

Loglinear models & mosaic displays

Michael Friendly
Psych 6136
http://friendly.github.io/psy6136

Today's topics

- Mosaic displays: basic ideas
- Models for count data
 - Fitting loglinear models
- Two-way tables
- Three-way tables
- Sequential plots & models
- Marginal & partial displays

2

Mosaic displays

- Similar to sieve plot, tile plot, using area ~ frequency
- Mosaic plots generalize more readily to n-way tables (subject to resolution of the display)
- Intimately connected to loglinear & generalized linear models
 - Can fit sequential models as variables are entered
 - Show the pattern of association not accounted for in a given model

Mosaic displays: basic ideas

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

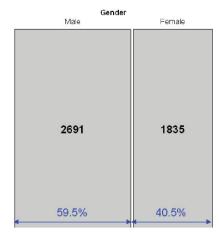
UCB Admissions: Gender frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

 V_1 : width ~ marginal frequencies, n_{i++} V_2 : height ~ cond freq: $V_2 | V_1 = n_{ij} / n_{i++}$ V_3 : width ~ cond freq: $V_3 | V_1, V_2 = n_{ikj} / n_{ij+}$

 \rightarrow Area $^{\sim}$ cell frequency, n_{ijk}



Mosaic displays: basic ideas

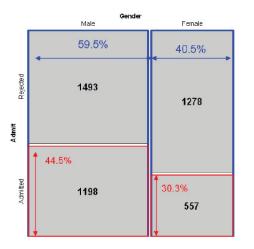
UCB Admissions: Gender x Admit

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

 V_1 : width ~ marginal frequencies, n_{i++} V_2 : height ~ cond freq: $V_2 \mid V_1 = n_{ij} / n_{i++}$ V_3 : width ~ cond freq: $V_3 \mid V_1, V_2 = n_{ikj} / n_{ij+}$

→ Area ~ cell frequency, n_{iik}



Mosaic displays: basic ideas

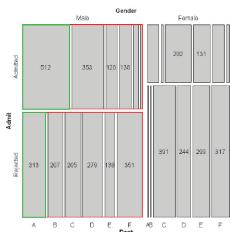
Gender x Admit x Dept frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

 V_1 : width ~ marginal frequencies, n_{i++} V_2 : height ~ cond freq: $V_2 | V_1 = n_{ij} / n_{i++}$ V_3 : width ~ cond freq: $V_3 | V_1, V_2 = n_{ikj} / n_{ij+}$

 \rightarrow Area $^{\sim}$ cell frequency, n_{ijk}



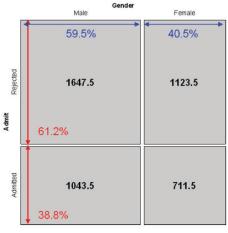
Mosaic displays: Independence

Expected frequencies if Admit \perp Gender

Expected frequencies under independence are products of the row / col margins

$$\widehat{m}_{ij} = \frac{n_{i+}n_{+j}}{n_{++}} = n_{++} \text{row \%col \%}$$

ightarrow Row and col tiles align when variables are independent

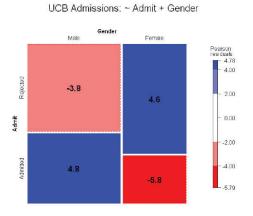


Mosaic displays: Residuals & shading

Pearson residuals:

$$d_{ij} = \frac{n_{ij} - \widehat{m}_{ij}}{\sqrt{\widehat{m}_{ij}}}$$

- Pearson $\chi^2 = \Sigma \Sigma d_{ij}^2 = \Sigma \Sigma \frac{(n_{ij} \hat{m}_{ij})^2}{\hat{m}_{ij}}$
- Other residuals: deviance (LR), Freeman-Tukey (FT), adjusted (ADJ), ...
- Shading:
 - Sign: negative in red; + positive in blue
 - Magnitude: intensity of shading: $|d_{ij}| > 0, 2, 4, \dots$
- → Independence: rows align, or cells are empty!



Loglinear models: Perspectives

Loglinear models grew up and developed from three different ideas and ways of thinking about notions of independence in frequency data

- Loglinear approach: analog of ANOVA; associations are interactions
- glm() approach: analog of general regression model, for log(Freq), with Poisson distn of errors
- Logit models: Loglinear simplified for a binary response

Loglinear approach

First developed as analog of classical ANOVA models, where multiplicative relations are re-expressed in additive form as models for log(Freq)

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B \equiv [A][B] \equiv \sim A + B$$

- This expresses the independence model for a 2-way table as no A*B association
- Short-hand notations: $[A][B] = A \perp B = ^A + B$
- Fit by simple iterative proportional scaling: MASS::logIm()

9

10

glm() approach

Extension of classical linear models recognized loglinear models as a model for log(Freq), with Poisson distⁿ for cell counts

$$\log m = X \beta$$

- Looks like std ANOVA/regression model, but for log(Freq)
- This allows quantitative predictors and special ways to treat ordinal factors
- Fit by maximum likelihood using glm(..., family=poisson)
- Standard diagnostic methods available

Logit models

When one variable is a binary response, a logit model is a simpler way to specify a loglinear model

$$\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$$

- log(m_{1ik}/m_{2ik}) is the log odds of response 1 vs 2
- The model only includes terms for the effect of A on B & C
- Equivalent loglinear model: [AB][AC][BC]
- The logit models assumes the [BC] association;

$$[AB] \rightarrow \beta_i^B \quad [AC] \rightarrow \beta_k^C$$

Fit using family=binomial

```
glm(outcome=="survived" ~ B + C, family = binomial)
```

Two-way tables: loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total size n over the IJ cells of a two-way $I \times J$ contingency table, with cell frequencies n_{ii} , and cell probabilities $\pi_{ii} = n_{ii}/n$.

