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Discrete distributions: Basic ideas

Quantitative data: often assumed Normal (|, 62%) —
unreasonable for CDA

Binomial, Poisson, Negative binomial, ... are the
building blocks for CDA

Form the basis for modeling techniques

" |ogistic regression, generalized linear models, Poisson
regression

Data:
= outcome variable (k=0,1, 2, ...)

= counts of occurrences (n,): accidents, words in text, males
in families of size k



Examples: binomial

Human sex ratio (Geissler, 1889): Is there evidence that Pr(male) = 0.5?
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Saxony families with 12 children having k = 0.1,...12 sons.

K |0 1 2 3 4 5 6 /78 9 10 11 12
ng |3 24 104 286 670 1033 1343 1112 829 478 181 45 7

1000 1200
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Number of males



Examples: count data

Federalist papers: Disputed authorship

77 essays by Alexander Hamilton, John Jay, James Madison to persuade
voters to ratify the US constitution, all signed with pseudonym “Publius”

= Who wrote each?
= 65 known, 12 disputed (H & M both claimed sole authorship)

Mosteller & Wallace (1984): analysis of frequency distns of key “marker’
words: from, may, whilst, ...

e.g., blocks of 200 words: occurrences (k) of “may” in how many blocks
(n,)

)

> data (Federalist, package = "vcd")
> Federalist

nMay
0 1 2 3 4 5 6
156 63 29 8 4 1 1



Count data: models
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Occurrences of 'may’

For each word (“from”, “may”, “whilst”, ...)

* Fit a probability model (Poisson, NegBin)

e Estimate parameters (A, 0)

e — Calculate log Odds (Hamilton vs. Madison)

« — All 12 disputed papers most likely written by Madison



Example: Type-token distributions

@ Basic count, k: number of “types”; frequency, nk: number of instances
observed

e Frequencies of distinct words in a book or literary corpus
o Number of subjecis listing words as members of the semantic category “fruit”
e Distinct species of animals caught in traps

@ Differs from other distributions in that the frequency for k = 0 is
unobserved

@ Distribution is often extremely skewed (J-shaped)

Table: Number of butterfly species ny for which k individuals were collected

Individuals (k) 1 2 3 4 5 6 7 8 9 10 11 12
Species (nx) 118 74 44 24 29 22 20 19 20 15 12 14

Individuals (k) 13 14 15 16 17 18 19 20 21 22 23 24 | SL
Species (ny) 6 12 6 9 9 6 10 10 11 5 3 3 5




data (Butterfly, package="vcd")
barplot (Butterfly,

xlab = "Number of individuals",
ylab = "Number of species",
col = "pink",

cex.lab = 1.5)

20 40 60 80

Number of species
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Questions:

What is the total pop. of butterflies in Malaysia?
How many wolves remain in Canada NWT?

How many words did Shakespeare know?

Answers depend on estimating Pr(k=0)
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Discrete distributions: Questions

°* General questions
" What process gave rise to the distribution?

" What is the form: uniform, binomial, Poisson, negative
binomial, ... ?

" — Fit & estimate parameters

* Visualize goodness of fit

= — Use in some larger context to tell a story
* Examples
= Families in Saxony: might expect Bin(n=12, p); p=0.5?
= Federalist papers: Perhaps Poisson(A)
= Butterfly data: Perhaps a log-series distribution?



Fitting discrete distributions

Lack of fit:

@ Lack of fit tells us something about the process giving rise to the data
@ Poisson: assumes constant small probability of the basic event

@ Binomial: assumes constant probability and independent trials

@ Negative binomal: allows for overdispersion, relative to Poisson

@ Models for more complex categorical data use these basic discrete
distributions

@ Binomial (with predictors) — logistic regression

@ Poisson (with predictors) — poisson regression, loglinear models

@ = many of these are special cases of generalized linear models



Common discrete distributions

Discrete distributions are characterized by a probability function,
Pr(X = k) & p(k), that the random variable X has value k.

