occurrence of side-effects, and supplement these analyses with mosaic or
other displays showing the relations between efficacy and side-effects and a model for their joint
association. If those who improve with the drug also show more serious side effects, the worth
of the treatment would be questioned. A limitation of this method is that it does not provide an
overall model comprising these effects.

In the second approach, the joint probabilities, πij···, are recast to give separate information
regarding the dependence of the univariate marginal probabilities πi•, π•j , . . ., on the explanatory
variables and the dependence of the intra-response associations on the explanatory variables. The
VGAM package provides several versions of this approach with the function vglm() (for vector
generalized linear model).

The third approach, developed, for example, by ?, is the most general, and provides a scheme
to represent a model J (•) for the joint distributions of the X , Y variables together with a model
M(•) for their first-order marginal distributions. The joint models are typically loglinear models,
ranging from the mutual independence model, J (I) = [Y1][Y2][· · ·][X1][X2][· · ·] to the saturated
model, J (S) = [Y1Y2 · · ·X1X2 · · ·], while the marginal models are logit models for the response
variables. The combined model, denotedJ (•)∩M(•), is estimated simultaneously by maximum
likelihood. This approach is implemented in R in the hmmm package (hierarchical multinomial
marginal models). However, model specification in this implementation is complicated, and it
will not be considered further here.

8.9.1 Bivariate, binary response models

We focus here on two related models reflecting the second approach, as discussed by ?, Section
6.5. We consider here only the case of two binary responses, though the general approach can be
applied to R > 2 responses Y1, Y2, . . . , YR, and these may be polytomous or ordinal.

Let x refer to the values of all the explanatory variables and let πij (x) be the joint probabili-
ties in cell Y1 = i, Y2 = j. The essential idea of the bivariate logistic model arises from a linear
transformation of the cell probabilities π to interpretable functions of the marginal probabilities
(logits) and their association (odds ratio), a mapping of π → η,

η1 = logit(π1•)

η2 = logit(π•1) (8.28) {eq:blogits}

η12 =
π11 π22
π12 π21

The predictors in x are then taken into account by considering models that relate π to x through
η,

η1 = xT
1β1

η2 = xT
2β2 (8.29) {eq:blogits2}

η12 = xT
12β12

where x1, x2 and x12 are subsets of the predictors in x for each sub-model, and β1, β1 and β12

are the corresponding parameters to be estimated.

? arrive at this joint bivariate model in two steps. First, transform the cell probabilities π to a
vector of probabilities γ which also includes the univariate margins, given by

γ = Lπ (8.30) {eq:gamma1}
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where L is a matrix of 0s and 1s of the form of a factorial design matrix. In the 2× 2 case,

γ =



π1•
π2•
π•1
π•2
π11
π12
π21
π22


=



1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




π11
π12
π21
π22

 . (8.31) {eq:gamma2}

There are of course only three linearly independent probabilities, because
∑∑

πij = 1. In
the second step, the bivariate logistic model is formulated in terms of factorial contrasts on the
elements of γ which express separate models for the two logits and the log odds. The model is
expressed as

η = C log γ = C logLπ , (8.32){eq:eta1}

where C is a matrix of contrasts. In the 2× 2 case, the usual contrasts may be defined by

η =

 η1
η2
η12

 =

 logit π1•
logit π•1
θ12

 =

 1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 −1 1





π1•
π2•
π•1
π•2
π11
π12
π21
π22


(8.33){eq:eta2}

Thus, we are modeling the marginal odds of each response, together with the log odds ratio θ12
simultaneously.

Specific models are then formulated for the dependence of η1(x), η2(x) and η12(x) on some
or all of the explanatory variables. For example, with one quantitative explanatory variable, x,
the model  η1

η2
η12

 =

 α1 + β1x
α2 + β2x

θ

 (8.34){eq:bilogit1}

asserts that the log odds of each response changes linearly with x, while the odds ratio between
the responses remains constant. In the general form given by ? the submodels in Eqn. (8.34) may
each depend on the explanatory variables in different ways. For example, the logits could both
depend quadratically on x, while an intercept-only model could be posited for the log odds ratio.

The second model is the bivariate loglinear model, the special case obtained by takingL = I
in Eqn. (8.30) and Eqn. (8.32) so that γ = π. Then a loglinear model of the form

η(x) = C logπ

expresses contrasts among log probabilities as linear functions of the explanatory variables. For
the 2× 2 case, we take the contrasts C as shown below

η =

 l1
l2
η12

 =

 1 1 −1 −1
1 −1 1 −1
1 −1 1 −1




log π11
log π12
log π21
log π22

 (8.35){eq:eta3}
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and models for the dependence of l1(x) , l2(x) and η12(x) are expressed in the same way as in
Eqn. (8.34). The estimates of the odds ratio, η12 are the same under both models. The marginal
functions are parameterized differently, however, but lead to similar predicted probabilities.

In R, bivariate logistic models of the form Eqn. (8.28) and Eqn. (8.29) can be fit using
vglm() with the binom2.or() family in the VGAM package.13 The fitting and graphing
of these models is illustrated in the next example. {ex:coalminers}

EXAMPLE 8.12: Breathlessness and wheeze in coal miners
In Example 4.11 we examined the association between the occurrence of two pulmonary con-

ditions, breathlessness and wheeze, among coal miners classified by age (?). Figure 4.5 showed
fourfold displays focused on the odds ratio for the co-occurrence of these symptoms, and Fig-
ure 4.6 plotted these odds ratios against age directly. Here, we consider models which examine
the changes in prevalence of the two symptoms over age, together with the changes in their asso-
ciation.

Plotting bivariate response data

As a starting point and overview of what is necessary for bivariate response models, we calculate
the empirical log odds for breathlessness and for wheeze, and the log odds ratio for their associ-
ation in each 2 × 2 table. The log odds ratios are the same values plotted in Figure 4.6 (but the
youngest age group was not included in the earlier analysis).

