

Loglinear models \& mosaic displays

Michael Friendly Psych 6136

http://friendly.github.io/psy6136

Today's topics

- Mosaic displays: basic ideas
- Models for count data
- Fitting loglinear models
- Two-way tables
- Three-way tables
- Sequential plots \& models
- Marginal \& partial displays

Mosaic displays

- Similar to sieve plot, tile plot, using area ~ frequency
- Mosaic plots generalize more readily to n-way tables (subject to resolution of the display)
- Intimately connected to loglinear \& generalized linear models
- Can fit sequential models as variables are entered
- Show the pattern of association not accounted for in a given model

Mosaic displays: basic ideas

Mosaic displays theory: Hartigan \& Kleiner (1981); Friendly (1994, 1999)

UCB Admissions: Gender frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V
V_{1} : width \sim marginal frequencies, $\mathrm{n}_{\mathrm{i}++}$
V_{2} : height \sim cond freq: $V_{2} \mid V_{1}=n_{i j} / n_{i++}$ $V_{3}:$ width \sim cond freq: $V_{3} \mid V_{1}, V_{2}=n_{i k j} / n_{i j+}$
\rightarrow Area ~ cell frequency, $\mathrm{n}_{\mathrm{ijk}}$

Gender
Male

Mosaic displays: basic ideas

UCB Admissions: Gender x Admit

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V
V_{1} : width \sim marginal frequencies, $\mathrm{n}_{\mathrm{i}++}$ V_{2} : height \sim cond freq: $V_{2} \mid V_{1}=n_{i j} / n_{i++}$ $V_{3}:$ width \sim cond freq: $V_{3} \mid V_{1}, V_{2}=n_{i j j} / n_{i j+}$
\rightarrow Area \sim cell frequency, $\mathrm{n}_{\mathrm{ijk}}$

Mosaic displays: basic ideas

Gender x Admit x Dept frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V
V_{1} : width \sim marginal frequencies, $\mathrm{n}_{\mathrm{i}++}$ V_{2} : height \sim cond freq: $V_{2} \mid V_{1}=n_{i j} / n_{i++}$ $V_{3}:$ width \sim cond freq: $V_{3} \mid V_{1}, V_{2}=n_{i j j} / n_{i j+}$
\rightarrow Area \sim cell frequency, $\mathrm{n}_{\mathrm{ijk}}$

Mosaic displays: Independence

Expected frequencies if Admit \perp Gender

Expected frequencies under independence are products of the row / col margins

$$
\widehat{m}_{i j}=\frac{n_{i+} n_{+j}}{n_{++}}=n_{++} \text {row } \% \text { col } \%
$$

\rightarrow Row and col tiles align when variables are independent

Mosaic displays: Residuals \& shading

- Pearson residuals:

$$
d_{i j}=\frac{n_{i j}-\widehat{m}_{i j}}{\sqrt{\widehat{m}_{i j}}}
$$

- Pearson $\chi^{2}=\Sigma \Sigma d_{i j}^{2}=\Sigma \Sigma \frac{\left(n_{i j}-\hat{m}_{i j}\right)^{2}}{\hat{m}_{i j}}$
- Other residuals: deviance (LR), Freeman-Tukey (FT), adjusted (ADJ), ...
- Shading:
- Sign: - negative in red; + positive in blue
- Magnitude: intensity of shading: $\left|d_{i j}\right|>0,2,4, \ldots$
- \Rightarrow Independence: rows align, or cells are empty!

UCB Admissions: ~ Admit + Gender

Loglinear models: Perspectives

Loglinear models grew up and developed from three different ideas and ways of thinking about notions of independence in frequency data

- Loglinear approach: analog of ANOVA; associations are interactions
- glm() approach: analog of general regression model, for \log (Freq), with Poisson distn of errors
- Logit models: Loglinear simplified for a binary response

Loglinear approach

First developed as analog of classical ANOVA models, where multiplicative relations are re-expressed in additive form as models for log(Freq)

$$
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B} \equiv[A][B] \equiv \sim A+B
$$

- This expresses the independence model for a 2-way table as no A*B association
- Short-hand notations: $[\mathrm{A}][\mathrm{B}]=\mathrm{A} \perp \mathrm{B}=\sim \mathrm{A}+\mathrm{B}$
- Fit by simple iterative proportional scaling: MASS::Ioglm()

```
loglm(Freq ~ A + B + C)
loglm(Freq ~ A * B + C )
loglm(Freq ~ A * B * C)
```

```
# [A][B][C]
# [A B][C]
# [lA B C]
```


glm() approach

Extension of classical linear models recognized loglinear models as a model for $\log (F r e q)$, with Poisson dist ${ }^{\text {n }}$ for cell counts

$$
\log \boldsymbol{m}=\boldsymbol{X} \beta
$$

- Looks like std ANOVA/regression model, but for log(Freq)
- This allows quantitative predictors and special ways to treat ordinal factors
- Fit by maximum likelihood using glm(..., family=poisson)
- Standard diagnostic methods available

```
glm( Freq ~ A + B + C, family = poisson
glm( Freq ~ A * B + C, family = poisson)
```

\# [A] [B] [C]
\# [AB] [C]

Logit models

When one variable is a binary response, a logit model is a simpler way to specify a loglinear model

$$
\log \left(m_{1 j k} / m_{2 j k}\right)=\alpha+\beta_{j}^{B}+\beta_{k}^{C} \equiv[A B][A C][B C]
$$

- $\log \left(m_{1 \mathrm{jk}} / m_{2 \mathrm{jk}}\right)$ is the log odds of response 1 vs 2
- The model only includes terms for the effect of A on B \& C
- Equivalent loglinear model: [AB][AC][BC]
- The logit models assumes the $[B C]$ association;

$$
[\mathrm{AB}] \rightarrow \beta_{\mathrm{j}}^{\mathrm{B}} \quad[\mathrm{AC}] \rightarrow \beta_{\mathrm{k}}^{\mathrm{C}}
$$

- Fit using family=binomial

```
glm(outcome=="survived" ~ B + C, family = binomial)
```


Two-way tables: loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total size n over the $I J$ cells of a two-way $I \times J$ contingency table, with cell frequencies $n_{i j}$, and cell probabilities $\pi_{i j}=n_{i j} / n$.

