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Two-way tables: Overview
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Two-way frequency tables are a convenient way to represent a dataset cross-classified 
by two discrete variables, A & B



Methods
• The methods discussed this week are generally 

simple non-parametric or randomization methods
• There is no underlying formal model with parameters
• Hypothesis tests based on some test statistic:
 Pearson X2

 Odds ratio
 Cohen’s κ

• p-values, confidence intervals based on 
 Large sample theory:  X2 ~ χ2 as N → ∞
 Permutation or simulation distributions
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2 × 2 Example: Berkeley admissions

Males were nearly twice as likely to be admitted
• Is there an association between gender & admission?
• If so, is this evidence for gender bias?
• How to measure strength of association?
• How to test for significance?
• How to visualize?
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odds ratio 
(θ) = 1.84



UCBAdmissions data
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In R, the data is contained in UCBAdmissions, a 2 x 2 x 6 table for 6 deparatments. We 
collapse over department
> data(UCBAdmissions)
> UCB <- margin.table(UCBAdmissions, 2:1)
> UCB

Admit
Gender   Admitted Rejected

Male       1198     1493
Female      557     1278

Association in 2 x 2 table can be measured by the odds ratio (θ): odds of admission for 
males vs. females

> oddsratio(UCB, log=FALSE)
odds ratios for Gender and Admit 

[1] 1.84
> confint(oddsratio(UCB, log=FALSE))

2.5 % 97.5 %
Male:Female/Admitted:Rejected 1.62   2.09

oddsM = 1198 / 1493  = 0.802
oddsF =  557 / 1278   = 0.437
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Questions:
 How to analyze these results? What tests for odds ratio?
 How to visualize & interpret?
 Does it matter that we collapsed over Department?



r × c Example: Hair color, eye color
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Data from 592 students in a statistics class

 Is there an association between hair color and eye color?
 How to measure strength of association?
 How to test for significance?
 How to visualize?
 How to understand the pattern (nature) of association?



HairEyeColor data
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In R, the dataset is HairEyeColor, a 4 x 4 x 2 table: Hair x Eye x Sex. 
For now, collapse over sex.

> data(HairEyeColor)
> HEC <- margin.table(HairEyeColor, 2:1)

Association can be tested by 
the standard Pearson χ2 test.  
Details later

> chisq.test(HEC)

Pearson's Chi-squared test

data:  HEC
X-squared = 138, df = 9, p-value <2e-16

> MASS::loglm(~Hair + Eye, data=HEC)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 146  9        0
Pearson          138  9        0

Or, as a loglinear model for 
independence
Formula: ~ A + B  =  A  ⊥ B



HairEyeColor data
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> assocstats(HEC)
X^2 df P(> X^2)

Likelihood Ratio 146.44  9        0
Pearson          138.29  9        0

Phi-Coefficient   : NA 
Contingency Coeff.: 0.435 
Cramer's V        : 0.279 

vcd::assocstats() collects tests and measures in a convenient summary

> assocstats(HairEyeColor)
$`Sex:Male`

X^2 df P(> X^2)
Likelihood Ratio 44.445  9 1.168e-06
Pearson          41.280  9 4.447e-06

Phi-Coefficient   : NA 
Contingency Coeff.: 0.359 
Cramer's V        : 0.222 

$`Sex:Female`
X^2 df P(> X^2)

Likelihood Ratio 112.23  9        0
Pearson          106.66  9        0

Phi-Coefficient   : NA 
Contingency Coeff.: 0.504 
Cramer's V        : 0.337 

For 3+ way tables, it gives the results for the strata defined by all last dimensions



Simple plots for r × c tables
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barplot(HEC, beside=TRUE, … ) tile(HEC, shade=TRUE)



Ordered tables
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r x c table with ordered categories: Mental health and Parents’ SES categories

 Mental impairment is the response, SES is a predictor
 How to measure strength of association?
 How to understand the pattern of association?
 How to take ordinal nature of variables into account?



Mental data: Association
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The data is contained in vcdExtra::Mental, a frequency data frame

> data(Mental, package="vcdExtra")
> str(Mental)
'data.frame': 24 obs. of  3 variables:
$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 2 2 2 2 3 ...
$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4 1 2 3 4 1 2 ...
$ Freq  : int  64 94 58 46 57 94 54 40 57 105 ...