The CoalMiners data is 2× 2× 9 table. For convenience in this analysis (and for use with
VGAM) we convert it to a 4 × 9 data frame, and relabel the columns to use the combinations
of ("B", "b") and ("W", "w") to represent the conditions of breathlessness and wheeze,
where the upper case letter indicates presence of the condition. A variable age is also created,
using the midpoints of the age categories.

data("CoalMiners", package="vcd")
coalminers <- data.frame(t(matrix(aperm(CoalMiners, c(2,1,3)),

4, 9)))
colnames(coalminers) <- c("BW", "Bw", "bW", "bw")
coalminers$age <- c(22, 27, 32, 37, 42, 47, 52, 57, 62)
coalminers

## BW Bw bW bw age
## 1 9 7 95 1841 22
## 2 23 9 105 1654 27
## 3 54 19 177 1863 32
## 4 121 48 257 2357 37
## 5 169 54 273 1778 42
## 6 269 88 324 1712 47
## 7 404 117 245 1324 52
## 8 406 152 225 967 57
## 9 372 106 132 526 62

With the data in this form, a simple function blogits() in vcdExtra calculates the logits
and log odds ratios corresponding to Eqn. (8.28). The add argument accommodates cases where
there are very small, or 0 frequencies in some cells, and it is common to add a small constant,
such as 0.5 to each cell in calculating empirical logits. This function is used to calculate the
empirical logits and log odds as follows:

13This package also provides for bivariate and trivariate loglinear models with loglinb2() and loglinb2.
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logitsCM <- vcdExtra::blogits(coalminers[,1:4], add=0.5)
colnames(logitsCM)[1:2] <- c("logitB", "logitW")
logitsCM

## logitB logitW logOR
## [1,] -4.73568 -2.86844 3.1956
## [2,] -3.97656 -2.55717 3.6583
## [3,] -3.31713 -2.09388 3.3790
## [4,] -2.73322 -1.84818 3.1327
## [5,] -2.21492 -1.42014 3.0069
## [6,] -1.73870 -1.10922 2.7770
## [7,] -1.10116 -0.79681 2.9217
## [8,] -0.75808 -0.57219 2.4368
## [9,] -0.31902 -0.22591 2.6318

We plot these as shown below, using matplot(), which is convenient for plotting multiple
columns against a given horizontal variable, age here.14 For ease of interpretation of the log
odds, we also use right vertical axis showing the equivalent probabilities for breathlessness and
wheeze.

col <- c("blue", "red", "black")
pch <- c(15, 17, 16)
age <- coalminers$age

op <- par(mar=c(4, 4, 1, 4)+.2)
matplot(age, logitsCM, type="p",

col=col, pch=pch, cex=1.2, cex.lab=1.25,
xlab="Age", ylab="Log Odds or Odds Ratio")

abline(lm(logitsCM[,1] ~ age), col=col[1], lwd=2)
abline(lm(logitsCM[,2] ~ age), col=col[2], lwd=2)
abline(lm(logitsCM[,3] ~ age), col=col[3], lwd=2)

# right probability axis
probs <- c(.01, .05, .10, .25, .5)
axis(4, at=qlogis(probs), labels=probs)
mtext("Probability", side=4, cex=1.2, at=-2, line=2.5)
# curve labels
text(age[2], logitsCM[2,1]+.5, "Breathlessness", col=col[1], pos=NULL, cex=1.2)
text(age[2], logitsCM[2,2]+.5, "Wheeze", col=col[2], pos=NULL, cex=1.2)
text(age[2], logitsCM[2,3]-.5, "log OR\n(B|W)/(B|w)", col=col[3], pos=1, cex=1.2)
par(op)

In Figure 8.20 we see that both symptoms, while quite rare among young miners, increase
steadily with age (or years working in the mine). By age 60, the probability is nearly 0.5 of having
either condition. There is a hint of curvilinearity, particularly in the logit for breathlessness. The
decline in the odds ratio with age may reflect selection, as miners who had retired for health or
other reasons were excluded from the study.

Fitting glm models

Next, we illustrate what can easily be achieved using the standard glm() approach for loglinear
models and why the bivariate models we described are more useful in this situation. glm()

14It is actually a small graphical misdemeanor to plot logits and odds ratios on the same vertical axis because they
are not strictly commensurable. We plead guilty with the explanation that this graph shows what we want to see here
and does not distort the data.
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Figure 8.20: Empirical logits and log odds ratio for breathlessness and wheeze in the CoalMiners
data. The lines show separate linear regressions for each function. The right vertical axis shows
equivalent probabilities for the logits.

fig:cm-blogits

requires a data frame as input, so first reshape CoalMiners to a frequency data frame. For
convenience, we simplify the variable names to B and W.

CM <- as.data.frame(CoalMiners)
colnames(CM)[1:2] <- c("B", "W")
str(CM)

## 'data.frame': 36 obs. of 4 variables:
## $ B : Factor w/ 2 levels "B","NoB": 1 2 1 2 1 2 1 2 1 2 ...
## $ W : Factor w/ 2 levels "W","NoW": 1 1 2 2 1 1 2 2 1 1 ...
## $ Age : Factor w/ 9 levels "20-24","25-29",..: 1 1 1 1 2 2 2 2 3 3 ...
## $ Freq: num 9 95 7 1841 23 ...

As a point of comparison, we fit the mutual independence model, [B][W][Age] and the base-
line model for associated responses, [BW][Age] which asserts that the association between B and
W is independent of Age.

cm.glm0 <- glm(Freq ~ B + W + Age, data=CM, family=poisson)
cm.glm1 <- glm(Freq ~ B * W + Age, data=CM, family=poisson)
vcdExtra::Summarise(cm.glm0, cm.glm1)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## cm.glm0 7217 7234 6939 25 <2e-16 ***
## cm.glm1 2981 3000 2702 24 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The baseline model cm.glm1 fits very badly. We can see the pattern of the residual asso-
ciation in a mosaic display for this model shown in Figure 8.21. The formula argument here
specifies the order of the variables in the mosaic.

vnames <- list(set_varnames = c(B="Breathlessness", W="Wheeze"))
lnames <- list(B=c("B", "b"), W = c("W", "w"))
mosaic(cm.glm1, ~ Age + B + W,

labeling_args=vnames, set_labels=lnames)
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Figure 8.21: Mosaic display for the baseline model, [BW][Age], fit to the CoalMiners data
fig:cm-mosaic1

As structured here, it is easy to see the increase in the prevalence of breathlessness and wheeze
with age and the changing pattern of their association with age.