* Common discrete distributions have the following forms:

Discrete Probability
distribution function, p(k) Parameters
. . " nk p = Pr (success);
Binomial (1P (1—p) " #trials
Poisson e~ \f /Kl A\ = mean
Negative binomial ~ (""*~")p"(1 —p)*  p; n = # successful trials
Geometric p(1 — p)¥ p
Logarithmic series 6% /[—k log(1 — 8)] 6
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Discrete distributions: R

R functions: {d, p, q, r}

° d density function, Pr(X=k) = p(k)

P cumulative probability, F(k) = Y. x<; p (k)

° g quantile function, k = F! (p), smallest value such that F(k) = p
r random number generator

Discrete Density (pmf) Cumulative Quantile Random #
distribution function (CDF) CDF—! generator
Binomial dbinom () pbinom () gbinom () rbinom ()
Poisson dpois () ppois () gpois () rpois ()
Negative binomial | dnbinom () pnbinom () gnbinom () rnbinom()
Geometric dgeom () pgeom () gqgeom () rgeom ()
Logarithmic series | dlogseries () plogseries() glogseries() rlogseries/()

11



Binomial distribution

The binomial distribution, Bin(n, p), # ways to get k Pr(n-k non-

/'“'t Vy events)
n

Bin(n,p) : Pr{X = k} = p(k) = (k>pk(1 — p)"k k=0,1,..., n, (1)

arises as the distribution of the number of events of interest (“successes”) which
occur in n independent trials when the probability of the event on any one trial is
the constant value p = Pr(event).

Examples

* Toss 10 fair coins— how many heads? Bin(10, %)

* Toss 12 fair dice— how many 5s or 6s? Bin(12, 1/3)
Mean, variance, skewness:

Mean[X] = np MLE from data: p = fzzkkxn:/zknk

Var[X] = np(l-p)=npgq
Skew[X] =np q(g-p)

12



Binomial distribution

Binomial distributions for k=0, 1, 2, ..., 12 successes in n=12 trials, for 4 values of p

0.30 — —
Pr(success)
_ m 1/6 N
0-25 o 173
A —— 112
> 0.20 A 2/3 B
E
M 0.15 —
®)
o
O 0.10 —
0.05 H —
000 4 [S—i ‘\-\l = @ R
| | | | | I |
0 2 4 6 8 10 12

Number of successes
* Mean=np
* Variance is maximum when p =%
* Skewed when p # %

DDAR Fig 3.9, pp 76-77 13



Poisson distribution

The Poisson distribution, Pois(\),

e \K
Pois(\) : Pr{X = k} = p(k) = i k=0,1,... (2)
gives the probability of an event occurring k = 0.1.2.... times over a large

number of independent trials, when the probability, p, that the event occurs on

any one trial (in time or space) is small and constant.
Examples:

@ Number of highway accidents at some given location
@ Defects in a manufacturing process
@ Number of goals scored in soccer games

Table: Total goals scored in 380 games in the Premier Football League, 1995 /95 season

Total goals o 1 2 3 4 5 6 7
Number of games | 27 88 91 73 49 31 18 3

14



Poisson distribution

Poisson distributions for A = 1, 4, 10

0 5 10 15 20
1 4 10 DDAR Fig
°0 3.10,p 81
03 - B
% 0.2 + o0 —
o
o
o | L M.
0.0 I'Ooo.oooooooooooo fl I"'oooooooooo ooo"'l‘ ]llhhoo -
cln zls 1|0 1|5 2|0 | | | | | cln é 1|0 1|5 2|0

Number of events (k)

Mean, variance, skewness:

Properties:
Mean[X] = A X . |
Var[X] = A MLE: 1 = & Sum of Pois (A, A,,A;, ...) = Pois(3\,)
Skew([X] = A2 Approaches N(A, A) asn — oo
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Negative binomial distribution

The Negative binomial distribution, NBin(n, p),

NBin(n, p) : Pr{X = k} = p(k) = (” T j: N l)p”(l —p)k k=0,1,...,¢

is a waiting time distribution. It arises when n trials are observed with constant
probability p of some event, and we ask how many non-events (failures), k, it
takes to observe n successful events.

Example: Toss a coin; what is probability of getting k = 0,1, 2, ... tails before
n = 3 heads?

This distribution is often used as an alternative to the Poisson when

@ constant probability p or independence are violated
@ variance is greater than the mean (overdispersion: Var[X] > Mean[X] )

Mean(X) = -nqrff'l-pq= . Mean(X) = j — n(l —p) e n |
Var(X) = ngq/p” P n 4+ p
) 2—p . n(l—p) ‘ ] 112
Skew(X) = , Var(X) = = Var(X)=p+ —.