Convert to a contingency table using xtabs(), and test association

> mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)
> chisq.test(mental.tab)

Pearson's Chi-squared test

data:  mental.tab
X-squared = 46, df = 15, p-value = 5e-05



Mental data: Ordinal tests
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For ordinal factors, more powerful (focused) tests are available with Cochran-Mantel-
Haenszel tests in vcdExtra::CMHtest()

> CMHtest(mental.tab)
Cochran-Mantel-Haenszel Statistics for ses by mental 

AltHypothesis Chisq Df     Prob
cor Nonzero correlation  37.2  1 1.09e-09
rmeans Row mean scores differ  40.3  5 1.30e-07
cmeans Col mean scores differ  40.7  3 7.70e-09
general    General association  46.0 15 5.40e-05

χ2 / df shows why ordered tests are more powerful

> xx <- CMHtest(mental.tab)
> xx$table[,"Chisq"] / xx$table[,"Df"]

cor rmeans cmeans general 
37.16    8.06   13.56    3.06 

both ordinal
cols ordinal
rows ordinal
neither



Table notation
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Independence
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For 2 x 2 tables, this gives rise to tests and measures based on:
 Difference in row/col marginal probabilities:  Test H0 : π1 = π2
 Odds ratio, 𝜃̂𝜃 = (n11 / n12) / (n21 / n22).               Test H0 : θ = 1
 Standard χ2 test is for largish n
 Small samples: Fisher’s exact test, or simulation / permutation tests



Independence: Example
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> educ <- c(50, 100, 50)                       # marginal frequencies
> names(educ) <- c("Low", "Med", "High")

> party <- c(20, 50, 30)                       # marginal frequencies
> names(party) <- c("NDP", "Liberal", "Cons")

> table <- outer(educ, party) / sum(party)     # cell = row * col / n
> names(dimnames(table)) <- c("Education", "Party")
> table

Party
Education NDP Liberal Cons

Low   10      25   15
Med   20      50   30
High  10      25   15

A contrived example, where I generate cell frequencies as the product of row and 
column marginal totals: nij = ni+ x n+j

outer(r,c) = ×r

c
Outer product:



Independence: Example

17

> prop.table(table, 1)
NDP Liberal Cons

Low  0.2     0.5  0.3
Med  0.2     0.5  0.3
High 0.2     0.5  0.3

> prop.table(table, 2)
NDP Liberal Cons

Low  0.25    0.25 0.25
Med  0.50    0.50 0.50
High 0.25    0.25 0.25

 The row proportions of party are the same for each educ group
 The col proportions of educ are the same for each party

> vcd::assocstats(table)
X^2 df P(> X^2)

Likelihood Ratio   0  4        1
Pearson            0  4        1

Phi-Coefficient   : NA 
Contingency Coeff.: 0 
Cramer's V        : 0 

So, the X^2 is exactly zero, and measures of strength are zero



Independence: Arthritis data
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> data(Arthritis, package = "vcd")
> arth.tab <- xtabs(~ Treatment + Improved, data = Arthritis)
> round(prop.table(arth.tab, 1), 3 )

Improved
Treatment  None  Some Marked
Placebo 0.674 0.163  0.163
Treated 0.317 0.171  0.512

But, more people given the Placebo show no improvement; more people Treated 
show marked improvement



Independence: Arthritis data
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If Treatment and Improved were independent, frequencies ~ row x col margins

> row.totals <- margin.table(arth.tab, 1)
> col.totals <- margin.table(arth.tab, 2)
> round(outer(row.totals, col.totals)/ sum(arth.tab), 0)

Improved
Treatment None Some Marked
Placebo   22    7     14
Treated   20    7     14

These are the expected frequencies, under independence; but for the data:

> chisq.test(arth.tab)

Pearson's Chi-squared test

data:  arth.tab
X-squared = 13.1, df = 2, p-value = 0.0015
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Sampling models: Poisson, Binomial, Multinomial