From Figure 8.20 and Figure 8.21, it is apparent that both breathlessness and wheeze increase
with age, so we can model this by adding terms [B Age][ W Age] to the baseline model. This is
the no-three-way interaction model, which could also be specified as Freq ~ (B + W + Age)^2.

cm.glm2 <- glm(Freq ~ B * W + (B + W) * Age, data=CM, family=poisson)
vcdExtra::Summarise(cm.glm1, cm.glm2)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## cm.glm1 2981 3000 2702 24 <2e-16 ***
## cm.glm2 338 383 27 8 8e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The improvement in fit is substantial, and all terms are highly significant, yet, the residual
G2(8) indicates there is still lack of fit.
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library(car)
Anova(cm.glm2)

## Analysis of Deviance Table (Type II tests)
##
## Response: Freq
## LR Chisq Df Pr(>Chisq)
## B 11026 1 <2e-16 ***
## W 7038 1 <2e-16 ***
## Age 887 8 <2e-16 ***
## B:W 3025 1 <2e-16 ***
## B:Age 1130 8 <2e-16 ***
## W:Age 333 8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

One way to improve the model using the glm() framework is to make use of Age as a
quantitative variable and add a term to allow the odds ratio for the [BW] association to vary
linearly with age. Here, we construct the variable age using the midpoints of the Age intervals.

CM$age <- rep(seq(22, 62, 5), each=4)

In the glm() approach, the odds ratio cannot be modeled directly, but we can use the follow-
ing trick: For each 2× 2 subtable, the odds ratio can be parameterized in terms of the frequency
in any one cell, say, n11k, given that the marginal total n++k is included in the model. We do this
by adding a new interaction variable, ageOR having the value of age for the (1, 1, k) cells and
0 otherwise.

CM$ageOR <- (CM$B=="B") * (CM$W=="W") * CM$age
cm.glm3 <- update(cm.glm2, . ~ . + ageOR)
vcdExtra::Summarise(cm.glm0, cm.glm1, cm.glm2, cm.glm3)

## Likelihood summary table:
## AIC BIC LR Chisq Df Pr(>Chisq)
## cm.glm0 7217 7234 6939 25 <2e-16 ***
## cm.glm1 2981 3000 2702 24 <2e-16 ***
## cm.glm2 338 383 27 8 0.0008 ***
## cm.glm3 320 366 7 7 0.4498
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model cm.glm3, with one more parameter, now fits reasonably well, having residualG2(7) =
6.80. The likelihood ratio test of model cm.glm3 against cm.glm2, which assumes equal odds
ratios over age, can be regarded as a test of the hypothesis of homogeneity of odds ratios, against
the alternative that the [BW] association changes linearly with age. The glm() models fit in this
example are summarized above. As usual, anova() can be used to compare competing nested
models.

anova(cm.glm2, cm.glm3, test="Chisq")

## Analysis of Deviance Table
##
## Model 1: Freq ~ B * W + (B + W) * Age
## Model 2: Freq ~ B + W + Age + ageOR + B:W + B:Age + W:Age
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 8 26.7
## 2 7 6.8 1 19.9 8.2e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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This analysis, while useful, also shows the limitations of the glm() approach: (a) It doesn’t
easily allow us to represent and test the substantively interesting hypotheses regarding how the
prevalence of the binary responses, B and W vary with Age, such as seen in Figure 8.20. (b) It
doesn’t represent the odds ratio for the [BW] association directly, but only through the coding
trick we used here. Thus, it is difficult to interpret the coefficient for ageOR = -0.02613 in a
substantively meaningful way, except that is shows that the odds ratio is decreasing.15

Fitting vglm models

The vglm() function in the VGAM package provides a very general implementation of these
and other models for discrete multivariate responses. The family function, binom2.or() for
binary logistic models allows some or all of the logits or odds ratio submodels to be constrained
to be intercept-only (e.g., as in Eqn. (8.34)) and the two marginal distributions can be constrained
to be equal.

Quantitative predictors (such as age, here), can be modeled linearly or nonlinearly, using
poly() for a parametric fit, or smooth regression splines, as provided by the functions ns(),
bs() and others in model formulas. In this illustration, we fit bivariate linear and quadratic
models in age.

vglm() takes its input data in the wide form we called coalminers at the beginning of
this example. We could use the 9-level factor, Age as we did with glm(), but we plan to use
age as a numeric variable in all three submodels. The coefficients in these models will be more
easily interpreted if we center age and express it as agec in units of five years, as shown below.

coalminers <- transform(coalminers, agec=(age-42)/5)
coalminers$Age <- dimnames(CoalMiners)[[3]]
coalminers

## BW Bw bW bw age agec Age
## 1 9 7 95 1841 22 -4 20-24
## 2 23 9 105 1654 27 -3 25-29
## 3 54 19 177 1863 32 -2 30-34
## 4 121 48 257 2357 37 -1 35-39
## 5 169 54 273 1778 42 0 40-44
## 6 269 88 324 1712 47 1 45-49
## 7 404 117 245 1324 52 2 50-54
## 8 406 152 225 967 57 3 55-59
## 9 372 106 132 526 62 4 60-64

vglm() takes the 2× 2 response frequencies as a 4-column matrix on the right hand side of
the model formula. However, denoting the responses of failure and success by 0 and 1 respec-
tively, it takes these in the order y00, y01, y10, y11. We specify the order below so that the logits
are calculated for the occurrence of breathlessness or wheeze, rather than their absence.

library(VGAM)
# 00 01 10 11
cm.vglm1 <- vglm(cbind(bw, bW, Bw, BW) ~ agec,

binom2.or(zero=NULL), data=coalminers)
cm.vglm1

## Call:

15Actually, the interpretability of the coefficient for the log odds ratio can be enhanced here by centering age, and
representing its units in steps of 5 years, as we do below.
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## vglm(formula = cbind(bw, bW, Bw, BW) ~ agec, family = binom2.or(zero = NULL),
## data = coalminers)
##
## Coefficients:
## (Intercept):1 (Intercept):2 (Intercept):3 agec:1
## -2.26247 -1.48776 3.02191 0.51451
## agec:2 agec:3
## 0.32545 -0.13136
##
## Degrees of Freedom: 27 Total; 21 Residual
## Residual deviance: 30.394
## Log-likelihood: -100.53

In this call, the argument zero=NULL indicates that none of the linear predictors, η1, η2, η12 are
modeled as constants.16

At this writing, there is no anova() method for the "vgam" objects produced by vglm(),
but we can test the residual deviance of the model (against the saturated model) as follows, show-
ing that this model has an acceptable fit.

