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Today’s topics
• Mosaic displays: basic ideas
• Models for count data

Fitting loglinear models

• Two-way tables
• Three-way tables
• Sequential plots & models
• Marginal & partial displays
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Mosaic displays
• Similar to sieve plot, tile plot, using area ~ frequency
• Mosaic plots generalize more readily to n-way tables 

(subject to resolution of the display)
• Intimately connected to loglinear & generalized 

linear models
Can fit sequential models as variables are entered
Show the pattern of association not accounted for in a 
given model
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Mosaic displays: basic ideas
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UCB Admissions: Gender frequencies

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

Area proportional display for an n-way 
table

Tiles: recursive splits of a unit square, 
alternating H, V

V1: width ~ marginal frequencies, n i++
V2: height ~ cond freq:  V2| V1 = nij / ni++
V3: width ~ cond freq: V3 | V1, V2 = nikj / nij+

Area ~ cell frequency, nijk



Mosaic displays: basic ideas
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UCB Admissions: Gender x Admit

Area proportional display for an n-way 
table

Tiles: recursive splits of a unit square, 
alternating H, V

V1: width ~ marginal frequencies, n i++
V2: height ~ cond freq:  V2| V1 = nij / ni++
V3: width ~ cond freq: V3 | V1, V2 = nikj / nij+

Area ~ cell frequency, nijk

Mosaic displays: basic ideas
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Gender  x Admit x Dept frequencies

Area proportional display for an n-way 
table

Tiles: recursive splits of a unit square, 
alternating H, V

V1: width ~ marginal frequencies, n i++
V2: height ~ cond freq:  V2| V1 = nij / ni++
V3: width ~ cond freq: V3 | V1, V2 = nikj / nij+

Area ~ cell frequency, nijk

Mosaic displays: Independence
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Expected frequencies if Admit Gender

Expected frequencies under 
independence are products of the row 
/ col margins

Row and col tiles align when 
variables are independent

Mosaic displays: Residuals & shading
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Loglinear models: Perspectives
Loglinear models grew up and developed from three 
different ideas and ways of thinking about notions of 
independence in frequency data
• Loglinear approach: analog of ANOVA; associations 

are interactions
• glm() approach: analog of general regression model, 

for log(Freq), with Poisson distn of errors
• Logit models: Loglinear simplified for a binary 

response
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Loglinear approach
First developed as analog of classical ANOVA models, where 
multiplicative relations are re-expressed in additive form as 
models for log(Freq)

• This expresses the independence model for a 2-way table as no A*B 
association

• Short-hand notations: [A][B] = A B = ~ A + B
• Fit by simple iterative proportional scaling: MASS::loglm()
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loglm(Freq ~ A + B + C)       # [A][B][C]
loglm(Freq ~ A * B + C )      # [A B][C]
loglm(Freq ~ A * B * C)       # [A B C]

glm() approach
Extension of classical linear models recognized loglinear models 
as a model for log(Freq), with Poisson distn for cell countslog =
• Looks like std ANOVA/regression model, but for log(Freq)
• This allows quantitative predictors and special ways to treat 

ordinal factors
• Fit by maximum likelihood using glm(…, family=poisson)
• Standard diagnostic methods available
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glm( Freq ~ A + B + C, family = poisson # [A] [B] [C]
glm( Freq ~ A * B + C, family = poisson)     # [A B] [C]

Logit models
When one variable is a binary response, a logit model is a 
simpler way to specify a loglinear model

• log(m1jk/m2jk) is the log odds of response 1 vs 2
• The model only includes terms for the effect of A on B & C
• Equivalent loglinear model: [AB][AC][BC]
• The logit models assumes the [BC] association; 

[AB] j
B [AC] k

C

• Fit using family=binomial
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glm(outcome==“survived” ~ B + C, family = binomial)



Two-way tables: loglinear approach
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Two-way tables: loglinear approach
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Two-way tables: loglinear approach
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Example: Independence
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> educ <- c(50, 100, 50)                       # marginal frequencies
> names(educ) <- c("Low", "Med", "High")
> party <- c(20, 50, 30)                       # marginal frequencies
> names(party) <- c("NDP", "Liberal", "Cons")
> table <- outer(educ, party) / sum(party)     # cell = row * col / n
> names(dimnames(table)) <- c("Education", "Party")
> table