Vg p? mn

16



Probability

M

,rlm”l“ﬂllnnn ...ﬂﬂll”ﬂ”llﬂllZZZ

...l
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001

Number of failures (k)

Negative binomial
distributions for

n=2,4,6
p=0.2,0.3,04
Mean:

Increases with n
Decreases with p

DDAR Fig 3.13, p 85



Fitting discrete distributions

Fitting a discrete distribution involves the following steps:

© Estimate the parameter(s) from the data, e.g., p for binomial, A for Poisson,

etc. Typically done using maximum likelihood, but some distributions have
simple expressions:

o Binomial, p =3 knk/(n}_ nk) = mean / n
o Poisson, A = > knk/>  nk = mean

@ Calculate fitted probabilities, p(k) for the distribution, and then fitted
frequencies, Np(k).

© Assess Goodness of fit: Pearson X2 or likelihood-ratio G2

K

(mk — Npy)? 2 Nk
G = ng lo .
Z B Y g log( W5,

k=1

Both have asymptotic chisquare distributions, % __ with s estimated
parameters, under the hypothesis that the data follows the chosen
distribution.

18



Fitting & graphing discrete distributions

In R, the vcd and vcdExtra packages provide functions to fit,
visualize and diagnose discrete distributions

* Fitting: goodfit () fits uniform, binomial, Poisson,
neg bin, geometric, logseries, ...
°* @Graphing: rootogram() assess departure between

observed, fitted counts
®* Ordplot: Ordplot () diagnose form of a discrete

distribution
°* Robust plots: distplot () handle problems with

discrepant counts

19



Example: Saxony families

> data (Saxony, package="vcd")
> Saxony

nMales
0 1 2 3 4 5 o 7 8 9 10 11 12
3 24 104 286 670 1033 1343 1112 829 478 181 45 7

Use goodfit() to fit the binomial; test with summary()

> Sax.fit <- goodfit (Saxony, type = "binomial", par=list(size=12))
> summary (Sax.fit)

Goodness-of-fit test for binomial distribution

X2 df P(> X*2)
Likelihood Ratio 97 11 6.98e-16

20



Example: Saxony families

The print() method for goodfit objects shows the details

> Sax.fit # print

Observed and fitted values for binomial distribution
with parameters estimated by "ML'

count observed fitted pearson residual .
. 5 . 5 140 Pay attention to.the
24 12.089 3.426 pattern & magnltudes

2 104  71.803 3.800 of residuals, dy

3 286 258.475 1.712

4 670 628.055 1.674 Pearson X2=de2
5 1033 1085.211 -1.585

o 1343 1367.279 -0.657

7 1112 1265.630 -4.318

8 829 854.247 -0.864

9 478 410.013 3.358
10 181 132.836 4.179
11 45 26.082 3.704
12 7 2.347 3.037

21



What’s wrong with simple histograms?

Discrete distributions are often graphed as histograms, with a theoretical fitted
distribution superimposed

The plot() method for goodfit objects provides some alternatives

> plot(Sax.fit, type = "standing", xlab = "Number of males")

f.

7 7( It Problems:
30 \ e Largest frequencies dominate
2 ?Z  Must assess deviations vs. the

?/ \i fitted curve

15

ik
AL e

o 1 2 3 4 5 6 7 B 9 10 11 12

sgrt{Freguency)

Number of males
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Hanging rootograms

> plot(Sax.fit, type = "hanging", xlab = "Number of males") # default

sqrt(Freguency)

30

20

10

L=

o1 2 3 4 5 & T B &% 10 11 12

Mumber of males

Tukey (1972, 1977):

@ shift histogram bars to the fitted
curve

@ — judge deviations vs. horizontal
line.

@ plot \/freq — smaller frequencies
are emphasized.

We can now see clearly where the bino-
mial doesn't fit

23



Deviation rootograms

> plot(Sax.fit, type = "deviation", xlab = "Number of males")

sqrt(Freguency)

30

20

|:|=||:|=|

]

1

2 3 4 5 6 T 8 % 10 11 12

Mumber of males

Deviation rootogram:

e emphasize differences between
observed and fitted frequencies

@ bars now show the residuals (gaps)
directly

There are more families with very low or
very high number of sons than the bino-
mial predicts.

