

Categorical Data Analysis

Course overview

Michael Friendly

Psych 6136
http://friendly.github.io/psy6136

Course goals

This course is designed as a broad, applied introduction to the statistical analysis of categorical data, with an emphasis on:

Emphasis: visualization methods

- exploratory graphics: see patterns, trends, anomalies in your data
- model diagnostic methods: assess violations of assumptions
- model summary methods: provide an interpretable summary of your data

Emphasis: theory \Rightarrow practice

- Understand how to translate research questions into statistical hypotheses and models
- Understand the difference between simple, non-parametric approaches (e.g., χ^{2} test for indpendence) and model-based methods (logistic regression, GLM)
- Framework for thinking about categorical data analysis in visual terms

Course outline

. Exploratory and hypothesis testing methods

- Week 1: Overview; Introduction to R
- Week 2: One-way tables and goodness-of-fit test
- Week 3: Two-way tables: independence and association
- Week 4: Two-way tables: ordinal data and dependent samples
- Week 5: Three-way tables: different types of independence
- Week 6: Correspondence analysis

Model-based methods

- Week 7: Logistic regression I
- Week 8: Logistic regression II
- Week 9: Multinomial logistic regression models
- Week 10: Log-linear models
- Week 11: Loglinear models: Advanced topics
- Week 12: Generalized Linear Models: Poisson regression
- Week 13: Course summary \& additional topics

Textbooks

Main texts

- Friendly \& Meyer (2016). Discrete Data Analysis with R: Visualizing \& Modeling Techniques for Categorical \& Count Data
- 30% discount on Routledge web site (code: ADC22)
- Draft chapters on http://euclid.psych.yorku.ca/www/psy6136
- DDAR web site: https://ddar.datavis.ca
- Agresti (2007). An Introduction to Categorical Data Analysis, $3^{\text {rd }} \mathrm{E}$. Wiley \& Sons.
eBook available PDF on course web site

an introouction to
CATEGORICAL DATA ANALYSIS

Textbooks

Supplementary readings

- Agresti (2013). Categorical Data Analysis, $3^{\text {rd }}$ ed. [More mathematical, but the current Bible of CDA]
- PDF available: https://bityl.co/FG9c
- Fox (2016). Applied Regression Analysis and Generalized Linear Models, $3^{\text {rd }}$ ed.

Expectations \& grading

- I expect you will read chapters in DDAR \& Agresti Intro each week
- See Topic Schedule on course web site
- R exercises: A few are listed as (ungraded) Assignments
- Class discussion: Help make classes participatory
- Evaluation:
- ($2 \times 40 \%$) Two take-home projects: Analysis \& research report, based on assignment problems or your own data
- (20\%)
- Assignment portfolio: best work, enhanced
- Research report on journal article(s) of theory / application of CDA
- In-class presentation ($\sim 15 \mathrm{~min}$) on application of general interest

What you need

- R, version >=3.6 [R 4.2 is current]
- Download from https://cran.r-project.org/
- RStudio IDE, highly recommended
- https://www.rstudio.com/products/rstudio/
- R packages: see course web page
- vcd
- vcdExtra

- effects

R script to install packages: https://friendly.github.io/6136/R/instal l-vcd-pkgs.R

What is categorical data?

A categorical variable is one for which the possible measured or assigned values consist of a discrete set of categories, which may be ordered or unordered.
Some typical examples are:

- Gender, with categories \{"male", "female", "trans"\}
- Marital status: \{ "Never married", "Married", "Separated", "Divorced",
"Widowed" \}
- Party preference: \{"NDP", "Liberal", "Conservative", "Green"\}
- Treatment improvement: \{"none", "some", "marked"\}
- Age: \{"0-9", "10-19", "20-29", "30-39", . . \} \}.
- Number of children: $0,1,2,3, \ldots$.