(G2 <- deviance(cm.vglm1))

## [1] 30.394

# test residual deviance
1-pchisq(deviance(cm.vglm1), cm.vglm1@df.residual)

## [1] 0.084355

The estimated coefficients in this model are usefully shown as below, using the argument
matrix=TRUE in coef(). Using exp() on the result gives values of odds that can be easily
interpreted:

coef(cm.vglm1, matrix=TRUE)

## logit(mu1) logit(mu2) loge(oratio)
## (Intercept) -2.26247 -1.48776 3.02191
## agec 0.51451 0.32545 -0.13136

exp(coef(cm.vglm1, matrix=TRUE))

## logit(mu1) logit(mu2) loge(oratio)
## (Intercept) 0.10409 0.22588 20.5304
## agec 1.67282 1.38465 0.8769

Thus, the odds of a miner showing breathlessness are multiplied by 1.67, a 67% increase,
for each 5 years increase in age; similarly, the odds of wheeze are multiplied by 1.38, a 38%
increase. The odds ratio for the association between the two symptoms are multiplied by 0.88, a
12% decrease over each 5 year interval.

The VGAM package has no special plot methods for "vglm" objects, but it is not hard to con-
struct these using the methods we showed earlier in this example. First, we can obtain the fitted
probabilities for the 4 response combinations using fitted() and the corresponding observed
probabilities using depvar().

16The default, zero=3 gives the model shown in Eqn. (8.34), with the odds ratio constant.
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Figure 8.22: Observed and fitted values for the combinations of breathlessness and wheeze in the
binary logistic regression model cm.vglm1. Left: probabilities; right: on the log odds scale.{fig:cm-vglm1}

age <- coalminers$age
P <- fitted(cm.vglm1)
colnames(P) <- c("bw", "bW", "Bw", "BW")
head(P)

## bw bW Bw BW
## 1 0.93747 0.049409 0.0046356 0.0084831
## 2 0.91461 0.063636 0.0069757 0.0147776
## 3 0.88411 0.080029 0.0104965 0.0253679
## 4 0.84394 0.097484 0.0158138 0.0427671
## 5 0.79188 0.113839 0.0238598 0.0704196
## 6 0.72578 0.125910 0.0359684 0.1123366

Y <- depvar(cm.vglm1)

In the left panel of Figure 8.22, we plot the fitted probabilities in the matrix P using matplot()
and the observed probabilities in Y using matpoints().

col <- c("red", "blue", "red", "blue")
pch <- c(1,2,16,17)

op <- par(mar=c(5,4,1,1)+.1)
matplot(age, P, type="l",

col=col,
lwd=2, cex=1.2, cex.lab=1.2,
xlab="Age", ylab="Probability",
xlim=c(20,65))

matpoints(age, Y,
pch=pch, cex=1.2, col=col)

# legend
text(64, P[9,]+ c(0,.01, -.01, 0), labels=colnames(P), col=col, cex=1.2)
text(20, P[1,]+ c(0,.01, -.01, .01), labels=colnames(P), col=col, cex=1.2)
par(op)
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The right panel of Figure 8.22 shows these on the log odds scale, produced using the same
code as above, applied to the probabilities transformed using qlogis(), the quantile function
for the logistic distribution.

lP <- qlogis(P)
lY <- qlogis(Y)

In Figure 8.20 we plotted the empirical logits and log odds using the function blogits()
to transform frequencies to these values. An essentially identical plot can be produced by trans-
forming the fitted and observed probabilities, as calculated below.

# blogits, but for B and W
logitsP <- blogits(P[,4:1])
logitsY <- blogits(Y[,4:1])

To test for nonlinearity in the prevalence of the symptoms or their odds ratio with age, we can
fit a similar model using poly() or a smoothing spline, such as ns(). We illustrate this here
using a bivariate model allowing quadratic effects of age on all three components.

cm.vglm2 <- vglm(cbind(bw, bW, Bw, BW) ~ poly(agec,2),
binom2.or(zero=NULL), data=coalminers)

This model has a residualG2 = 16.963 with 18 df. Compared to the linear model cm.vglm1,
this represents a significant improvement in goodness of fit.

(LR <- deviance(cm.vglm1) - deviance(cm.vglm2))

## [1] 13.43

1 - pchisq(LR, cm.vglm1@df.residual - cm.vglm2@df.residual)

## [1] 0.0037925

A plot of the fitted logits and log odds ratios under this model is shown in Figure 8.23. You
can interpret this plot as showing that the statistical evidence for the quadratic model indicates
some slight tendency for the prevalence of breathlessness and wheeze levels off slightly with age,
particularly the former.

4

8.9.2 More complex models

When there is more than one explanatory variable and several responses, the methods described
above using glm() and vglm() still apply. However, it is useful to begin with a more thorough
visual examination of the relations within and between these sets. Some useful graphical displays
include:

• mosaic displays showing the marginal relations among the response variables and of the
explanatory variables, each collapsed over the other set;

• conditional mosaics or fourfold displays of the associations among the responses, stratified
by one or more of the explanatory variables;
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Figure 8.23: Observed (points) and fitted (lines) logits and log odds ratios for the quadratic binary
logistic regression model cm.vglm2. {fig:cm-vglm2-blogit}

• plots of empirical logits and log odds ratios, as in Figure 8.20 or model-based plots, such
as Figure 8.23, showing a model-smoothed summary.

These displays can, and should, inform our search for an adequate descriptive or explanatory
model. Some of these ideas are illustrated in the following example. {ex:toxaemia}

EXAMPLE 8.13: Toxaemic symptoms in pregnancy
? gave the data used here on two signs of toxaemia, an abnormal condition during preg-

nancy characterized by high blood pressure (hypertension) and high levels of protein in the urine.
If untreated, both the mother and baby are at risk of complications or death. The data frame
Toxaemia in vcdExtra represents 13,384 expectant mothers in Bradford, England in their first
pregnancy, who were also classified according to social class and the number of cigarettes smoked
per day.