Party
Education NDP Liberal Cons

Low   10      25   15
Med   20      50   30
High  10      25   15

Generate a table of Education by Party preference, strictly independent
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> MASS::loglm(~ Education + Party, table)
Call:
MASS::loglm(formula = ~Education + Party, data = table)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio   0  4        1
Pearson            0  4        1

Perfect fit:



17

> sieve(table, shade=TRUE) > mosaic(table, shade=TRUE)

Both sieve diagrams and mosaic plots show what independence “looks like” Two-way tables: glm approach
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total n
margin A
margin B
association

Assessing goodness of fit

20



R functions for loglinear models
• vcd::assocstats() – only 2 tests for two-way tables; not a 

model (no parameters; no residuals)
• MASS::loglm() – general loglinear models for n-way tables

loglm(formula, data, subset, na.action, …)

• glm() – all generalized linear models; loglinear with family = 
poisson

glm(formula, data, weights, subset, …)

• Formulas have the form: 
table form: ~ A + B + … (independence); 

~ A * B + C  (allow A*B association)
frequency data frame: Freq ~ A * B + C
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R functions
• loglm() and glm() return an R object with named 

components and with a class()

• They have methods: print(), summary, coef(), residuals(), 

plot() and other methods
Methods are specific to the class of the object
E.g., residuals(arth.mod) residuals.loglm(arth.mod)
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> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)
> names(arth.mod)
> names(arth.mod)
[1] "lrt"         "pearson"     "df"          "margin"      "fitted"      "param"      
[7] "call"        "formula"     "frequencies" "deviance"    "nobs"        "terms“

class(arth.mod)
[1] "loglm" 

Model-based methods: Fitting & graphing
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input 

data

glm()
polr()

multinom()
model 
object

plot(mod)
plot(f(mod))

coef(mod)
confint(mod)

residuals(mod)

data model 
function method outputobject

Example: Arthritis treatment
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Data on effects of treatment for rheumatoid arthritis (in case form)

> data(Arthritis, package="vcd")
> str(Arthritis)
'data.frame': 84 obs. of  5 variables:
$ ID       : int  57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex      : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age      : int  27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...

For now, ignore Age; consider the 2 x 3 table of Treatment x Improved

> arth.tab <- with(Arthritis, table(Treatment, Improved))
> arth.tab

Improved
Treatment None Some Marked
Placebo   29    7      7
Treated   13    7     21



Arthritis treatment
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Fit the independence model, ~ Treatment + Improved

> (arth.mod <- loglm(~Treatment + Improved, data = arth.tab, fitted=TRUE))
Call:
loglm(formula = ~Treatment + Improved, data = arth.tab, fitted = TRUE)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 13.53  2 0.001154
Pearson          13.06  2 0.001463

> round(residuals(arth.mod), 3)
Improved

Treatment   None   Some Marked
Placebo  1.535 -0.063 -2.152
Treated -1.777  0.064  1.837

# Likelihood ratio chisquare
> deviance(arth.mod)
[1] 13.53

> coef(arth.mod)
$`(Intercept)`
[1] 2.543

$Treatment
Placebo  Treated 
0.02381 -0.02381 

$Improved
None     Some   Marked 

0.50136 -0.59725  0.09589 

Some methods:

Arthritis treatment: Plots
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Visualization: mosaic() or plot() the model or table

> mosaic(arth.mod, shade=TRUE, gp_args=list(interpolate=1:4),
labeling = labeling_values)

Splits by the response, 
Treatment first

Custom scheme for 
shading levels; normally
c(2, 4) for |residual|

Cells can be labeled by 
freq, residual, … 

Arthritis treatment: glm()
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glm() for loglinear models easiest with the data as a data.frame in frequency form

> arth.df <- as.data.frame(xtabs(~ Treatment + Improved,  
data=Arthritis))

> arth.df
Treatment Improved Freq

1   Placebo     None   29
2   Treated     None   13
3   Placebo     Some    7
4   Treated     Some    7
5   Placebo   Marked    7
6   Treated   Marked   21

> arth.glm <- glm(Freq ~ Treatment + Improved, data = arth.df,
family = poisson)

More on glm() models later

Example: Hair color & Eye color
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> haireye <- margin.table(HairEyeColor, 1:2)
> (HE.mod <- loglm(~ Hair + Eye, data=haireye))
Call:
loglm(formula = ~Hair + Eye, data = haireye)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 146.4  9        0
Pearson          138.3  9        0