Questions:

- Which of these are ordered (ordinal)?
- Which could be treated as numeric? How?
- Which have missing categories, sometimes ignored, or treated as "Other"

Categorical data: Structures

1-way tables

Categorical (frequency) data appears in various forms

- Tables: often the result of table() or x tabs()
- 1-way

- 2-way $-2 \times 2, r \times c$
- 3-way
- Matrices: matrix(), with row \& col names
- Arrays: array(), with dimnames()
- Data frames

- Case form (individual observations)
- Frequency form

- Unordered factors

	Black	Brown	Red	Blond		Hair color of 592 n n
$\%$	108	286	71	127		students
	0.18	0.48	0.12	0.21		
						Voting intentions
	BQ	Cons	Green	Liberal	NDP	in Harris-Decima
n	104	392	126	404	174	poll, 8/21/08
$\%$	0.087	0.33	0.1	0.34	0.14	

Questions:

- Are all hair colors equally likely?
- Aside from Brown hair, are others equally likely?
- Is there a diff in voting intentions for Liberal vs. Conservative

1-way tables

- Even here, simple graphs are more informative than tables

But these don't really answer the questions. Why?

1-way tables

- Ordered, quantitative factors
- Number of sons in Saxony families with 12 children

```
> data(Saxony, package="vcd")
> Saxony
nMales
\begin{tabular}{rrrrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
3 & 24 & 104 & 286 & 670 & 1033 & 1343 & 1112 & 829 & 478 & 181 & 45 & 7
\end{tabular}
```

Questions:

- What is the form of this distribution?
- Is it useful to think of this as a binomial distribution?
- If so, is $\operatorname{Pr}($ male $)=0.5$ reasonable to describe the data?
- How could familities have > 10 children?

1-way tables: graphs

For a particular distribution in mind:

- Plot the data together with the fitted frequencies
- Better still: hanging rootogram: freq on sqrt scale; hang bars from fitted values

Larger tables

> margin.table (HairEyeColor, 1:2)
Eye
Hair
Brown
Black
Blue
Brown
Red
Red
Blond

2-way
Actually, this is a 2D margin of a 3-way table
> ftable(Eye ~ Sex + Hair, data=HairEyeColor) Eye Brown Blue Hazel Green
Sex Hai
$\begin{array}{lllll}\text { Male Black } & 32 & 11 & 10 & 3\end{array}$
Brown
Brown
Red
Blond
Female Black
Brown
Red
Blond

32	11	10	3
53	50	25	15
10	10	7	7
3	30	5	8
36	9	5	2
66	34	29	14
16	7	7	7
4	64	5	8

-way (\& higher) can be "flattened" for a more convenient display
formula notation: row vars \sim col vars

2-way tables: $2 \times 2 \times \ldots$

- Two-way

	Gender Male Female	
Admit		
Admitted	1198	557
Rejected	1493	1278

Admission to graduate programs at UC Berkeley

- Three-way, stratified by another factor
by Department

		Dept	A	B	C	D	E
	E						
Admit	Gender						
Admitted Male	512	353	120	138	53	22	
	Female	89	17	202	131	94	24
Rejected Male	313	207	205	279	138	351	
	Female	19	8	391	244	299	317

Questions:

- Is admission associated with gender?
- Does admission rate vary with department?
- Table form is convenient for display, but information is implicit
- a table has dimensions, dim() and dimnames()
- the "observations" are the cells in the tables
" the "variables" are the dimensions of the table (factors)
- the cell value is the count or frequency
$>\operatorname{dim}$ (haireye)
[1] 44
$>$ dimnames(haireye)
\$Hair
[1] "Black" "Brown" "Red" "Blond"
\$Eye
[1] "Brown" "Blue" "Hazel" "Green"
> names(dimnames(haireye)) \# factor names [1] "Hair" "Eye"
$>\operatorname{prod}(\operatorname{dim}($ haireye)) \# of cells
[1] 16
$>$ sum(haireye)
[1] 592

Datasets: frequency form

- Another common format is a dataset in frequency form
> as.data.frame(haireye)
Hair Eye Freq Black Brown 68
Brown Brown 119
Red Brown 26
Blond Brown
Black Blue
Black Blue
Red Blue
Blond Blue
Black Hazel
Brown Hazel
Red Hazel
Blond Hazel
3 Black Green
4 Brown Green
5 Red Green
6 Blond Green
- Use as.data.frame(table)
- One row for each cell
- Columns: factors + Freq or count

