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Discrete distributions: Basic ideas

* Quantitative data: often assumed Normal (u, o?) —
unreasonable for CDA

* Binomial, Poisson, Negative binomial, ... are the
building blocks for CDA
* Form the basis for modeling techniques

® |ogistic regression, generalized linear models, Poisson
regression

* Data:
® outcome variable (k=0,1, 2, ...)

= counts of occurrences (n,): accidents, words in text, males
in families of size k

Examples: binomial

Human sex ratio (Geissler, 1889): Is there evidence that Pr(male) = 0.5?

Saxony families

Saxony families with 12 children having k = 0,1....12 sons.

k |0 1 2 3 4 5 6 7 8 9 10 11 12
ng|3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Number of families
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Examples: count data

Federalist papers: Disputed authorship

° 77 essays by Alexander Hamilton, John Jay, James Madison to persuade
voters to ratify the US constitution, all signed with pseudonym “Publius”
®= Who wrote each?
= 65 known, 12 disputed (H & M both claimed sole authorship)

* Mosteller & Wallace (1984): analysis of frequency distns of key “marker”
words: from, may, whilst, ...

* e.g., blocks of 200 words: occurrences (k) of “may” in how many blocks
(ny)

> data (Federalist, package = "vcd")
> Federalist
nMay
0 1 2 3 4 5 6
156 63 29 8 4 1 1




Count data: models

Number of blocks of text

- ] —

0 1 2 3 4 5 [

Occurrences of 'may’

For each word (“from”, “may”, “whilst”, ...)

* Fit a probability model (Poisson, NegBin)

* Estimate parameters (A, 6)

* — Calculate log Odds (Hamilton vs. Madison)

* — All 12 disputed papers most likely written by Madison

Example: Type-token distributions

@ Basic count, k: number of “types”; frequency, ng: number of instances
observed

@ Frequencies of distinct words in a book or literary corpus
@ Number of subjects listing words as members of the semantic category “fruit”
@ Distinct species of animals caught in traps

o Differs from other distributions in that the frequency for k =0 is
unobserved

o Distribution is often extremely skewed (J-shaped)

Table: Number of butterfly species nk for which k individuals were collected

Individuals (k) 1 2 3 4 5 6 7 8 9 10 11 12
Species (nk) 118 74 44 24 29 22 20 19 20 15 12 14
Individuals (k) 13 14 15 16 17 18 19 20 21 22 23 24 | Si
Species (ng) 6 12 6 9 9 6 10 10 11 5 3 3| 5

data (Butterfly, package="vcd")

barplot (Butterfly,
xlab = "Number of individuals",
ylab "Number of species",
col = "pink",
cex.lab = 1.5)

Questions:

What is the total pop. of butterflies in Malaysia?
How many wolves remain in Canada NWT?

How many words did Shakespeare know?

Answers depend on estimating Pr(k=0)
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Discrete distributions: Questions

* General questions
= What process gave rise to the distribution?

® What is the form: uniform, binomial, Poisson, negative
binomial, ... ?

" — Fit & estimate parameters

* Visualize goodness of fit
®= — Use in some larger context to tell a story
* Examples
® Families in Saxony: might expect Bin(n=12, p); p=0.5?
® Federalist papers: Perhaps Poisson(A)
= Butterfly data: Perhaps a log-series distribution?




Fitting discrete distributions

Lack of fit:

@ Lack of fit tells us something about the process giving rise to the data
@ Poisson: assumes constant small probability of the basic event

@ Binomial: assumes constant probability and independent trials

@ Negative binomal: allows for overdispersion, relative to Poisson

@ Models for more complex categorical data use these basic discrete
distributions

@ Binomial (with predictors) — logistic regression

@ Poisson (with predictors) — poisson regression, loglinear models

@ = many of these are special cases of generalized linear models

Common discrete distributions

Discrete distributions are characterized by a probability function,
Pr(X = k) @ p(k), that the random variable X has value k.

