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Today’s topics

* Mosaic displays: basic ideas
* Models for count data

= Fitting loglinear models
* Two-way tables
* Three-way tables
* Sequential plots & models
* Marginal & partial displays

Mosaic displays

* Similar to sieve plot, tile plot, using area ~ frequency

* Mosaic plots generalize more readily to n-way tables
(subject to resolution of the display)

* Intimately connected to loglinear & generalized
linear models
= Can fit sequential models as variables are entered

® Show the pattern of association not accounted for in a
given model

Mosaic displays: basic ideas

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

UCB Admissions: Gender frequencies

Gender

Iale Female
Area proportional display for an n-way
table
Tiles: recursive splits of a unit square,
alternating H, V
V,: width ~ marginal frequencies, n;,, 2691 1835

59.5% 40.5%




Mosaic displays: basic ideas

UCB Admissions: Gender x Admit

Gender
Malz Female
Area proportional display for an n-wa
prop play Y 59 5% 405%
table -
Tiles: recursive splits of a unit square, *?.:i 1493
alternating H, V .
V,: width ~ marginal frequencies, n ,,, E
=X
V,: height ~ cond freq: V,| V;=n;/n,,
44.5%
: 1198
=y

Mosaic displays: basic ideas

Gender x Admit x Dept frequencies

Gender

Malg Femala
Area proportional display for an n-way
table - a0z || 131
g 512 353 20(138
Tiles: recursive splits of a unit square, *

alternating H, V

Admit

V,: width ~ marginal frequencies, n ,,
V,: height ~ cond freq: V,| V;=n;/n,,
V3: width ~ cond freq: V5 | Vo, V, = ny; / ny,

391 ||244(| 299 || 317
313 || 207 || 205 || 279 | [ 351

Rejoctacd

— Area ~ cell frequency, ny;

Mosaic displays: Independence

Expected frequencies if Admit 1. Gender

Gender
Male Female

Expected frequencies under

independence are products of the row 59.5% 40.5%
/ col margins

B
N Njs Ny g 1647.5 1123.5
My =~ = n,, row %col % &
Nyt
£
& 61.2%
— Row and col tiles align when
variables are independent B
E 1043.5 711.5
<

38.8%

v

o Pearson residuals:

Ni — M UCB Admissions: ~ Admit + Gender
di = ) )
=

=
m‘;- Gender
y ] Ferrale

Paarson
residuals

Pearson y? = Z):duz_ = Zz(f’u:niﬁ'uf

o Other residuals: deviance (LR),
Freeman-Tukey (FT), adjusted
(ADJ), ...

4.00

Rejectad

Admit

e Shading: -
@ Sign: — negative in red; +
positive in blue é 400
o Magnitude: intensity of shading: % i
|dij] >0,2,4,... '
@ = Independence: rows align, or

cells are empty!




Loglinear models: Perspectives

Loglinear models grew up and developed from three
different ideas and ways of thinking about notions of
independence in frequency data

* Loglinear approach: analog of ANOVA; associations
are interactions

* glm() approach: analog of general regression model,
for log(Freq), with Poisson distn of errors

* Logit models: Loglinear simplified for a binary
response

Loglinear approach

First developed as analog of classical ANOVA models, where
multiplicative relations are re-expressed in additive form as
models for log(Freq)

logmj = p+ A+ AP = [A][B] =~ A+ B

* This expresses the independence model for a 2-way table as no A*B
association
* Short-hand notations: [A][B]=ALB=~A+B

* Fit by simple iterative proportional scaling: MASS::loglm()

loglm(Freq ~ A + B + C) # [A
loglm(Freqg ~ A * B + C ) # [A
loglm(Freg ~ A * B * C) # [A

glm() approach

Extension of classical linear models recognized loglinear models
as a model for log(Freq), with Poisson dist" for cell counts

logm = X p

* Looks like std ANOVA/regression model, but for log(Freq)

* This allows quantitative predictors and special ways to treat
ordinal factors

* Fit by maximum likelihood using gIm(..., family=poisson)
* Standard diagnostic methods available

glm( Freg ~ A + B + C, family
glm( Freq ~ A * B + C, family

poisson #
poisson) # [A B] [C]

Logit models

When one variable is a binary response, a logit model is a
simpler way to specify a loglinear model

log(mjk/meix) = a + B8 + 3¢ = [ABJIAC][BC]

* log(my;/m,;) is the log odds of response 1 vs 2
* The model only includes terms for the effect of Aon B & C
* Equivalent loglinear model: [AB][AC][BC]
* The logit models assumes the [BC] association;
[AB] > B2 [AC] - B,S
* Fit using family=binomial

glm (outcome==“survived” ~ B + C, family = binomial)




Two-way tables: loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total
size nover the IJ cells of a two-way [ x J contingency table, with cell
frequencies ny;, and cell probabilities m; = n;/n.

@ The table variables are statistically independent when the cell (joint)
probability equals the product of the marginal probabilities,
Pr(A=i&B=j)=Pr(A=1i) x Pr(B=j), or,

?T,‘j = TF;+?F+J.' 5
@ An equivalent model in terms of expected frequencies, m; = nmj; is
mj = (1/n) m. my; .
@ This multiplicative model can be expressed in additive form as a model

for log mj;,
log my = —log n + log mj; +logmy; . (1)

Two-way tables: loglinear approach
Independencemodel

Independence model

By anology with ANOVA models, the independence model (1) can be
expressed as
logmj =+ M+ A7, (2)

@ 4 is the grand mean of log m;

e the parameters \/ and \? express the marginal frequencies of variables
A and B — “main effects”

o typically defined so that 37, A = 37, AP = 0 as in ANOVA

Two-way tables: loglinear approach

Saturated model

Dependence between the table variables is expressed by adding association
parameters, /\;?B, giving the saturated model,

logmj = p+ M\ + A+ Ajf = [AB] =~ AxB . (3)

@ The saturated model fits the table perfectly (61,}- = nj): there are as many
parameters as cell frequencies. Residual df = 0.
@ A global test for association tests Hy : A;‘B = 0.