Datasets: case form

- Raw data often arrives in case form

```
> expand.dft(as.data.frame(haireye)) |>
```

 as_tibble() |>
 + mutate (age $=$ round (runif($\mathrm{n}=$
sum(haireye), min=17, max=29)))
\# A tibble: 592×3
Hair Eye age
<chr> <chr> <dbl>
Black Brown 19
2 Black Brown 19
3 Black Brown 27
4 Black Brown 23
5 Black Brown 19
6 Black Brown 29
7 Black Brown 25
8 Black Brown 29
9 Black Brown 17
10 Black Brown 23
... with 582 more row
- One obs. per case
- \# rows = sum of counts
- vcdExtra::expand.dft() expands frequency form
- case form is required if there are continuous variables
- case form is tidy
- not all CDA functions play well with tibbles

Categorical data analysis: Methods

Methods for categorical data analysis fall into two main categories

Non-parametric, randomization-based methods

- Make minimal assumptions
- Useful for hypothesis-testing:
- Are men more likely to be admitted than women?
- Are hair color and eye color associated?
- Does the binomial distribution fit these data?
- Mostly for two-way tables (possibly stratified)
- R:
- Pearson Chi-square: chisq.test()
- Fisher's exact test (for small expected frequencies): fisher. test ()
- Mantel-Haenszel tests (ordered categories: test for linear association): CMHtest()
- SAS: PROC FREQ - can do all the above
- SPSS: Crosstabs

Categorical data analysis: Methods

Model-based methods

- Must assume random sample (possibly stratified)
- Useful for estimation purposes: Size of effects (std. errors, confidence intervals)
- More suitable for multi-way tables
- Greater flexibility; fitting specialized models
- Symmetry, quasi-symmetry, structured associations for square tables
- Models for ordinal variables
- R: glm() family, Packages: car, gnm, vcd, ...
- estimate standard errors, covariances for model parameters
- confidence intervals for parameters, predicted $\operatorname{Pr}\{r e s p o n s e\}$
- SAS: PROC LOGISTIC, CATMOD, GENMOD , INSIGHT (Fit YX), ...
- SPSS: Hiloglinear, Loglinear, Generalized linear models

Models: Response vs. Association

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
- Admit ~ Gender + Dept
- Party \sim Age + Education + Urban
\Rightarrow Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association among variables
- Q: Which variables are associated, and how?
- Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
- Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]

Loglinear models
This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

Models: Response vs. Association

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
- Admit ~ Gender + Dept
- Party \sim Age + Education + Urban
\Rightarrow Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association among variables
- Q: Which variables are associated, and how?
- Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
- Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]
\Rightarrow Loglinear models
This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

Response models

Analysis methods for categorical outcome (response) variables have close parallels with those for quantitative outcomes

	Quantitative outcome	Categorical outcome
Continuous predictor	Regression: $\operatorname{Im}(y \sim x 1+x 2)$	Logistic regression: glm() Loglinear model: $\log \operatorname{lm}()$ Ordered: prop. odds model: polr()
Categorical predictor	ANOVA: $\operatorname{Im}(y \sim A+B)$ Ordered: polynomial contrasts	χ^{2} tests: chisq.test() Ordered: CMH tests, CMHtest() Loglinear model: loglm()
Both	ANCOVA: $\operatorname{Im}(y \sim A+B+x)$	Logistic regression: glm() Loglinear model: $\log \operatorname{lm}()$

All use similar model formulas:

```
lm(y ~ A)
lm(y ~ A*B)
lm(y ~ X + A)
lm(y ~ (A+B+C)^2)
# one way ANOVA
# two way: A + B + A:B
# one-way ANCOVA
# 3-way ANOVA: A, B, C, A:B, A:C, B:C
```


Response models

For quantitative outcomes, $\operatorname{Im}()$ for everything, formula notation

```
lm(y ~ A)
lm(y ~ A*B)
lm(y ~ X + A)
lm(y ~ (A+B+C)^2)
```

\# one way ANOVA
\# two way: $A+B+A: B$
\# one-way ANCOVA
\# 3-way ANOVA: A, B, C, A:B, A:C, B:C