Subtle distinctions arise concerning whether the row and/or 
margins are fixed by design or random
• Poisson: each nij is regarded as an independent Poisson variate; nothing 

fixed
• Binomial: each row (or col) is regarded as an independent binomial distn, 

with one fixed margin (group total), other random (response)
• Multinomial: only the total sample size, n++, is fixed; frequencies nij are 

classified by A and B
• Makes a difference in how hypothesis tests are justified & explained
• Happily, for most inferential methods, ≈ same results are obtained under 

the three sampling models

Q: what is an appropriate sampling model for the UCB admissions data? For 
hair-eye color? For the mental impairment data?
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Odds and odds ratios
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> p <- c( 0.05, .1, .25, .50, .75, .9, .95)
> odds <- p / (1-p)
> logodds <- log(odds)
> (odds.df <- data.frame(p, odds, logodds))

p    odds logodds
1 0.05  0.0526   -2.94
2 0.10  0.1111   -2.20
3 0.25  0.3333   -1.10
4 0.50  1.0000    0.00
5 0.75  3.0000    1.10
6 0.90  9.0000    2.20
7 0.95 19.0000    2.94



Log odds
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Symmetric around π = ½ :
logit(π) = - logit(1- π)

Fairly linear in the middle, 
0.2   π   0.8

The logit transformation of 
probability is the basis for logistic
regression

(An alternative, the cumulative 
normal, -1(π), gives rise to probit
regression)

plot(logodds, p, type='b', xlab="log odds", ylab="Probability", …)
abline(lm(p ~ logodds, subset=(p>=.2 & p<=.8)), col="blue")



Odds ratio

23



Odds ratio: Inference & hypothesis tests
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1log( ))( ij ijnSE θ −= Σ

vcd::oddsratio() has option, log=, TRUE by default
The summary() method calculates z tests

> summary(oddsratio(UCB))

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)    
Male:Female/Admitted:Rejected 0.6104     0.0639    9.55   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Odds ratio: Confidence intervals
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> confint(oddsratio(UCB, log = FALSE))
2.5 % 97.5 %

Male:Female/Admitted:Rejected 1.624  2.087
> confint(oddsratio(UCB))

2.5 % 97.5 %
Male:Female/Admitted:Rejected 0.4851 0.7356

Results should be reported with confidence intervals, either for the odds ratio, θ, or 
for log(θ)

For the Berkeley admissions data:
• The Pearson χ2 test of association between Gender and Admission was highly 

significant, χ1
2 = 91.6, p < .0001

• This corresponded to an odds ratio of admission for Males vs. Females of θ = 1.84 
(CI: 1.62, 2.09), meaning that overall, males were 84% more likely to be admitted

• On the scale of log odds, ψ = log(θ), the estimate was ψ = 0.610 (CI: 0.485, 0.736), 
meaning a significant positive association between Gender(Male) and admission.

Summary in words:



Small sample size
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 Pearson χ2 and LR G2 tests are valid when most expected frequencies  5
 Otherwise, use Fisher’s exact test or simulated p-values

Example: Cholesterol diet and heart disease

> fat <- matrix(c(6, 2, 4, 11), 2, 2)
> dimnames(fat) <- list(cholesterol=c("low", "high"), 
+                       disease=c("no", "yes"))

> fat
disease

cholesterol no yes
low   6   4
high  2  11



Small sample size
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The standard Pearson χ2 test is not significant
For 2 x 2 tables with small n, a correction  |O – E | - ½ is standardly applied

> chisq.test(fat)

Pearson's Chi-squared test with Yates' continuity correction

data:  fat
X-squared = 3.19, df = 1, p-value = 0.074

Yet, we get a warning

Warning message:
In chisq.test(fat) : Chi-squared approximation may be incorrect



Small sample size: Simulation
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> chisq.test(fat, simulate=TRUE)

Pearson's Chi-squared test with simulated p-value (based 
on 2000 replicates)

data:  fat
X-squared = 4.96, df = NA, p-value = 0.04

A Monte-Carlo method uses simulation to calculate a p-value 

This method repeatedly samples cell frequencies from tables with the same
margins, and calculates a χ2 for each. The p-value compares the observed X2 to 
distribution in the simulations.
The χ2 test is now significant.