- The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities, $\operatorname{Pr}(A=i \& B=j)=\operatorname{Pr}(A=i) \times \operatorname{Pr}(B=j)$, or,

$$
\pi_{i j}=\pi_{i+} \pi_{+j}
$$

- An equivalent model in terms of expected frequencies, $m_{i j}=n \pi_{i j}$ is

$$
m_{i j}=(1 / n) m_{i+} m_{+j}
$$

- This multiplicative model can be expressed in additive form as a model for $\log m_{i j}$,

$$
\begin{equation*}
\log m_{i j}=-\log n+\log m_{i+}+\log m_{+j} . \tag{1}
\end{equation*}
$$

Two-way tables: loglinear approach

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$
\begin{equation*}
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B} \tag{2}
\end{equation*}
$$

- μ is the grand mean of $\log m_{i j}$
- the parameters λ_{i}^{A} and λ_{j}^{B} express the marginal frequencies of variables A and B - "main effects"
- typically defined so that $\sum_{i} \lambda_{i}^{A}=\sum_{j} \lambda_{j}^{B}=0$ as in ANOVA

Two-way tables: loglinear approach

Saturated model

Dependence between the table variables is expressed by adding association parameters, $\lambda_{i j}^{A B}$, giving the saturated model,

$$
\begin{equation*}
\log m_{i j}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{i j}^{A B} \equiv[A B] \equiv \sim A * B . \tag{3}
\end{equation*}
$$

- The saturated model fits the table perfectly ($\hat{m}_{i j}=n_{i j}$): there are as many parameters as cell frequencies. Residual df $=0$.
- A global test for association tests $H_{0}: \lambda_{i j}^{A B}=\mathbf{0}$.
- If reject H_{0}, which $\lambda_{i j}^{A B} \neq 0$?
- For ordinal variables, the $\lambda_{i j}^{A B}$ may be structured more simply, giving tests for ordinal association.

Example: Independence

Generate a table of Education by Party preference, strictly independent

```
> educ <- c(50, 100, 50)
> names(educ) <- c("Low", "Med", "High")
> party <- c(20, 50, 30)
# marginal frequencies
> names(party) <- c("NDP", "Liberal", "Cons")
> table <- outer(educ, party) / sum(party) # cell = row * col / n
> names(dimnames(table)) <- c("Education", "Party")
> table
    Party
Education NDP Liberal Cons
    Low 10 25 15
    Med 20 50 30
    High 10 25 15
```


Perfect fit:

```
> MASS::loglm(~ Education + Party, table)
Call:
MASS::loglm(formula = ~Education + Party, data = table)
```

Statistics:

	$X^{\wedge} 2$	$d f$	$P\left(>X^{\wedge} 2\right)$
Likelihood Ratio	0	4	1
Pearson	0	4	1

Both sieve diagrams and mosaic plots show what independence "looks like"

```
> sieve(table, shade=TRUE)
```


> mosaic(table, shade=TRUE)

Two-way tables: glm approach

In the GLM approach, the vector of cell frequencies, $\boldsymbol{n}=\left\{n_{i j}\right\}$ is specified to have a Poisson distribution with means $\boldsymbol{m}=\left\{m_{i j}\right\}$ given by

$$
\log m=\boldsymbol{X} \beta
$$

- \boldsymbol{X} is a known design (model) matrix, expressing the table factors
- β is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
- The response, $\log \boldsymbol{m}$ makes multiplicative relations additive
- The distribution is taken as Poisson rather than Gaussian (normal)

Example: 2×2 table

For a 2×2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

$$
\log \left(\begin{array}{l}
m_{11} \\
m_{12} \\
m_{21} \\
m_{22}
\end{array}\right)=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left(\begin{array}{c}
\mu \\
\lambda_{1}^{A} \\
\lambda_{1}^{B} \\
\lambda_{11}^{A B}
\end{array}\right) \begin{aligned}
& \operatorname{total} \mathrm{n} \\
& \operatorname{margin} \mathrm{~A} \\
& \operatorname{margin} \mathrm{~B} \\
& \operatorname{association~}
\end{aligned}
$$

- only the linearly independent parameters are represented. $\lambda_{2}^{A}=-\lambda_{1}^{A}$, because $\lambda_{1}^{A}+\lambda_{2}^{A}=0$, and so forth.
- association is represented by the parameter $\lambda_{11}^{A B}$
- can show that $\lambda_{11}^{A B}=\frac{1}{4} \log (\theta)$ (log odds ratio)
- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for over-dispersion.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G^{2},

$$
\begin{equation*}
G^{2}=2 \sum_{i} n_{i} \log \left(\frac{n_{i}}{\widehat{m}_{i}}\right), \tag{4}
\end{equation*}
$$

or the Pearson X^{2},

$$
\begin{equation*}
x^{2}=\sum_{i} \frac{\left(n_{i}-\widehat{m}_{i}\right)^{2}}{\widehat{m}_{i}} \tag{5}
\end{equation*}
$$

with degrees of freedom df = \# cells - \# estimated parameters.

