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Discrete distributions: Basic ideas
• Quantitative data: often assumed Normal (μ, σ2) –

unreasonable for CDA
• Binomial, Poisson, Negative binomial, … are the 

building blocks for CDA
• Form the basis for modeling techniques
 logistic regression, generalized linear models, Poisson 

regression

• Data:
 outcome variable (k = 0, 1, 2, … )
 counts of occurrences (nk): accidents, words in text, males 

in families of size k
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Examples: binomial
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Human sex ratio (Geissler, 1889): Is there evidence that Pr(male) = 0.5?



Examples: count data
Federalist papers: Disputed authorship
• 77 essays by Alexander Hamilton, John Jay, James Madison to persuade 

voters to ratify the US constitution, all signed with pseudonym “Publius”
 Who wrote each?
 65 known, 12 disputed (H & M both claimed sole authorship)

• Mosteller & Wallace (1984): analysis of frequency distns of key “marker” 
words: from, may, whilst, …

• e.g., blocks of 200 words: occurrences (k) of “may” in how many blocks 
(nk)

4

> data(Federalist, package = "vcd")
> Federalist
nMay
0   1   2   3   4   5   6 

156  63  29   8   4   1   1 



Count data: models
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For each word (“from”, “may”, “whilst”, …)
• Fit a probability model (Poisson, NegBin)
• Estimate parameters (λ, θ)
• → Calculate log Odds (Hamilton vs. Madison)
• → All 12 disputed papers most likely written by Madison



Example: Type-token distributions
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data(Butterfly, package="vcd")
barplot(Butterfly,

xlab = "Number of individuals",
ylab = "Number of species",
col = "pink",
cex.lab = 1.5)

Questions:
What is the total pop. of butterflies in Malaysia?
How many wolves remain in Canada NWT?
How many words did Shakespeare know?

Answers depend on estimating Pr(k=0)



Discrete distributions: Questions
• General questions
 What process gave rise to the distribution?
 What is the form: uniform, binomial, Poisson, negative 

binomial, … ?
 → Fit & estimate parameters

• Visualize goodness of fit

 → Use in some larger context to tell a story

• Examples
 Families in Saxony: might expect Bin(n=12, p); p=0.5?
 Federalist papers: Perhaps Poisson(λ)
 Butterfly data: Perhaps a log-series distribution?
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Fitting discrete distributions
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Common discrete distributions
Discrete distributions are characterized by a probability function, 
Pr(X = k)  p(k), that the random variable X has value k.
• Common discrete distributions have the following forms:

10



Discrete distributions: R
R functions: {d, p, q, r}
• d___ density function, Pr(X=k) = p(k)
• p___ cumulative probability, F(k) = ∑𝑋𝑋≤𝑘𝑘 𝑝𝑝(𝑘𝑘)
• q___ quantile function, k = F-1 (p), smallest value such that 𝐹𝐹(𝑘𝑘) ≥ 𝑝𝑝
• r___ random number generator
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Binomial distribution

Examples
• Toss 10 fair coins– how many heads?   Bin(10, ½)
• Toss 12 fair dice– how many 5s or 6s?  Bin(12, 1/3)
Mean, variance, skewness:                                

Mean[X]   =   n p                           MLE from data: 𝑝̂𝑝 = 𝑥̅𝑥
𝑛𝑛

= ∑𝑘𝑘 𝑘𝑘 ×𝑛𝑛𝑛𝑛/ ∑𝑘𝑘 𝑛𝑛 𝑘𝑘

𝑛𝑛
Var[X]   =  n p (1-p) = n p q
Skew[X] = n p q (q-p)
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# ways to get k 
out of n Pr(k events) Pr(n-k non-

events)



Binomial distribution
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Binomial distributions for k = 0, 1, 2, …, 12 successes in n=12 trials, for 4 values of p

DDAR Fig 3.9, pp 76-77

• Mean = n p
• Variance is maximum when p = ½
• Skewed when p ≠ ½



Poisson distribution
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Poisson distribution

15

Poisson distributions for λ = 1, 4, 10

Mean, variance, skewness:
Mean[X]  =   λ

Var[X]  =  λ
Skew[X]     =  λ -1/2

DDAR Fig 
3.10, p 81

MLE: 𝜆̂𝜆 = 𝑥̅𝑥
Properties:
Sum of Pois (λ1, λ2,λ3, …) = Pois(∑λi)
Approaches N(λ, λ) as n → ∞



Negative binomial distribution
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Negative binomial 
distributions for
n = 2, 4, 6
p = 0.2, 0.3, 0.4

DDAR Fig 3.13, p 85

Mean:
Increases with n
Decreases with p



Fitting discrete distributions
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Fitting & graphing discrete distributions
In R, the vcd and vcdExtra packages provide functions to fit, 
visualize and diagnose discrete distributions

• Fitting: goodfit()      fits uniform, binomial, Poisson,  
neg bin, geometric, logseries, …

• Graphing: rootogram()  assess departure between 
observed, fitted counts

• Ord plot: Ordplot()    diagnose form of a discrete 
distribution

• Robust plots: distplot() handle problems with 
discrepant counts
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Example: Saxony families
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> data(Saxony, package="vcd")
> Saxony
nMales