Small sample size: Fisher exact test
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Fisher’s exact test: calculates probability for all 2 × 2 tables with odds ratio as or more
extreme than that in the data, keeping the margins fixed.

> fisher.test(fat)

Fisher's Exact Test for Count Data

data:  fat
p-value = 0.039
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.86774 105.56694
sample estimates:
odds ratio 

7.4019 

The p-value is similar to that obtained using simulation.

Fisher’s test is available for larger r × c tables, but the method gets computationally 
intensive as r * c increases



Visualizing: fourfold plots
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Visualizing: fourfold plots
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Cholesterol data
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Stratified tables: 2 × 2 × k
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The UC Berkeley data was obtained from 6 graduate departments

> ftable(addmargins(UCBAdmissions, 3))
Dept    A    B    C    D    E    F  Sum

Admit    Gender                                        
Admitted Male         512  353  120  138   53   22 1198

Female        89   17  202  131   94   24  557
Rejected Male         313  207  205  279  138  351 1493

Female        19    8  391  244  299  317 1278



Odds ratios by department

34

> summary(oddsratio(UCBAdmissions))

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)    
A   -1.052      0.263   -4.00  6.2e-05 ***
B   -0.220      0.438   -0.50     0.62    
C    0.125      0.144    0.87     0.39    
D   -0.082      0.150   -0.55     0.59    
E    0.200      0.200    1.00     0.32    
F   -0.189      0.305   -0.62     0.54    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 Odds ratio only significant, log(θ) ≠ 0 for department A
 For dept. A, men are only exp(-1.05) = .35 times as likely to be admitted as women
 The overall analysis (ignoring department) is misleading: falsely assumes no 

association of {admission, department} and {gender, department}



Stratified fourfold plots
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Fourfold plots by department (intense shading where significant)

> fourfold(UCBAdmissions)



Log odds ratio plot
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Plot the log odds ratios with confidence limits

> plot(oddsratio(UCBAdmissions), cex=2, xlab="Department")



Stratified tables: Homogeneity of association

Questions:
• Are the k odds ratios all equal, θ1 = θ2 = … = θk ?

 Woolf’s test: vcd::woolftest()

• This is the same as the hypothesis of no three-way association
• If homogeneous, is the common odds ratio different from 1?

 Mantel-Haenszel test: stats::mantelhaen.test()
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> woolf_test(UCBAdmissions)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)

data:  UCBAdmissions
X-squared = 17.9, df = 5, p-value = 0.0031

The odds ratios differ across departments, so no sense testing their common value



What happened at UC Berkeley?
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Why do results collapsed over department disagree with the results by department?



Mosaic matrices
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Scatterplot matrix 
analog for categorical 
data

All pairwise views
Small multiples → comparison

The answer: Simpson’s Paradox

• Depts A, B were easiest
• Applicants to A, B mostly male
• ∴Males more likely to be 

admitted overall



r × c tables: Overall analysis
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> assocstats(HEC)
X^2 df P(> X^2)

Likelihood Ratio 146.44  9        0
Pearson          138.29  9        0

Phi-Coefficient   : NA 
Contingency Coeff.: 0.435 
Cramer's V        : 0.279 



r × c tables: Overall analysis
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> (mod <- MASS::loglm(~ Hair + Eye, data=HEC, fitted = TRUE))
Call:
MASS::loglm(formula = ~Hair + Eye, data = HEC, fitted = TRUE)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 146.44  9        0
Pearson          138.29  9        0

Residuals, fitted values, test statistics returned by MASS::loglm()
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Residuals and fitted values are obtained with “extractor” methods 

> res.P <- residuals(mod,  
type="pearson")

> res.LR <- residuals(mod, 
type="deviance")

> res.P
Hair

Eye      Black  Brown    Red  Blond
Brown  4.398  1.233 -0.075 -5.851
Blue  -3.069 -1.949 -1.730  7.050
Hazel -0.477  1.353  0.852 -2.228
Green -1.954 -0.345  2.283  0.613

> fitted(mod)
Hair

Eye     Black Brown   Red Blond
Brown  40.1 106.3 26.39  47.2
Blue   39.2 103.9 25.79  46.1
Hazel  17.0  44.9 11.15  20.0
Green  11.7  30.9  7.68  13.7