- E.g., for the model of independence, $[A][B]$, df $=$

$$
I J-[(I-1)+(J-1)]=(I-1)(J-1)
$$

- The terms summed in (4) and (5) are the squared cell residuals
- Other measures of balance goodness of fit against parsimony, e.g., Akaike's Information Criterion (smaller is better)

$$
A I C=G^{2}-2 d f \text { or } A I C=G^{2}+2 \# \text { parameters }
$$

R functions for loglinear models

- vcd: : assocstats () - only $\chi 2$ tests for two-way tables; not a model (no parameters; no residuals)
- MASS : : loglm() - general loglinear models for n-way tables
loglm(formula, data, subset, na.action, ...)
- glm() - all generalized linear models; loglinear with family = poisson
glm(formula, data, weights, subset, ...)
- Formulas have the form:
- table form: ~ A + B + ... (independence);
- $\quad \sim A * B+C$ (allow A*B association)
- frequency data frame: Freq ~ A * B + C

R functions

- $\operatorname{loglm}()$ and $\operatorname{lm}()$ return an R object with named components and with a class ()

```
> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)
> names(arth.mod)
> names(arth.mod)
\begin{tabular}{llll}
{\([1]\)} & "lrt" & "pearson" & "df" \\
{\([7]\)} & "call" & "formula" & "frequencies" "deviance"
\end{tabular}
```

class (arth.mod)
[1] "loglm"

- They have methods: print(), summary, coef(), residuals(), plot() and other methods
- Methods are specific to the class of the object
- E.g., residuals(arth.mod) \rightarrow residuals.loglm(arth.mod)

Model-based methods: Fitting \& graphing

model
 function
 object
 method
 output

Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

```
> data(Arthritis, package="vcd")
> str(Arthritis)
'data.frame': 84 obs. of 5 variables:
    $ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...
```

For now, ignore Age; consider the 2×3 table of Treatment x Improved

```
> arth.tab <- with(Arthritis, table(Treatment, Improved))
> arth.tab
    Improved
Treatment None Some Marked
    Placebo 29 7 7
    Treated 13 7 21
```


Arthritis treatment

Fit the independence model, \sim Treatment + Improved

```
> (arth.mod <- loglm(~Treatment + Improved, data = arth.tab, fitted=TRUE))
Call:
loglm(formula = ~Treatment + Improved, data = arth.tab, fitted = TRUE)
```

Statistics:
$X^{\wedge} 2 \mathrm{df} P\left(>X^{\wedge} 2\right)$
Likelihood Ratio 13.5320 .001154
Pearson $13.06 \quad 20.001463$

Some methods:

```
> round(residuals(arth.mod), 3)
    Improved
Treatment None Some Marked
    Placebo 1.535-0.063-2.152
    Treated -1.777 0.064 1.837
# Likelihood ratio chisquare
> deviance(arth.mod)
[1] 13.53
```

```
> coef(arth.mod)
$`(Intercept)
[1] 2.543
$Treatment
    Placebo Treated
    0.02381 -0.02381
$ Improved
\begin{tabular}{rrr} 
None & Some & Marked \\
0.50136 & -0.59725 & 0.09589
\end{tabular}
```


Arthritis treatment: Plots

Visualization: mosaic() or plot() the model or table
> mosaic (arth.mod, shade=TRUE, gp_args=list(interpolate=1:4), labeling = labeling_values)

Arthritis treatment: glm()

glm() for loglinear models easiest with the data as a data.frame in frequency form

```
> arth.df <- as.data.frame(xtabs(~ Treatment + Improved,
                                    data=Arthritis))
> arth.df
    Treatment Improved Freq
1 Placebo None 29
2 Treated None 13
3 Placebo Some 7
4 \text { Treated Some 7}
```



```
6 Treated Marked 21
```

```
> arth.glm <- glm(Freq ~ Treatment + Improved, data = arth.df,
    family = poisson)
```

More on glm() models later

Example: Hair color \& Eye color

```
> haireye <- margin.table(HairEyeColor, 1:2)
> (HE.mod <- loglm(~ Hair + Eye, data=haireye))
Call:
loglm(formula = ~Hair + Eye, data = haireye)
```

Statistics:
$X^{\wedge} 2 d f \quad P\left(>X^{\wedge} 2\right)$
Likelihood Ratio 146.4 9 0
Pearson 138.3 9
$>$ round (residuals(HE.mod), 2)
Re-fitting to get frequencies and fitted values
Eye
Hair Brown Blue Hazel Green
Black 4.00-3.39-0.49-2.21
Brown 1.21-2.02 1.31-0.35
Red -0.08-1.85 $0.82 \quad 2.04$
Blond -7.33 6.17-2.47 0.60

Mosaic displays: Seeing patterns

- In two-way models, residuals contain the info on lack of independence
- Equivalently: help to understand the pattern of association
- Effect ordering: permuting the rows / cols often makes the pattern more apparent
- Correspondence analysis: \rightarrow reorder by scores on Dim 1
- seriation::permute(order="CA") does this for two-way tables

```
> haireye 
```

> library (seriation)
> permute (haireye, "CA")
Eye
Hair
Brown
Black
Brown
Brel
Red
Blond
mosaic (haireye, shade=TRUE, labeling=labeling_residuals) mosaic (permute(haireye, "CA"), shade=TRUE, labeling=labeling_residuals)

Bee abundance data

A study by Taylor Kerekes examined the abundance of bee species in Ontario over three periods of time.

Q: Does relative abundance of species differ over years?

A: Do a chi-square test

```
chisq.test(bees[,-1])
```

Pearson's Chi-squared test
data: bees[, -1]
X-squared $=1981, \mathrm{df}=26, \mathrm{p}$-value $<2 e-16$
\# A tibble: 14×4 species `2002` `2005` `2021`
<chr> <dbl> <dbl> <dbl>
1 Affinis $508 \quad 0 \quad 0$
2 Bimaculatus $362 \quad 345 \quad 137$
3 Borealis $30 \quad 6 \quad 11$
4 Fervidus 6341910
$\begin{array}{llll}5 & \text { Griseocollis } & 35 & 21\end{array}$
6 Impatiens $638 \quad 564 \quad 616$
7 Pensylvanicus $112 \quad 0$
8 Perplexus $160 \quad 57 \quad 9$
9 Rufocinctus $91 \quad 46$
10 Ternarius $9 \quad 16$
11 Terricola $119 \quad 1 \quad 4$
12 Vagans $713 \quad 82 \quad 39$
13 Ashtoni (M) 27 0
14 Citrinus (M) $234 \quad 38$