@ If reject Hp, which )\;?B £07?

@ For ordinal variables, the )\}?B may be structured more simply, giving tests
for ordinal association.

Example: Independence

Generate a table of Education by Party preference, strictly independent

> educ <- c (50, 100, 50) # marginal frequencies
> names (educ) <- c("Low", "Med", "High")
> party <- c(20, 50, 30) # marginal frequencies
> names (party) <- c("NDP", "Liberal", "Cons")
> table <- outer (educ, party) / sum(party) # cell = row * col / n
> names (dimnames (table)) <- c("Education", "Party")
> table
Party

Education NDP Liberal Cons

Low 10 25 15

Med 20 50 30

High 10 25 15
Perfect fit:
> MASS::loglm(~ Education + Party, table)
Call:
MASS::loglm(formula = ~Education + Party, data = table)
Statistics:

X"~2 df P(> X"2)

Likelihood Ratio 0 4 1
Pearson 0 4 1




Both sieve diagrams and mosaic plots show what independence “looks like”

> sieve (table, shade=TRUE) > mosaic (table, shade=TRUE)

Party Party
NDP Liberal Cons NDP Liberal Cons

Low
Low

Education
Med
Education
Wed

High
High

Two-way tables: glm approach

In the GLM approach, the vector of cell frequencies, n = {nj;} is specified to
have a Poisson distribution with means m = {mj} given by

logm = X3

@ X is a known design (model) matrix, expressing the table factors
@ 3 is a column vector containing the unknown A\ parameters.

@ This is the same as the familiar matrix formulation of ANOVA/regression,
except that
@ The response, log m makes multiplicative relations additive
@ The distribution is taken as Poisson rather than Gaussian (normal)

Example: 2 x 2 table

For a 2 x 2 table, the saturated model (3) with the usual zero-sum constraints
can be represented as

My 1 1 1 1 K total n

log miz _ 1 1 -1 -1 )\f margin A
Moy 1 —1 1 —1 /\f margin B
Moo 1 -1 -1 1 )\ﬁB association

@ only the linearly independent parameters are represented. \4 = —)\1‘,
because \{ + A4 = 0, and so forth.

@ association is represented by the parameter )\1‘15

@ can show that M2 = 1 log(¢) (log odds ratio)

@ Advantages of the GLM formulation: easier to express models with
ordinal or quantitative variables, special terms, etc. Can also allow for
over-dispersion.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G?,
G? :22 ni log (E') , (4)
. mi

or the Pearson X2,

with degrees of freedom|df = # cells - # estimated parameters.

@ E.g., for the model of independence, [A][B], df =
WM—-[(I-1)+J-1]=0U-1)J—-1)

@ The terms summed in (4) and (5) are the squared cell residuals

@ Other measures of balance goodness of fit against parsimony, e.g.,
Akaike’s Information Criterion (smaller is better)

AIC = G? — 2df or AIC = G? + 2 # parameters




R functions for loglinear models

ved: :assocstats () —only x2 tests for two-way tables; not a
model (no parameters; no residuals)
MASS::loglm() — general loglinear models for n-way tables
loglm(formula, data, subset, na.action, ..)
glm() —all generalized linear models; loglinear with family =
poisson
glm(formula, data, weights, subset, ..)
Formulas have the form:
= table form:~ A+ B + ... (independence);
= ~A*B+C (allow A*B association)

= frequency data frame: Freq~A* B+ C

* loglm() andglm() return an R object with named
components and with a class ()

> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)
> names (arth.mod)
> names (arth.mod)
[1] "lrt"
[7] "call"

"param"
"terms™“

"pearson" "df" "margin" "fitted"
"formula" "frequencies" "deviance" "nobs"

class (arth.mod)
[1] "loglm"

® They have methods: print (), summary, coef (), residuals(),
plot () and other methods
= Methods are specific to the class of the object

" E.g., residuals(arth.mod) — residuals.loglm(arth.mod)

Model-based methods: Fitting & graphing

Inproved
Treatment None Some
Placebo 1.535 -0.063
Treated -1.777 0.064

residuals(mod)

L L L
Sex_ Female

gim() ( | i
input plot(mod) \
polr() > model plot(f(mod)) T

data multinom() object - ;} £ gg:wg
coef(mod) | N e mmm|
confint(mod)

model .
data object method output

function

Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

> data (Arthritis, package="vcd")
> str (Arthritis)

'data.frame': 84 obs. of 5 variables:

$ ID : int 57 46 77 17 36 23 75 39 33 55 ...

$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 22 2 ...

$ Age : int 27 29 30 32 46 58 59 59 63 63 ...

$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3331311...