> round(residuals(HE.mod), 2)
Re-fitting to get frequencies and fitted values

Eye
Hair    Brown  Blue Hazel Green
Black  4.00 -3.39 -0.49 -2.21
Brown  1.21 -2.02  1.31 -0.35
Red   -0.08 -1.85  0.82  2.04
Blond -7.33  6.17 -2.47  0.60



Mosaic displays: Seeing patterns
• In two-way models, residuals contain the info on lack of 

independence
Equivalently: help to understand the pattern of association
Effect ordering: permuting the rows / cols often makes the pattern 
more apparent

• Correspondence analysis: reorder by scores on Dim 1
seriation::permute(order=“CA”) does this for two-way tables
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> haireye
Eye

Hair    Brown Blue Hazel Green
Black    68   20    15     5
Brown   119   84    54    29
Red      26   17    14    14
Blond     7   94    10    16

> library(seriation)
> permute(haireye, "CA")

Eye
Hair    Brown Hazel Green Blue

Black    68    15     5   20
Brown   119    54    29   84
Red      26    14    14   17
Blond     7    10    16   94
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mosaic(haireye,                shade=TRUE, labeling=labeling_residuals)
mosaic(permute(haireye, "CA"), shade=TRUE, labeling=labeling_residuals)

Bee abundance data
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A study by Taylor Kerekes 
examined the abundance of bee 
species in Ontario over three 
periods of time.  

Q: Does relative abundance of 
species differ over years?

A: Do a chi-square test

# A tibble: 14 x 4
species       `2002` `2005` `2021`
<chr>          <dbl>  <dbl>  <dbl>

1 Affinis 508      0      0
2 Bimaculatus 362    345    137
3 Borealis          30      6     11
4 Fervidus 634     19     10
5 Griseocollis 35     21     21
6 Impatiens        638    564    616
7 Pensylvanicus 112      0      0
8 Perplexus 160     57      9
9 Rufocinctus 51     46     17

10 Ternarius 9     16      9
11 Terricola 119      1      4
12 Vagans 713     82     39
13 Ashtoni (M)       27      0      0
14 Citrinus (M)     234     38      5

chisq.test(bees[,-1])
Pearson's Chi-squared test

data:  bees[, -1]
X-squared = 1981, df = 26, p-value <2e-16

How to understand the pattern of association?
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Alphabetic order of 
species:
No clear pattern

mosaic(bees.mat, shade=TRUE, …) 
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bees.ca <- ca(bees.mat)
plot(bees.ca, 

lines=c(FALSE,TRUE),    # join years with lines
mass = c(TRUE, TRUE))   # symbol size ~ marginal frequency

Correspondence analysis finds scores for the row & col categories to account 
for maximum 2
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mosaic(permute(bees.mat, “CA”), shade=TRUE, …) 

Three-way tables
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Reduced models
• Goal: fit the smallest model sufficient to explain/describe the 

observed frequencies
Similar to Anova models, ~(A + B + C)3 with all interactions

• Hierarchical models
A high-order term, like ijk

ABC all lower order terms included
E.g. [ABC] A + B + C + AB + AC + BC
[AB][AC] A + B + C + AB + AC

• Thus, a shorthand notation for a loglinear model lists only the 
high-order terms

36



Reduced models
• For a three-way table there is a range of models between mutual 

independence, [A][B][C], and the saturated model, [ABC]
• Each model has an independence interpretation: 

[A][B]   A B   A independent of B
• Special names for various submodels

37

Model types

38

Model types: loglm()
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loglm(~ A + B + C)       # mutual independence      [A][B][C]
loglm(~ A * B + C)       # joint independence       [AB][C]
loglm(~ A*C + B*C)       # conditional independence [AC][BC]
loglm(~ (A + B + C)^2)   # homogeneous, all 2-way   [AB][AC][BC]
loglm(~ A * B * C)       # saturated model          [ABC]

Each of these have simple translations into the model formulae 
for loglm()

Collapsibility: Marginal & conditional associations

• Q: When can we legitimately collapse a table, ABC over some 
variable (C)?