Direct calculation of Pearson & LR χ2

> sum(res.P^2)  # Pearson chisq
[1] 138.29
> sum(res.LR^2) # LR chisq
[1] 146.44

loglm() returns an object (mod) of class 
“loglm”
Method functions, *.loglm() include: 
residuals(), fitted(), anova(), summary() 
& various plot methods



Plots for two-way tables
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Barplots are easy, but not often very useful.  Why?

col <- c("brown", "darkblue", "tan", 
"darkgreen")

barplot(HEC, col = col, legend=TRUE)

barplot(HEC, col = col, 
beside=TRUE, legend=TRUE, …)



Spine plots
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Spine plots show the marginal proportions of one variable, and the conditional 
proportions of the other.  Independence: cells align

col <- c("darkgrey", "brown", "red", 
"yellow")

spineplot(HEC, col=rev(col))

col <- c("brown", "blue", "tan", 
"darkgreen")

spineplot(t(HEC), col=rev(col))



Tile plots
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Tile plots show a matrix of rectangular tiles, area ~ frequency.
They can be scaled to facilitate different types of comparisons: cells, rows, cols
They can be shaded to show the sign & magnitude of residuals from independence

tile(HEC, shade=TRUE, legend=FALSE) tile(HEC, tile_type=“width”, …)



Sieve diagrams
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This display shows expected
frequencies, mij, as # boxes within 
each cell

Under independence, boxes all of the 
same size & equal density

Real sieve diagrams use # boxes = 
observed frequencies, nij



Sieve diagrams
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The rectangles have area ~ 
expected frequency

#  boxes = observed frequency

nij > mij → greater density
nij < mij → less density



Sieve diagrams: Effect ordering
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Permuting the rows / cols to make the pattern more coherent

Here, I reordered the eye 
colors according to lightness

The opposite-corner pattern 
suggests an explanation for 
the association



Sieve diagrams: Subtle patterns
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Vision classification of 7477 women in Royal Ordnance factories: visual acuity grade in 
left & right eyes 

 The obvious association is apparent 
in the diagonal cells

 A more subtle pattern appears in 
the off-diagonal cells

 Analysis methods for square tables 
allow testing hypotheses beyond 
independence
 Symmetry
 Quasi-symmetry, …



Ordinal factors
The standard Pearson χ2 and LR G2 give tests of general
association, with (r-1) × (c-1) df

More powerful CMH tests:
• When either row or col levels are ordered, more specific CMH (Cochran–

Mantel–Haentzel) tests which take order into account have greater power
to detect ordered relations.
 Use fewer df, so ordinal tests are more focused on detecting a particular “signal”

• This is similar to testing for linear trends in ANOVA
• Essentially, these assign scores to the categories & test for differences in 

row / col means, or non-zero correlation
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CMH tests for ordinal factors
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Three types of CMH tests:



Sample CMH profiles
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Sample CMH profiles
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Visualizing the association
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The association here is U-shaped
Only general association detects this

Higher levels of A are associated 
with lower levels of B



Example: Mental health data
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For the mental health data, both ses and mental are ordinal
All tests are significant, but the nonzero correlation test, with 1 df has the smallest p-
value & largest χ2 / df

χ2 / df shows why ordered tests are more powerful

> xx <- CMHtest(mental.tab)
> xx$table[,"Chisq"] / xx$table[,"Df"]

cor rmeans cmeans general 
37.16    8.06   13.56    3.06 

> CMHtest(mental.tab)
Cochran-Mantel-Haenszel Statistics for ses by mental 

AltHypothesis Chisq Df     Prob
cor Nonzero correlation  37.2  1 1.09e-09
rmeans Row mean scores differ  40.3  5 1.30e-07
cmeans Col mean scores differ  40.7  3 7.70e-09
general    General association  46.0 15 5.40e-05

both ordinal
cols ordinal
rows ordinal
neither



Observer agreement
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Cohen’s κ
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Example: Cohen’s κ
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Example: Cohen’s κ
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> data(SexualFun, package="vcd")
> Kappa(SexualFun)

value    ASE    z Pr(>|z|)
Unweighted 0.129 0.0686 1.89  0.05939
Weighted   0.237 0.0783 3.03  0.00244