For now, ignore Age; consider the 2 x 3 table of Treatment x Improved

> arth.tab <- with(Arthritis, table(Treatment, Improved))
> arth.tab

Improved
Treatment None Some Marked
Placebo 29 7 7
Treated 13 7 21




Arthritis treatment

Arthritis treatment: Plots

Fit the independence model, ~ Treatment + Improved

> (arth.mod <- loglm(~Treatment + Improved, data = arth.tab, fitted=TRUE))
Call:
loglm(formula = ~Treatment + Improved, data = arth.tab, fitted = TRUE)

Statistics:

X"2 df P (> X"2)
Likelihood Ratio 13.53 2 0.001154
Pearson 13.06 2 0.001463

Some methods:

> round (residuals (arth.mod), 3) > coef (arth.mod)

Improved $° (Intercept) *
Treatment None Some Marked [1] 2.543
Placebo 1.535 -0.063 -2.152
Treated -1.777 0.064 1.837 STreatment

Placebo Treated
# Likelihood ratio chisquare 0.02381 -0.02381
> deviance (arth.mod)
[1] 13.53 $Improved
None Some Marked

0.50136 -0.59725 0.09589

Visualization: mosaic () orplot() the model or table

> mosaic (arth.mod, shade=TRUE, gp args=list (interpolate=1:4),
labeling = labeling values)

Improved
MNone Some Marked
Pearson .
reslduafio Splits by the response,
o ' Treatment first
e
S 29 7 7
o - 10 Custom scheme for
g shading levels; normally
E L 00 c(2, 4) for |residual |
@
=
= 10 Cells can be labeled by
] - -l .
o 13 7 21 freq, residual, ...
=
~ 19
p-value =
0.0015

Arthritis treatment: gim()

glm() for loglinear models easiest with the data as a data.frame in frequency form

> arth.df <- as.data.frame (xtabs(~ Treatment + Improved,
data=Arthritis))
> arth.df
Treatment Improved Freqg
1 Placebo None 29
2 Treated None 13
3 Placebo Some 7
4 Treated Some 7
5 Placebo Marked 7
6 Treated Marked 21

> arth.glm <- glm(Freq ~ Treatment + Improved, data = arth.df,
family = poisson)

More on glm () models later

Example: Hair color & Eye color

> haireye <- margin.table (HairEyeColor, 1:2)
> (HE.mod <- loglm(~ Hair + Eye, data=haireye))

Call:
loglm(formula = ~Hair + Eye, data = haireye)
Statistics:

X*2 df P(> X"2)
Likelihood Ratio 146.4 9 0
Pearson 138.3 9 0

> round(residuals (HE.mod), 2)
Re-fitting to get frequencies and fitted values
Eye
Hair Brown Blue Hazel Green
Black 4.00 -3.39 -0.49 -2.21
Brown 1.21 -2.02 1.31 -0.35
Red -0.08 -1.85 0.82 2.04
Blond -7.33 6.17 -2.47 0.60




Mosaic displays: Seeing patterns

* In two-way models, residuals contain the info on lack of
independence
= Equivalently: help to understand the pattern of association
= Effect ordering: permuting the rows / cols often makes the pattern
more apparent
* Correspondence analysis: — reorder by scores on Dim 1
= seriation::permute(order="“CA”) does this for two-way tables

> library(seriation)
> permute (haireye, "CA")

> haireye

Eye
Hair Brown Blue Hazel Green Eye
Black 68 20 15 5 Hair Brown Hazel Green Blue
Brown 119 84 54 29 Black 68 15 5 20
Red 26 17 14 14 Brown 119 54 29 84
Blond 7 94 10 16 Red 26 14 14 17
Blond 7 10 16 94

29

mosaic (haireye,

shade=TRUE, labeling=labeling residuals)

mosaic (permute (haireye, "CA"), shade=TRUE, labeling=labeling residuals)

Hair

Eye Eye
Brown Blue HazelGreen Brown HazelGreen Blue

B | 'l

Black
Black

Brown
Brown

Hair

Red
Red

o ]

Blend
Blond

[ | [ .

Bee abundance data

A study by Taylor Kerekes # A tibble: 14 x 4

examined the abundance of bee species 720027 "2005° "2021°
Lo . <chr> <dbl> <dbl> <dbl>

ies in Ontario over thr
speF es O tario over three 1 Affinis 508 0 0
periods of time. 2 Bimaculatus 362 345 137
3 Borealis 30 6 11
Q: Does relative abundance of 4 Fervidus 634 19 10
. diff 2 5 Griseocollis 35 21 21
species differ over years? 6 Impatiens - 56A GG
7 Pensylvanicus 112 0 0
A: Do a chi-square test 8 Perplexus 160 57 9

9 Rufocinctus 51 46 17
10 Ternarius 9 16 9
el Eeat bees [,=11) 11 Terricola 119 1 4
Pearson's Chi-squared test 12 Vagans 713 82 39
data: bees[, -1] 13 A;htc')ni (M) 27 0 0
X-squared = 1981, df = 26, p-value <2e-16 14 Citrinus (M) 234 38 5

How to understand the pattern of association?

31

mosaic(bees.mat, shade=TRUE, ...)

Bees Abundance Data

e - -

Borealis

:eNidus _ I I

seocollis

Alphabetic order of
species:
No clear pattern

npatiens

Ivanicus
erplexus

ocinctus
ernarius
Terricola

Vagans

itoni (M)
inus (M)

2002 2005 2021

year 32




Correspondence analysis finds scores for the row & col categories to account
for maximum y?

bees.ca <- ca(bees.mat)
plot (bees.ca,
lines=c (FALSE, TRUE) , # join years with lines
mass = c(TRUE, TRUE)) # symbol size ~ marginal frequency

0.4

,R;E?ﬁﬂmus
2005

Perplexus
. Jremariug

0.2

Citrinus (M
o (M)

. .Terrica\a Griseocollis

|mpatiens!