* Common discrete distributions have the following forms:

Discrete Probability
distribution function, p(k) Parameters

. . n n—k p = Pr (success);
Binomial (NP1 —p) % trials
Poisson ek /Kl A = mean

Negative binomial ~ ("*~")p"(1 — p)*  p; n=# successful trials

Geometric p(1 — p)¥ p
Logarithmic series 6% /[ klog(1 — 6)] 6

Discrete distributions: R

R functions: {d, p, q, r}

° d__ density function, Pr(X=k) = p(k)

° p__ cumulative probability, F(k) = X y<; p(k)

° g quantile function, k = F! (p), smallest value such that F (k) = p
° r random number generator

Discrete Density (pmf) Cumulative Quantile Random #
distribution function (CDF) CDF! generator
Binomial dbinom () pbinom() gbinom () rbinom{()
Poisson dpois () ppois () gpois () rpois ()
Negative binomial | dnbinom () pnbinom () gnbinom () rnbinom ()
Geomelric dgeom () pgeom () ggeom () rgeom ()
Logarithmic series | dlogseries () plogseries() glogseries() rlogseries()

Binomial distribution

The binomial distribution, Bin(n, p), # ways to get k r(k events) Pr(n-k non-

Aﬁut‘(y!/evenw)

Bin(n, p) : Pr{X = k} = p(k) = (E)pk(l — p)nk k=0,1,..., n, (1)

arises as the distribution of the number of events of interest (“successes") which
occur in n independent trials when the probability of the event on any one trial is
the constant value p = Pr(event).

Examples

* Toss 10 fair coins— how many heads? Bin(10, %)

® Toss 12 fair dice— how many 5s or 6s? Bin(12, 1/3)
Mean, variance, skewness:

Mean[X] = np MLE from data: p = = = 2/ 2k
Var[X] =np (1-p) =npq
Skew[X] =np q (g-p)




Binomial distribution

Binomial distributions for k=0, 1, 2, ..., 12 successes in n=12 trials, for 4 values of p

Pr(success)
i [ 1/6 L
023 ° 13
A — 12
> 020 & 213 I
E
@ 0.15 =
Qo
o
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0.00 o —if -
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Number of successes
* Mean=np
* Variance is maximum when p =%
* Skewed whenp # %

DDAR Fig 3.9, pp 76-77

Poisson distribution

The Poisson distribution, Pois(A),

E—A )\k
Pois(A) : Pr{X = k} = p(k) = i k=0,1,... (2)
gives the probability of an event occurring k = 0,1,2, ... times over a farge

number of independent trials, when the probability, p, that the event occurs on
any one trial (in time or space) is small and constant.
Examples:

@ Number of highway accidents at some given location
@ Defects in a manufacturing process
@ Number of goals scored in soccer games

Table: Total goals scored in 380 games in the Premier Football League, 1995/95 season

Total goals o 1 2 3 4 5 6 7
Number of games | 27 88 91 73 49 31 18 3

Poisson distribution

Poisson distributions for A =1, 4, 10

0 5 10 15 20
1 4 10 DDAR Fig
3.10,p 81
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Number of events (k)
Mean, variance, skewness: Properties:
Mean[X] = A . y .
Var[X] = A MLE: A = % Sum of Pois (A;, A,,A;, ...) = Pois(31;)

Skew[X] = A2 Approaches N(A, A) asn — oo

Negative binomial distribution

The Negative binomial distribution, NBin(n, p),

n+k—1

NBin(n. p) : Pr{X = k} = p(k) = ( k

)p”(l—p)k k=0,1,...,0

is a waiting time distribution. It arises when n trials are observed with constant
probability p of some event, and we ask how many non-events (failures), k, it
takes to observe n successful events.

Example: Toss a coin; what is probability of getting k = 0.1,2,... tails before
n = 3 heads?

This distribution is often used as an alternative to the Poisson when

@ constant probability p or independence are violated
@ variance is greater than the mean (overdispersion: Var[X] > Mean[X] )

Mean(X) = ng/p=up Mean(X)=,u=ﬂ(1_p) — = n :
Var(X) = ng/p? P n+

. ) 1- ; §
Skew(X) — 22 Var()x]=ﬂ(—2p) — Var()x)=,u+":—1.

Vg
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Fitting discrete distributions

Fitting a discrete distribution involves the following steps:

@ Estimate the parameter(s) from the data, e.g., p for binomial, A for Poisson,
etc. Typically done using maximum likelihood, but some distributions have
simple expressions:

o Binomial, p= 3" kn/(n3 ] nk) = mean / n
@ Poisson, A =3 knk/> nx = mean

@ Calculate fitted probabilities, p(k) for the distribution, and then fitted
frequencies, Np(k).

© Assess Goodness of fit: Pearson X2 or likelihood-ratio G2
K

xz—i (m — Npo*® G2 =" nlog(+)
= ) Npx = N log Npy
k=1 P k=1 P

Both have asymptotic chisquare distributions, y% _ with s estimated
parameters, under the hypothesis that the data follows the chosen
distribution.