• The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities, $Pr(A = i \& B = j) = Pr(A = i) \times Pr(B = j)$, or,

$$\pi_{ij} = \pi_{i+}\pi_{+j} .$$

• An equivalent model in terms of expected frequencies, $m_{ij} = n\pi_{ij}$ is

$$m_{ij} = (1/n) m_{i+} m_{+i}$$
.

• This multiplicative model can be expressed in additive form as a model for log m_{ij} ,

$$\log m_{ij} = -\log n + \log m_{i+} + \log m_{+j} . \tag{1}$$

Two-way tables: loglinear approach

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_i^B , \qquad (2)$$

- μ is the grand mean of log m_{ii}
- the parameters λ_i^A and λ_j^B express the marginal frequencies of variables A and B "main effects"
- typically defined so that $\sum_i \lambda_i^A = \sum_i \lambda_i^B = 0$ as in ANOVA

14

Two-way tables: loglinear approach

Saturated model

Dependence between the table variables is expressed by adding association parameters, λ_{ii}^{AB} , giving the *saturated model*,

$$\log m_{ij} = \mu + \lambda_i^A + \lambda_j^B + \lambda_{ij}^{AB} \equiv [AB] \equiv \sim A * B . \tag{3}$$

- The saturated model fits the table perfectly $(\widehat{m}_{ij} = n_{ij})$: there are as many parameters as cell frequencies. Residual df = 0.
- A global test for association tests $H_0: \lambda_{ij}^{AB} = \mathbf{0}$.
- If reject H_0 , which $\lambda_{ii}^{AB} \neq 0$?
- For ordinal variables, the λ_{ij}^{AB} may be structured more simply, giving tests for ordinal association.

Example: Independence

Generate a table of Education by Party preference, strictly independent

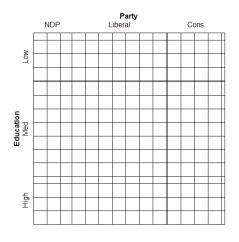
```
> educ <- c(50, 100, 50)
                                                # marginal frequencies
> names(educ) <- c("Low", "Med", "High")</pre>
 party <- c(20, 50, 30)
                                                # marginal frequencies
> names(party) <- c("NDP", "Liberal", "Cons")</pre>
> table <- outer(educ, party) / sum(party)
                                                \# cell = row * col / n
> names(dimnames(table)) <- c("Education", "Party")</pre>
> table
         Party
Education NDP Liberal Cons
     Low 10 25 15
                   50 30
     Med 20
     High 10
```

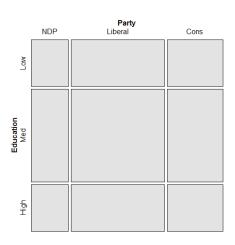
Perfect fit:

Both sieve diagrams and mosaic plots show what independence "looks like"

> sieve(table, shade=TRUE)

> mosaic(table, shade=TRUE)





Two-way tables: glm approach

In the GLM approach, the vector of cell frequencies, $\mathbf{n} = \{n_{ii}\}$ is specified to have a Poisson distribution with means $\mathbf{m} = \{m_{ii}\}$ given by

$$\log m = X\beta$$

- X is a known design (model) matrix, expressing the table factors
- β is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
 - The response, log *m* makes multiplicative relations additive
 - The distribution is taken as Poisson rather than Gaussian (normal)

17

18

Example: 2 x 2 table

For a 2 × 2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

- only the linearly independent parameters are represented. $\lambda_2^A = -\lambda_1^A$, because $\lambda_1^A + \lambda_2^A = 0$, and so forth.
- association is represented by the parameter λ_{11}^{AB} can show that $\lambda_{11}^{AB} = \frac{1}{4} \log(\theta)$ (log odds ratio)
- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for over-dispersion.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G^2 ,

$$G^2 = 2\sum_i n_i \log\left(\frac{n_i}{\widehat{m}_i}\right) , \qquad (4)$$

or the Pearson X^2 ,

$$X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} , \qquad (5)$$

with degrees of freedom df = # cells - # estimated parameters.

- E.g., for the model of independence, [A][B], df = IJ - [(I-1) + (J-1)] = (I-1)(J-1)
- The terms summed in (4) and (5) are the squared cell residuals
- Other measures of balance goodness of fit against parsimony, e.g., Akaike's Information Criterion (smaller is better)

$$AIC = G^2 - 2df$$
 or $AIC = G^2 + 2$ # parameters

R functions for loglinear models

- vcd::assocstats() only χ2 tests for two-way tables; not a model (no parameters; no residuals)
- MASS::loglm() general loglinear models for n-way tables
 loglm(formula, data, subset, na.action, ...)
- glm() all generalized linear models; loglinear with family = poisson

```
glm(formula, data, weights, subset, ...)
```

- Formulas have the form:
 - table form: ~ A + B + ... (independence);
 - A * B + C (allow A*B association)
 - frequency data frame: Freq ~ A * B + C

R functions

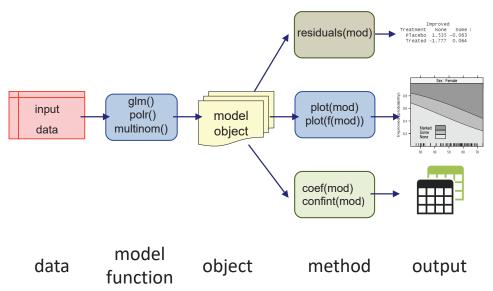
 loglm() and glm() return an R object with named components and with a class()

```
> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)
> names(arth.mod)
> names(arth.mod)
 [1] "lrt"
                    "pearson"
                                  "df"
                                                "margin"
                                                               "fitted"
                                                                             "param"
                                  "frequencies" "deviance"
 [7] "call"
                   "formula"
                                                               "nobs"
                                                                             "terms"
class(arth.mod)
 [1] "loglm"
```