How to understand the pattern of association?
mosaic(bees.mat, shade=TRUE, ...)
Bees Abundance Data

Alphabetic order of species:
No clear pattern

Correspondence analysis finds scores for the row \& col categories to account

 for maximum χ^{2}```
bees.ca <- ca(bees.mat)
plot(bees.ca,
 lines=c(FALSE,TRUE), # join years with lines
 mass = c(TRUE, TRUE)) # symbol size ~ marginal frequency
```


mosaic(permute(bees.mat, "CA"), shade=TRUE, ...)
Bees Abundance Data


## Three-way tables

## Saturated model

For a 3-way table, of size $I \times J \times K$ for variables $A, B, C$, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, $\lambda_{i j k}^{A B C}$

$$
\begin{align*}
\log m_{i j k}=\mu & +\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}  \tag{6}\\
& +\lambda_{i j}^{A B}+\lambda_{i k}^{A C}+\lambda_{j k}^{B C}+\lambda_{i j k}^{A B C}
\end{align*}
$$

- One-way terms $\left(\lambda_{i}^{A}, \lambda_{j}^{B}, \lambda_{k}^{C}\right)$ : differences in the marginal frequencies of the table variables.
- Two-way terms $\left(\lambda_{i j}^{A B}, \lambda_{i k}^{A C}, \lambda_{j k}^{B C}\right)$ pertain to the partial association for each pair of variables, controlling for the remaining variable.
- The three-way term, $\lambda_{i j k}^{A B C}$ allows the partial association between any pair of variables to vary over the categories of the third variable.
- Fits perfectly, but doesn't explain anything, so we hope for a simpler model!


## Reduced models

- Goal: fit the smallest model sufficient to explain/describe the observed frequencies
- Similar to Anova models, $\sim(A+B+C)^{3}$ with all interactions
- Hierarchical models
- A high-order term, like $\lambda_{\mathrm{ijk}}{ }^{\mathrm{ABC}} \rightarrow$ all lower order terms included
- E.g. $[A B C] \rightarrow A+B+C+A B+A C+B C$
- $\quad[A B][A C] \rightarrow A+B+C+A B+A C$
- Thus, a shorthand notation for a loglinear model lists only the high-order terms


## Reduced models

- For a three-way table there is a range of models between mutual independence, $[A][B][C]$, and the saturated model, $[A B C]$
- Each model has an independence interpretation:

$$
[A][B] \equiv A \perp B \equiv A \text { independent of } B
$$

- Special names for various submodels

Table: Log-linear Models for Three-Way Tables

| Model | Model symbol | Interpretation |
| :--- | :--- | :--- |
| Mutual independence | $[A][B][C]$ | $A \perp B \perp C$ |
| Joint independence | $[A B][C]$ | $(A B) \perp C$ |
| Conditional independence | $[A C][B C]$ | $(A \perp B) \mid C$ |
| All two-way associations | $[A B][A C][B C]$ | homogeneous assoc. |
| Saturated model | $[A B C]$ | $A B C$ interaction |

## Model types

- Joint independence: $(A B) \perp C$, allows $\mathrm{A}^{*} \mathrm{~B}$ association, but asserts no $A^{*} C$ and $B^{*} C$ associations

$$
[A B][C] \equiv \log m_{i j k}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}+\lambda_{i j}^{A B}
$$

- Conditional independence: $A \perp B$, controlling for $C$

$$
[A C][B C] \equiv \log m_{i j k}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}+\lambda_{i k}^{A C}+\lambda_{j k}^{B C}
$$

- Homogeneous association: All two-way, but each two-way is the same over the other factor

$$
[A B][A C][B C] \equiv \log m_{i j k}=\mu+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}+\lambda_{i j}^{A B}+\lambda_{i k}^{A C}+\lambda_{j k}^{B C}
$$

## Model types: loglm()

Each of these have simple translations into the model formulae for $\log \operatorname{lm}()$

```
loglm(~A + B + C)
loglm(~A * B + C)
loglm(~A*C + B*C)
loglm(~ (A + B + C)^2)
loglm(~ A * B * C)
[A][B][C]
[AB][C]
```

```
mutual independence
```


# mutual independence

```
mutual independence
joint independence
joint independence
joint independence
conditional independence
conditional independence
conditional independence
homogeneous, all 2-way
homogeneous, all 2-way
homogeneous, all 2-way
saturated model [ABC]
```


# saturated model [ABC]

