Coses)

Sex: Female

Two-way tables
 Independence \& association

Michael Friendly

Psych 6136

http://friendly.github.io/psy6136

Two-way tables: Overview

Two-way frequency tables are a convenient way to represent a dataset cross-classified by two discrete variables, A \& B

Special cases:

- 2×2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
- $2 \times 2 \times k$ tables: a collection of 2×2 s, stratified by another variable
- $r \times c$ tables
- $r \times c$ tables, with ordered factors

Questions:

- Are A and B statistically independent? (vs. associated)
- If associated, what is the strength of association?
- Measures: 2×2 - odds ratio; $r \times c$ - Pearson χ^{2}, LR G ${ }^{2}$
- How to understand the pattern or nature of association?

Methods

- The methods discussed this week are generally simple non-parametric or randomization methods
- There is no underlying formal model with parameters
- Hypothesis tests based on some test statistic:
- Pearson X ${ }^{2}$
- Odds ratio
- Cohen's к
- p-values, confidence intervals based on
- Large sample theory: $\mathrm{X}^{2} \sim \chi^{2}$ as $\mathrm{N} \rightarrow \infty$
- Permutation or simulation distributions

2×2 Example: Berkeley admissions

Table: Admissions to Berkeley graduate programs

	Admitted	Rejected	Total	$\%$ Admit	Odds(Admit)
Males	1198	1493	2691	44.52	0.802
odds ratio					
Females	557	1278	1835	30.35	0.437
Total	1755	2771	4526	38.78	0.633

Males were nearly twice as likely to be admitted

- Is there an association between gender \& admission?
- If so, is this evidence for gender bias?
- How to measure strength of association?
- How to test for significance?
- How to visualize?

UCBAdmissions data

In R, the data is contained in UCBAdmissions, a $2 \times 2 \times 6$ table for 6 deparatments. We collapse over department

```
> data(UCBAdmissions)
> UCB <- margin.table(UCBAdmissions, 2:1)
> UCB
        Admit
Gender Admitted Rejected
    Male 1198 1493
    Female 557 1278
\[
\begin{aligned}
& \text { odds }_{M}=1198 / 1493=0.802 \\
& \text { odds }_{F}=557 / 1278=0.437
\end{aligned}
\]
```

Association in 2×2 table can be measured by the odds ratio (θ): odds of admission for males vs. females

```
> oddsratio(UCB, log=FALSE)
    odds ratios for Gender and Admit
[1] 1.84
> confint(oddsratio(UCB, log=FALSE))
    2.5 % 97.5 %
Male:Female/Admitted:Rejected 1.62 2.09
```


"YES, ON THE SURFACE IT WOULD APPEAR TO BE SEX-BIAS BUT LET US ASK THE FOLLOWING QUESTIONS..."

Questions:

* How to analyze these results? What tests for odds ratio?
* How to visualize \& interpret?
. Does it matter that we collapsed over Department?

$r \times c$ Example: Hair color, eye color

Data from 592 students in a statistics class
Table: Hair-color eye-color data

Eye	Hair Color				
Color	Black	Brown	Red	Blond	Total
Brown	68	119	26	7	220
Blue	20	84	17	94	215
Hazel	15	54	14	10	93
Green	5	29	14	16	64
Total	108	286	71	127	592

* Is there an association between hair color and eye color?
* How to measure strength of association?

How to test for significance?
How to visualize?
How to understand the pattern (nature) of association?

HairEyeColor data

In R, the dataset is HairEyeColor, a $4 \times 4 \times 2$ table: Hair x Eye \times Sex.
For now, collapse over sex.

```
> data(HairEyeColor)
> HEC <- margin.table(HairEyeColor, 2:1)
```

> chisq.test(HEC)

```
Pearson's Chi-squared test
```

```
data: HEC
X-squared = 138, df = 9, p-value <2e-16
```

> MASS:: loglm(~Hair + Eye, data=HEC)
Statistics:

	$X^{\wedge} 2$	$d f$	$P\left(>X^{\wedge} 2\right)$
Likelihood Ratio	146	9	0
Pearson	138	9	0

Association can be tested by the standard Pearson χ^{2} test. Details later

Or, as a loglinear model for independence
Formula: ~ A + B = A \perp B

HairEyeColor data

vcd: : assocstats () collects tests and measures in a convenient summary
$>$ assocstats (HEC)

```
            X^2 df P(> X X 2)
Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0
Phi-Coefficient : NA
Contingency Coeff.: 0.435
Cramer's V : 0.279
```

For 3+ way tables, it gives the results for the strata defined by all last dimensions

```
> assocstats(HairEyeColor)
$`Sex:Male`
    X^2 df P(> X^2)
Likelihood Ratio 44.445 9 1.168e-06
Pearson 41.280 9 4.447e-06
Phi-Coefficient : NA
Contingency Coeff.: 0.359
Cramer's V : 0.222
```

```
$`Sex:Female
lrreren lf P(> X^2)
Phi-Coefficient : NA
Contingency Coeff.: 0.504
Cramer's V : 0.337
```


Simple plots for $r \times c$ tables

```
barplot(HEC, beside=TRUE, ... ) tile(HEC, shade=TRUE)
```


Ordered tables

$r \times c$ table with ordered categories: Mental health and Parents' SES categories
Table: Mental impairment and parents' SES

	Mental impairment			
SES	Well	Mild	Moderate	Impaired
1	64	94	58	46
2	57	94	54	40
3	57	105	65	60
4	72	141	77	94
5	36	97	54	78
6	21	71	54	71

Mental impairment is the response, SES is a predictor

* How to measure strength of association?
* How to understand the pattern of association?
. How to take ordinal nature of variables into account?