- They have methods: print(), summary, coef(), residuals(), plot() and other methods
 - Methods are specific to the class of the object
 - E.g., residuals (arth.mod) → residuals.loglm(arth.mod)

22

Model-based methods: Fitting & graphing



Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

For now, ignore Age; consider the 2 x 3 table of Treatment x Improved

Arthritis treatment

Fit the independence model, ~ Treatment + Improved

Some methods:

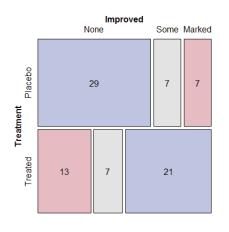
```
> coef(arth.mod)
$`(Intercept)`
[1] 2.543

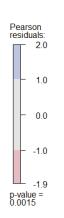
$Treatment
Placebo Treated
0.02381 -0.02381

$Improved
None Some Marked
0.50136 -0.59725 0.09589
```

Arthritis treatment: Plots

Visualization: mosaic() or plot() the model or table





Splits by the response,
Treatment first

Custom scheme for shading levels; normally c(2, 4) for |residual|

Cells can be labeled by freq, residual, ...

26

Arthritis treatment: glm()

glm() for loglinear models easiest with the data as a data.frame in frequency form

More on glm () models later

Example: Hair color & Eye color

```
> haireye <- margin.table(HairEyeColor, 1:2)</pre>
> (HE.mod <- loglm(~ Hair + Eye, data=haireye))</pre>
Call:
loglm(formula = ~Hair + Eye, data = haireye)
Statistics:
                   X^2 df P(> X^2)
Likelihood Ratio 146.4 9
Pearson
                 138.3 9
> round(residuals(HE.mod), 2)
Re-fitting to get frequencies and fitted values
Hair
       Brown Blue Hazel Green
  Black 4.00 -3.39 -0.49 -2.21
  Brown 1.21 -2.02 1.31 -0.35
  Red -0.08 -1.85 0.82 2.04
  Blond -7.33 6.17 -2.47 0.60
```

Mosaic displays: Seeing patterns

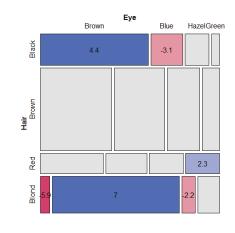
- In two-way models, residuals contain the info on lack of independence
 - Equivalently: help to understand the pattern of association
 - Effect ordering: permuting the rows / cols often makes the pattern more apparent
- Correspondence analysis: → reorder by scores on Dim 1
 - seriation::permute(order="CA") does this for two-way tables

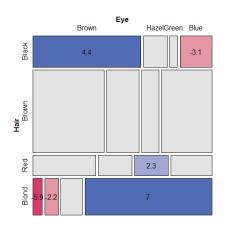
```
> haireye
      Eye
Hair
        Brown Blue Hazel Green
 Black
          68
                      15
         119
                84
                      54
                            29
          26
               17
                      14
                            14
                     10
 Blond
                            16
```

> library(seriation)						
> permute(haireye, "CA")						
Eye						
Hair	Brown	Hazel	Green	Blue		
Black	68	15	5	20		
Brown	119	54	29	84		
Red	26	14	14	17		
Blond	7	10	16	94		

29

```
mosaic(haireye, shade=TRUE, labeling=labeling_residuals)
mosaic(permute(haireye, "CA"), shade=TRUE, labeling=labeling residuals)
```





Bee abundance data

A study by Taylor Kerekes examined the abundance of bee species in Ontario over three periods of time.

Q: Does relative abundance of species differ over years?

A: Do a chi-square test

```
chisq.test(bees[,-1])
Pearson's Chi-squared test

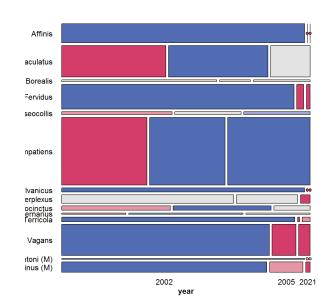
data: bees[, -1]
X-squared = 1981, df = 26, p-value <2e-16</pre>
```

# A tibble: 14 x	4		
species	`2002`	`2005`	`2021`
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 Affinis	508	0	0
2 Bimaculatus	362	345	137
3 Borealis	30	6	11
4 Fervidus	634	19	10
5 Griseocollis	35	21	21
6 Impatiens	638	564	616
7 Pensylvanicus	112	0	0
8 Perplexus	160	57	9
9 Rufocinctus	51	46	17
10 Ternarius	9	16	9
11 Terricola	119	1	4
12 Vagans	713	82	39
13 Ashtoni (M)	27	0	0
14 Citrinus (M)	234	38	5

How to understand the pattern of association?

mosaic(bees.mat, shade=TRUE, ...)