```
saturated model [ABC]
```

```
[AC][BC]
```


## Collapsibility: Marginal \& conditional associations

- Q : When can we legitimately collapse a table, ABC over some variable (C)?
- A: When the marginal association of $A B$ is the same as the conditional association, $\mathrm{AB} \mid \mathrm{C}$
- Recall the Berkeley data
- Margin of Admit, Gender ignoring Dept showed strong association
- The partial assoc. within Dept were mostly NS
- This is an example of Simpson's paradox
- Three-way tables: The AB marginal and AB | C conditional associations are the same, if either:
- $A \& C$ are conditionally independent, $A \perp C \mid B=[A B][C B]$
- $B \& C$ are conditionally independent, $B \perp C \mid A=[A B][A C]$
- $\rightarrow$ no three-way association


## Response vs. Association models

- In association models, the interest is just on which variabels are associated, and how
- Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
- $\Longrightarrow$ fit the homogeneous association model (or the saturated model)
- Test the individual terms, delete those which are NS
- In response models, the interest is on which predictors are associated with the response
- The minimal (null or baseline) model is the model of joint independence of the response (say, A) from all predictors, [A] [B C D ...]
- Associations among the predictors are fitted exactly (not analyzed)
- Similar to regression, where predictors can be arbitrarily correlated
- e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]
- lack-of-fit $\Longrightarrow$ associations [Admit Gender] and/or [Admit Dept]


## Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio $G^{2}$, or the Pearson $X^{2}$,

$$
G^{2}=2 \sum_{i} n_{i} \log \left(\frac{n_{i}}{\widehat{m}_{i}}\right) \quad X^{2}=\sum_{i} \frac{\left(n_{i}-\widehat{m}_{i}\right)^{2}}{\widehat{m}_{i}},
$$

with residual degrees of freedom $\nu=$ \# cells - \# estimated parameters.

- These measure the lack of fit of a given model- a large value $\Longrightarrow$ a poor model
- Both are distributed as $\chi^{2}(\nu)$ (in large samples: all $\widehat{m}_{i}>5$ )
- $\mathcal{E}\left(\chi^{2}(\nu)\right)=\nu$, so $G^{2} / \nu\left(\right.$ or $\left.X^{2} / \nu\right)$ measures lack of fit per degree of freedom (overdispersion)
- But: how to compare or test competing models?


## Nested models \& ANOVA-type tests

Two models, $M_{1}$ and $M_{2}$ are nested when one (say, $M_{2}$ ) is a special case of the other

- Model $M_{2}\left(w / v_{2} d f\right)$ fits a subset of the parameters of $M 1\left(w / v_{1} d f\right)$
- $M_{2}$ is more restrictive - cannot fit better than $M_{1}: G^{2}\left(M_{2}\right) \geq G^{2}\left(M_{1}\right)$
- The least restrictive model is the saturated model [ABC ...], w/ $G^{2}=0$

Therefore, we can test the difference in $\mathrm{G}^{2}$ as a specific test of the added restrictions in $M_{2}$ compared to $M_{1}$.

- This test has a $\chi^{2}$ distribution with $d f=v_{2}-v_{1}$

$$
\begin{align*}
\Delta G^{2} \equiv G^{2}\left(M_{2} \mid M_{1}\right) & =G^{2}\left(M_{2}\right)-G^{2}\left(M_{1}\right)  \tag{7}\\
& =2 \sum n_{i} \log \left(\widehat{m}_{i 1} / \widehat{m}_{i 2}\right)
\end{align*}
$$

## Example: Berkeley admissions

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the following models form a nested chain

$$
[A][D][G] \subset[A][D G] \subset[A D][A G][D G] \subset[A D G]
$$

Table: Hierarchical $G^{2}$ tests for loglinear models fit to the UC Berkeley data

| Type | LLM terms | $G^{2}$ | df | $\Delta\left(G^{2}\right)$ | $\Delta(d f)$ | $\operatorname{Pr}\left(>\Delta\left(G^{2}\right)\right)$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Mutual ind | [A][D][G] | 2097.67 | 16 |  |  |  |
| Joint | [A][DG] | 877.06 | 11 | 1220.62 | 5 | 0.0000 |
| All 2-way | [AD][AG][DG] | 20.20 | 5 | 1128.70 | 5 | 0.0000 |
| Saturated | [ADG] | 0.0 | 0 | 20.20 | 5 | 0.0011 |

- Only testing the decrease in G2 from one model to the next
- Here, each model is significantly better than the previous
- Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
- Absolut fit of all 2-way model is not terrible. Investigate this further!


## Fitting these in R

## $\log \operatorname{lm}()$ - data in contingency table form (MASS package)

```
data (UCBAdmissions)
 ## conditional independence (AD, DG) in Berkeley data
mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
 ## all two-way model (AD, DG, AG)
mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)
```


## glm () - data in frequency form

```
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
 family='poisson')
```

- loglm () simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)
- gnm () fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.


## Example: Berkeley admissions

Fit the model of mutual independence, using logim()

```
> berk.loglm0 <- loglm(~ Admit + Dept + Gender, data=UCBAdmissions)
> berk.loglm0
Call:
loglm(formula = ~Admit + Dept + Gender, data = UCBAdmissions)
```

Statistics:

|  | $X^{\wedge} 2$ | $d f$ | $P\left(>X^{\wedge} 2\right)$ |
| :--- | ---: | :--- | ---: |
| Likelihood Ratio | 2097.7 | 16 | 0 |
| Pearson | 2000.3 | 16 | 0 |

## Conditional independence [AD] [AG]

```
> berk.loglm1 <- loglm(~ Admit * (Dept + Gender), data=UCBAdmissions)
> berk.loglm1
Call:
loglm(formula = ~Admit * (Dept + Gender), data = UCBAdmissions)
```

Statistics:
$X^{\wedge} 2 d f P\left(>X^{\wedge} 2\right)$
Likelihood Ratio 1148.9100
Pearson ..... 1015.710 ..... 0

## Conditional independence, [AD] [AG]

```
> berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
> berk.loglm2
Call:
loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)
Statistics:
 X^2 df P(> X^2)
Likelihood Ratio 877.06 11 0
Pearson 797.7011 0
```


## All two-way model, [AD] [AG] [DG]

```
> berk.loglm3 <-loglm(~(Admit+Dept+Gender)^2, data=UCBAdmissions)
> berk.loglm3
Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data = UCBAdmissions)
Statistics:
 X^2 df P(> X^2)
Likelihood Ratio 20.204 5 0.0011441
Pearson 18.823 5 0.0020740
```


## ANOVA tests

## These are nested. Compare with anova ()

```
> aov1 <- anova(berk.loglm0, berk.loglm1, berk.loglm3, test="Chisq")
> aov1
LR tests for hierarchical log-linear models
Model 1:
 ~Admit + Dept + Gender
Model 2:
 ~Admit * (Dept + Gender)
Model 3:
 ~(Admit + Dept + Gender)^2
 Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 2097.671 16
Model 2 1148.901 10 948.770 6 0.00000
Model 3 20.204 5 1128.697 5 0.00000
Saturated 0.000 0 20.204 5 0.00114
```

These are tests of relative fit, $\Delta G^{2}=G^{2}\left(M_{i} \mid M_{i-1}\right)$

## LRstats

vcdExtra::LRstats() gives one-line summaries of a collection of models These are tests of absolute goodness of fit

```
> LRstats(berk.loglm0, berk.loglm1, berk.loglm2, berk.loglm3)
Likelihood summary table:
```



```
Signif. codes: 0 `***' 0.001 '**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

- AIC and BIC are GOF measures adjusted for model parsimony
- Not not significance tests, but smaller is better
- Also apply to non-nested models

$$
\begin{aligned}
A I C & =G^{2}+2 \times \# \text { parameters } \\
B I C & =G^{2}+2 \log (n) \times \# \text { parameters }
\end{aligned}
$$

## Mosaic displays: Predictor variables

Berkeley data: Departments $\times$ Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?