*

Dimension 2 (8.5%)
0.0

-0.2
|

Borealis
.

-0.5 0.0 0.5

Dimension 1 (91.5%)

mosaic(permute(bees.mat, “CA”), shade=TRUE, ...)

Bees Abundance Data

lvani (g
Perrlt:(c.!)&; L
:erVidus _ I I
Yoo _ . I

inus (M) _ I:I |

erplexus

Borealis
ocinctus e —
seocollis 1 1 1

aculatus

npatiens

ernarius
2002 2005 2021

year 34

Saturated model

For a 3-way table, of size | x J x K for variables A, B, C, the saturated

loglinear model includes associations between all pairs of variables, as well

as a 3-way association term, M€

Three-way tables
Saturatedmodel

ijk

log mjx = "Hl’\f + )\}-B + /\f

+P8 + X+ ARC HN

ABC (6)
ijk |

@ One-way terms (X%, AP, A(): differences in the marginal frequencies of
the table variables.

@ Two-way terms (/\';‘B e, )\FC) pertain to the partial association for each
pair of variables, controlling for the remaining variable.

@ The three-way term, NP€ allows the partial association between any pair
of variables to vary over the categories of the third variable.

e Fits perfectly, but doesn’t explain anything, so we hope for a simpler
model!

Reduced models

* Goal: fit the smallest model sufficient to explain/describe the
observed frequencies
= Similar to Anova models, ~(A + B + C)3 with all interactions
* Hierarchical models
= Ahigh-order term, like A; #¢ — all lower order terms included
" Eg.[ABC]>A+B+C+AB+AC+BC
[AB][AC] > A+B+C+AB+AC
* Thus, a shorthand notation for a loglinear model lists only the
high-order terms

36




Reduced models

° For a three-way table there is a range of models between mutual
independence, [A][B][C], and the saturated model, [ABC]

* Each model has an independence interpretation:
[A][B] A1 B = Aindependent of B

* Special names for various submodels

Table: Log-linear Models for Three-Way Tables

Model Model symbol Interpretation
Mutual independence [Al[BIIC] AlLB1C

Joint independence [AB][C] (AB)LC
Conditional independence [AC][BC] (ALB)|C

All two-way associations [AB][AC][BC] homogeneous assoc.
Saturated model [ABC] ABC interaction

Model types

@ Joint independence: (AB) | C, allows A*B association, but asserts no
A*C and B*C associations

[AB][C] = log my = p + M+ AP 4+ A8 + MB

@ Conditional independence: A L B, controlling for C
[ACI[BC] = log mj = ju+ M+ AP + Mg + M+ Af°
@ Homogeneous association: All two-way, but each two-way is the same

over the other factor

[ABJ[AC][BC] = log mijg = 11+ X+ A7 + AF + ME + M€ + AF°

Model types: logim()

Each of these have simple translations into the model formulae
for loglm()

loglm(~ A + B + C) # mutual independence [A] [B] [C]
loglm(~ A * B + C) # joint independence [AB] [C]
loglm(~ A*C + B*C) # conditional independence [AC] [BC]
loglm(~ (A + B + C)"2) # homogeneous, all 2-way [AB] [AC] [BC]
loglm(~ A * B * C) # saturated model [ABC]

Collapsibility: Marginal & conditional associations

®* Q: When can we legitimately collapse a table, ABC over some
variable (C)?

* A: When the marginal association of AB is the same as the
conditional association, AB | C

* Recall the Berkeley data
= Margin of Admit, Gender ignoring Dept showed strong association
® The partial assoc. within Dept were mostly NS
= This is an example of Simpson’s paradox

* Three-way tables: The AB marginal and AB | C conditional
associations are the same, if either:
= A & C are conditionally independent, A 1. C| B = [AB][CB]
= B & Care conditionally independent, B L. C | A = [AB][AC]
® — no three-way association




Response vs. Association models

@ In association models, the interest is just on which variabels are
associated, and how
e Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
e — fit the homogeneous association madel (or the saturated model)
o Test the individual terms, delete those which are NS

@ In response models, the interest is on which predictors are associated
with the response
@ The minimal (null or baseline) model is the model of joint independence of
the response (say, A) from all predictors, [A][BC D ...]

@ Associations among the predictors are fitted exactly (not analyzed)

o Similar to regression, where predictors can be arbitrarily correlated

@ e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]

o lack-of-fit = associations [Admit Gender] and/or [Admit Dept]

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by
the likelihood ratio G2, or the Pearson X2,

. )2
2mesld)  CmL T
with residual degrees of freedom v = # cells — # estimated parameters.

@ These measure the lack of fit of a given model— a large value — a
poor model

@ Both are distributed as \?(~/) (in large samples: all m; > 5)

@ £(\?(v)) = v, so G?/v (or X?/v) measures lack of fit per degree of
freedom (overdispersion)

@ But: how to compare or test competing models?

Nested models & ANOVA-type tests

Two models, M; and M, are nested when one (say, M,) is a special case of the
other

* Model M, (w/ v, df) fits a subset of the parameters of M1 (w/ v, df)
° M, is more restrictive — cannot fit better than M;: G%(M,) 2 G¥(M,)
* The least restrictive model is the saturated model [ABC ...], w/ G2=0

Therefore, we can test the difference in G? as a specific test of the added
restrictions in M, compared to M.