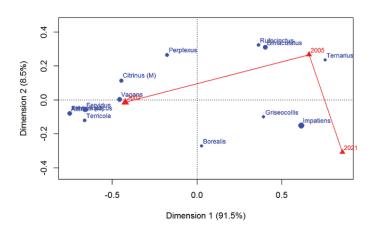
Bees Abundance Data



Alphabetic order of species:
No clear pattern

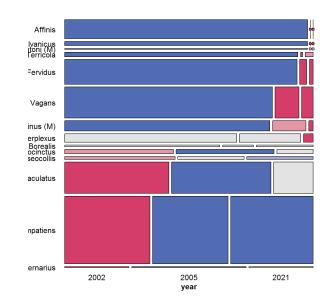
Correspondence analysis finds scores for the row & col categories to account for maximum χ^2

```
bees.ca <- ca(bees.mat)
plot(bees.ca,
    lines=c(FALSE,TRUE),  # join years with lines
    mass = c(TRUE, TRUE))  # symbol size ~ marginal frequency</pre>
```



mosaic(permute(bees.mat, "CA"), shade=TRUE, ...)

Bees Abundance Data



34

36

Three-way tables

Saturated model

For a 3-way table, of size $I \times J \times K$ for variables A, B, C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, λ_{ijk}^{ABC}

$$\log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC} + \lambda_{ijk}^{ABC}.$$

$$(6)$$

- One-way terms $(\lambda_i^A, \lambda_j^B, \lambda_k^C)$: differences in the *marginal frequencies* of the table variables.
- Two-way terms $(\lambda_{ij}^{AB}, \lambda_{ik}^{AC}, \lambda_{jk}^{BC})$ pertain to the *partial association* for each pair of variables, *controlling* for the remaining variable.
- The three-way term, λ_{ijk}^{ABC} allows the partial association between any pair of variables to vary over the categories of the third variable.
- Fits perfectly, but doesn't *explain* anything, so we hope for a simpler model!

Reduced models

- Goal: fit the smallest model sufficient to explain/describe the observed frequencies
 - Similar to Anova models, ~(A + B + C)³ with all interactions
- Hierarchical models

33

- A high-order term, like $\lambda_{ijk}^{\ \ ABC} \rightarrow$ all lower order terms included
- E.g. [ABC] \rightarrow A + B + C + AB + AC + BC
- $[AB][AC] \rightarrow A + B + C + AB + AC$
- Thus, a shorthand notation for a loglinear model lists only the high-order terms

Reduced models

- For a three-way table there is a range of models between mutual independence, [A][B][C], and the saturated model, [ABC]
- Each model has an independence interpretation:

$$[A][B] \equiv A \perp B \equiv A \text{ independent of } B$$

Special names for various submodels

Table: Log-linear Models for Three-Way Tables

Model symbol	Interpretation
[A][B][C]	$A \perp B \perp C$
[AB][C]	$(A B) \perp C$
[AC][BC]	$(A \perp B) \mid C$
[AB][AC][BC]	homogeneous assoc.
[ABC]	ABC interaction
	[A][B][C] [AB][C] [AC][BC] [AB][AC][BC]

Model types

 Joint independence: (AB) \(\preceq\) C, allows A*B association, but asserts no A*C and B*C associations

$$[AB][C] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_i^B + \lambda_k^C + \lambda_{ij}^{AB}$$

Conditional independence: A

B, controlling for C

$$[AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_i^B + \lambda_k^C + \lambda_{ik}^{AC} + \lambda_{ik}^{BC}$$

 Homogeneous association: All two-way, but each two-way is the same over the other factor

$$[AB][AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_i^B + \lambda_k^C + \lambda_{ii}^{AB} + \lambda_{ik}^{AC} + \lambda_{ik}^{BC}$$

37

38

Model types: loglm()

Each of these have simple translations into the model formulae for loglm()

```
loglm(~ A + B + C)  # mutual independence  [A][B][C]
loglm(~ A * B + C)  # joint independence  [AB][C]
loglm(~ A*C + B*C)  # conditional independence  [AC][BC]
loglm(~ (A + B + C)^2)  # homogeneous, all 2-way  [AB][AC][BC]
loglm(~ A * B * C)  # saturated model  [ABC]
```

Collapsibility: Marginal & conditional associations

- Q: When can we legitimately collapse a table, ABC over some variable (C)?
- A: When the marginal association of AB is the same as the conditional association, AB | C
- Recall the Berkeley data
 - Margin of Admit, Gender ignoring Dept showed strong association
 - The partial assoc. within Dept were mostly NS
 - This is an example of Simpson's paradox
- Three-way tables: The AB marginal and AB | C conditional associations are the same, if either:
 - A & C are conditionally independent, A ⊥ C | B = [AB][CB]
 - B & C are conditionally independent, B ⊥ C | A = [AB][AC]
 - → no three-way association

Response vs. Association models

- In association models, the interest is just on which variabels are associated, and how
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
 - \implies fit the homogeneous association model (or the saturated model)
 - Test the individual terms, delete those which are NS
- In response models, the interest is on which predictors are associated with the response
 - The minimal (null or baseline) model is the model of joint independence of the response (say, A) from all predictors, [A] [B C D . . .]
 - Associations among the predictors are fitted exactly (not analyzed)
 - Similar to regression, where predictors can be arbitrarily correlated
 - e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]
 - lack-of-fit ⇒ associations [Admit Gender] and/or [Admit Dept]

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio G^2 , or the Pearson X^2 .

$$G^2 = 2\sum_i n_i \log\left(\frac{n_i}{\widehat{m}_i}\right) \qquad X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} ,$$

with residual degrees of freedom ν = # cells – # estimated parameters.

- ullet These measure the lack of fit of a given model— a large value \Longrightarrow a poor model
- Both are distributed as $\chi^2(\nu)$ (in large samples: all $\hat{m}_i > 5$)
- $\mathcal{E}(\chi^2(\nu)) = \nu$, so G^2/ν (or X^2/ν) measures lack of fit per degree of freedom (overdispersion)
- But: how to compare or test competing models?