Fitting & graphing discrete distributions

In R, the vcd and vcdExtra packages provide functions to fit,
visualize and diagnose discrete distributions

Fitting: goodfit () fits uniform, binomial, Poisson,
neg bin, geometric, logseries, ...
* Graphing: rootogram () assess departure between

observed, fitted counts

Ord plot: Ordplot () diagnose form of a discrete

distribution

Robust plots: distplot () handle problems with

discrepant counts

Example: Saxony families

> data (Saxony, package="vcd")
> Saxony
nMales
0 1 2 3 4 5 6 7 8 9 10 11 12

3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Use goodfit() to fit the binomial; test with summary()

Sax.fit <- goodfit (Saxony, type = "binomial", par=list(size=12))
> summary (Sax.fit)

Goodness-of-fit test for binomial distribution

X2 df P (> X"2)
Likelihood Ratio 97 11 6.98e-16




Example: Saxony families What’s wrong with simple histograms?

The print() method for goodfit objects shows the details Discrete distributions are often graphed as histograms, with a theoretical fitted
distribution superimposed
N ——— ¥ print The plot() method for goodfit objects provides some alternatives

Observed and fitted values for binomial distribution > pIot(Sax.fit, type = "standing", xlab = "Number of males”)

with parameters

estimated by "ML’

count observed fitted pearson residual - ™
0 3 0.933 2.140 Pzztztr;e;tﬁg tgimjes *7 7{ I Problems:
; 152 %iggg ;ggg Zfresiduals, dgk 30 x * Largest frequen§|e§ dominate
2 26 250,475 g - 7/ . Must assess deviations vs. the
4 670 628.055 1.674 Pearson x2=5 d, 2 e fitted curve
5 1033 1085.211 -1.585 g
6 1343 1367.279 -0.657 o
7 1112 1265.630 -4.318 @
8 829 854.247 -0.864 10+
9 478 410.013 3.358
10 181 132.836 4.179 7]
11 45  26.082 3.704 o L
12 7 2.347 3.037

o1 2 3 4 5 6 7 8 9% 101 12

Mumber of males

Hanging rootograms

Deviation rootograms

> plot(Sax.fit, type = "hanging", xlab = "Number of males" # default
DRI AT anging', xia Il erau > plot(Sax.fit, type = "deviation", xlab = "Number of males")
o
. f( \ Tukey (1972, 1977): Deviation rootogram:
% e shift histogram bars to the fitted i o e emphasize differences between
G observed and fitted frequencies

sart{Frequency)
5]
-]
1

=
1

@ — judge deviations vs. horizontal
line.

@ plot /freq — smaller frequencies
are emphasized.

L We can now see clearly where the bino-

[ [l - ' : =
- mial doesn’t fit
3 4 5 6 7 8 9 10 11 12

Number of males

bars now show the residuals (gaps)
directly

5
@
1

sqgrt(Frequency)

There are more families with very low or
very high number of sons than the bino-
mial predicts.

Q: Why is this so much better than the
lack-of-fit test?

=
1

0- =

o1 2 3 4 5 & 7 8 9 10 11 12

Number of males




Example: Federalist papers

Example: Federalist papers

> data (Federalist, package="vcd")
> Federalist
nMay
0 1 2 3 4 5 6
156 63 29 8 4 1 1

Fit the Poisson distribution
> Fed.fit0 <- goodfit (Federalist, type="poisson")
> summary (Fed.fit0)

Goodness-of-fit test for poisson
distribution

X*2 df P(> X"2)
Likelihood Ratio 25.2 5 0.000125

This fits very poorly!

Try the Negative binomial distribution

> Fed.fitl<- goodfit (Federalist, type="nbinomial")
> summary (Fed.fitl)

Goodness-of-fit test for nbinomial distribution

X2 df P(> X"2)
Likelihood Ratio 1.96 4 0.742

This now fits very well, indeed! Why?
@ Poisson assumes that the probability of a given word (*may”) is constant
across all blocks of text.
@ Negative binomial allows the rate parameter A to vary over blocks of text

Federalist papers: Rootograms

Butterfly data

Hanging rootograms for the Federalist papers data, comparing Poisson and Negative
binomial

> plot (Fed.fit0, main = "Poisson")
> plot (Fed.fitl, main = "Negative binomial")
Poisson Negative binomia
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Both Poisson and Negative binomial are terrible fits! What to do??

But.fitl <- goodfit (Butterfly, type="poisson")
But.fit2 <- goodfit (Butterfly, type="nbinomial")
plot (But.fitl, main="Poisson")

plot (But.fit2, main="Negative binomial™)

Poisson Negative binomial

i
L
6
= = 4
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3 R
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w w
& Eoo
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Ord plots: Diagnose form of distribution

How to tell which discrete distributions are likely candidates?