> Kappa(SexualFun, weights = "Fleiss-Cohen")
value    ASE    z Pr(>|z|)

Unweighted 0.129 0.0686 1.89 0.059387
Weighted   0.332 0.0973 3.41 0.000643

vcd::Kappa() calculates unweighted and weighted κ, using equal-spacing weights 
by default 

Unweighted κ is not significant, but both weighted versions are
You can obtain confidence intervals with the confint() method











Observer agreement: Multiple strata
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To what extent to the neurologists agree?
Do they agree equally for the patients for the two cities



Observer agreement: Multiple strata
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Winnipeg patients

New Orleans patients

Somewhat larger agreement for the New Orleans patients

The irr package (inter-rater-reliability) provides ICC and other measures; also handles 
the case of k > 2 raters



Bangdiwala’s Observer agreement chart
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The observer agreement chart (Bangdiawala, 1987) provides:
 A simple graphic representation of the strength of agreement
 A measure of strength of agreement with an intuitive interpretation

B = 0.146 Bw = 0.498



Bangdiwala’s Observer agreement chart
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observed: nii x nii
maximum: ni+ x n+i



Weighted agreement chart: Partial agreement
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The smallest exact agreement occurs for “very often”, but husbands & wives more 
on this allowing  ± 1 step disagreement



Marginal homogeneity & observer bias
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Looking ahead …
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Looking ahead: Models
Loglinear models [loglm()]
• Generalize the Pearson χ2 and LR G2 tests of association to 3-way and 

larger tables.
• Allows a range of models from mutual independence ([A] [B] [C]) to the 

saturated model ([ABC])
• Intermediate models address questions of conditional independence, 

controlling for some factors
• Can test associations in 2-way, 3-way, … terms, analogously to tests of 

interactions in ANOVA

Generalized linear models [glm()]
• Similar to ordinary lm(), but w/ Poisson distn of counts: family=“poisson”
• Formula notation: Freq ~ A + B + C; Freq ~ (A + B + C)^2 
• Familiar diagnostic methods & plots (outliers, influence) 
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Looking ahead: Models
Example: UC Berkeley data
• Mutual independence: [Admit][Gender][Dept]                      = ~ A + G + D
• Joint independence: [Admit][Gender  Dept]                            = ~ A + G * D
• Conditional independence: [D Admit][D  Gender]                  = ~ D * (A + G)

 Specific test of absence of gender bias, controlling for department
• No three-way association: [A  G][A  D][G D]                             = ~ (A + D + G)2

69

library(MASS)
loglm(~ Admit + Dept + Gender, data=UCBAdmissions)      # mutual independence
loglm(~ Admit + Dept * Gender, data=UCBAdmissions)      # joint independence
loglm(~ Dept * (Admit + Gender), data=UCBAdmissions)    # conditional independence
loglm(~ (Admit + Gender + Dept )^2, data=UCBAdmissions) # all two-way, no three-way



Looking ahead: Mosaic plots
Mosaic plots provide visualizations of associations in 2+ way tables
• Tiles ~ frequency; conditioned by A, then B, then C, …
• Fit: any loglinear model [A][B][C], [AB][C], [AB][AC], …, [ABC]
• Shading: ~ residuals, contributions to χ2

• Show: associations not accounted for by model
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Looking ahead: Correspondence analysis

Like PCA for categorical data
• Account for max % of χ2 in few (2-3) dimensions
• Find scores for row and col categories
• Plot of row/col scores shows associations

71

Dim 1: dark to light 
Dim 2: something about red 
hair, green eyes?



Summary
• Two-way tables summarize frequencies of two 

categorical factors
 2 × 2 a special case, with odds ratio as a measure
 r × c: factors can be unordered or ordered
 r × c × k – stratified tables

• Tests & measures of association
 Pearson χ2, LR G2: general association
 More powerful CMH tests for ordered factors

• Visualization
 2 × 2: fourfold plots
 r × c: sieve diagrams, tile plots, …
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