Mental data: Association

The data is contained in vcdExtra: :Mental, a frequency data frame

```
> data(Mental, package="vcdExtra")
> str(Mental)
'data.frame': 24 obs. of 3 variables:
    $ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 1 2 2 2 2 3 ...
    $ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 1 2 3 4 1 2 3 4 1 2 ...
    $ Freq : int 64 94 58 46 57 94 54 40 57 105 ...
```

Convert to a contingency table using x tabs(), and test association

```
> mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)
> chisq.test(mental.tab)
    Pearson's Chi-squared test
data: mental.tab
X-squared = 46, df = 15, p-value = 5e-05
```


Mental data: Ordinal tests

For ordinal factors, more powerful (focused) tests are available with Cochran-MantelHaenszel tests in vcdExtra: : CMHtest()

```
> CMHtest(mental.tab)
Cochran-Mantel-Haenszel Statistics for ses by mental
```

	AltHypothesis						Chisq	Df	Prob	
cor	Nonzero correlation	37.2	1	$1.09 e-09$	both ordinal					
rmeans	Row mean scores differ	40.3	5	$1.30 e-07$	cols ordinal					
cmeans	Col mean scores differ	40.7	3	$7.70 e-09$	rows ordinal					
general	General association	46.0	15	$5.40 e-05$	neither					

$\chi 2$ / df shows why ordered tests are more powerful

```
> xx <- CMHtest(mental.tab)
> xx$table[,"Chisq"] / xx$table[,"Df"]
    cor rmeans cmeans general
    37.16 8.06 13.56 3.06
```


Table notation

	Column		
Row	1	2	Total
1	n_{11}	n_{12}	n_{1+}
2	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	n_{++}

Gender	Admit	Reject	Tot
Male	1198	1493	2691
Female	557	1278	1835
Total	1755	2771	4526

- $\boldsymbol{N}=\left\{n_{i j}\right\}$ are the observed frequencies.
- + subscript means sum over: row sums: n_{i+}; col sums: n_{+j}; total sample size: $n_{++} \equiv n$
- Similar notation for:
- Cell joint population probabilities: $\pi_{i j}$; also use $\pi_{1}=\pi_{1+}$ and $\pi_{2}=\pi_{2+}$
- Population marginal probabilities: π_{i+} (rows), π_{+j} (cols)
- Sample proportions: use $p_{i j}=n_{i j} / n$, etc.

Independence

Two categorical variables, A and B are statistically independent when:

- The conditional distributions of B given A are the same for all levels of A

$$
\pi_{1 j}=\pi_{2 j}=\cdots=\pi_{r j}
$$

- Joint cell probabilities are the product of the marginal probabilities

$$
\pi_{i j}=\pi_{i+} \pi_{+j}
$$

For 2×2 tables, this gives rise to tests and measures based on:

* Difference in row/col marginal probabilities: Test $\mathrm{H}_{0}: \pi_{1}=\pi 2$

Odds ratio, $\hat{\theta}=\left(n_{11} / n_{12}\right) /\left(n_{21} / n_{22}\right)$ Test $H_{0}: \theta=1$

* Standard $\chi 2$ test is for largish n
* Small samples: Fisher's exact test, or simulation / permutation tests

Independence: Example

A contrived example, where I generate cell frequencies as the product of row and column marginal totals: $n_{i j}=n_{i+} \times n_{+j}$

```
> educ <- c(50, 100, 50) # marginal frequencies
> names(educ) <- c("Low", "Med", "High")
> party <- c(20, 50, 30) # marginal frequencies
> names(party) <- c("NDP", "Liberal", "Cons")
> table <- outer(educ, party) / sum(party) # cell = row * col / n
> names(dimnames(table)) <- c("Education", "Party")
> table
        Party
Education NDP Liberal Cons
    Low 10 25 15
    Med 20 50 30
    High 10 25 15
```

Outer product:

Independence: Example

$>$ The row proportions of party are the same for each educ group
$>$ The col proportions of educ are the same for each party

	prop.table(table, 1)		
NDP	Liberal	Cons	
Low	0.2	0.5	0.3
Med	0.2	0.5	0.3
High	0.2	0.5	0.3

> prop. table(table, 2)		
NDP	Liberal	Cons
Low	0.25	0.25

So, the $X^{\wedge} 2$ is exactly zero, and measures of strength are zero

```
> vcd::assocstats(table)
    X^2 df P(> X^2)
Likelihood Ratio 0 4 1
Pearson 0 4 1
Phi-Coefficient : NA
Contingency Coeff.: 0
Cramer's V : 0
```


Independence: Arthritis data

In the Arthritis data, people are classified by Sex, Treatment and Improved. Are Treatment and Improved independent?