Male

In response models, the mosaic of the predictors gives a graphic summary of background variables

- Model [Dept] [Gender]: $G_{(5)}^{2}=$ 1220.6.
- Note: Departments ordered A-F by overall rate of admission.
- Men more likely to apply to departments $A, B$; women more likely in depts $\mathrm{C}-\mathrm{F}$


## Mosaic displays: Visual fitting

- Each mosaic shows:
- The DATA - size of tiles
- (some) marginal frequencies - initial splits (visual grouping)
- RESIDUALS (shading) - what associations have been omitted?
- Visual fitting
- Start with a simple model: mutual independence or joint independence for response models
- Pattern of residuals: suggest a better model $\rightarrow$ smaller residuals
- Add terms: $\rightarrow$ smaller residuals, less shading: "cleaning the mosaic"
- Good fitting model will have mostly unshaded tiles

For the Berkeley data, start with the model of joint independence, [A][DG] Fits badly: $\mathrm{G}^{2}{ }_{(11)}=877.1$

Model: (DeptGender)(Admit)


This is the null, or baseline model when Admit is the response variable.

Allows assoc. of [Dept Gender], not shown in shading

Remaining shading suggests: [AD] : Admit varies w/ Dept [AG] : Admit varies w/ Gender

Conditional independence, [AD] [DG]:
Model: (DeptGender)(DeptAdmit)


- E.g., Add [Admit Dept] association $\rightarrow$ Conditional independence:
- Fits poorly: $\left(G_{(6)}^{2}=21.74\right)$
- But, only in Department A!
- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.


## Double decker plots

Visualize dependence of one response variable (typically binary) on combinations of predictors Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

```
doubledecker(Admit ~ Dept + Gender, data = UCBAdmissions[2:1, ,])
```



An exploratory plot

Highlights the M-F diffce in Admit for Dept A


## Survival on the Titanic

## 4-way tables: Survival on the Titanic

Data on the fate of passengers \& crew on the HMS Titanic: a $4 \times 2 \times 2 \times 2$ table

```
> data(Titanic, package="datasets")
> str(Titanic)
 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
 - attr(*, "dimnames")=List of 4
 ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
 ..$ Sex : chr [1:2] "Male" "Female"
 ..$ Age : chr [1:2] "Child" "Adult"
 ..$ Survived: chr [1:2] "No" "Yes"
```

What proportion survived? Ans: 711/2201 = 32.3\%

```
> addmargins(margin.table(Titanic, 4))
Survived
 No Yes Sum
1490 711 2201
> margin.table(Titanic, 4) / sum(Titanic)
Survived
 No Yes
0.677 0.323
```


## Zero cells

|  |  | Sex | Male |  | Female |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Survived | No | Yes | No | Yes |
| Class | Age |  |  |  |  |  |
| 1st | Child |  | 0 | 5 | 0 | 1 |
|  | Adult |  | 118 | 57 | 4 | 140 |
| 2nd | Child |  | 0 | 11 | 0 | 13 |
|  | Adult |  | 154 | 14 | 13 | 80 |
| 3 rd | Child |  | 35 | 13 | 17 | 14 |
|  | Adult |  | 387 | 75 | 89 | 76 |
| Crew | Child |  | 0 | 0 | 0 | 0 |
|  | Adult |  | 670 | 192 | 3 | 20 |

Two types of zero cells:

- Structural zeros: could not occur (children in crew)
- Sampling zeros: did not happen to occur (children in $1^{\text {st }} \& 2^{\text {nd }}$ who died)
- Beware: zeros can cause problems:
- Loss of df
- $0 / 0 \rightarrow \mathrm{NaN}$ in $\chi 2$ tests


## Exploratory plots

One-way doubledecker plots against survival show what might be expected:

```
doubledecker(Survived ~ Sex, data=Titanic)
doubledecker(Survived ~ Class, data=Titanic)
```



## Exploratory plots

Two-way doubledecker plot against survival shows different effects of Class for men and women:
doubledecker(Survived ~ Sex + Class, data=Titanic)


## Fitting \& visualizing models

```
mod0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic) mosaic(mod0, main="Titanic: Model [C][G][A][S]")
```

Titanic: Model [C][G][A][S]


In the model formulas, I'm using variable numbers 1-4 for Class, Gender, Age and Survived

The independence model serves only as a background for the total associations in the table

Let's clean this mosaic!!

Note the scale of residuals:
+26-- -11

## Baseline model for Survived

```
mod1 <- loglm(~ 1* 2*3 + 4, data=Titanic) mosaic(mod1, main="Titanic: Model [CGA][S]")
```

Titanic: Model [CGA][S]


With $S$ as response, the baseline model includes all association s among [CGA]

But this model asserts survival is independent of all of these
$G^{2}(15)=671.96$, a very poor fit

## Adding associations: Main effects

```
mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic)
mosaic(mod2, main="Titanic: Model [CGA][CS][GS][AS]")
```

Titanic: Model [CGA][CS][GS][AS]


- This model allows associations of each of C, G, A with Survived
- $G^{2}(10)=112.57$, still not good
- Pattern of residuals suggests 2-way interactions (3-way terms):
- "Women \& children first": suggests a term [GAS]
- Allow interactions of Class with Gender [CGS] and Class with Age [CAS]