Q: Why is this so much better than the
lack-of-fit test?

24



Example: Federalist papers

> data (Federalist, package="vcd")
> Federalist

nMay
0 1 2 3 4 5 6
156 63 29 8 4 1 1

Fit the Poisson distribution

> Fed.fit0 <- goodfit (Federalist, type="poisson")
> summary (Fed.fit0)

Goodness-of-fit test for poisson
distribution

X*2 df P(> X*2)
Likelihood Ratio 25.2 5 0.000125

This fits very poorly!

25



Example: Federalist papers

Try the Negative binomial distribution

> Fed.fitl<- goodfit (Federalist, type="nbinomial")
> summary (Fed.fitl)

Goodness-of-fit test for nbinomial distribution

X" "2 df P(> X"2)
Likelihood Ratio 1.96 4 0.742

This now fits very well, indeed! Why?

@ Poisson assumes that the probability of a given word (“may”) is constant
across all blocks of text.
@ Negative binomial allows the rate parameter A to vary over blocks of text

26



Federalist papers: Rootograms

Hanging rootograms for the Federalist papers data, comparing Poisson and Negative
binomial

> plot (Fed.fit0, main = "Poisson")
> plot (Fed.fitl, main = "Negative binomial")
Poisson Negative binomial

1T o AX
3 ] e
- [ " \m\r’ﬁm

0 1 2 3 4 5 & 0 1 2 3 4 5 &

sqrt{Freguency)
sqrtFreguency)
(=]
|

Mumber of Occurrences Mumber of Occurrences
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Butterfly data

Both Poisson and Negative binomial are terrible fits! What to do??

But.fitl <- goodfit (Butterfly, type="poisson")
But.fitZ2 <- goodfit (Butterfly, type="nbinomial")
plot (But.fitl, main="Poisson")

plot (But.fit2, main="Negative binomial")

Poisson Negative binomial

E -
5 —_—
= = 4
= =
g ol® F 2-
0 =
d - i &
= = o — et
g E =R
_5 - ||
2
D1234567 8 9101112131415161718182021222324 012345678 9101112131416161718182021222324
Mumber of Occurrences Mumber of Occurrences

28



Ord plots: Diagnose form of distribution

How to tell which discrete distributions are likely candidates?

@ Ord (1967): for each of Poisson, Binomial, Negative binomial, and
Logarithmic series distributions,
o plot of kpx /pxk_1 against k is linear
@ signs of intercept and slope — determine the form, give rough estimates of

parameters

Slope Intercept Distribution Parameter
(b) (a) (parameter) estimate
0 + Poisson (\) A—a
— - Binomial (n, p) p=>b/(b—1)
+ + Neg. binomial (n,p) p=1-0>b
+ — Log. series (6) = b

=

@ Fitline by WLS, using v/nx — 1 as weights
@ A heuristic method: doesn’t always work, but often a good start.

29



Ord plot: Examples

Butterfly data: The slope and intercept correctly diagnoses the log-series distribution

> Ord plot (Butterfly,
main = "Butterfly species collected in Malaya",

Frequency ratio

30

25

20

15

10

gp=gpar (cex=1), pch=16)

Butterfly species collected in Malaya

slope = 1.061
intercept = -0.709 'Y

type: log-series ®
estimate: theta = 1.061

Number of occurrences

+ slope
- intercept
— log-series
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Ord plots: Examples

Ord plots for the Saxony and Federalist data

> Ord_plot(Saxony, main = "Families in Saxony", gp=gpar(cex=1), pch=16)
> Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers", gp=gpar(cex=1), pch=16)

Families in Saxony Instances of 'may' in Federalist papers

6 1 siope=0.424
intercept = -0.023

twpe: nbinomial
4 - estimate: prob = 0.576

e o
@ g 3
z 5
| = =
: 3 .
g g
('S ('
‘I_
D_
_‘|—
[ [ [ [ [ I [ [ I [ [ [ [ [
0 2 4 G 8 10 12 0 1 2 3 4 5 G

Mumber of occurrences Mumber of occurrences 31



Robust distribution plots

@ Ord plots lack robustness

e one discrepant freqency, ny affects points for both k and k + 1

o the use of WLS to fit the line is a small attempt to minimize this
@ Robust plots for Poisson distribution (Hoaglin and Tukey, 1985)

e For Poisson, plot count metameter = ¢ (nx) = log (k! ng/N) vs. k
o Linear relation = Poisson, slope gives A

e Cl for points, diagnostic (influence) plot

e Implemented in distplot () inthe vcd package

For the Poisson distribution, this is 2
called a “poissonness plot”

Distribution metameter

2 7 slope=0228
intercept =-1.53

lambda : ML = 0.656
-4 7 exp(slope) = 1.256

32



Poissonness plot: Details

@ [f the distribution of ng is Poisson()\) for some fixed A, then each observed
frequency, ny ~ my = Npy.