0    1    2    3    4    5    6    7    8    9   10   11   12 
3   24  104  286  670 1033 1343 1112  829  478  181   45    7 

Use goodfit() to fit the binomial; test with summary()

> Sax.fit <- goodfit(Saxony, type = "binomial", par=list(size=12))
> summary(Sax.fit)

Goodness-of-fit test for binomial distribution

X^2 df P(> X^2)
Likelihood Ratio  97 11 6.98e-16



Example: Saxony families
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The print() method for goodfit objects shows the details

> Sax.fit # print

Observed and fitted values for binomial distribution
with parameters estimated by `ML' 

count observed   fitted pearson residual
0        3    0.933            2.140
1       24   12.089            3.426
2      104   71.803            3.800
3      286  258.475            1.712
4      670  628.055            1.674
5     1033 1085.211           -1.585
6     1343 1367.279           -0.657
7     1112 1265.630           -4.318
8      829  854.247           -0.864
9      478  410.013            3.358

10      181  132.836            4.179
11       45   26.082            3.704
12        7    2.347            3.037

Pay attention to the 
pattern & magnitudes 
of residuals, dk

Pearson χ2 = ∑ dk
2



What’s wrong with simple histograms?
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Discrete distributions are often graphed as histograms, with a theoretical fitted 
distribution superimposed
The plot() method for goodfit objects provides some alternatives

> plot(Sax.fit, type = "standing", xlab = "Number of males")

Problems:
• Largest frequencies dominate
• Must assess deviations vs. the 

fitted curve



Hanging rootograms
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> plot(Sax.fit, type = "hanging", xlab = "Number of males")              # default



Deviation rootograms
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> plot(Sax.fit, type = "deviation", xlab = "Number of males")



Example: Federalist papers
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> data(Federalist, package="vcd")
> Federalist
nMay
0   1   2   3   4   5   6 

156  63  29   8   4   1   1 

Fit the Poisson distribution

> Fed.fit0 <- goodfit(Federalist, type="poisson")
> summary(Fed.fit0)

Goodness-of-fit test for poisson
distribution

X^2 df P(> X^2)
Likelihood Ratio 25.2  5 0.000125

This fits very poorly!



Example: Federalist papers
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Try the Negative binomial distribution

> Fed.fit1<- goodfit(Federalist, type="nbinomial")
> summary(Fed.fit1)

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)
Likelihood Ratio 1.96  4    0.742



Federalist papers: Rootograms
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Hanging rootograms for the Federalist papers data, comparing Poisson and Negative 
binomial

> plot(Fed.fit0, main = "Poisson")
> plot(Fed.fit1, main = "Negative binomial")



Butterfly data
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Both Poisson and Negative binomial are terrible fits!   What to do??



Ord plots: Diagnose form of distribution
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Ord plot: Examples
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Butterfly data: The slope and intercept correctly diagnoses the log-series distribution

> Ord_plot(Butterfly,
main = "Butterfly species collected in Malaya", 
gp=gpar(cex=1), pch=16)

+   slope
- intercept
→ log-series



Ord plots: Examples
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Ord plots for the Saxony and Federalist data

> Ord_plot(Saxony, main = "Families in Saxony", gp=gpar(cex=1), pch=16)
> Ord_plot(Federalist, main = "Instances of 'may' in Federalist papers", gp=gpar(cex=1), pch=16)



Robust distribution plots
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For the Poisson distribution, this is 
called a “poissonness plot”



Poissonness plot: Details
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Other distributions
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distplot: Federalist
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Try both Poisson & Negative binomial



distplot: Saxony
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For purported binomial distributions, the result is a “binomialness” plot

Both plots show heavier tails than the binomial distribution. distplot() is more 
sensitive in diagnosing this



What have we learned?
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What have we learned?

38



Looking ahead: PhdPubs data

• There are predictors: gender, marital status, number of children, prestige 
of dept., # pubs by student’s mentor

• We fit such models with glm(), but need to specify the form of the 
distribution

• Ignoring the predictors for now, a baseline model could be
glm(articles ~ 1, data=PhdPubs, family = “poisson”)
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Looking ahead: PhdPubs
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Poisson doesn’t fit:  Need to account for excess 0s (some never published)
Neg binomial: Sort of OK, but should take predictors into account



Looking ahead: Count data models
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Count data regression models (DDAR Ch 11)
• Include predictors
• Allow different distributions for unexplained variation
• Provide tests of one model vs. another
• Special models handle the problems of excess zeros: zeroinlf(), hurdle()



Looking ahead: Effect plots
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Summary
• Discrete distributions are the building blocks for 

categorical data analysis
 Typically consist of basic counts of occurrences, with 

varying frequencies
 Most common: binomial, Poisson, negative binomial
 Others: geometric, log-series

• Fit with goodfit(); plot with rootogram()
 Diagnostic plots: Ord_plot(), distplot()

• Models with predictors
 Binomial → logistic regression
 Poisson → poisson regression; logliner models
 These are special cases of generalized linear models
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