- \rightarrow row proportions are the same for Treated and Placebo
- \rightarrow cell frequencies \sim row total \times column total
> data(Arthritis, package = "vcd")
> arth.tab <- xtabs(~ Treatment + Improved, data = Arthritis)
$>$ round (prop.table(arth.tab, 1), 3)
Improved
$\begin{array}{lrrr}\text { Treatment None } & \text { Some } & \text { Marked } \\ \text { Placebo } & 0.674 & 0.163 & 0.163 \\ \text { Treated } 0.317 & 0.171 & 0.512\end{array}$

But, more people given the Placebo show no improvement; more people Treated show marked improvement

Independence: Arthritis data

If Treatment and Improved were independent, frequencies \sim row x col margins

```
> row.totals <- margin.table(arth.tab, 1)
> col.totals <- margin.table(arth.tab, 2)
> round(outer(row.totals, col.totals)/ sum(arth.tab), 0)
    Improved
Treatment None Some Marked
    Placebo 22 7 14
    Treated 20 7 14
```

These are the expected frequencies, under independence; but for the data:

```
> chisq.test(arth.tab)
```

Pearson's Chi-squared test

$$
\begin{gathered}
\text { Pearson } \chi^{2} \\
\chi_{(r-1) \times(c-1)}^{2}=\sum_{i, j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=\sum d_{i j}^{2}
\end{gathered}
$$

data: arth.tab
X-squared $=13.1, d f=2, p-v a l u e=0.0015$

Sampling models: Poisson, Binomial, Multinomial

Subtle distinctions arise concerning whether the row and/or margins are fixed by design or random

- Poisson: each n_{ij} is regarded as an independent Poisson variate; nothing fixed
- Binomial: each row (or col) is regarded as an independent binomial distn ${ }^{n}$, with one fixed margin (group total), other random (response)
- Multinomial: only the total sample size, n_{++}, is fixed; frequencies n_{ij} are classified by A and B
- Makes a difference in how hypothesis tests are justified \& explained
- Happily, for most inferential methods, \approx same results are obtained under the three sampling models

Q: what is an appropriate sampling model for the UCB admissions data? For hair-eye color? For the mental impairment data?

Odds and odds ratios

For a binary response where $\pi=\operatorname{Pr}$ (success), the odds of a success is

$$
\text { odds }=\frac{\pi}{1-\pi}
$$

- Odds vary multiplicatively around 1 ("even odds", $\pi=\frac{1}{2}$)
- Taking logs, the log(odds), or logit varies symmetrically around 0 ,

$$
\operatorname{logit}(\pi) \equiv \log (\text { odds })=\log \left(\frac{\pi}{1-\pi}\right)
$$

```
> p <- c( 0.05, .1, . 25, . 50, . 75, .9, . 95)
> odds <- p / (1-p)
> logodds <- log(odds)
> (odds.df <- data.frame(p, odds, logodds))
\begin{tabular}{rrrr} 
& p & odds & logodds \\
1 & 0.05 & 0.0526 & -2.94 \\
2 & 0.10 & 0.1111 & -2.20 \\
3 & 0.25 & 0.3333 & -1.10 \\
4 & 0.50 & 1.0000 & 0.00 \\
5 & 0.75 & 3.0000 & 1.10 \\
6 & 0.90 & 9.0000 & 2.20 \\
7 & 0.95 & 19.0000 & 2.94
\end{tabular}
```


Log odds

```
plot(logodds, p, type='b', xlab="log odds", ylab="Probability", ...)
abline(lm(p ~ logodds, subset=(p>=.2 & p<=.8)), col="blue")
```


Symmetric around $\pi=1 / 2$:

$$
\operatorname{logit}(\pi)=-\operatorname{logit}(1-\pi)
$$

Fairly linear in the middle,

$$
0.2 \text { 回 } 0.8
$$

The logit transformation of probability is the basis for logistic regression
(An alternative, the cumulative normal, ${ }^{-1}(\pi)$, gives rise to probit regression)

Odds ratio

For two groups, with probabilities of success π_{1}, π_{2}, the odds ratio, θ, is the ratio of the odds for the two groups:

$$
\text { odds ratio } \equiv \theta=\frac{\text { odds }_{1}}{\text { odds }_{2}}=\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{2} /\left(1-\pi_{2}\right)}=\frac{\pi_{11} / \pi_{12}}{\pi_{21} / \pi_{22}}=\frac{\pi_{11} \pi_{22}}{\pi_{12} \pi_{21}}
$$

- $\theta=1 \Longrightarrow \pi_{1}=\pi_{2} \Longrightarrow$ independence, no association
- Same value when we interchange rows and columns (transpose)
- Sample value, $\widehat{\theta}$ obtained using $n_{i j}$.