@ Then, setting nx = Npx = e~ * \f/k!, and taking logs of both sides gives
log(nk) =log N— A+ k log A —log k!
which can be rearranged to

|
o (ng) = log (k—h?‘) = —A+ (log \) k

@ = if the distribution is Poisson, plotting ¢(nk) vs. k should give a line with
e intercept = —A
e slope =log A

@ Nonlinear relation — distribution is not Poisson

@ Hoaglin and Tukey (1985) give details on calculation of confidence
intervals and influence measures.

33



Other distributions

This idea extends readily to other discrete data distributions:

@ The binomial, Poisson, negative binomial, geometric and logseries
distributions are all members of a general power series family of discrete
distributions. See: DDAR, Table 3.10 for details.

@ This allows all of these to be represented in a plot of a suitable count
metameter, o(nk) vs. k. See: DDAR, Table 3.12 for details.

@ In these plots, a straight line confirms that the data follow the given
distribution.

@ Confidence intervals around the points indicate uncertainty for the count
metameter.

@ The slope and intercept of the line give estimates of the distribution
parameters.

34



distplot: Federalist

Try both Poisson & Negative binomial

distplot (Federalist,
distplot (Federalist,

type="poisson",
type="nbinomial",

Poissoness plot

> -
1 7 o
] z
£ . £
i’ — 3
E * __— & E
c -1 - I Q =
=] —— . =
. ey @ ‘ 5
a "] * e
% -2 - giope =028 ! =
o . : O
intercept = -1.53
-3 —
lambda - ML = 0.856
—4 - expisiope) = 1.256
I I I I T I I
0 1 2 3 4 3 g

Occurmences of ‘rmay’

Again, the Poisson distribution is seen not to fit, while the Negative binomial

appears reasonable.

xlab="0Occurrences of

xlab="0Occurrences

NHegative binomialness plot

slope = —0.874

—4 =
intercept = -0.634
prob : ML = 0.644
-6 7 1-expisiope} = 0.823
* +
-5 —
-0~ T T T T T T
4] 1 2 3 4 ] G

Decurmences of may'
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distplot: Saxony

For purported binomial distributions, the result is a “binomialness” plot

plot (goodfit (Saxony, type="binomial", par=1list (size=12)))
distplot (Saxony, type="binomial", size=12, xlab="Number of males")

Binomialness plot

#“_ﬁ -8
—’v/ slope = 0.060
i ) . tercept = —5.41
30 _h_ -6.5 i -
i 1
/ \ : h
_",_ 1 _ H prob - ML =0.518 L]
/ \ 270 v Iogitisiope) = 0.517
\ z H
& g / -] : :
[ ! E_? 5 L4
% J L P
g d \ § : A
= ' \ H b . ¢
4 / g -8~ P _ il 1
10 - / g' i H P 4
H 1 -
\ __i._--f"'-T L L
\ -85 o ! ! ! f ! ¥
H
i m% |
. — |
oL — L | L =i
I I I I I I T
o 1 2 3 4 5 ;] i & g 10 111 12 [¥] 2 4 -] 8 10 12
Humber of Dccurrences Number of males

Both plots show heavier tails than the binomial distribution. distplot() is more

sensitive in diagnosing this .



What have we learned?

Main points:
@ Discrete distributions involve basic counts of occurrences of some event
occurring with varying frequency.
@ The ideas and methods for one-way tables are building blocks for
analysis of more complex data.

@ Commonly used discrete distributions include the binomial, Poisson,
negative binomial, and logarithmic series distributions, all members of a
power series family.

@ Fitting observed data to a distribution — fitted frequencies, Npy, —
goodness-of-fit tests (Pearson X?, LR G?)