• A: When the marginal association of AB is the same as the 
conditional association, AB | C

• Recall the Berkeley data
Margin of Admit, Gender ignoring Dept showed strong association
The partial assoc. within Dept were mostly NS
This is an example of Simpson’s paradox

• Three-way tables: The AB marginal and AB | C conditional 
associations are the same, if either:

A & C are conditionally independent, A C| B = [AB][CB]
B & C are conditionally independent, B C | A = [AB][AC]

no three-way association

40



Response vs. Association models
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Goodness of fit tests
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Nested models & ANOVA-type tests
Two models, M1 and M2 are nested when one (say, M2) is a special case of the 
other
• Model M2 (w/ 2 df) fits a subset of the parameters  of M1 (w/ 1 df)
• M2 is more restrictive – cannot fit better than M1: G2(M2 G2(M1)
• The least restrictive model is the saturated model [ABC …], w/ G2 = 0

Therefore, we can test the difference in G2 as a specific test of the added 
restrictions in M2 compared to M1.
• This test has a 2 distribution with df = 2 - 1
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Example: Berkeley admissions
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• Only testing the decrease in G2 from one model to the next
• Here, each model is significantly better than the previous
• Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
• Absolut fit of all 2-way model is not terrible.  Investigate this further!



Fitting these in R
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Example: Berkeley admissions
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Fit the model of mutual independence, using loglm()

> berk.loglm0 <- loglm(~ Admit + Dept + Gender, data=UCBAdmissions)
> berk.loglm0
Call:
loglm(formula = ~Admit + Dept + Gender, data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 2097.7 16        0
Pearson          2000.3 16        0

Conditional independence [AD] [AG]

> berk.loglm1 <- loglm(~ Admit * (Dept + Gender), data=UCBAdmissions)
> berk.loglm1
Call:
loglm(formula = ~Admit * (Dept + Gender), data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 1148.9 10        0
Pearson          1015.7 10        0
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> berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
> berk.loglm2
Call:
loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 877.06 11        0
Pearson          797.70 11        0

> berk.loglm3 <-loglm(~(Admit+Dept+Gender)^2, data=UCBAdmissions)
> berk.loglm3
Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 20.204  5 0.0011441
Pearson          18.823  5 0.0020740

Conditional independence, [AD] [AG]

All two-way model, [AD] [AG] [DG]

ANOVA tests
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> aov1 <- anova(berk.loglm0, berk.loglm1, berk.loglm3, test="Chisq")
> aov1
LR tests for hierarchical log-linear models

Model 1:
~Admit + Dept + Gender 

Model 2:
~Admit * (Dept + Gender) 

Model 3:
~(Admit + Dept + Gender)^2 

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1   2097.671 16                                    
Model 2   1148.901 10    948.770         6        0.00000
Model 3     20.204  5   1128.697         5        0.00000
Saturated    0.000  0     20.204         5        0.00114

These are nested. Compare with anova()

These are tests of relative fit, G2 = G2 (Mi | Mi-1 ) 



LRstats

49

vcdExtra::LRstats() gives one-line summaries of a collection of models
These are tests of absolute goodness of fit

> LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
berk.loglm0 2273 2282     2098 16     <2e-16 ***
berk.loglm1 1336 1352     1149 10     <2e-16 ***
berk.loglm2 1062 1077      877 11     <2e-16 ***
berk.loglm3  217  240       20  5     0.0011 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Mosaic displays: Predictor variables
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In response models, the mosaic of 
the predictors gives a graphic 
summary of background variables

Mosaic displays: Visual fitting
• Each mosaic shows:

The DATA – size of tiles
(some) marginal frequencies – initial splits (visual grouping)
RESIDUALS (shading) – what associations have been omitted?

• Visual fitting
Start with a simple model: mutual independence or joint 
independence for response models
Pattern of residuals: suggest a better model smaller residuals
Add terms: smaller residuals, less shading: “cleaning the mosaic”
Good fitting model will have mostly unshaded tiles
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For the Berkeley data, start with the model of joint independence, [A][DG]
Fits badly: G2

(11) = 877.1

This is the null, or baseline 
model when Admit is the 
response variable.