41

42

Nested models & ANOVA-type tests

Two models, M_1 and M_2 are nested when one (say, M_2) is a special case of the other

- Model M₂ (w/ v_2 df) fits a subset of the parameters of M1 (w/ v_1 df)
- M_2 is more restrictive cannot fit better than M_1 : $G^2(M_2) \ge G^2(M_1)$
- The least restrictive model is the saturated model [ABC ...], $w/G^2 = 0$

Therefore, we can test the difference in G^2 as a specific test of the added restrictions in M_2 compared to M_1 .

• This test has a χ^2 distribution with df = $v_2 - v_1$

$$\Delta G^{2} \equiv G^{2}(M_{2} | M_{1}) = G^{2}(M_{2}) - G^{2}(M_{1})$$

$$= 2 \sum_{i} n_{i} \log(\widehat{m}_{i1}/\widehat{m}_{i2})$$
(7)

Example: Berkeley admissions

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the following models form a nested chain

$$[A][D][G] \subset [A][DG] \subset [AD][AG][DG] \subset [ADG]$$

Table: Hierarchical G² tests for loglinear models fit to the UC Berkeley data

Type	LLM terms	G^2	df	$\Delta(G^2)$	$\Delta(df)$	$Pr(>\Delta(G^2))$
Mutual ind	[A][D][G]	2097.67	16			
Joint	[A][DG]	877.06	11	1220.62	5	0.0000
All 2-way	[AD][AG][DG]	20.20	5	1128.70	5	0.0000
Saturated	[ADG]	0.0	0	20.20	5	0.0011

- Only testing the decrease in G2 from one model to the next
- Here, each model is significantly better than the previous
- Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
- Absolut fit of all 2-way model is not terrible. Investigate this further!

Fitting these in R

loglm() - data in contingency table form (MASS package)

```
data(UCBAdmissions)
## conditional independence (AD, DG) in Berkeley data
mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
## all two-way model (AD, DG, AG)
mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)</pre>
```

glm() - data in frequency form

```
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
family='poisson')</pre>
```

- loglm() simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)
- gnm () fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.

45

Example: Berkeley admissions

Fit the model of mutual independence, using logIm()

Conditional independence [AD] [AG]

Conditional independence, [AD] [AG]

All two-way model, [AD] [AG] [DG]

ANOVA tests

These are nested. Compare with anova ()

```
> aov1 <- anova(berk.loglm0, berk.loglm1, berk.loglm3, test="Chisq")
> aov1
LR tests for hierarchical log-linear models
Model 1:
~Admit + Dept + Gender
Model 2:
~Admit * (Dept + Gender)
Model 3:
~ (Admit + Dept + Gender) ^2
         Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 2097.671 16
Model 2 1148.901 10 948.770
                                               0.00000
Model 3 20.204 5 1128.697
                                               0.00000
Saturated 0.000 0 20.204
                                               0.00114
```

These are tests of relative fit, $\Delta G^2 = G^2 (M_i \mid M_{i-1})$

LRstats

vcdExtra::LRstats() gives one-line summaries of a collection of models
These are tests of absolute goodness of fit

- AIC and BIC are GOF measures adjusted for model parsimony
- Not not significance tests, but smaller is better
- Also apply to non-nested models

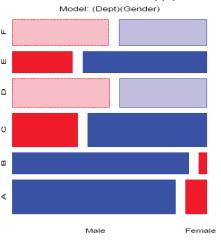
$$AIC = G^2 + 2 \times \# \text{ parameters}$$

 $BIC = G^2 + 2 \log(n) \times \# \text{ parameters}$

Mosaic displays: Predictor variables

Berkeley data: Departments × Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?



In response models, the mosaic of the predictors gives a graphic summary of background variables

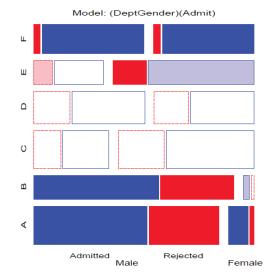
- Model [Dept] [Gender]: $G_{(5)}^2 = 1220.6$.
- Note: Departments ordered A–F by overall rate of admission.
- Men more likely to apply to departments A,B; women more likely in depts C-F

50

Mosaic displays: Visual fitting

- Each mosaic shows:
 - The DATA size of tiles
 - (some) marginal frequencies initial splits (visual grouping)
 - RESIDUALS (shading) what associations have been omitted?
- Visual fitting
 - Start with a simple model: mutual independence or joint independence for response models
 - Pattern of residuals: suggest a better model → smaller residuals
 - Add terms: → smaller residuals, less shading: "cleaning the mosaic"
 - Good fitting model will have mostly unshaded tiles

For the Berkeley data, start with the model of joint independence, [A][DG] Fits badly: $G^2_{(11)}$ = 877.1



This is the null, or baseline model when Admit is the response variable.

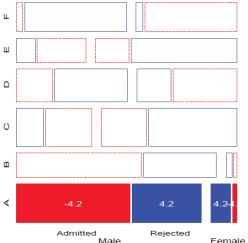
Allows assoc. of [Dept Gender], not shown in shading

Remaining shading suggests:

[AD] : Admit varies w/ Dept [AG] : Admit varies w/ Gender

Conditional independence, [AD] [DG]:

Model: (DeptGender)(DeptAdmit)

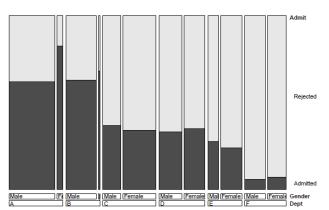


- E.g., Add [Admit Dept] association → Conditional independence:
 - Fits poorly: (G₍₆₎² = 21.74)
 But, only in Department A!
- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.