More convenient to characterize association by \log odds ratio, $\psi=\log (\theta)$ which is symmetric about 0 :

$$
\log \text { odds ratio } \equiv \psi=\log (\theta)=\log \left[\frac{\pi_{1} /\left(1-\pi_{1}\right)}{\pi_{2} /\left(1-\pi_{2}\right)}\right]=\operatorname{logit}\left(\pi_{1}\right)-\operatorname{logit}\left(\pi_{2}\right) .
$$

Odds ratio: Inference \& hypothesis tests

Symmetry of the distribution of the \log odds ratio $\psi=\log (\theta)$ makes it more convenient to carry out tests independence as tests of $H_{0}: \psi=\log (\theta)=0$ rather than $H_{0}: \theta=1$

$$
\text { - } z=\log (\widehat{\theta}) / S E(\log (\theta)) \sim N(0,1) \quad S E(\log (\theta))=\sqrt{\Sigma_{i j} n_{i j}^{-1}}
$$

vcd: :oddsratio() has option, log=, TRUE by default
The summary() method calculates z tests

```
> summary(oddsratio(UCB))
z test of coefficients:
```



```
Signif. codes: 0 `***'0.001 `**' 0.01 `*' 0.05 '.'0.1 ' ' 1
```


Odds ratio: Confidence intervals

Results should be reported with confidence intervals, either for the odds ratio, θ, or for $\log (\theta)$

```
> confint(oddsratio(UCB, log = FALSE))
    2.5 % 97.5 %
Male:Female/Admitted:Rejected 1.624 2.087
> confint(oddsratio(UCB))
    2.5 % 97.5 %
Male:Female/Admitted:Rejected 0.4851 0.7356
```

Summary in words:
For the Berkeley admissions data:

- The Pearson χ^{2} test of association between Gender and Admission was highly significant, $\chi_{1}^{2}=91.6, p<.0001$
- This corresponded to an odds ratio of admission for Males vs. Females of $\theta=1.84$ (CI: 1.62, 2.09), meaning that overall, males were 84% more likely to be admitted
- On the scale of \log odds, $\psi=\log (\theta)$, the estimate was $\psi=0.610$ (CI: $0.485,0.736$), meaning a significant positive association between Gender(Male) and admission.

Small sample size

* Pearson χ^{2} and LR G ${ }^{2}$ tests are valid when most expected frequencies ?
* Otherwise, use Fisher's exact test or simulated p-values

Example: Cholesterol diet and heart disease

```
> fat <- matrix(c(6, 2, 4, 11), 2, 2)
> dimnames(fat) <- list(cholesterol=c("low", "high"),
+ disease=c("no", "yes"))
> fat
    disease
cholesterol no yes
    low 6 4
    high 2 11
```


Small sample size

The standard Pearson χ^{2} test is not significant
For 2×2 tables with small n, a correction $|O-E|-1 / 2$ is standardly applied
> chisq.test(fat)
Pearson's Chi-squared test with Yates' continuity correction
data: fat
X-squared $=3.19, \mathrm{df}=1, \mathrm{p}$-value $=0.074$

Yet, we get a warning

Warning message:
In chisq.test(fat) : Chi-squared approximation may be incorrect

Small sample size: Simulation

A Monte-Carlo method uses simulation to calculate a p-value
> chisq.test(fat, simulate=TRUE)

```
    Pearson's Chi-squared test with simulated p-value (based
on 2000 replicates)
data: fat
X-squared = 4.96, df = NA, p-value = 0.04
```

This method repeatedly samples cell frequencies from tables with the same margins, and calculates a χ^{2} for each. The p-value compares the observed χ^{2} to distribution in the simulations.
The χ^{2} test is now significant.

Small sample size: Fisher exact test

Fisher's exact test: calculates probability for all 2×2 tables with odds ratio as or more extreme than that in the data, keeping the margins fixed.

```
> fisher.test(fat)
    Fisher's Exact Test for Count Data
data: fat
p-value = 0.039
alternative hypothesis: true odds ratio is not equal to 1
9 5 \text { percent confidence interval:}
    0.86774 105.56694
sample estimates:
odds ratio
    7.4019
```

The p-value is similar to that obtained using simulation.
Fisher's test is available for larger $r \times c$ tables, but the method gets computationally intensive as r * c increases

Visualizing: fourfold plots

```
fourfold(UCB, std="ind.max") # maximum frequency
```

Gender: Male

Visualizing: fourfold plots

fourfold (UCB)

 \#standardize both margins

Cholesterol data

fourfold(fat)

Stratified tables: $2 \times 2 \times k$

The UC Berkeley data was obtained from 6 graduate departments

		Dept	A	B	C	D	E	F	Sum
Admit	Gender								
Admitted	Male		512	353	120	138	53	22	1198
	Female		89	17	202	131	94	24	557
Rejected	Male		313	207	205	279	138	351	1493
	Female		19	8	391	244	299	317	1278

Questions:

- Does the overall association between gender and admission apply in each department?
- Do men and women apply equally to all departments?
- Do departments differ in their rates of admission?

Stratified analysis tests association between a main factor and a response within the levels of control variable(s)