@ Ord (1967): for each of Poisson, Binomial, Negative binomial, and
Logarithmic series distributions,
o plot of kpx /pxk_1 against k is linear
e signs of intercept and slope — determine the form, give rough estimates of

parameters
Slope Intercept Distribution Parameter

(b) (a) (parameter) estimate

+ Poisson () A=a
- + Binomial (n, p) p= b/(b —-1)
+ + Neg. binomial (n,p) p=1-
+ — Log. series (#) #= b

H =

@ Fitline by WLS, using vn, — 1 as weibhts
@ A heuristic method: doesn’t always work, but often a good start.

Ord plot: Examples

Butterfly data: The slope and intercept correctly diagnoses the log-series distribution

> Ord plot (Butterfly,
main = "Butterfly species collected in Malaya",
gp=gpar (cex=1), pch=16)

Butterfly species collected in Malaya + Slope
- intercept
— log-series

30 o slope = 1.061
intercept =-0.709 ®

type: log-series L *
estimate: theta = 1.061 -

Frequency ratio

Number of occurrences

Ord plots: Examples

Ord plots for the Saxony and Federalist data

> Ord_plot(Saxony, main = "Families in Saxony", gp=gpar(cex=1), pch=16)
> Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers", gp=gpar(cex=1), pch=16)

Families in Saxony Instances of 'may’ in Federalist papers

6 7 siope=0.424 4
intercept = -0.023

type: nbinomial
4 - estimate: prob = 0.576

Frequency ratio
Frequency ratio

Number of occurrences Number of occurrences

Robust distribution plots

@ Ord plots lack robustness

@ one discrepant fregency, ny affects points for both k and k + 1

@ the use of WLS to fit the line is a small attempt to minimize this
@ Robust plots for Poisson distribution (Hoaglin and Tukey, 1985)
For Poisson, plot count metameter = ¢ (nx) = log, (k! nk /N) vs. k
Linear relation = Poisson, slope gives A
Cl for points, diagnostic (influence) plot
Implemented in distplot () inthe ved package

Poissoness plot

For the Poisson distribution, this is
called a “poissonness plot”

Distribution metameter

7 siope=0228
intercept =-1.53

A b v 4 o N
L T

lambda : ML = 0,656
7| ex(siope) = 1256

T T T T T T
0 1 2 3 4 5 6

Occurrences of may’




Poissonness plot: Details

@ If the distribution of n, is Poisson(\) for some fixed A, then each observed
frequency, ng ~ my, = Np.
@ Then, setting nx = Nipx = e~ \*/k!, and taking logs of both sides gives

log(nk) =log N — A+ k log A —log k!
which can be rearranged to

@ (ng) = log (kln‘k) =—-A+(log M) k

N
@ = if the distribution is Poisson, plotting ¢(nx) vs. k should give a line with
@ intercept = —\
@ slope =log A
@ Nonlinear relation — distribution is not Poisson

@ Hoaglin and Tukey (1985) give details on calculation of confidence
intervals and influence measures.

Other distributions

This idea extends readily to other discrete data distributions:

@ The binomial, Poisson, negative binomial, geometric and logseries
distributions are all members of a general power series family of discrete
distributions. See: DDAR, Table 3.10 for details.

@ This allows all of these to be represented in a plot of a suitable count
metameter, ¢(nk) vs. k. See: DDAR, Table 3.12 for details.

@ In these plots, a straight line confirms that the data follow the given
distribution.

@ Confidence intervals around the points indicate uncertainty for the count
metameter.

@ The slope and intercept of the line give estimates of the distribution
parameters.

distplot: Federalist

Try both Poisson & Negative binomial

distplot (Federalist, type="poisson", xlab="Occurrences of 'may'")
distplot (Federalist, type-="nbinomial", xlab="Occurrences of 'may'")

Poissoness plot Negative binomialness plot

slope = -0.874
intercept = ~0.634

e

prob : ML = 0.644
-6 | 1-expisiope) = 0.623

Distrioution metameter
o
Distrioution metameter

~2 | sope=0228
intercept = —153

lambda : ML = 0.656
expiziope) = 1.256

o 1 2 3 4 5 3 0 1 2 ] a s [

Oecumrences of may’ Cccurrences of may’

Again, the Poisson distribution is seen not to fit, while the Negative binomial
appears reasonable.

distplot: Saxony

For purported binomial distributions, the result is a “binomialness” plot

plot (goodfit (Saxony, type="binomial", par=list (size=12)))

distplot (Saxony, type="binomial", size=12, xlab="Number of males")

Binomiainess piot

/“‘i o

ntercept = ~6.41

[ prob : ML =0.518
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o - BHHar== I ==

sqr{Fragquancy|
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-

v

0 1 2 3 4 5 6 7 8 8 1011 12 0 2 4 6 8 10 2

Number of Decurrences Number of males

Both plots show heavier tails than the binomial distribution. distplot() is more
sensitive in diagnosing this




What have we learned?