Allows assoc. of [Dept 
Gender], not shown in shading

Remaining shading suggests:
[AD] : Admit varies w/ Dept
[AG] : Admit varies w/ Gender
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Double decker plots
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Visualize dependence of one response variable (typically binary) on combinations of predictors
Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

doubledecker(Admit ~ Dept + Gender, data = UCBAdmissions[2:1, ,])

DDAR Fig 5.34, p 211

An exploratory plot

Highlights the M-F 
diffce in Admit for 
Dept A

Survival on the Titanic

4-way tables: Survival on the Titanic
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Data on the fate of passengers & crew on the HMS Titanic: a 4 × 2 × 2 × 2 table

> data(Titanic, package=“datasets”)
> str(Titanic)
'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4
..$ Class   : chr [1:4] "1st" "2nd" "3rd" "Crew"
..$ Sex     : chr [1:2] "Male" "Female"
..$ Age     : chr [1:2] "Child" "Adult"
..$ Survived: chr [1:2] "No" "Yes"

What proportion survived?  Ans: 711/2201 = 32.3%

> addmargins(margin.table(Titanic, 4))
Survived

No  Yes  Sum 
1490  711 2201 
> margin.table(Titanic, 4) / sum(Titanic)
Survived

No   Yes 
0.677 0.323 



Zero cells
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> structable(Titanic)
Sex      Male     Female    
Survived   No Yes     No Yes

Class Age                               
1st   Child             0   5      0   1

Adult           118  57      4 140
2nd   Child             0  11      0  13

Adult           154  14     13  80
3rd   Child            35  13     17  14

Adult           387  75     89  76
Crew  Child             0   0      0   0

Adult           670 192      3  20

Two types of zero cells:
• Structural zeros: could not occur (children in crew)
• Sampling zeros: did not happen to occur (children in 1st & 2nd who died)
• Beware: zeros can cause problems:

• Loss of df
• 0/0 NaN in 2 tests

Exploratory plots
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Exploratory plots
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Fitting & visualizing models
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mod0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic)
mosaic(mod0, main="Titanic: Model [C][G][A][S]")

In the model formulas, I’m 
using variable numbers 1-4 
for Class, Gender, Age and 
Survived

The independence model 
serves only as a 
background for the total 
associations in the table

Let’s clean this mosaic!!

Note the scale of residuals: 
+26 -- -11



Baseline model for Survived
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mod1 <- loglm(~ 1*2*3 + 4, data=Titanic)
mosaic(mod1, main="Titanic: Model [CGA][S]")

With S as response, the 
baseline model includes all 
association s among [CGA]

But this model asserts 
survival is independent of 
all of these

G2 (15) = 671.96, a very 
poor fit

Adding associations: Main effects
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mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic)
mosaic(mod2, main="Titanic: Model [CGA][CS][GS][AS]")

Final model
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mod3 <- loglm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic)
mosaic(mod3, main="Titanic: Model [CGA][CGS][CAS]")

Nice & clean!

G2(4) = 1.69, p=0.79

Comparing models
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As usual, anova() give compact relative comparisons of a set of nested models

> anova(mod0, mod1, mod2, mod3)
LR tests for hierarchical log-linear models

Model 1:
~1 + 2 + 3 + 4 

Model 2:
~1 * 2 * 3 + 4 

Model 3:
~1 * 2 * 3 + (1 + 2 + 3) * 4 

Model 4:
~1 * 2 * 3 + (1 * 2) * 4 + (1 * 3) * 4 

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1    1243.66 25                                    
Model 2     671.96 15     571.70        10          0.000
Model 3     112.57 10     559.40         5          0.000
Model 4       1.69  4     110.88         6          0.000
Saturated     0.00  0       1.69         4          0.793



Comparing models
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LRstats() gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

> LRstats(mod0, mod1, mod2, mod3)
Likelihood summary table:

AIC  BIC LR Chisq Df Pr(>Chisq)    
mod0 1385 1395     1244 25     <2e-16 ***
mod1  833  858      672 15     <2e-16 ***
mod2  284  316      113 10     <2e-16 ***
mod3  185  226        2  4       0.79    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

mod3 [CGA] [CGS] [CAS] wins!
• Acceptable G2

• Looks best by AIC & BIC

Model interpretation
Recall that the goal of analysis is to tell a story
• Greatest impact: lower class decreased survival, regardless 

of Gender & Age
• Differences in survival by Class were moderated by both 

Gender & Age
Term [CGS]: Women in 3rd class did not have an advantage, while men 
in 1st class did vs. other classes
Term [CAS]: No children in 1st or 2nd class died, but nearly 2/3 in 3rd

class did

• Summary:
Not so much “women & children first”, rather
Women & children, ordered by class, and 1st class men!
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Sequential plots & models
• Mosaic for an n-way table hierarchical decomposition of association
• Joint cell probabilities are decomposed as:

First 2 terms: mosaic for v1, v2

First 3 terms: mosaic for v1, v2, v3

… and so on
• Roughly analogous to sequential fitting in regression: X1 ; X2|X1 ; X3|X1,X2