* This test has a y? distribution with df = v, - v,

AG? =G (Mx|My) = G*(My)— G*(My) (7)
2 " n; log(mys /Miz)

Example: Berkeley admissions

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender
the following models form a nested chain

[AIDI[G] < [Al[DG] < [AD][AG][DG] < [ADG]

Table: Hierarchical G? tests for loglinear models fit to the UC Berkeley data

Type LLM terms G di  A(G?) A(df) Pr(> A(GY)
Mutual ind  [A][D][G] 2097.67 16

Joint [A][DG] 877.06 11 1220.62 5 0.0000
All 2-way [AD]IAG][DG] 20.20 5 1128.70 5 0.0000
Saturated  [ADG] 0.0 0 20.20 5 0.0011

* Only testing the decrease in G2 from one model to the next

* Here, each model is significantly better than the previous

* Joint vs. all two-way: Does Admit depend on Dept and/or Gender?

* Absolut fit of all 2-way model is not terrible. Investigate this further!




Fitting these in R

data (UCBAdmissions)
## conditional independence (AD, DG) in Berkeley data

mod.l <— loglm(~ (Admit + Gender) #* Dept, data=UCBAdmissions)
## all two-way model (AD, DG, AG)

mod.2 <- loglm(~ (Admit + Gender + Dept) "2, data=UCBAdmissions)

- data in frequency form

berkeley <- as.data.frame (UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
family='poisson')

W e b —

i ra

@ loglm() simpler for nominal variables

@ glm() allows a wider class of models and quantitative predictors
(covariates)

@ gnm () fits models for structured association and generalized non-linear
models

@ vcdExtra package provides visualizations for all.

Example: Berkeley admissions

Fit the model of mutual independence, using loglm()

> berk.loglm0 <- loglm(~ Admit + Dept + Gender, data=UCBAdmissions
> berk.loglm0

Call:
loglm(formula = ~Admit + Dept + Gender, data = UCBAdmissions)
Statistics:
X*2 df P(> X"2)
Likelihood Ratio 2097.7 16 0
Pearson 2000.3 16 0

Conditional independence [AD] [AG]

> berk.loglml <- loglm(~ Admit * (Dept + Gender), data=UCBAdmissions)
> berk.loglml

Call:
loglm(formula = ~Admit * (Dept + Gender), data = UCBAdmissions)
Statistics:
X*2 df P(> X*2)
Likelihood Ratio 1148.9 10 0
Pearson 1015.7 10 0

Conditional independence, [AD] [AG]

> berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
> berk.loglm2

Call:

loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)

Statistics:

X"2 df P (> X"2)
Likelihood Ratio 877.06 11
Pearson 797.70 11 0

All two-way model, [AD] [AG] [DG]

> berk.loglm3 <-loglm(~ (Admit+Dept+Gender) "2, data=UCBAdmissions)
> berk.loglm3

Call:

loglm(formula = ~(Admit + Dept + Gender)”2, data = UCBAdmissions)

Statistics:

X"~2 df P(> X"2)
Likelihood Ratio 20.204 5 0.0011441
Pearson 18.823 5 0.0020740

ANOVA tests

These are nested. Compare with anova ()

> aovl <- anova(berk.loglm0, berk.loglml, berk.loglm3, test="Chisqg")
> aovl
LR tests for hierarchical log-linear models

Model 1:

~Admit + Dept + Gender
Model 2:

~Admit * (Dept + Gender)
Model 3:

~(Admit + Dept + Gender) "2

Deviance df Delta (Dev) Delta(df) P (> Delta (Dev)
Model 1 2097.671 16

Model 2 1148.901 10 948.770 6 0.00000
Model 3 20.204 5 1128.697 5 0.00000
Saturated 0.000 © 20.204 5) 0.00114

These are tests of relative fit, AG2= G (M, | M, )




LRstats

vedExtra: :LRstats () gives one-line summaries of a collection of models
These are tests of absolute goodness of fit

> LRstats (berk.loglmO, berk.loglml, berk.loglm2, berk.loglm3)
Likelihood summary table:

AIC BIC [LR Chisqg Df Pr (>Chisq)
berk.loglm0| 2273 2282 2098 16 <2e-16 ***
berk.loglml| 1336 1352 1149 10 <2e-16 ***
berk.loglm2[1062 1077 877 11 <2e-16 ***
berk.loglm3| 217 240 20 5 0.0011 **
Signif. codes: 0 Y***/ 0.001 ‘**’ 0.01 ‘*’ 0.05 *.” 0.1 v ' 1

@ AIC and BIC are GOF measures adjusted for model parsimony
@ Not not significance tests, but smaller is better
@ Also apply to non-nested models

AIC = G?+ 2 x # parameters
BIC = G?+2log(n) x # parameters

Mosaic displays: Predictor variables

Berkeley data: Departments x Gender (ignoring Admit):
@ Did departments differ in the total number of applicants?

@ Did men and women apply differentially to departments?

Model: (Dept)(Gender) R
In response models, the mosaic of

- the predictors gives a graphic
summary of background variables

@ Model [Dept] [Gender]: GA
1220.6.

@ Note: Departments ordered A—F
by overall rate of admission.

@ Men more likely to apply to

I departments A,B; women more

likely in depts C—F

Male Femals

5) ~

Mosaic displays: Visual fitting

* Each mosaic shows:
® The DATA - size of tiles
= (some) marginal frequencies — initial splits (visual grouping)
= RESIDUALS (shading) — what associations have been omitted?
* Visual fitting
= Start with a simple model: mutual independence or joint
independence for response models
= Pattern of residuals: suggest a better model — smaller residuals
= Add terms: — smaller residuals, less shading: “cleaning the mosaic”
= Good fitting model will have mostly unshaded tiles

For the Berkeley data, start with the model of joint independence, [A][DG]
Fits badly: G2 ;)= 877.1

Model: (DeptGender)(Admit)

This is the null, or baseline
model when Admit is the
response variable.