Main points:
@ Discrete distributions involve basic counts of occurrences of some event
occurring with varying frequency.
@ The ideas and methods for one-way tables are building blocks for
analysis of more complex data.

@ Commonly used discrete distributions include the binomial, Poisson,
negative binomial, and logarithmic series distributions, all members of a
power series family.

@ Fitting observed data to a distribution — fitted frequencies, Npy, —
goodness-of-fit tests (Pearson X2, LR G?)

@ R: goodfit () provides print (), summary () and plot () methods.

@ Plotting with rootograms, Ord plots and generalized distribution plots can
reveal how orwhere a distribution does not fit.

What have we learned?

Some explantions:

@ The Saxony data were part of a much larger data set from Geissler
(1889) (Geissler in vedExtra).

@ For the binomial, with families of size n = 12, our analyses give
p = Pr(male) = 0.52.

@ Other analyses (using more complex models) conclude that p varies among
families with the same size.

@ One explanation is that family decisions to have another child are influenced
by the boy—qgirl ratio in earlier children.

@ As suggested earlier, the lack of fit of the Poisson distribution for words in
the Federalist papers can be explained by context of the writing:

e Given “marker” words appear more or less often over time and subject than
predicted by constant rates () for a given author (Madison or Hamilton)

e The negative binomial distribution fit much better.

e The estimated parameters for these texts allowed assigning all 12 disputed
papers to Madison.

Looking ahead: PhdPubs data

Example 3.24 in DDAR gives data on the number of publications by PhD
candidates in the last 3 years of study

data ("PhdPubs", package = "vcdExtra")
table (PhdPubs$Sarticles)

#4

#4 0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
## 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

° There are predictors: gender, marital status, number of children, prestige
of dept., # pubs by student’s mentor

*  We fit such models with glm(), but need to specify the form of the
distribution

* lIgnoring the predictors for now, a baseline model could be
glm(articles ~ 1, data=PhdPubs, family = “poisson”)

Looking ahead: PhdPubs

plot (goodfit (PhdPubs$articles), xlab = "Number of Articles",
main = "Poisson")

plot (goodfit (PhdPubs$articles, type = "nbinomial"),
xlab = "Number of Articles", main = "Negative binomial")

Poisson Negative binomial

sqrt(Frequency)
sqrt(Frequency)

D123 45678 %910111213141516171819 D123 45678 %10111213141516171819

Number of Articles Number of Articles

Poisson doesn’t fit: Need to account for excess Os (some never published)
Neg binomial: Sort of OK, but should take predictors into account




Looking ahead: Count data models

Count data regression models (DDAR Ch 11)

* Include predictors

* Allow different distributions for unexplained variation

* Provide tests of one model vs. another

* Special models handle the problems of excess zeros: zeroinlf(), hurdle()

# predictors: female, married, kid5, phdprestige, mentor
phd.pois <- glm(articles ™ ., data=PhdPubs, family=poisson)
phd.nbin <- glm.nb(articles = ., data=PhdPubs)

LRstats (phd.pois, phd.nbin)

## Likelihood summary table:

¥F ATIC BIC LR Chisg Df Pr(>Chisq)

## phd.pois 3313 3342 1634 909 <2e—16 #*%*

## phd.nbin 3135 3169 1004 909 0.015 =«

i ===

#i Signits codes: 0 fwse! 0001 Hsee! 001 Pt 0205 b2! 0:1 % ¥ 7

Looking ahead: Effect plots

Effect plots show the predicted values for each term in a model, averaging
over all other factors.
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These are better visual summaries for a model than a table of coefficients.

* Discrete distributions are the building blocks for
categorical data analysis

= Typically consist of basic counts of occurrences, with
varying frequencies

®" Most common: binomial, Poisson, negative binomial

® QOthers: geometric, log-series

* Fit with goodfit(); plot with rootogram()
® Diagnostic plots: Ord_plot(), distplot()
* Models with predictors
® Binomial — logistic regression
® Poisson — poisson regression; logliner models
® These are special cases of generalized linear models