Odds ratios by department

```
> summary(oddsratio(UCBAdmissions))
z test of coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & z & value & Pr \((>|z|)\) \\
A & -1.052 & 0.263 & -4.00 & \(6.2 e-05\) & \(* * *\) \\
B & -0.220 & 0.438 & -0.50 & 0.62 \\
C & 0.125 & 0.144 & 0.87 & 0.39 \\
D & -0.082 & 0.150 & -0.55 & 0.59 \\
E & 0.200 & 0.200 & 1.00 & 0.32 \\
F & -0.189 & 0.305 & -0.62 & 0.54
\end{tabular}
Signif. codes: 0 '***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

* Odds ratio only significant, $\log (\theta)$ $0=0$ for department A
* For dept. A, men are only $\exp (-1.05)=.35$ times as likely to be admitted as women
* The overall analysis (ignoring department) is misleading: falsely assumes no association of \{admission, department\} and \{gender, department\}

Stratified fourfold plots

Fourfold plots by department (intense shading where significant)

> fourfold(UCBAdmissions)

Dept A

Admit: Rejected
Dept: B

Admit: Rejected

Dept C
Admit: Admitted

Admit: Rejected
Dept D

Admit: Rejected

Dept E
Admit: Admitted

Admit: Rejected
Dept F
Admit: Admitted

Admit: Rejected

Log odds ratio plot

Plot the log odds ratios with confidence limits
> plot(oddsratio(UCBAdmissions), cex=2, xlab="Department")
log odds ratios for Admit and Gender by Dept

Stratified tables: Homogeneity of association

Questions:

- Are the k odds ratios all equal, $\theta_{1}=\theta_{2}=\ldots=\theta_{k}$?
- Woolf's test: vcd: :woolftest ()
- This is the same as the hypothesis of no three-way association
- If homogeneous, is the common odds ratio different from 1?
- Mantel-Haenszel test: stats: mantelhaen.test()
> woolf_test(UCBAdmissions)
Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)
data: UCBAdmissions
X-squared $=17.9, \mathrm{df}=5, \mathrm{p}$-value $=0.0031$
The odds ratios differ across departments, so no sense testing their common value

What happened at UC Berkeley?

Why do results collapsed over department disagree with the results by department?

Simpson's paradox

- Aggregate data are misleading because they falsely assume men and women apply equally in each field.
- But:
- Large differences in admission rates across departments.
- Men and women apply to these departments differentially.
- Women applied in large numbers to departments with low admission rates.
- Other graphical methods can show these effects.
- (This ignores possibility of structural bias against women: differential funding of fields to which women are more likely to apply.)

Mosaic matrices

$r \times c$ tables: Overall analysis

- Overall tests of association: assocstats (): Pearson chi-square and LR G^{2}
- Strength of association: ϕ coefficient, contingency coefficient (C), Cramer's $\mathrm{V}(0 \leq V \leq 1)$

$$
\phi^{2}=\frac{\chi^{2}}{n}, \quad c=\sqrt{\frac{\chi^{2}}{n+\chi^{2}}}, \quad V=\sqrt{\frac{\chi^{2} / n}{\min (r-1, c-1)}}
$$

- For a 2×2 table, $V=\phi$.
- (If the data table was collapsed from a 3+ way table, the two-way analysis may be misleading)
> assocstats (HEC)

$$
X^{\wedge} 2 d f P\left(>X^{\wedge} 2\right)
$$

Likelihood Ratio 146.4490
Pearson 138.299

```
Phi-Coefficient : NA
Contingency Coeff.: 0.435
Cramer's V : 0.279
```


$r \times c$ tables: Overall analysis

- The Pearson X^{2} and $\mathrm{LR} G^{2}$ statistics have the following forms:

$$
X^{2}=\sum_{i j} \frac{\left(n_{i j}-\hat{m}_{i j}\right)^{2}}{\widehat{m}_{i j}} \quad G^{2}=\sum_{i j} n_{i j} \log \left(\frac{n_{i j}}{\widehat{m}_{i j}}\right)
$$

- Expected (fitted) frequencies under independence: $\widehat{m}_{i j}=n_{i+} n_{+j} / n_{++}$
- Each of these is a sum-of-squares of corresponding residuals
- Degrees of freedom: $d f=(r-1)(c-1)$ —\# independent residuals

Residuals, fitted values, test statistics returned by MASS: : loglm ()

```
> (mod <- MASS::loglm(~ Hair + Eye, data=HEC, fitted = TRUE))
Call:
MASS::loglm(formula = ~Hair + Eye, data = HEC, fitted = TRUE)
```

Statistics:

	$X^{\wedge} 2$	$d f$	$P(>$	$\left.X^{\wedge} 2\right)$
Likelihood Ratio	146.44	9	0	
Pearson	138.29	9		0

Residuals and fitted values are obtained with "extractor" methods

```
> res.P <- residuals(mod,
    type="pearson")
> res.LR <- residuals(mod,
    type="deviance")
> res.P
    Hair
Eye Black Brown Red Blond
    Brown 4.398 1.233 -0.075 -5.851
    Blue -3.069 -1.949 -1.730 7.050
    Hazel -0.477 1.353 0.852 -2.228
    Green -1.954 -0.345 2.283 0.613
```

Direct calculation of Pearson $\& L R \chi^{2}$

```
> sum(res.P^2) # Pearson chisq
[1] 138.29
> sum(res.LR^2) # LR chisq
[1] 146.44
```

```
> fitted(mod)
            Hair
Eye Black Brown Red Blond
    Brown 40.1 106.3 26.39 47.2
    Blue 39.2 103.9 25.79 46.1
    Hazel 17.0 44.9 11.15 20.0
    Green 11.7 30.9 7.68 13.7
```

$\log \operatorname{lm}()$ returns an object (mod) of class "loglm"
Method functions, *.logIm() include: residuals(), fitted(), anova(), summary() \& various plot methods

Plots for two-way tables

Barplots are easy, but not often very useful. Why?