For categorical outcomes, different modeling functions for different outcome types

```glm(binary ~ X + A, family="binomial") glm(Freq ~ X + A, family="poisson")```	\# logistic regression   \# poisson regression
MASS : polr (multicat $\sim \mathrm{X}+\mathrm{A}$ )	\# ordinal regression
nnet: :multinom(multicat ~ X + A)	\# multinomial regression
loglin(table, margins)	\# loglinear model
MASS : : loglm (Freq ~ .)	\# loglinear model, . = A $+\mathrm{B}+\mathrm{C}+$
MASS : : $\operatorname{loglm(Freq~\sim ~.~}{ }^{\text {2 }}$ )	\# + all two-way associations

glm(binary ~ X + A, family="binomial") glm(Freq ~ X + A, family="poisson") MASS : :polr(multicat ~ X + A) nnet: :multinom(multicat $\sim X+A$ ) loglin(table, margins) MASS : : loglm (Freq ~ .^2)
\# logistic regression
poisson regression
\# ordinal regression
\# multinomial regression
loglinear model
\# + all two-way associations

## Data display: Tables vs. Graphs

If I can't picture it, I can't understand it.
Albert Einstein
Getting information from a table is like extracting sunlight from a cucumber.

Farquhar \& Farquhar, 1891

## Tables vs. Graphs

- Tables are best suited for look-up and calculation-
- read off exact numbers
- show additional calculations (e.g., \% change)
- Graphs are better for:
- showing patterns, trends, anomalies,
- making comparisons
- seeing the unexpected!
- Visual presentation as communication:
- what do you want to say or show?
- $\Longrightarrow$ design graphs and tables to 'speak to the eyes'


## Graphical methods: Communication goals

## Different graphs for different audiences

- Presentation: A carefully crafted graph to appeal to a wide audience
- Exploration, analysis: Possibly many related graphs, different perspectives, narrow audience (often: just you!)



## Graphical methods: Presentation goals

- Different presentation goals appeal to different design principles


Think: What do I want to communicate? For what purpose?

## Graphical methods: Quantitative data

Quantitative data (amounts) are naturally displayed in terms of magnitude $\sim$ position along a scale


## Graphical methods: Categorical data

Frequency data (counts) are more naturally displayed in terms of count $\sim$ area (Friendly, 1995)


Fourfold display for $2 \times 2$ table


Mosaic plot for 3-way table

Friendly, M. (1995). Conceptual and visual models for categorical data. American Statistician, 49: 153-160.

## Principles of graphical display

- Effect ordering (Friendly and Kwan, 2003)— In tables and graphs, sort unordered factors according to the effects you want to see/show.


Friendly \& Kwan (2003). Corrgrams: Exploratory displays for correlation matrices. American Statistician, 54(4): 316-324.

## Tabular displays

- Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Alpha ordered

	Hair color			
Eye color	Blond	Black	Brown	


Model:	Independence: [Hair][Eye] $\chi^{2}(9)=138.29$			
Color coding:	$<-4 \quad<-2 \quad<-1$	0	$>1$	$>2 \quad>4$
$n$ in each cell:	$n<$ expected		$n>$ expected	

There is an association, but it is hard to see the general pattern

## Tabular displays

- Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Effect ordered

	Hair color			
Eye color	Black	Brown	Red	Blond
Brown	68	119	26	7
Hazel	15	54	14	10
Green	5	29	14	16
Blue	20	84	17	94


Model:	Independence: [Hair][Eye] $\chi^{2}(9)=138.29$			
Color coding:	$<-4 \quad<-2 \quad<-1$	0	$>1$	$>2 \quad>4$
$n$ in each cell:	$n<$ expected		$n>$ expected	

The pattern is clearer when the eye colors are permuted: light hair goes with light eyes \& vice-versa

## Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

A semi-graphic table shows the patterns in the data

There are $1+$ unusual cells here. Can you see them?


From: N.R. Jones et-al (2020). Two metres or one: what is the evidence for physical distancing in covid-19? BMJ 2020;370:m3223, doi: https://doi.org/10.1136/bmj.m3223

## Visual table ideas: Heatmap shading

Heatmap shading: Shade the background of each cell according to some criterion

The trends in the US and Canada are made obvious

NB: Table rows are sorted by Jan. value, lending coherence

Background shading ~ value:
US \& Canada are made to stand out.

Tech note: use white text on a darker background