## Final model

$\bmod 3<-\log \operatorname{lm}\left(\sim 1^{*} 2^{*} 3+\left(1^{*} 2\right)^{*} 4+\left(1^{*} 3\right) * 4\right.$, data=Titanic) mosaic(mod3, main="Titanic: Model [CGA][CGS][CAS]")

Titanic: Model [CGA][CGS][CAS]


## Comparing models

As usual, anova ( ) give compact relative comparisons of a set of nested models

```
> anova(mod0, mod1, mod2, mod3)
LR tests for hierarchical log-linear models
Model 1:
 ~1 + 2 + 3 + 4
Model 2:
 ~1 * 2 * 3 + 4
Model 3:
 ~1 * 2 * 3 + (1 + 2 + 3) * 4
Model 4:
 ~1 * 2 * 3 + (1 * 2) * 4 + (1 * 3) * 4
 Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 1243.66 25
Model 2 671.96 15 571.70 10 0.000
Model 3 112.57 10 559.40 5 0.000
Model 4 1.69 4 110.88 6 0.000
Saturated 0.00 0 1.69 4 0.793
```


## Comparing models

LRstats () gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

```
> LRstats(mod0, mod1, mod2, mod3)
Likelihood summary table:
 AIC BIC LR Chisq Df Pr(>Chisq)
mod0 1385 1395 1244 25 <2e-16 ***
mod1 833 858 672 15 <2e-16 ***
mod2

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

mod3 [CGA] [CGS] [CAS] wins!

- Acceptable $G^{2}$
- Looks best by AIC \& BIC


## Model interpretation

Recall that the goal of analysis is to tell a story

- Greatest impact: lower class $\rightarrow$ decreased survival, regardless of Gender \& Age
- Differences in survival by Class were moderated by both Gender \& Age
- Term [CGS]: Women in $3^{\text {rd }}$ class did not have an advantage, while men in $1^{\text {st }}$ class did vs. other classes
- Term [CAS]: No children in $1^{\text {st }}$ or $2^{\text {nd }}$ class died, but nearly $2 / 3$ in $3^{\text {rd }}$ class did
- Summary:
- Not so much "women \& children first", rather
- Women $\&$ children, ordered by class, and $1^{\text {st }}$ class men!


## Sequential plots \& models

- Mosaic for an n-way table $\rightarrow$ hierarchical decomposition of association
- Joint cell probabilities are decomposed as:

$$
p_{i j k \ell \ldots}=\underbrace{\overbrace{\left.p_{i} \times v_{1} v_{2}\right\}} \times p_{j \mid i}}_{\left\{v_{1} v_{2} v_{3}\right\}} \times p_{k \mid j} \times p_{\ell \mid j k} \times \cdots \times p_{n| | j k} \ldots
$$

- First 2 terms: $\rightarrow$ mosaic for $\mathrm{v}_{1}, \mathrm{v}_{2}$
- First 3 terms: $\rightarrow$ mosaic for $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$
- ... and so on
- Roughly analogous to sequential fitting in regression: $\mathrm{X}_{1} ; \mathrm{X}_{2}\left|\mathrm{X}_{1} ; \mathrm{X}_{3}\right| \mathrm{X}_{1}, \mathrm{X}_{2}$
- Order of variables matters for interpretation
- Mosaics: $1^{\text {st }}$ split: easiest to see the marginal proportions
- Mosaics: $2^{\text {nd }}$ variable seen as conditional proportions, given the 1 st


## Sequential plots \& models

- Sequential models of joint independence
- Give an additive decomposition of total association - mutual independence $\left[\mathrm{v}_{1}\right]\left[\mathrm{v}_{2}\right] \ldots\left[\mathrm{v}_{\mathrm{p}}\right]$

$$
G_{\left[v_{1}\right]\left[v_{v}\right] \ldots\left[v_{\nu}\right]}^{2}=G_{\left[v_{1}\right]\left[v_{2}\right]}^{2}+G_{\left[v_{1} v_{2}\right]\left[v_{3}\right]}^{2}+G_{\left[v_{1} v_{2} v_{3}\right]\left[v_{v}\right]}^{2}+\cdots+G_{\left[v_{1} \ldots v_{p-1}\right]\left[v_{p}\right]}^{2}
$$

- E.g., for Hair Eye color data

| Model | Model symbol | df | $G^{2}$ |
| :--- | :--- | ---: | ---: |
| Marginal | [Hair] [Eye] | 9 | 146.44 |
| Joint | [Hair, Eye] [Sex] | 15 | 19.86 |
| Mutual | [Hair] [Eye] [Sex] | 24 | 166.30 |

## Sequential plots \& models

Hair color $\times$ Eye color marginal table (ignoring Sex)
(Hair)(Eye), G2 (9) = 146.44


## Sequential plots \& models

3-way table, Joint independence model [Hair Eye][Sex]


## Sequential plots \& models

3-way table, Mutual independence [Hair] [Eye][Sex]
(Hair)(Eye)(Sex), G2 (24) $=166.30$


## Sequential plots \& models

## Putting these together:



## Sequential models: Applications

## Response models

- When one variable, $R$, is a response and $E_{1}, E_{2}, \ldots$ are explantory, the baseline model is the model of joint independence, $\left[E_{1}, E_{2}, \ldots\right][R]$
- Sequential mosaics then show the associations among the predictors
- The last mosaic shows all associations with $R$
- Better-fitting models will need to add associations of the form $\left[E_{i} R\right],\left[E_{i} E_{j} R\right] \ldots$


## Causal models

- Sometimes there is an assumed causal ordering of variables:

$$
A \rightarrow B \rightarrow C \rightarrow D
$$

- Each path of arrows: $A \rightarrow B, A \rightarrow B \rightarrow C$ is a sequential model of joint independence: $[A][B],[A B][C],[A B C][D]$.
- Testing these decomposes all joint probabilities


## Example: Marital status, pre- \& extra-marital sex

Thornes and Collard (1979) studied divorce patterns in relation to premarital and extramarital sex, a $2^{4}$ table, PreSex in vcd ( $G \times P \times E \times M$ )