```
col <- c("brown", "darkblue", "tan",
    "darkgreen")
barplot(HEC, col = col, legend=TRUE)
```

```
barplot(HEC, col = col,
    beside=TRUE, legend=TRUE, ...)
```


Spine plots

Spine plots show the marginal proportions of one variable, and the conditional proportions of the other. Independence: cells align

```
col <- c("darkgrey", "brown", "red",
    "yellow")
spineplot(HEC, col=rev(col))
```



```
col <- c("brown", "blue", "tan",
    "darkgreen")
spineplot(t(HEC), col=rev(col))
```


Tile plots

Tile plots show a matrix of rectangular tiles, area ~ frequency.
They can be scaled to facilitate different types of comparisons: cells, rows, cols They can be shaded to show the sign \& magnitude of residuals from independence
tile(HEC, shade=TRUE, legend=FALSE)

Sieve diagrams

Visual metaphor: count \sim area

- When row/col variables are independent, $n_{i j} \approx \hat{m}_{i j} \sim n_{i+} n_{+j}$
- \Rightarrow each cell can be represented as a rectangle, with area $=$ height \times width \sim frequency, $n_{i j}$ (under independence)

Expected frequencies: Hair Eye Color Data

This display shows expected frequencies, m_{ij}, as \# boxes within each cell

Under independence, boxes all of the same size \& equal density

Real sieve diagrams use \# boxes = observed frequencies, n_{ij}

Sieve diagrams

- Height, width \sim marginal frequencies, n_{i+}, n_{+j}
- \Longrightarrow Area \sim expected frequency, $\hat{m}_{i j} \sim n_{i+} n_{+j}$
- Shading \sim observed frequency, $n_{i j}$, color: $\operatorname{sign}\left(n_{i j}-\hat{m}_{i j}\right)$.
- \Longrightarrow Independence: Shown when density of shading is uniform.

The rectangles have area~ expected frequency
\# boxes = observed frequency
$\mathrm{n}_{\mathrm{ij}}>\mathrm{m}_{\mathrm{ij}} \rightarrow$ greater density
$\mathrm{n}_{\mathrm{ij}}<\mathrm{m}_{\mathrm{ij}} \rightarrow$ less density

Sieve diagrams: Effect ordering

Permuting the rows / cols to make the pattern more coherent

Here, I reordered the eye colors according to lightness

The opposite-corner pattern suggests an explanation for the association

Sieve diagrams: Subtle patterns

Vision classification of 7477 women in Royal Ordnance factories: visual acuity grade in left \& right eyes

* The obvious association is apparent in the diagonal cells
* A more subtle pattern appears in the off-diagonal cells
* Analysis methods for square tables allow testing hypotheses beyond independence
- Symmetry
- Quasi-symmetry, ...

Ordinal factors

The standard Pearson χ^{2} and LR G${ }^{2}$ give tests of general association, with $(r-1) \times(c-1) d f$

More powerful CMH tests:

- When either row or col levels are ordered, more specific CMH (Cochran-Mantel-Haentzel) tests which take order into account have greater power to detect ordered relations.
- Use fewer df, so ordinal tests are more focused on detecting a particular "signal"
- This is similar to testing for linear trends in ANOVA
- Essentially, these assign scores to the categories \& test for differences in row / col means, or non-zero correlation

CMH tests for ordinal factors

Three types of CMH tests:

Non-zero correlation

- Use when both row and column variables are ordinal.
- $\mathrm{CMH} \chi^{2}=(N-1) r^{2}$, assigning scores $(1,2,3, \ldots)$
- most powerful for linear association

Row/Col Mean Scores Differ

- Use when only one variable is ordinal
- Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank scores)

General Association

- Use when both row and column variables are nominal.
- Similar to overall Pearson χ^{2} and Likelihood Ratio G^{2}.

Sample CMH profiles

Only general association:

	b1		b3		b5	Total Mean	
a1	0	15	25	15	0	55	3.0
a2	5	20	5	20	5	55	3.0
a3	20	5	5	5	20	55	3.0
Total	25	40	35	40	25	165	

Output:

Sample CMH profiles

Linear Association:

	\| b1		b3	b4	b5	Total Mean	
a1	2	5	8	8	8	31	3.48
a2	2	8	8	8	5	31	3.19
a3	5	8	8	8	2	31	2.81
a 4	8	8	8	5	2	31	2.52
Total	17	29	32	29	17	124	

Output:

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)				
Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	10.639	0.001
2	Row Mean Scores Differ	3	10.676	0.014
3	General Association	12	13.400	0.341

Visualizing the association

The association here is U-shaped Only general association detects this

General Association

Higher levels of A are associated with lower levels of B

Linear Association

Example: Mental health data

For the mental health data, both ses and mental are ordinal
All tests are significant, but the nonzero correlation test, with 1 df has the smallest p value \& largest X2 / df

```
> CMHtest(mental.tab)
Cochran-Mantel-Haenszel Statistics for ses by mental
```

	Althypothesis	Chisq Df	Prob	
cor	Nonzero correlation	37.21	1.09e-09	both ordinal
rmeans	Row mean scores differ	40.35	$1.30 \mathrm{e}-07$	cols ordinal
cmeans	Col mean scores differ	40.73	$7.70 \mathrm{e}-09$	rows ordinal
general	General association	46.015	$5.40 \mathrm{e}-05$	neither

र2 / df shows why ordered tests are more powerful