Double decker plots

Visualize dependence of one response variable (typically binary) on combinations of predictors Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

doubledecker(Admit ~ Dept + Gender, data = UCBAdmissions[2:1, ,])



An exploratory plot

Highlights the M-F diffce in Admit for Dept A

DDAR Fig 5.34, p 211

53

4-way tables: Survival on the *Titanic*

Data on the fate of passengers & crew on the HMS Titanic: a 4 × 2 × 2 × 2 table

```
> data(Titanic, package="datasets")
 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
 - attr(*, "dimnames")=List of 4
  ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
             : chr [1:2] "Male" "Female"
             : chr [1:2] "Child" "Adult"
  ..$ Survived: chr [1:2] "No" "Yes"
```

What proportion survived? Ans: 711/2201 = 32.3%

```
> addmargins(margin.table(Titanic, 4))
Survived
  No Yes Sum
1490 711 2201
> margin.table(Titanic, 4) / sum(Titanic)
Survived
  No Yes
0.677 0.323
```


Zero cells

> structable(Titanic)						
		Sex	Male		Female	
		Survived	No	Yes	No	Yes
Class	Age					
1st	Child		0	5	0	1
	Adult		118	57	4	140
2nd	Child		0	11	0	13
	Adult		154	14	13	80
3rd	Child		35	13	17	14
	Adult	_	387	75	89	76
Crew	Child		0	0	0	0
	Adult		670	192	3	20

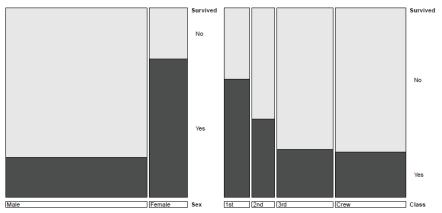
Two types of zero cells:

- Structural zeros: could not occur (children in crew)
- Sampling zeros: did not happen to occur (children in 1st & 2nd who died)
- Beware: zeros can cause problems:
 - Loss of df
 - $0/0 \rightarrow NaN \text{ in } \chi 2 \text{ tests}$

Exploratory plots

One-way doubledecker plots against survival show what might be expected:

doubledecker(Survived ~ Sex, data=Titanic)
doubledecker(Survived ~ Class, data=Titanic)

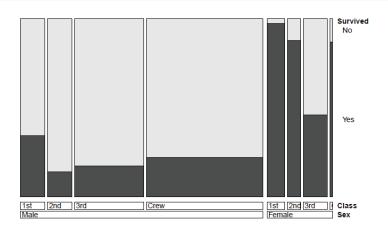


58

Exploratory plots

Two-way doubledecker plot against survival shows different effects of Class for men and women:

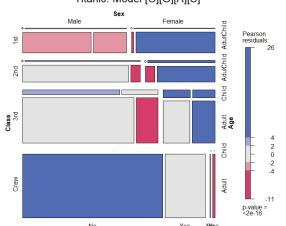
doubledecker(Survived ~ Sex + Class, data=Titanic)



Fitting & visualizing models

mod0 <- logIm(~ 1 + 2 + 3 + 4, data=Titanic) mosaic(mod0, main="Titanic: Model [C][G][A][S]")

Titanic: Model [C][G][A][S]



In the model formulas, I'm using variable numbers 1-4 for Class, Gender, Age and Survived

The independence model serves only as a background for the total associations in the table

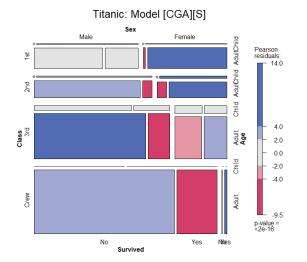
Let's clean this mosaic!!

Note the scale of residuals: +26 -- -11

59

Baseline model for Survived

mod1 <- logIm(~ 1*2*3 + 4, data=Titanic) mosaic(mod1, main="Titanic: Model [CGA][S]")



With *S* as response, the baseline model includes all association s among [CGA]

But this model asserts survival is independent of all of these

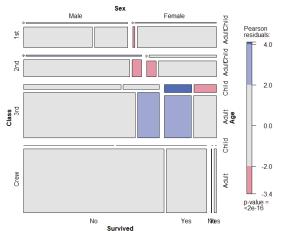
 G^2 (15) = 671.96, a very poor fit

61

Adding associations: Main effects

mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic) mosaic(mod2, main="Titanic: Model [CGA][CS][GS][AS]")

Titanic: Model [CGA][CS][GS][AS]



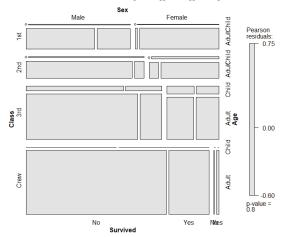
- This model allows associations of each of C. G. A with Survived
- $G^2(10) = 112.57$, still not good
- Pattern of residuals suggests
 2-way interactions (3-way terms):
- "Women & children first": suggests a term [GAS]
- Allow interactions of Class with Gender [CGS] and Class with Age [CAS]

62

Final model

mod3 <- logIm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic) mosaic(mod3, main="Titanic: Model [CGA][CGS][CAS]")

Titanic: Model [CGA][CGS][CAS]



Nice & clean!