## Unemployment rate in selected countries

country	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Japan	2.4\%	2.4\%	2.5\%	2.6\%	2.9\%	2.8\%	2.9\%	3.0\%
Netherlands	3.0\%	2.9\%	29\%	3.4\%	3.6\%	4.3\%	4.5\%	4.6\%
Germany	3.4\%	3.6\%	3.8\%	4.0\%	4.2\%	4.3\%	4.4\%	4.4\%
Mexico	3.6\%	3.6\%	3.2\%	4.8\%	4.3\%	5.4\%	5.2\%	5.0\%
us	3.6\%	3.5\%	4.4\%	14.7\%	13.3\%	11.1\%	10.2\%	8.4\%
South Korea	4.0\%	3.3\%	3.8\%	3.8\%	4.5\%	4.3\%	4.2\%	3.2\%
Denmark	4.9\%	4.9\%	4.8\%	4.9\%	5.5\%	6.0\%	6.3\%	6.1\%
Belgium	5.1\%	5.0\%	5.0\%	5.1\%	5.0\%	5.0\%	5.0\%	5.1\%
Australia	5.3\%	5.1\%	5.2\%	6.4\%	7.1\%	7.4\%	7.5\%	6.8\%
Canada	5.5\%	5.6\%	7.8\%	13.0\%	13.7\%	12,3\%	10.9\%	10.2\%
Finland	6.8\%	6.9\%	7.0\%	7.3\%	7.5\%	7.8\%	8.0\%	8.1\%

## Bertifier: Turning tables into graphs


(a) Table: attitudes and attributes by country
(b) Visual: encode values by size, shape
(c) Sort \& group by themes, country regions

Bertifier: Bertin's reorderable matrix See: http://www.aviz.fr/bertifier
b encode values by size \& shape


## Data, pictures, models \& stories

## Goal: Tell a credible story about

 some real data problemdata

Gender bia
Measles vaccination Global warming


## Data, pictures, models \& stories

Two paths to enlightenment


## Gender Bias at UC Berkeley?

## Sex Bias in Graduate Admissions: Data from Berkeley

Measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation.
P. J. Bickel, E. A. Hammel, J. W. O'Connell

Determining whether discrimination because of sex or ethnic identity is being practiced against persons seeking passage from one social status or locus o another is an important problem in our society todav. It is legally imbor-
deceision to admit or to deny admission. The question we wish to pursue is whether the decision to admit or to deny was influenced by the sex of the applicant.
We cannot know with We cannot know with any certainty the influences on the evaluators in the
by using a
As alread As already pitfalls ah
but we ir but we ir
one of the one of the
We mu We mu of the da of the da approach. given disc plicants dc intelligenc ise, or ot mately pe students. I that make meaningfu any differ plicants b: differences ise as schc ly one co example, $t$ hisced aet

Data, pictures, models \& stories
Now, tell the story!


## $2 \times 2$ Frequency Tables: Fourfold displays

Males nearly twice as likely to be
admitted


- Is this a "significant" association?
- Is it evidence for gender bias?
- How to measure strength of association?
- How to visualize?

Fourfold display:

- quarter circles, area ~ frequency
- ratio of areas: odds ratio ( $\theta$ )
- confidence bands: overlap iff $\theta \approx 1$
- visualize significance!


## $2 \times 2 \times k$ Stratified tables

The data arose from 6 graduate departments

No difference between males \& females, except in Dept A where women more likely to be admitted!

Design:

- small multiples
- encode direction by color
- encode signif. by shading



Mosaic matrices


Dept

Scatterplot matrix analog for categorical data

All pairwise views
Small multiples $\rightarrow$ comparison

The answer: Simpson's Paradox

- Depts $\mathrm{A}, \mathrm{B}$ were easiest
- Applicants to A, B mostly male
- $\therefore$ Males more likely to be admitted overall


## Graphical methods for categorical data

In general, these share similar ideas \& scope with methods for quantitative data

## Exploratory methods

- Minimal assumptions (like non-parametric methods)
- Show the data, not just summaries
- But can add summaries: smoothed curve(s), trend lines, ...
- Help detect patterns, trends, anomalies, suggest hypotheses


## Plots for model-based methods

- Residual plots - departures from model, omitted terms, ...
- Effect plots - estimated probabilities of response or log odds
- Diagnostic plots - influence, violation of assumptions


## Summary

- Categorical data involves some new ideas
- Discrete variables: unordered or ordered
- Counts, frequencies
- New / different data structures \& functions
- tables - 1-way, 2-way, 3-way, ... table(), xtabs()
- similar in matrices or arrays matrix(), array()
- datasets:
- frequency form
- case form
- Graphical methods: often use area ~ Freq
- Models: Most are $\approx$ natural extensions of $\operatorname{Im}()$