```
> xx <- CMHtest(mental.tab)
> xx$table[,"Chisq"] / xx$table[,"Df"]
    cor rmeans cmeans general
    37.16 8.06 13.56 3.06
```


Observer agreement

- Inter-observer agreement often used as to assess reliability of a subjective classification or assessment procedure
- \rightarrow square table, Rater $1 \times$ Rater 2
- Levels: diagnostic categories (normal, mildly impaired, severely impaired)
- Agreement vs. Association: Ratings can be strongly associated without strong agreement
- Marginal homogeneity: Different frequencies of category use by raters affects measures of agreement
- Measures of Agreement:
- Intraclass correlation: ANOVA framework- multiple raters!
- Cohen's κ : compares the observed agreement, $P_{o}=\sum p_{i i}$, to agreement expected by chance if the two observer's ratings were independent, $P_{c}=\sum p_{i+} p_{+i}$.

$$
\kappa=\frac{P_{o}-P_{c}}{1-P_{c}}
$$

Cohen's k

Properties of Cohen's k :

- perfect agreement: $\kappa=1$
- minimum κ may be <0; lower bound depends on marginal totals
- Unweighted κ : counts only diagonal cells (same category assigned by both observers).
- Weighted κ : allows partial credit for near agreement. (Makes sense only when the categories are ordered.)

Weights:

- Cicchetti-Alison (inverse integer spacing)
- Fleiss-Cohen (inverse square spacing)

Integer Weights				Fleiss-Cohen Weights			
1	$2 / 3$	$1 / 3$	0	1	$8 / 9$	$5 / 9$	0
$2 / 3$	1	$2 / 3$	$1 / 3$	$8 / 9$	1	$8 / 9$	$5 / 9$
$1 / 3$	$2 / 3$	1	$2 / 3$	$5 / 9$	$8 / 9$	1	$8 / 9$
0	$1 / 3$	$2 / 3$	1	0	$5 / 9$	$8 / 9$	1

Example: Cohen's к

The table below summarizes responses of 91 married couples to a questionnaire item,

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always.

```Husband's Rating```	Never fun	$\begin{gathered} --\quad \text { Wife } \\ \text { Fairly } \\ \text { often } \end{gathered}$	Rating Very Often	Almost always	\|	SUM
Never fun	7	7	2	3	\|	19
Fairly often	2	8	3	7	I	20
Very often	1	5	4	9	I	19
Almost always	2	8	9	14	1	33
SUM	12	28	18	33	\|	91

## Example: Cohen's k

vcd: : Kappa () calculates unweighted and weighted k , using equal-spacing weights by default

```
> data(SexualFun, package="vcd")
> Kappa(SexualFun)
 value ASE z Pr (>|z|)
Unweighted 0.129 0.0686 1.89 0.05939 x
Weighted 0.237 0.0783 3.03 0.00244
> Kappa(SexualFun, weights = "Fleiss-Cohen")
 value ASE z Pr (>|z|)
Unweighted 0.129 0.0686 1.89 0.059387 x
Weighted 0.332 0.0973 3.41 0.000643 \checkmark
```

Unweighted k is not significant, but both weighted versions are You can obtain confidence intervals with the confint () method

## Observer agreement: Multiple strata

When the individuals rated fall into multiple groups, one can test for:

- Agreement within each group
- Overall agreement (controlling for group)
- Homogeneity: Equal agreement across groups


## Example: Diagnostic Classification of MS patients

Patients in Winnipeg and New Orleans were each classified by a neurologist in each city
NO rater: Winnipeg patients $\quad$ Cert Prob Pos Doubt $\quad$ Cew Orleans patients
Winnipeg rater:

Certain $M S$	38	5	0	1
Probable	33	11	3	0
Possible	10	14	5	6
Doubtful MS	3	7	3	10
To what extent to the neurologists agree?				
Do they agree equally for the patients for the two cities				


5	3	0	0
3	11	4	0
2	13	3	4
1	2	4	14

To what extent to the neurologists agree?
Do they agree equally for the patients for the two cities

## Observer agreement: Multiple strata

Here, simply assess agreement between the two raters in each stratum separately

```
data(MSPatients, package="vcd")
Kappa(MSPatients[,,1])
\begin{tabular}{lrrrr}
\#\# & value & ASE & z \(\operatorname{Pr}(>|z|)\) \\
\#\# Unweighted & 0.208 & 0.0505 & 4.12 & \(3.77 e-05\) \\
\#\# Weighted & 0.380 & 0.0517 & 7.35 & \(1.99 e-13\)
\end{tabular}
```

Winnipeg patients

Kappa(MSPatients[,,2])
New Orleans patients

\#\#	value	ASE	z	$\operatorname{Pr}(>\|z\|)$
\#\# Unweighted	0.297	0.0785	3.78	$1.59 e-04$
\#\# Weighted	0.477	0.0730	6.54	$6.35 e-11$

Somewhat larger agreement for the New Orleans patients

The irr package (inter-rater-reliability) provides ICC and other measures; also handles the case of $k>2$ raters

## Bangdiwala's Observer agreement chart

The observer agreement chart (Bangdiawala, 1987) provides:
$>$ A simple graphic representation of the strength of agreement
$>$ A measure of strength of agreement with an intuitive interpretation
$B=0.146$
Unweighted


$$
B^{w}=0.498
$$

Weighted


## Bangdiwala's Observer agreement chart

## Construction:

- $n \times n$ square, $n=$ total sample size
- Black squares, each of size $n_{i i} \times n_{i i} \rightarrow$ observed agreement
- Positioned within larger rectangles, each of size $n_{i+} \times n_{+i} \rightarrow$ maximum possible agreement
- $\Rightarrow$ visual impression of the strength of agreement is $B$ :

$$
B=\frac{\text { area of dark squares }}{\text { area of rectangles }}=\frac{\sum_{i}^{k} n_{i i}^{2}}{\sum_{i}^{k} n_{i+} n_{+i}}
$$

- $\Rightarrow$ Perfect agreement: $B=1$, all rectangles are completely filled.