 $G^2(4) = 1.69$, p=0.79

Comparing models

As usual, **anova** () give compact relative comparisons of a set of nested models

```
> anova(mod0, mod1, mod2, mod3)
LR tests for hierarchical log-linear models
Model 1:
 \sim 1 + 2 + 3 + 4
Model 2:
 ~1 * 2 * 3 + 4
 ~1 * 2 * 3 + (1 + 2 + 3) * 4
 ~1 * 2 * 3 + (1 * 2) * 4 + (1 * 3) * 4
          Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1
           1243.66 25
            671.96 15
Model 2
                          571.70
                                         10
                                                     0.000
Model 3
            112.57 10
                          559.40
                                          5
                                                     0.000
Model 4
              1.69 4
                          110.88
                                          6
                                                     0.000
              0.00 0
                            1.69
                                                     0.793
Saturated
```

Comparing models

LRstats () gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

mod3 [CGA] [CGS] [CAS] wins!

- Acceptable G²
- Looks best by AIC & BIC

65

Sequential plots & models

- Mosaic for an n-way table → hierarchical decomposition of association
- Joint cell probabilities are decomposed as:

$$p_{ijk\ell \dots} = \underbrace{\frac{\{v_1v_2\}}{p_i \times p_{j|i}} \times p_{k|ij}}_{\{v_1v_2v_3\}} \times p_{\ell|ijk} \times \dots \times p_{n|ijk \dots}$$

- First 2 terms: \rightarrow mosaic for v_1 , v_2
- First 3 terms: → mosaic for v₁, v₂, v₃
- ... and so on
- Roughly analogous to sequential fitting in regression: X_1 ; $X_2 | X_1$; $X_3 | X_1, X_2$
- Order of variables matters for interpretation
 - Mosaics: 1st split: easiest to see the marginal proportions
 - Mosaics: 2nd variable seen as conditional proportions, given the 1st

Model interpretation

Recall that the goal of analysis is to tell a story

- Greatest impact: lower class → decreased survival, regardless of Gender & Age
- Differences in survival by Class were moderated by both Gender & Age
 - Term [CGS]: Women in 3rd class did not have an advantage, while men in 1st class did vs. other classes
 - Term [CAS]: No children in 1st or 2nd class died, but nearly 2/3 in 3rd class did
- Summary:
 - Not so much "women & children first", rather
 - Women & children, ordered by class, and 1st class men!

66

Sequential plots & models

- Sequential models of joint independence
 - Give an additive decomposition of total association mutual independence [v₁][v₂] ... [v_p]

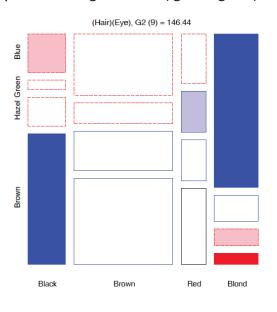
$$G^2_{[\nu_1][\nu_2]\dots[\nu_p]} = G^2_{[\nu_1][\nu_2]} + G^2_{[\nu_1\nu_2][\nu_3]} + G^2_{[\nu_1\nu_2\nu_3][\nu_4]} + \dots + G^2_{[\nu_1\dots\nu_{p-1}][\nu_p]}$$

• E.g., for Hair Eye color data

Model	Model symbol	df	G^2
Margir	nal [Hair] [Eye]	9	146.44
Joint	[Hair, Eye] [Sex]	15	19.86
Mutua	l [Hair] [Eye] [Sex]] 24	166.30

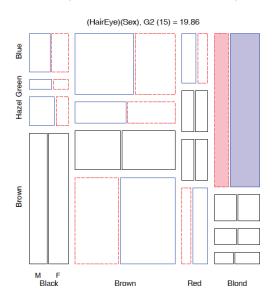
Sequential plots & models

Hair color × Eye color marginal table (ignoring Sex)



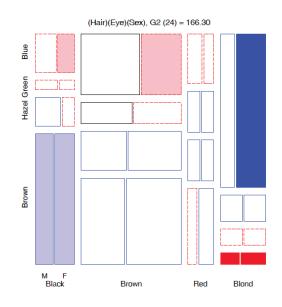
Sequential plots & models

3-way table, Joint independence model [Hair Eye][Sex]



Sequential plots & models

3-way table, Mutual independence [Hair] [Eye][Sex]

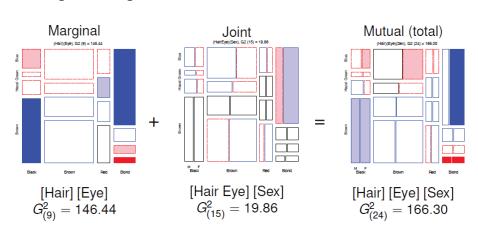


Sequential plots & models

Putting these together:

69

71



Sequential models: Applications

Response models

- When one variable, R, is a response and E_1, E_2, \ldots are explantory, the baseline model is the model of joint independence, $[E_1, E_2, \ldots][R]$
- Sequential mosaics then show the associations among the predictors
- The last mosaic shows all associations with R
- Better-fitting models will need to add associations of the form $[E_iR], [E_iE_iR]...$

Causal models

• Sometimes there is an assumed causal ordering of variables:

$$A \rightarrow B \rightarrow C \rightarrow D$$

- Each path of arrows: A → B, A → B → C is a sequential model of joint independence: [A][B], [AB] [C], [ABC] [D].
- Testing these decomposes all joint probabilities

Example: Marital status, pre- & extra-marital sex

Thornes and Collard (1979) studied divorce patterns in relation to premarital and extramarital sex, a 2^4 table, **PreSex** in vcd ($G \times P \times E \times M$)

Submodels:

G[P]: Do men & women differ by pre-marital sex?

❖ [GP][E]: Given G & P, are there differences in extra-marital sex?

❖ [GPE][M]: Are there differences in divorce among the G, P, E groups?