```
> data("PreSex", package="vcd")
> structable(Gender + PremaritalSex + ExtramaritalSex ~
 MaritalStatus, data = PreSex)
\begin{tabular}{lrrrrr}
Gender & Women & \multicolumn{4}{c}{ Men } \\
PremaritalSex & Yes & No & Yes & No \\
ExtramaritalSex & Yes & No Yes & No Yes & No Yes & No
\end{tabular}
MaritalStatus
Divorced 17 17 54 36 214 28 60 17 68
Married
\(4 \quad 25 \quad 4 \quad 322 \quad 11 \quad 42 \quad 4130\)
```

Submodels:

* [G][P]: Do men \& women differ by pre-marital sex?
[GP][E]: Given G \& P, are there differences in extra-marital sex?
* [GPE][M]: Are there differences in divorce among the G, P, E groups?


## Example: Marital status, pre- \& extra-marital sex

Order the table variables as $\mathrm{G} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow \mathrm{M}$

```
> names(dimnames(PreSex)) # table variable names
[1] "MaritalStatus" "ExtramaritalSex" "PremaritalSex" "Gender"
> PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M
```

Fit each sequential model to the marginal sub-table. vcdExtra: :seq_loglm() generates these models of joint independence

PreSex.mods <- seq_loglm(PreSex,
type="joint",
marginals $=2: 4$ )

LRstats (PreSex.mods)

| Model | df | $G^{2}$ |
| :--- | ---: | ---: |
| $[\mathrm{G}][\mathrm{P}]$ | 1 | 75.259 |
| $[\mathrm{GP}][\mathrm{E}]$ | 3 | 48.929 |
| $[\mathrm{GPE}][\mathrm{M}]$ | 7 | 107.956 |
| $[\mathrm{G}][\mathrm{P}][\mathrm{E}][\mathrm{M}]$ | 11 | 232.142 |

Mosaic plots
\# (Gender Pre)
mosaic (margin.table(PreSex, 1:2), shade=TRUE, main = "Gender and Premarital Sex")

## Gender and Premarital Sex



Twice as many women in this sample
Men far more likely to report premarital sex than women (odds ratio = 3.7)

## Mosaic plots

```
(Gender Pre)(Extra)
mosaic(margin.table(PreSex, 1:3),
 expected = ~Gender * PremaritalSex + ExtramaritalSex,
 main = "Gender*Pre + ExtramaritalSex")
```



Men \& women who reported Prefar more likely to report Extra- sex

Odds ratio of Extra- given Preabout the same for men \& women (3.61 vs. 3.56)

## Mosaic plots

```
mosaic(PreSex,
 expected = ~Gender * PremaritalSex * ExtramaritalSex
 + MaritalStatus,
 main = "Gender*Pre*Extra + MaritalStatus")
(GPE)(PEM)
mosaic(PreSex,
 expected = ~ Gender * PremaritalSex * ExtramaritalSex
 + MaritalStatus * PremaritalSex * ExtramaritalSex,
 main = "G*P*E + P*E*M")
```

Gender*Pre*Extra + MaritalStatus


## G*P*E + P*E*M



## Mosaic plots

```
mosaic(PreSex,
 expected = ~Gender * PremaritalSex * ExtramaritalSex
 + MaritalStatus,
 main = "Gender*Pre*Extra + MaritalStatus")
```



In the model [GPE][M], marital status depends in a complex way

Among women, those reporting Premore likely to be divorced

Among men, those reporting Preonly more likely to be divorced if Extra-

This suggests adding associations of $M$ with $P$ and $E:[P E M]$ term

## Mosaic plots

```
(GPE)(PEM)
mosaic(PreSex,
 expected = ~ Gender * PremaritalSex * ExtramaritalSex
 + MaritalStatus * PremaritalSex * ExtramaritalSex,
 main = "G*P*E + P*E*M")
```



This model fits well, $\mathrm{G}^{2}(4)=5.26$, $\mathrm{p}=0.26$

Loglinear thinking: once we take GPE into account, are there simpler models for association with M?

Looking forward: logit models for MaritalStatus often provide an easier path

## Partial association, partial mosaics

## Sometimes useful to do a stratified analysis

- How does association between two (or more) variables vary over levels of other variables?
- Mosaic plots for main variables show partial association at each level of others
- E.g., Hair color, Eye color, subset by Sex

Sex: Male


Sex: Female


## Partial association, partial mosaics

## Stratified analysis: conditional decomposition of $G^{2}$

- Fit models of partial (conditional) independence, $A \perp B \mid C_{k}$ at each level of (controlling for) $C$.
- $\Rightarrow$ partial $G^{2}$ s add to the overall $G^{2}$ for conditional independence, $A \perp B \mid C$

$$
G_{A \perp B \mid C}^{2}=\sum_{k} G_{A \perp B \mid C(k)}^{2}
$$

Table: Partial and Overall conditional tests, Hair $\perp$ Eye $\mid$ Sex

| Model | df | $G^{2}$ | $p$-value |
| :--- | ---: | ---: | ---: |
| $[$ Hair $][$ Eye $] \mid$ Male | 9 | 44.445 | 0.000 |
| $[$ Hair $]$ Eye $\mid$ Female | 9 | 112.233 | 0.000 |
| $[$ Hair $][$ Eye $] \mid$ Sex | 18 | 156.668 | 0.000 |

## Partial association: Summary

- Overall, there is a strong association of hair color and eye color, controlling for sex, $\mathrm{G}^{2}(18)=156.67$
- For $F, G^{2}(9)=112.23$ accounts for $72 \%$ of this association
- The pattern of association is similar for M \& F
- The largest difference is for blue-eyed blonds, much more prevalent among F than M . Is there a hair dye effect?




## Summary: What we've learned