There are thus two response variables, and two explanatory variables in this data set in fre-
quency form. For convenience, we also convert it to a 2× 2× 5× 3 table.

data("Toxaemia", package="vcdExtra")
str(Toxaemia)

## 'data.frame': 60 obs. of 5 variables:
## $ class: Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ smoke: Factor w/ 3 levels "0","1-19","20+": 1 1 1 1 2 2 2 2 3 3 ...
## $ hyper: Factor w/ 2 levels "Low","High": 2 2 1 1 2 2 1 1 2 2 ...
## $ urea : Factor w/ 2 levels "Low","High": 2 1 2 1 2 1 2 1 2 1 ...
## $ Freq : int 28 82 21 286 5 24 5 71 1 3 ...
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tox.tab <- xtabs(Freq~class + smoke + hyper + urea, Toxaemia)
ftable(tox.tab, row.vars=1)

## smoke 0 1-19 20+
## hyper Low High Low High Low High
## urea Low High Low High Low High Low High Low High Low High
## class
## 1 286 21 82 28 71 5 24 5 13 0 3 1
## 2 785 34 266 50 284 17 92 13 34 3 15 0
## 3 3160 164 1101 278 2300 142 492 120 383 32 92 16
## 4 656 52 213 63 649 46 129 35 163 12 40 7
## 5 245 23 78 20 321 34 74 22 65 4 14 7

The questions of main interest are how the occurrence of each symptom varies with social
class and smoking, and how the association between these symptoms varies. It is useful, how-
ever, to examine first the marginal relationship between the two responses, and between the two
predictors. The calls to mosaic() below produce the two panels in Figure 8.24.

mosaic(~smoke + class, data=tox.tab, shade=TRUE,
main="Predictors", legend=FALSE)

mosaic(~hyper + urea, data=tox.tab, shade=TRUE,
main="Responses", legend=FALSE)
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Figure 8.24: Mosaic displays for Toxaemia data: Predictor and response associations
fig:tox-mosaic1

We see in Figure 8.24 that the majority of the mothers are in the third social class, and that
smoking is negatively related to social class, with the highest levels of smoking in classes 4 and
5. (Social class 1 is the highest in status here.) More than 50% are non-smokers. Within the re-
sponses, the great majority of women exhibit neither symptom, but showing one symptom makes
it much more likely to show the other. Marginally, hypertension is somewhat more prevalent than
protein urea.

We next examine how the association between responses varies with social class and with
smoking. Figure 8.25 shows a collection of conditional mosaic plots using cotabplot() of
the association between hypertension and urea, for each level of smoking, collapsed over social
class.
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cotabplot(~hyper + urea | smoke, tox.tab, shade=TRUE,
legend=FALSE, layout=c(1,3))
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Figure 8.25: Toxaemia data: Response association conditioned on smoking level
fig:tox-mosaic2

Figure 8.26 is similar, but stratified by social class. The marginal frequencies of the condi-
tioning variable is not represented in these plots. (For example, as can be seen in Figure 8.24, the
greatest number of women are in class 3.)

cotabplot(~hyper + urea | class, tox.tab, shade=TRUE,
legend=FALSE, layout=c(1,5))
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Figure 8.26: Toxaemia data: Response association conditioned on social class
fig:tox-mosaic3

Ignoring social class, the association between hypertension and protein urea decreases with
smoking. Ignoring smoking, the association is greatest in social class 3. However, these displays
don’t show directly how the two symptoms are associated in the combinations of social class and
smoking. The fourfold display in Figure 8.27, does that.

fourfold(aperm(tox.tab), fontsize=16)

It can be seen in Figure 8.27 that the odds ratio appears to increase with both smoking and
social class number and these two symptoms are positively associated in nearly all cases. In only
two cases the odds ratio is not significantly different from 1: mothers in classes 1 and 2, who
smoke more than 20 cigarettes a day, but the frequency in this cell is quite small.
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Figure 8.27: Fourfold display for Toxaemia data. Smoking levels vary in the rows and social
class in the columns.{fig:tox-fourfold}

t(apply(tox.tab, MARGIN=1:2, FUN=sum))

## class
## smoke 1 2 3 4 5
## 0 417 1135 4703 984 366
## 1-19 105 406 3054 859 451
## 20+ 17 52 523 222 90

From these plots, it is useful to examine the association between hypertension and urea more
directly, by calculating and plotting the odds ratios. For a 2× 2×K×L× · · · table, the function
oddsratio() in vcd calculates these for each 2×2 subtable, and returns an array of dimension
K × L× · · ·, together with similar array of standard errors.

LOR <-oddsratio(aperm(tox.tab))
LOR

## 1 2 3 4 5
## 0 1.5370 1.46785 1.5821 1.31676 1.0048
## 1-19 1.0846 0.85892 1.3739 1.34233 1.0321
## 20+ 2.4485 -1.14579 0.7331 0.86587 2.0949

The plot() method for the resulting "logoddsratio" object only handles a single stratum
dimension, but in the present case it is easy to plot the result using matplot() as we did earlier.
The lines below produce Figure 8.28.

matplot(t(LOR), type="b",
cex=1.5, pch=15:17, cex.lab=1.5, lwd=2, lty=1,
ylab='log odds ratio: Urea | Hypertension',
xlab='Social class of mother',
xlim=c(1,5.5), col=c("blue", "black", "red")

)
abline(h=0, col='gray')
text(5.2, LOR[,5]+c(-.05,.05, 0), labels=rownames(LOR), cex=1.25)
text(5.2, max(LOR[,5])+.2, "Smoking", cex=1.4)
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Figure 8.28: Log odds ratios for protein urea given hypertension, by social class and level of
maternal smoking

fig:tox-LOR

The association between the response symptoms, shown in Figure 8.28 is clearer, once we
take the variation in sample sizes into account. Except for the heavy smokers, particularly in
social classes 1 and 2, the log odds ratio appears to range only between 1–1.5, meaning that, given
one symptom, the odds of also having the other range between exp(1) = 2.72 and exp(1.5) =
4.48.

This initial overview of the data is completed by calculating and plotting the log odds for
each symptom within each class-smoke population. This could be done in the same way as in
Example 8.12, (except that there are now two explanatory factors). The steps used there were:
(a) Reshape the 2 × 2 × K · · · table to a matrix with four columns corresponding to the binary
response combinations. (b) Calculate the logits (and log odds ratio) using blogits(). TODO:
Use this as an exercise.