• Order of variables matters for interpretation 
Mosaics: 1st split: easiest to see the marginal proportions
Mosaics: 2nd variable seen as conditional proportions, given the 1st
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Sequential plots & models
• Sequential models of joint independence

Give an additive decomposition of total association – mutual 
independence [v1][v2] … [vp]

• E.g., for Hair Eye color data
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Sequential plots & models
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Hair color × Eye color marginal table (ignoring Sex)

Sequential plots & models
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3-way table, Joint independence model [Hair Eye][Sex]

Sequential plots & models

71

3-way table, Mutual independence [Hair] [Eye][Sex]

Sequential plots & models
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Putting these together:



Sequential models: Applications
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Example: Marital status, pre- & extra-marital sex
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Thornes and Collard (1979) studied divorce patterns in relation to premarital
and extramarital sex, a 24 table, PreSex in vcd ( G × P × E × M )

> data("PreSex", package="vcd")
> structable(Gender + PremaritalSex + ExtramaritalSex ~ 

MaritalStatus, data = PreSex)

Gender          Women             Men            
PremaritalSex Yes      No     Yes      No    
ExtramaritalSex Yes  No Yes  No Yes  No Yes  No

MaritalStatus
Divorced                         17  54  36 214  28  60  17  68
Married                           4  25   4 322  11  42   4 130

Submodels:

[G][P] :       Do men & women differ by pre-marital sex?
[GP][E]:      Given G & P, are there differences in extra-marital sex?
[GPE][M]:  Are there differences in divorce among the G, P, E groups?

Example: Marital status, pre- & extra-marital sex
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Order the table variables as G  P E  M

> names(dimnames(PreSex))        # table variable names
[1] "MaritalStatus"   "ExtramaritalSex" "PremaritalSex"   "Gender“

> PreSex <- aperm(PreSex, 4:1)   # order variables G, P, E, M

Fit each sequential model to the marginal sub-table. vcdExtra::seq_loglm() 
generates these models of joint independence

PreSex.mods <- seq_loglm(PreSex, 
type="joint", 
marginals = 2:4) 

LRstats(PreSex.mods)
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Mosaic plots

# (Gender Pre)
mosaic(margin.table(PreSex, 1:2), shade=TRUE,

main = "Gender and Premarital Sex")

Twice as many women in this sample

Men far more likely to report pre-
marital sex than women (odds ratio = 
3.7)
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Mosaic plots

# (Gender Pre)(Extra)
mosaic(margin.table(PreSex, 1:3),

expected = ~Gender * PremaritalSex + ExtramaritalSex,
main = "Gender*Pre + ExtramaritalSex")

Men & women who reported Pre-
far more likely to report Extra- sex

Odds ratio of Extra- given Pre-
about the same for men  & women
(3.61 vs. 3.56)
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Mosaic plots
mosaic(PreSex,

expected = ~Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus,
main = "Gender*Pre*Extra + MaritalStatus")

# (GPE)(PEM)
mosaic(PreSex,

expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")
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Mosaic plots
mosaic(PreSex,

expected = ~Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus,
main = "Gender*Pre*Extra + MaritalStatus")

In the model [GPE][M], marital 
status depends in a complex way

Among women, those reporting Pre-
more likely to be divorced

Among men, those reporting Pre-
only more likely to be divorced if 
Extra-

This suggests adding associations of 
M with P and E: [PEM] term

81

Mosaic plots
# (GPE)(PEM)
mosaic(PreSex,

expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,
main = "G*P*E + P*E*M")

This model fits well, G2(4) = 5.26, 
p=0.26

Loglinear thinking: once we take 
GPE into account, are there simpler 
models for association with M?

Looking forward: logit models for 
MaritalStatus often provide an 
easier path



Partial association, partial mosaics
Sometimes useful to do a stratified analysis
• How does association between two (or more) variables vary over levels of other 

variables?
• Mosaic plots for main variables show partial association at each level of others
• E.g., Hair color, Eye color, subset by Sex
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Partial association, partial mosaics
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Partial association: Summary
• Overall, there is a strong association of hair color and eye 

color, controlling for sex, G2(18) = 156.67
For F, G2(9) = 112.23 accounts for 72% of this association

• The pattern of association is similar for M & F
The largest difference is for blue-eyed blonds, much more prevalent 
among F than M. Is there a hair dye effect?
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Summary: What we’ve learned
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