## Weighted agreement chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, $b$ steps from the main diagonal, using weights $1>w_{1}>w_{2}>\cdots$.


- Add shaded rectangles, size $\sim$ sum of frequencies, $A_{b i}$, within $b$ steps of main diagonal
- $\Rightarrow$ weighted measure of agreement,

$$
B^{w}=\frac{\text { weighted sum of agreement }}{\text { area of rectangles }}=1-\frac{\sum_{i}^{k}\left[n_{i+} n_{+i}-n_{i i}^{2}-\sum_{b=1}^{q} w_{b} A_{b i}\right]}{\sum_{i}^{k} n_{i+} n_{+i}}
$$

Husbands and wives: $B=0.146, B^{w}=0.498$
agreementplot (SexualFun, main="Unweighted", weights=1) agreementplot (SexualFun, main="Weighted")


The smallest exact agreement occurs for "very often", but husbands \& wives more on this allowing $\pm 1$ step disagreement

## Marginal homogeneity \& observer bias

- Different raters may consistently use higher or lower response categories
- Test- marginal homogeneity: $H_{0}: n_{i+}=n_{+i}$
- Shows as departures of the squares from the diagonal line

- Winnipeg neurologist tends to use more severe categories


## Looking ahead ...

## Loglinear models

Loglinear models generalize the Pearson $\chi^{2}$ and LR $G^{2}$ tests of association to 3 -way and larger tables.

- Allows a range of models from mutual independence $([A][B][C])$ to the saturated model ([ABC])
- Intermediate models address questions of conditional independence, controlling for some factors
- Can test associations in 2-way, 3-way terms analogously to tests of interactions in ANOVA


## Looking ahead: Models

## Loglinear models [loglm()]

- Generalize the Pearson $\chi^{2}$ and $L R G^{2}$ tests of association to 3-way and larger tables.
- Allows a range of models from mutual independence ([A] $[B][C])$ to the saturated model ([ABC])
- Intermediate models address questions of conditional independence, controlling for some factors
- Can test associations in 2-way, 3-way, ... terms, analogously to tests of interactions in ANOVA


## Generalized linear models [glm()]

- Similar to ordinary $\operatorname{Im}()$, but w/ Poisson distn of counts: family="poisson"
- Formula notation: Freq ~ A + B + C; Freq ~ (A + B + C $)^{\wedge} 2$
- Familiar diagnostic methods \& plots (outliers, influence)


## Looking ahead: Models

## Example: UC Berkeley data

- Mutual independence: [Admit][Gender][Dept]
- Joint independence: [Admit][Gender Dept]
- Conditional independence: [D Admit][D Gender]

$$
\begin{aligned}
& =\sim A+G+D \\
& =\sim A+G * D \\
& =\sim D *(A+G)
\end{aligned}
$$

- Specific test of absence of gender bias, controlling for department
- No three-way association: [A G][A D][G D]

$$
=\sim(A+D+G)^{2}
$$

library (MASS)
loglm(~ Admit + Dept + Gender, data=UCBAdmissions) \# mutual independence
loglm(~ Admit + Dept * Gender, data=UCBAdmissions) \# joint independence
loglm(~ Dept * (Admit + Gender), data=UCBAdmissions) \# conditional independence
loglm(~ (Admit + Gender + Dept )^2, data=UCBAdmissions) \# all two-way, no three-way

## Looking ahead: Mosaic plots

Mosaic plots provide visualizations of associations in 2+ way tables

- Tiles ~ frequency; conditioned by A , then B , then $\mathrm{C}, \ldots$
- Fit: any loglinear model [A][B][C], [AB][C], [AB][AC], ..., [ABC]
- Shading: ~ residuals, contributions to $\chi^{2}$
- Show: associations not accounted for by model


[Hair Eye] [Sex]
$G_{(15)}^{2}=19.86$


## Looking ahead: Correspondence analysis

## Like PCA for categorical data

- Account for max \% of $\chi^{2}$ in few (2-3) dimensions
- Find scores for row and col categories
- Plot of row/col scores shows associations

Dim 1: dark to light
Dim 2: something about red hair, green eyes?


## Summary

- Two-way tables summarize frequencies of two categorical factors
- $2 \times 2$ a special case, with odds ratio as a measure
- $r \times c$ : factors can be unordered or ordered
- $\mathrm{r} \times \mathrm{c} \times \mathrm{k}$ - stratified tables
- Tests \& measures of association
- Pearson $\chi^{2}$, LR G²: general association
- More powerful CMH tests for ordered factors
- Visualization
- $2 \times 2$ : fourfold plots
- $\mathrm{r} \times \mathrm{c}$ : sieve diagrams, tile plots, ...