Here, it is more useful to make separate plots for each of the logits, and we illustrate a more
general approach that applies to two or more binary responses, with two or more predictor vari-
ables. The essential idea is to fit a separate logit model for each response separately, using the
highest-order interaction of all predictors (the saturated model). The fitted logits in these models
then match those in the data.

tox.hyper <- glm(hyper=='High' ~ class*smoke, weights=Freq,
data=Toxaemia, family=binomial)

tox.urea <- glm(urea=='High' ~ class*smoke, weights=Freq,
data=Toxaemia, family=binomial)

It is then simple to plot these results using the effects package as shown in Figure 8.29. Each
plot shows the logit for the response measure against class, with separate curves for the levels of
smoking.17

17As is usual for effect plots of binary response glm() models, the vertical axis is plotted on the scale of log odds,
but labeled in terms of probabilities.
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library(effects)

plot(allEffects(tox.hyper),
ylab = "Probability (hypertension)",
xlab = "Social class of mother",
main = "Hypertension: class*smoke effect plot",
colors = c("blue", "black", "red"),
lwd=3, multiline=TRUE,
key.args=list(x=0.05, y=0.2, cex=1.2)
)

plot(allEffects(tox.urea),
ylab = "Probability (Urea)",
xlab = "Social class of mother",
main = "Urea: class*smoke effect plot",
colors = c("blue", "black", "red"),
lwd=3, multiline=TRUE,
key.args=list(x=0.65, y=0.2, cex=1.2)
)
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Figure 8.29: Plots of log odds for hypertension and urea, by social class of mother and smoking.
fig:tox-effplots

From Figure 8.29, it can be seen that the prevalence of these symptoms has a possibly complex
relation to social class and smoking. However, the mosaic for these predictors in Figure 8.24 has
shown us that several of the class-smoking categories are quite small (particularly heavy smokers
in Classes 1 and 2) so the response effects for these classes will be poorly estimated. Taking this
into account, we suspect that protein urea varies with social class, but not with smoking, while
the prevalence of hypertension may truly vary with neither, just one, or both of these predictors.

Fitting models

The plots shown so far in this example are all essentially data-based, in that they use the observed
frequencies or transformations of them and don’t allow for a simpler view, based on a reasonable
model. That is, abbreviating the table variables by their initial letters, the plots in Figure 8.28
and Figure 8.29 are plots of the saturated model, [CSHU] that fits perfectly, but with the data
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transformed for each 2 × 2 subtable to the log odds ratio and the two log odds for hyper and
urea.

The bivariate logistic model fit by vglm() still applies when there are two or more predic-
tors; however, like other multivariate response models, it doesn’t easily allow the logits to depend
on different predictor terms. To illustrate this, we first transform the Toxaemia to a 15× 4 data
frame in the form required by vglm().

tox.tab <- xtabs(Freq~class + smoke + hyper + urea, Toxaemia)
toxaemia <- t(matrix(aperm(tox.tab), 4, 15))
colnames(toxaemia) <- c("hu", "hU", "Hu", "HU")
rowlabs <- expand.grid(smoke=c("0", "1-19", "20+"), class=factor(1:5))
toxaemia <- cbind(toxaemia, rowlabs)
head(toxaemia)

## hu hU Hu HU smoke class
## 1 286 21 82 28 0 1
## 2 71 5 24 5 1-19 1
## 3 13 0 3 1 20+ 1
## 4 785 34 266 50 0 2
## 5 284 17 92 13 1-19 2
## 6 34 3 15 0 20+ 2

In the model specification for vglm(), the zero argument in binom.or() allows any
one or more of the two log odds and log odds ratio to be fit as a constant (intercept-only) in
Eqn. (8.29). However, in that equation, the predictors x1, x2, x12, must be the same in all three
submodels. For example, the model tox.vglm1 below uses main effects of class and smoke
in both models for the logits, and zero=3 for a constant log odds ratio.

tox.vglm1 <- vglm(cbind(hu, hU, Hu, Hu) ~ class + smoke,
binom2.or(zero=3), data=toxaemia)

coef(tox.vglm1, matrix=TRUE)

## logit(mu1) logit(mu2) loge(oratio)
## (Intercept) -0.50853648 -1.2214518 2.7808
## class2 0.18156457 0.0382046 0.0000
## class3 0.06332765 -0.0087552 0.0000
## class4 -0.02227055 -0.0031541 0.0000
## class5 -0.00077172 0.0821863 0.0000
## smoke1-19 -0.41298650 -0.2198673 0.0000
## smoke20+ -0.30562472 -0.1245019 0.0000

Instead, when there are no quantitative predictors, and when the odds ratio is relatively con-
stant (as here) it is easier to fit ordinary loglinear models than to use the bivariate logit formulation
of the previous example. These allow the responses H and U to depend on the class-smoking
combinations separately, by including the terms [CSH] or [CSU ], respectively.

The minimal, null model, [CS][H][U ] fits the marginal association of the numbers in each
class-smoking category, but asserts that the responses, H and U are independent, which we have
already seen is contradicted by the data. We take [CS][HU ] as the baseline model (Model 1),
asserting no relation between response and predictor variables, but associations within each set
are allowed, These models are fit as shown below.

# null model
tox.glm0 <- glm(Freq ~ class*smoke + hyper + urea,

data=Toxaemia, family=poisson)
# baseline model: no association between predictors and responses
tox.glm1 <- glm(Freq ~ class*smoke + hyper*urea,

data=Toxaemia, family=poisson)
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We proceed to fit a collection of other models, adding terms to allow more associations be-
tween the responses and predictors. Summary measures of goodness of fit and parsimony are
shown in Table 8.3.

Table 8.3: Loglinear models, tox.glm*, fit to the Toxaemia data{tab:toxmod}

Model Terms df G2 p-value G2/df AIC BIC R2

0 CS H U 43 672.85 0.0000 15.65 586.85 264.27 .
1 CS HU 42 179.03 0.0000 4.26 95.03 -220.04 0.000
2 CS HU SH CU 36 46.12 0.1203 1.28 -25.88 -295.94 0.742
3 CS CH CU HU SH CU 30 40.47 0.0960 1.35 -19.53 -244.58 0.774
4 CSH CU HU 24 26.00 0.3529 1.08 -22.00 -202.04 0.855
5 CSH CU SU HU 22 25.84 0.2588 1.17 -18.16 -183.20 0.856
6 CSH CSU HU 14 22.29 0.0729 1.59 -5.71 -110.74 0.875
7 CSH CSU SHU 12 15.65 0.2079 1.30 -8.35 -98.37 0.913
8 CSH CSU CHU SHU 8 12.68 0.1233 1.59 -3.32 -63.33 0.929
9 CSHU 0 0.00 0 0 0.00 0.00 1.000

tox.glm2 <- update(tox.glm1, . ~ . + smoke*hyper + class*urea)

tox.glm3 <- glm(Freq ~ (class + smoke + hyper + urea)^2,
data=Toxaemia, family=poisson)

tox.glm4 <- glm(Freq ~ class*smoke*hyper + hyper*urea + class*urea,
data=Toxaemia, family=poisson)

tox.glm5 <- update(tox.glm4, . ~ . + smoke*urea)

tox.glm6 <- update(tox.glm4, . ~ . + class*smoke*urea)

tox.glm7 <- update(tox.glm6, . ~ . + smoke*hyper*urea)

tox.glm8 <- glm(Freq ~ (class + smoke + hyper + urea)^3,
data=Toxaemia, family=poisson)

tox.glm9 <- glm(Freq ~ (class + smoke + hyper + urea)^4,
data=Toxaemia, family=poisson)