E

Allows assoc. of [Dept
o Gender], not shown in shading
o Remaining shading suggests:

[AD] : Admit varies w/ Dept
[AG] : Admit varies w/ Gender

Admitted Rejected

Female




Double decker plots

Conditional independence, [AD] [DG]:

Model: (DeptGender)(DeptAdmit) Visualize dependence of one response variable (typically binary) on combinations of predictors

N i H Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading
w o E'g" Add [Admlt Dept_] doubledecker (Admit ~ Dept + Gender, data = UCBAdmissions([2:1, ,])
association — Conditional
independence:
o Fit ly: (G%, =21.74 ] T
e Fits poorly: (G = 21.74) An exploratory plot
o But, only in Department Al
0 ° GLM_ approach allows fitting a Highlights the M-F
special term for Dept. A diffee in Admit for
H;’ @ Note: These displays use reetes  DEPLA
] | . .
| standardized residuals:
better statistical properties.
< 42 a2 4.24
Admitted Rejected
Male Female -- Admitied

[ — i — 1o o ] e o o e DDAR Fig 5.34, p 211
Dept

4-way tables: Survival on the Titanic

Data on the fate of passengers & crew on the HMS Titanic: a 4 x 2 x 2 x 2 table

> data(Titanic, package=“datasets”)

> str(Titanic)
'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4

..$ Class : chr [1:4] "lst" "2nd" "3rd" "Crew"
..$ Sex : chr [1:2] "Male" "Female"
..$ Age : chr [1:2] "Child" "Adult"

..$ Survived: chr [1:2] "No" "Yes"

What proportion survived? Ans: 711/2201 =32.3%

> addmargins (margin.table (Titanic, 4))
Survived
No Yes Sum

Survival on the Titanic D ML e

Survived
No Yes
0.677 0.323




Zero cells

> structable (Titanic)

Sex Male Female
Survived No Yes No Yes
Class Age
1st  Child [ o] s 0o 1
Adult 118 57 4 140
2nd Child 0 11 0 13
Adult 154 14 13 80
3rd Child 35 13 17 14
Adult 387 75 89 76
Crew Child | 0 0 00
Adult 670 192 3 20

Two types of zero cells:
e Structural zeros: could not occur (children in crew)
e Sampling zeros: did not happen to occur (children in 15t & 2" who died)
* Beware: zeros can cause problems:
* Loss of df
* 0/0 — NaNin 2 tests

Exploratory plots

One-way doubledecker plots against survival show what might be expected:

doubledecker (Survived ™ Sex, data=Titanic)
doubledecker (Survived ~ Class, data=Titanic)

Survived Survived

Yes

[Male | [Female ] Sex [Ast 1Znd_1[3rd 1 [Crew ] Class

Exploratory plots

Fitting & visualizing models

Two-way doubledecker plot against survival shows different effects of Class
for men and women:

doubledecker (Survived ~ Sex + Class, data=Titanic)

[l Survived
No
Yes

[ist_][znd _][3rd | [Crew | (st ](2nd[5rd ][} Class
Male ] [Female Sex

In the model formulas, I'm
using variable numbers 1-4
for Class, Gender, Age and

modO0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic)
mosaic(mod0, main="Titanic: Model [C][G][A][S]")

Titanic: Model [C][G][A][S] Survived
Sex
Male Female
Pearson
. H ‘ |_ residuals. The independence model

serves only as a
background for the total
associations in the table

2nd

Child AdulChild AdultChild

2rd

Let’s clean this mosaic!!

Class
Adult
Age

Note the scale of residuals:
+26 ---11

Child
A on s

Crew
Adult

-1

p-value =
<2e-16

Survived




Baseline model for Survived

mod1 <- loglm(~ 1*2*3 + 4, data=Titanic)
mosaic(mod1, main="Titanic: Model [CGA][S]")

Titanic: Model [CGA][S]

Sex
Male Female

]

Pearson
residuals
14

1st

2nd

Child AdulShild AdultChild

40

3rd

Class
Adult
Age

20

0.0
20
40

Child

Crew
Adult

95

p-value =
<2e-16

No
Survived

With S as response, the
baseline model includes all
association s among [CGA]

But this model asserts
survival is independent of
all of these

G? (15) = 671.96, a very
poor fit

Adding associations: Main effects

mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic)
mosaic(mod2, main="Titanic: Model [CGA][CS][GS][AS]")

Titanic: Model [CGA][CS][GS][AS]

Sex
Male Female

[ |

. @ This model allows associations of
residuals each of C, G, A with Survived

[T *° e G?10) = 112.57, still not good

1st

2nd

@ Pattern of residuals suggests
20 2-way interactions (3-way terms):
@ “Women & children first”™:
suggests a term [GAS]

o
Child AdulEhild AdultChild

3rd

Class
Adult
Age

@ Allow interactions of Class with
Gender [CGS] and Class with Age
- 20 [CAS]

Child

Crew
Adult

p-value =
<2e-16

No Yes Ntes
Survived

Final model

mod3 <- loglm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic)
mosaic(mod3, main="Titanic: Model [CGA][CGS][CAS]")

Titanic: Model [CGA][CGS][CAS]

Sex
Male Female

=z
=
- Q Pearson
& 3 residuals:
< T 075
T
p— -
° o
2 =
& Z
[0 :
T
: I N —
23 S
g 32
o - 0.00

Child

Crew
Adult

No Yes Nes
Survived

Nice & clean!