@ R: goodfit () provides print (), summary () and plot () methods.

@ Plotting with rootograms, Ord plots and generalized distribution plots can
reveal how orwhere a distribution does not fit.
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What have we learned?

Some explantions:

@ The Saxony data were part of a much larger data set from Geissler
(1889) (Geissler in vedExira).

@ For the binomial, with families of size n = 12, our analyses give
p = Pr(male) = 0.52.

@ Other analyses (using more complex models) conclude that p varies among
families with the same size.

@ One explanation is that family decisions to have another child are influenced
by the boy—girl ratio in earlier children.

@ As suggested earlier, the lack of fit of the Poisson distribution for words in
the Federalist papers can be explained by context of the writing:

e Given “marker” words appear more or less often over time and subject than
predicted by constant rates (\) for a given author (Madison or Hamilton)

o The negative binomial distribution fit much better.

o The estimated parameters for these texts allowed assigning all 12 disputed
papers to Madison.

38



Looking ahead: PhdPubs data

Example 3.24 in DDAR gives data on the number of publications by PhD
candidates in the last 3 years of study

data ("PhdPubs", package = "vcdExtra")
table (PhdPubsSarticles)

$4
$#4 0o 1 2 3 4 5 6 7 8 9 10 11 12 16 19
## 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

°* There are predictors: gender, marital status, number of children, prestige
of dept., # pubs by student’s mentor

°* We fit such models with glm(), but need to specify the form of the
distribution

* |gnoring the predictors for now, a baseline model could be
glm(articles ~ 1, data=PhdPubs, family = “poisson”)

39



Looking ahead: PhdPubs

plot (goodfit (PhdPubs$articles), xlab = "Number of Articles",
main = "Poisson")
plot (goodfit (PhdPubs$articles, type = "nbinomial"}),
xlab = "Number of Articles", main = "Negative binomial")
Poisson Negative binomial
i
15 ‘/’q‘t 15 ‘\
g 10 Z 10
2 £
g g
L 5+ w
5 5 51
o | o
o -
|—||_| 0 — =t = 1
012 3 4567 8 91011121314151617 1819 0123458567 8 910111213141515617 1819
Mumber of Articles Mumber of Articles

Poisson doesn’t fit: Need to account for excess Os (some never published)
Neg binomial: Sort of OK, but should take predictors into account
40



Looking ahead: Count data models

Count data regression models (DDAR Ch 11)

Include predictors

Allow different distributions for unexplained variation

Provide tests of one model vs. another

Special models handle the problems of excess zeros: zeroinlf(), hurdle()

# predictors: female, married, kidb5, phdprestige, mentor
phd.peois <- glm{articles ™ ., data=PhdPubs, family=poisson)
phd.nbin <- glm.nb(articles = ., data=PhdPubs)

LRstats (phd.pois, phd.nbin)

##
##
##
##
##
##

Likelihood summary table:
AIC BIC LR Chisg Df Pr(>Chisq)
phd.pois 3313 3342 1634 9069 <Z2e-16 xx%
phd.nbin 3135 3169 1004 9069 0.015 =
Signif. codes: 0 '"xx%x' 0.001 "»+' 0.01 '+'" 0.05 "'"." 0.1 "
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Looking ahead: Effect plots

Effect plots show the predicted values for each term in a model, averaging
over all other factors.

MNumber of articles

Mumber of articles

19 -
18
1.7
16 —

15 - =
14 =

female

18 -

1.7 -
16 _/_

15 —

e e W

10152025 30 35404550

phdprestige

Mumber of articles

Mumber of articles

18 -
1.7
16

1.5
14

married

0 10 20 30 40 50 &0 7O

mentor

Mumber of articles

1.8 - -
1.6 -
14 - -
1.2 -
1.0 -
m o o=y
oo 05 10 15 20 25 a0
kid5

These are better visual summaries for a model than a table of coefficients.
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* Discrete distributions are the building blocks for
categorical data analysis

= Typically consist of basic counts of occurrences, with
varying frequencies

" Most common: binomial, Poisson, negative binomial
" Others: geometric, log-series
* Fit with goodfit(); plot with rootogram()
= Diagnostic plots: Ord_plot(), distplot()
°* Models with predictors
= Binomial — logistic regression

" Poisson — poisson regression; logliner models
" These are special cases of generalized linear models
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