74

Example: Marital status, pre- & extra-marital sex

Order the table variables as $G \rightarrow P \rightarrow F \rightarrow M$

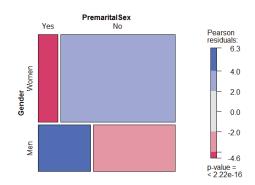
```
> names(dimnames(PreSex))  # table variable names
[1] "MaritalStatus" "ExtramaritalSex" "PremaritalSex" "Gender"
> PreSex <- aperm(PreSex, 4:1)  # order variables G, P, E, M</pre>
```

Fit each sequential model to the marginal sub-table. vcdExtra::seq_loglm()
generates these models of joint independence

Model	df	G^2
[G] [P]	1	75.259
[GP] [E]	3	48.929
[GPE] [M]	7	107.956
[G] [P] [E] [M]	11	232.142

Mosaic plots

Gender and Premarital Sex

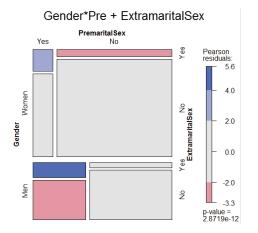


Twice as many women in this sample

Men far more likely to report premarital sex than women (odds ratio = 3.7)

Mosaic plots

```
# (Gender Pre) (Extra)
mosaic(margin.table(PreSex, 1:3),
       expected = ~Gender * PremaritalSex + ExtramaritalSex,
       main = "Gender*Pre + ExtramaritalSex")
```



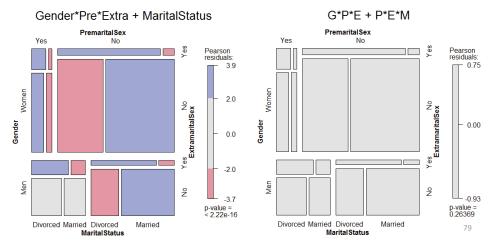
Men & women who reported Prefar more likely to report Extra-sex

Odds ratio of Extra-given Preabout the same for men & women (3.61 vs. 3.56)

78

Mosaic plots

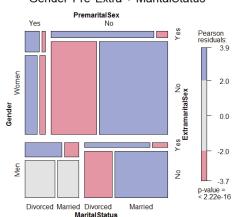
```
mosaic (PreSex,
       expected = ~Gender * PremaritalSex * ExtramaritalSex
       + MaritalStatus,
       main = "Gender*Pre*Extra + MaritalStatus")
# (GPE) (PEM)
mosaic (PreSex,
       expected = ~ Gender * PremaritalSex * ExtramaritalSex
       + MaritalStatus * PremaritalSex * ExtramaritalSex,
       main = "G*P*E + P*E*M")
```



Mosaic plots

```
mosaic (PreSex,
       expected = ~Gender * PremaritalSex * ExtramaritalSex
       + MaritalStatus,
       main = "Gender*Pre*Extra + MaritalStatus")
```

Gender*Pre*Extra + MaritalStatus



In the model [GPE][M], marital status depends in a complex way

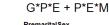
Among women, those reporting Premore likely to be divorced

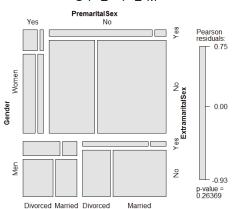
Among men, those reporting Preonly more likely to be divorced if Extra-

This suggests adding associations of M with P and E: [PEM] term

Mosaic plots

```
# (GPE) (PEM)
mosaic (PreSex,
       expected = ~ Gender * PremaritalSex * ExtramaritalSex
       + MaritalStatus * PremaritalSex * ExtramaritalSex,
       main = "G*P*E + P*E*M")
```





Marital Status

This model fits well, $G^2(4) = 5.26$, p=0.26

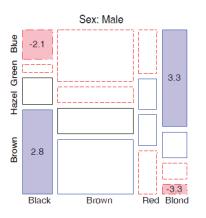
Loglinear thinking: once we take GPE into account, are there simpler models for association with M?

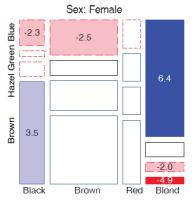
Looking forward: logit models for MaritalStatus often provide an easier path

Partial association, partial mosaics

Sometimes useful to do a stratified analysis

- How does association between two (or more) variables vary over levels of other variables?
- Mosaic plots for main variables show partial association at each level of others
- E.g., Hair color, Eye color, subset by Sex





Partial association, partial mosaics

Stratified analysis: conditional decomposition of G^2

- Fit models of partial (conditional) independence, $A \perp B \mid C_k$ at each level of (controlling for) C.
- \Rightarrow partial G^2 s add to the overall G^2 for conditional independence, $A \perp B \mid C$

$$G^2_{A\perp B\mid C}=\sum_k G^2_{A\perp B\mid C(k)}$$

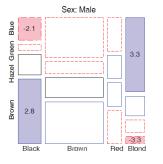
Table: Partial and Overall conditional tests, Hair ⊥ Eye | Sex

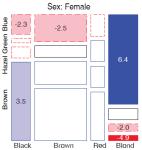
Model	df	G^2	<i>p</i> -value
[Hair][Eye] Male	9	44.445	0.000
[Hair][Eye] Female	9	112.233	0.000
[Hair][Eye] Sex	18	156.668	0.000

83

Partial association: Summary

- Overall, there is a strong association of hair color and eye color, controlling for sex, G²(18) = 156.67
 - For F, G²(9) = 112.23 accounts for 72% of this association
- The pattern of association is similar for M & F
 - The largest difference is for blue-eyed blonds, much more prevalent among F than M. Is there a hair dye effect?





Summary: What we've learned

84