G2(4) = 1.69, p=0.79

Comparing models

As usual, anova () give compact relative comparisons of a set of nested models

> anova (mod0, modl, mod2, mod3)
LR tests for hierarchical log-linear models

Model 1:

~1 4+ 2+ 3+ 4
Model 2:

~1 * 2 * 3 + 4
Model 3:

~1 * 2 * 3 4+ (L + 2+ 3) *4
Model 4:

~1 * 2 * 3 4+ (1L *2) x4+ (1 *3) *4

Deviance df Delta (Dev) Delta(df) P(> Delta (Dev)

Model 1 1243.66 25
Model 2 671.96 15 571.70 10 0.000
Model 3 112.57 10 559.40 5 0.000
Model 4 1.69 4 110.88 6 0.000
Saturated 0.00 O 1.69 4 0.793




Comparing models

LRstats () gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

> LRstats (mod0, modl, mod2, mod3)
Likelihood summary table:
AIC BIC LR Chisqg Df Pr(>Chisq)

mod0 1385 1395 1244 25 <2e-16 ***

modl 833 858 672 15 <2e-16 **x*

mod2 284 316 113 10 <2e-1l6 ***

mod3 185 226 2 4 0.79

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 ‘' 1

mod3 [CGA] [CGS] [CAS] wins!
* Acceptable G?
* Looks best by AIC & BIC

Model interpretation

Recall that the goal of analysis is to tell a story

* Greatest impact: lower class — decreased survival, regardless
of Gender & Age

* Differences in survival by Class were moderated by both
Gender & Age

= Term [CGS]: Women in 3" class did not have an advantage, while men
in 15t class did vs. other classes

= Term [CAS]: No children in 1%t or 2" class died, but nearly 2/3 in 31
class did
* Summary:
= Not so much “women & children first”, rather
= Women & children, ordered by class, and 15t class men!

Sequential plots & models

® Mosaic for an n-way table — hierarchical decomposition of association
* Joint cell probabilities are decomposed as:
{viva}
e e,
Pije-.. = Pi X Pjli X Prlij X Pelijk X <+ X Pnijk---
R e

{vivava}

= First 2 terms: — mosaic for vy, v,

= First 3 terms: = mosaic for v, v,, v,

= _..andsoon
° Roughly analogous to sequential fitting in regression: X, ; X, | X;; X5 X;,X,
® Order of variables matters for interpretation

" Mosaics: 15t split: easiest to see the marginal proportions
= Mosaics: 2" variable seen as conditional proportions, given the 1st

Sequential plots & models

* Sequential models of joint independence

= Give an additive decomposition of total association — mutual
independence [v,][v,] ... [v,]

2 2 2
Gltval.tv) = Giwlival + Crravalival + Glvrvavallval = + G- vl

* E.g., for Hair Eye color data

Model Model symbol df G?
Marginal [Hair] [Eye] 9 146.44
Joint [Hair, Eye] [Sex] 15 19.86

Mutual [Hair] [Eye] [Sex] 24 166.30




Sequential plots & models

Hair color x Eye color marginal table (ignoring Sex)

(Hair)(Eye), G2 (9) = 146.44
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Sequential plots & models

3-way table, Joint independence model [Hair Eye][Sex]

(HairEye)(Sex), G2 (15) = 19.86

Blue

L

Hazel Green
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Black Brown Red Blond

Sequential plots & models

3-way table, Mutual independence [Hair] [Eye][Sex]

(Hair)(Eye)(Sex). G2 (24) = 166.30
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Sequential plots & models

Putting these together:

Marginal ~Joint Mutual (total)
Qe ST T m JW
= | EQ; UJ{ | u LLj
1 —1 =] I ]

] L1 78 L

+ QL =
‘ ] : 0O I T
o == N
— L Il 1 p——
[Hair] [Eye] [Hair Eye] [Sex] [Hair] [Eye] [Sex]
Gy = 146.44 G5y = 19.86 G,y = 166.30




Sequential models: Applications

Response models

@ When one variable, R, is a response and E;, Ep, ... are explantory, the
baseline model is the model of joint independence, [E;, Es, ... |[A]

@ Sequential mosaics then show the associations among the predictors

@ The last mosaic shows all associations with R

@ Better-fitting models will need to add associations of the form
[ERLIEER]...

Causal models
@ Sometimes there is an assumed causal ordering of variables:

A—-B—=C—=D

@ Each path of arrows: A — B, A— B — C is a sequential model of joint
independence: [A][B], [AB] [C], [ABC] [D].
@ Testing these decomposes all joint probabilities

Example: Marital status, pre- & extra-marital sex

Thornes and Collard (1979) studied divorce patterns in relation to premarital
and extramarital sex, a 24 table, PreSex invcd (GxP xEx M)

> data ("PreSex", package="vcd")
> structable (Gender + PremaritalSex + ExtramaritalSex ~
MaritalStatus, data = PreSex)

Gender Women Men
PremaritalSex Yes No Yes No
ExtramaritalSex Yes No Yes No Yes ©No Yes No
MaritalStatus
Divorced 17 54 36 214 28 60 17 68
Married 4 25 4 322 11 42 4 130
Submodels:

< [G][P]: Do men & women differ by pre-marital sex?
«» [GP][E]: Given G & P, are there differences in extra-marital sex?
«*» [GPE][M]: Are there differences in divorce among the G, P, E groups?