Model 2 adds the simple dependence of hypertension on smoking ([SH]) and that of urea
on class ([CU ]). Model 3 includes all two-way terms. In Model 4, hypertension is allowed to
depend on both class and smoking jointly ([CSH]). In Model 5 an additional dependence of
urea on smoking ([SU ]) is included, while in Model 6 urea depends on class and smoking jointly
([CSU ]).

None of these models contain three-way terms involving both H and U , so these models
assume that the log odds ratio for hypertension given urea is constant over the explanatory vari-
ables. Recalling the conditional mosaics (Figure 8.25 and Figure 8.26), Models 7 and 8 add terms
which allow the odds ratio to vary, first with smoking ([SHU ]), then with class ([CHU ]) as well.
Finally, Model 9 is the saturated model, that fits perfectly.

How do we choose among these models? Model 2 is the smallest model whose deviance is
non-significant. Models 4 and 5 both have a smaller ratio ofG2/df. For comparing nested models,
we can also examine the change in deviance as terms are added (or dropped). Thus, going from
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Model 2 to Model 3 decreases the deviance by 5.65 on 6 df, while the step from Model 3 to Model
4 gives a decrease of 14.47, also on 6 df. These tests can be performed using lrtest() in the
lmtest package, shown below for models tox.glm1–tox.glm5.

library(lmtest)
lmtest::lrtest(tox.glm1, tox.glm2, tox.glm3, tox.glm4, tox.glm5)

## Likelihood ratio test
##
## Model 1: Freq ~ class * smoke + hyper * urea
## Model 2: Freq ~ class + smoke + hyper + urea + class:smoke + hyper:urea +
## smoke:hyper + class:urea
## Model 3: Freq ~ (class + smoke + hyper + urea)^2
## Model 4: Freq ~ class * smoke * hyper + hyper * urea + class * urea
## Model 5: Freq ~ class + smoke + hyper + urea + class:smoke + class:hyper +
## smoke:hyper + hyper:urea + class:urea + smoke:urea + class:smoke:hyper
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 18 -260
## 2 24 -194 6 132.91 <2e-16 ***
## 3 30 -191 6 5.65 0.464
## 4 36 -184 6 14.47 0.025 *
## 5 38 -184 2 0.17 0.920
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The AIC and BIC statistics, balancing parsimony and goodness-of-fit, have their minimum value
for Model 2, which we adopt here for this example.

Plotting model results

Whatever model is chosen, as a final step, it is important to determine what that model implies
about the original research questions. Because our focus here is on the prevalence of each symp-
tom, and their association, it is helpful to graph the fitted logits and log odds ratios implied by the
model, as was done in Figure 8.22 and Figure 8.23.

The presentation goal here is to produce plots showing the observed logits and log odds
ratios as in Figure 8.29 and Figure 8.28, supplemented by lines showing these values according
to the fitted model. In Example 8.12 we fit the bivariate logit model, for which the response
functions were the desired logits and log odds. Here, where we have fit ordinary loglinear models,
the observed and fitted logits can be calculated from the observed and fitted frequencies. The
calculations require a bit of R calisthenics to arrange these into forms suitable for plotting.

As we did earlier, we first reshape the Toxemia to wide format, as a 15×4 table of observed
frequencies. Because there are now two predictor variables, we take care to include the levels of
smoke and class as additional columns.

# reshape to 15 x 4 table of frequencies
tox.tab <- xtabs(Freq~class + smoke + hyper + urea, Toxaemia)
toxaemia <- t(matrix(aperm(tox.tab), 4, 15))
colnames(toxaemia) <- c("hu", "hU", "Hu", "HU")
rowlabs <- expand.grid(smoke=c("0", "1-19", "20+"), class=factor(1:5))
toxaemia <- cbind(toxaemia, rowlabs)

Applying blogits(), we get the observed logits and log odds ratios in logitsTox.

# observed logits and log odds ratios
logitsTox <- blogits(toxaemia[,4:1], add=0.5)
colnames(logitsTox)[1:2] <- c("logitH", "logitU")
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Figure 8.30: Observed (points) and fitted (lines) logits for the Toxemia data under Model 2. {fig:tox-glm-logits1}

logitsTox <- cbind(logitsTox, rowlabs)
head(logitsTox)

## logitH logitU logOR smoke class
## 1 -1.02057 -1.9988 1.52679 0 1
## 2 -0.94261 -2.1665 1.07102 1-19 1
## 3 -1.02962 -2.1401 2.44854 20+ 1
## 4 -0.95040 -2.5158 1.46196 0 2
## 5 -1.04699 -2.4983 0.86401 1-19 2
## 6 -0.86500 -2.5257 -1.14579 20+ 2

The fitted frequencies are extracted using predict(tox.glm2, type="response")
and then manipulated in a similar way to give logitsFit.

# fitted frequencies, as a 15 x 4 table
Fit <- t(matrix(predict(tox.glm2, type="response"), 4, 15))
colnames(Fit) <- c("HU", "Hu", "hU", "hu")
Fit <- cbind(Fit, rowlabs)
logitsFit <- blogits(Fit[,1:4], add=0.5)
colnames(logitsFit)[1:2] <- c("logitH", "logitU")
logitsFit <- cbind(logitsFit, rowlabs)

In tabular form, you can examine any of these components, for example, the log odds ratios
from the fitted values shown below.

matrix(logitsFit$logOR, 3, 5,
dimnames=list(smoke=c("0", "1-19", "20+"), class=1:5))

## class
## smoke 1 2 3 4 5
## 0 1.3588 1.3638 1.3675 1.3643 1.3582
## 1-19 1.3582 1.3678 1.3683 1.3674 1.3658
## 20+ 1.2799 1.3471 1.3662 1.3622 1.3511

Finally, we can plot the observed values in logitsTox (as points) and the fitted values
under Model 2 in logitsFit (as lines), separately for the logitH, logitU, and logOR
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Figure 8.31: Observed (points) and fitted (lines) log odds ratios for the Toxemia data under
Model 2.{fig:tox-glm-logits3}

components. The code below uses ggplot2 for the log odds of hypertension, and is repeated for
urea and the log odds ratio. These graphs are shown in Figure 8.30 and Figure 8.31.

ggplot(logitsFit, aes(x=as.numeric(class), y=logitH, color=smoke)) +
theme_bw() +
geom_line(size=1.2) +
scale_color_manual(values=c("blue", "black", "red")) +
ylab("log odds (Hypertension)") +
xlab("Social class of mother") +
ggtitle("Hypertension") +
theme(axis.title=element_text(size=16)) +
geom_point(data=logitsTox,

aes(x=as.numeric(class), y=logitH, color=smoke), size=3) +
theme(legend.position=c(0.85, .6))

According to this model, Figure 8.31 shows that the fitted log odds ratio is in fact nearly
constant, while Figure 8.30 shows that the log odds for hypertension depends mainly on smoking
(with a large difference of the non-smoking mothers from the rest) and that for protein urea
depends mainly on social class.18

Yet, the great variability of the observed points around the fitted curves indicates that these
relationships are not well-determined. Adding error bars showing the standard error around each
fitted point would indicate that the data conforms as closely to the model as can be expected,
given the widely different sample sizes. However, this would make the plots more complex, and
so was omitted here. In addition to showing the pattern of the results according to the fitted
model, such graphs also help us to appreciate the model’s limitations.

4

18Some possible enhancements to these graphs include (a) plotting on the scale of probabilities or including a right
vertical axis showing corresponding probabilities; (b) using the same vertical axis limits for the two graphs for direct
comparison.
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8.10 Chapter summary
{sec:loglin-summary}

• Loglinear models provide a comprehensive scheme to describe and understand the associ-
ations among two or more categorical variables. It is helpful to think of these as discrete
analogs of ANOVA models, or of regression models, where the log of cell frequency is
modelled as a linear function of predictors.

• Loglinear models typically make no distinction between response and explanatory vari-
ables. When one variable is a response, however, any logit model for that response has an
equivalent loglinear model. The logit form is usually simpler to formulate and test, and
plots of the observed and fitted logits are easier to interpret.

• Models for square tables, with the same row and column categories are an important special
case. For these and other structured tables, a variety of techniques provide the opportunity
to fit models more descriptive than the independence model and more parsimonious than
the saturated model.

• Standard loglinear models treat all variables as unordered factors. When one or more
factors are ordinal, however, loglinear and logit models may be simplified by assigning
quantitative scores to the levels of an ordered factor. Such models are often more sensitive
and have greater power because they are more focused.

• In all these cases, the interplay between graphing and fitting is important in arriving at
an understanding of the relationships among variables and an adequate descriptive model
which is faithful to the details of the data.

• When there are several categorical responses, along with one or more explanatory variables,
some special forms of loglinear and logit models may be used to separate the marginal
dependence of each response on the explanatory variables from the interdependence among
the responses.

8.11 Further reading
{sec:loglin-reading}

8.12 Lab exercises
{sec:loglin-lab}{lab:8.1}

Exercise 8.1 Example 8.8 presented an analysis of the data on visual acuity for the subset of
women in the VisualAcuity data. Carry out a parallel analysis of the models fit there for the
men in this data set, given by:

data("VisualAcuity", package="vcd")
men <- subset(VisualAcuity, gender=="male", select=-gender)

{lab:8.2}

Exercise 8.2 Table 8.4 gives a 4×4 table of opinions about premarital sex and whether methods
of birth control should be made available to teenagers aged 14–16 from the 1991 General Social
Survey (?, Table 10.3). Both variables are ordinal, and their grades are represented by the case of
the row and column labels.

(a) Fit the independence model to these data using loglm() or glm().
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Table 8.4: Opinions about premarital sex and availability of teenage birth control. Source: ?,
Table 10.3 {tab:birthcontrol}

Premarital sex Birth control
DISAGREE disagree agree AGREE

WRONG 81 68 60 38
Wrong 24 26 29 14
wrong 18 41 74 42

OK 36 57 161 157

(b) Make a mosaic display showing departure from independence and describe verbally the
pattern of association.

(c) Treating the categories as equally spaced, fit the L× L model of uniform association, as in
Section 8.6. Test the difference against the independence model with a likelihood-ratio test.

(d) Fit the RC(1) model with gnm(), and test the difference of this against the model of uniform
association.

(e) Write a brief summary of these results, including plots useful for explaining the relation-
ships in this data set.

{lab:8.3}

Exercise 8.3 The data set gss8590 in logmult gives a 4× 5× 4 table of education levels and
occupational categories for the four combinations of gender and race from the General Social
Surveys, 1985–1990 as reported by ?, Table 2. ?, Table 2.3B later used the subset pertaining
to women to illustrate RC(2) models. This data is created below as Women.tab, correcting an
inconsistency to conform with the 2010 table.

data(gss8590, package="logmult")
Women.tab <- margin.table(gss8590[,,c("White Women", "Black Women")], 1:2)
Women.tab[2,4] <- 49
colnames(Women.tab)[5] <- "Farm"

(a) Fit the independence model, and also the RC(1) and RC(2) models using rc()with marginal
weights, as illustrated in Example 8.7. Summarize these statistical tests in a table.

(b) Plot the solution for the RC(2) model with 68% confidence ellipses. What verbal labels
would you use for the two dimensions?

(c) Is there any indication that a simpler model, using integer scores for the row (Education)
or column (Occupation) categories or both might suffice? If so, fit the analogous column
effects, row effects or L× L model, and compare with the models fit in part (a).

#detach(package:corrplot)
detach(package:VGAM)
#detach(package:logmult)
#remove(list=objects(pattern="\\.tab|\\.df|\\.fit"))
.locals$ch08 <- setdiff(ls(), .globals)
#.locals$ch08
#remove(list=.locals$ch08[sapply(.locals$ch03,function(n){!is.function(get(n))})])
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