Example: Marital status, pre- & extra-marital sex

Order the table variablesasG —- P—> E > M

> names (dimnames (PreSex) ) # table variable names
[1] "MaritalStatus" "ExtramaritalSex" "PremaritalSex" "Gender"“

> PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M

Fit each sequential model to the marginal sub-table. vedExtra: :seq_loglm()
generates these models of joint independence

PreSex.mods <- seq_loglm(PreSex,
type="joint",
marginals = 2:4)
LRstats (PreSex.mods)

Model df ez
[G][P] 1 75.259
[GP] [E] 3 48.929
GPE] [M 7 107.956

GIPI[EIM] 11 232.142

Gender

Mosaic plots

# (Gender Pre)
mosaic (margin.table (PreSex, 1:2), shade=TRUE,
main = "Gender and Premarital Sex")

Gender and Premarital Sex
Twice as many women in this sample

PremaritalSex

No Pearson Men far more likely to report pre-
duals: ; i
residuas marital sex than women (odds ratio =
6.3
3.7)
5 40
o
= 2.0
0.0
20
C
[iv}
=
46
p-value =
<2.22e16




Mosaic plots

# (Gender Pre) (Extra)
mosaic (margin.table (PreSex, 1:3),

expected = ~Gender * PremaritalSex + ExtramaritalSex,
main = "Gender*Pre + ExtramaritalSex")

Gender*Pre + ExtramaritalSex

Premarital Sex
Yes No

Men & women who reported Pre-
far more likely to report Extra- sex

Mosaic plots

mosaic (PreSex,
expected = ~Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus,
main = "Gender*Pre*Extra + MaritalStatus")

# (GPE) (PEM)

mosaic (PreSex,
expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")

G*P*E + PE"M

Premarital Sex

Gender*Pre*Extra + MaritalStatus

PremaritalSex

Gender

I ‘ E Peaégalﬂ Yes No " . Yes No ” .
residuals o ‘earson @ earson
56 . . l = 2 residuals DH ‘ 0 2 residuals:
[ Odds ratio of Extra- given Pre- — 39 T 075
- 40 about the same for men & women
[ C c
£ o (3.61 vs. 3.56) s L 5o g
2 5 2 2 ' g 25
= @ - 20 = 3 £ 3
] £ 5 = 5 =
T = 3 £ 3 £ I 000
5 g 2 5 00 H 5
] & 2 £ [ g E
2 |k 00 © s © £
— " L L
— o
[ g B £ ] = £
5 - 20 c .
= S 2 o z o
= =
**‘ -33 = B 37 = —-093
p-value = p-value = p-value =
2.8719e-12 <222e-16 0.26369
Divorced Married Divorced Married Divorced Married Divorced Married
Marital Status MaritalStatus
Mosaic plots Mosaic plots
mosaic (PreSex, # (GPE) (PEM)
expected = ~Gender * PremaritalSex * ExtramaritalSex mosaic (PreSex,
+ MaritalStatus, expected = ~ Gender * PremaritalSex * ExtramaritalSex
main = "Gender*Pre*Extra + MaritalStatus") + MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")

Gender*Pre*Extra + MaritalStatus

PremaritalSex

Yes No
8 Pearson
‘ = 2 residuals:
39
c
£ - 20
2 2x
2}
£
s L
£ 0.0
s
x®
= &
= ¥ hr e
5
= z
— 37
p-value =
<222e-16
Divorced Married Divorced Married
Marital Status

In the model [GPE][M], marital
status depends in a complex way

Among women, those reporting Pre-
more likely to be divorced

Among men, those reporting Pre-
only more likely to be divorced if
Extra-

This suggests adding associations of
M with P and E: [PEM] term

G*P*E + P*"E*M
PremaritalSex
Yes No

8 Pearson
‘ g 2 residuals
r— 075

This model fits well, G2(4) = 5.26,
p=0.26

Loglinear thinking: once we take
. GPE into account, are there simpler
£ ° models for association with M?
z Zé
k] £ |roo0o . .
g 5 Looking forward: logit models for
N £ MaritalStatus often provide an
(Au'l .
] — 3 easier path
5
= 2
—-093
p-value =
0.26369
Divorced Married Divorced Married

Marital Status




Partial association, partial mosaics

Sometimes useful to do a stratified analysis

* How does association between two (or more) variables vary over levels of other
variables?

* Mosaic plots for main variables show partial association at each level of others
* E.g., Hair color, Eye color, subset by Sex

Sex: Male Sex: Female
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Partial association, partial mosaics

Stratified analysis: conditional decomposition of G?

@ Fit models of partial (conditional) independence, A | B| Ck at each level
of (controlling for) C.

@ = partial G?s add to the overall G? for conditional
independence,A L B|C

Gfum E= Z szus\cuc)
k

Table: Partial and Overall conditional tests, Hair | Eye| Sex

Model df G® p-value
[Hair][Eye] | Male 9  44.445 0.000
[Hair][Eye]| Female | 9 112.233 0.000
[Hair][Eye] | Sex 18 156.668 0.000

Partial association: Summary

® OQverall, there is a strong association of hair color and eye
color, controlling for sex, G?(18) = 156.67
= For F, G2(9) = 112.23 accounts for 72% of this association
* The pattern of association is similar for M & F

® The largest difference is for blue-eyed blonds, much more prevalent
among F than M. Is there a hair dye effect?

Sex: Male Sex: Female
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Summary: What we’ve learned




