

Loglinear models & mosaic displays

Michael Friendly

Psych 6136 http://friendly.github.io/psy6136

Today's topics

- Mosaic displays: basic ideas
- Models for count data
 - Fitting loglinear models
- Two-way tables
- Three-way tables
- Sequential plots & models
- Marginal & partial displays

Mosaic displays

- Similar to sieve plot, tile plot, using area ~ frequency
- Mosaic plots generalize more readily to *n*-way tables (subject to resolution of the display)
- Intimately connected to loglinear & generalized linear models
 - Can fit sequential models as variables are entered
 - Show the pattern of association not accounted for in a given model

Mosaic displays: basic ideas

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

UCB Admissions: Gender frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

V₁: width ~ marginal frequencies, n $_{i++}$ V₂: height ~ cond freq: V₂ | V₁ = n_{ij} / n_{i++} V₃: width ~ cond freq: V₃ | V₁, V₂ = n_{ikj} / n_{ij+}

 \rightarrow Area ~ cell frequency, n_{iik}

Mosaic displays: basic ideas

UCB Admissions: Gender x Admit

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

V₁: width ~ marginal frequencies, n $_{i++}$ V₂: height ~ cond freq: V₂ | V₁ = n_{ij} / n_{i++} V₃: width ~ cond freq: V₃ | V₁, V₂ = n_{ikj} / n_{ij+}

 \rightarrow Area ~ cell frequency, n_{iik}

Mosaic displays: basic ideas

Gender x Admit x Dept frequencies

Area proportional display for an n-way table

Tiles: recursive splits of a unit square, alternating H, V

V₁: width ~ marginal frequencies, n $_{i++}$ V₂: height ~ cond freq: V₂ | V₁ = n_{ij} / n_{i++} V₃: width ~ cond freq: V₃ | V₁, V₂ = n_{ikj} / n_{ij+}

 \rightarrow Area ~ cell frequency, n_{iik}

Mosaic displays: Independence

Expected frequencies if Admit \perp Gender

Expected frequencies under independence are products of the row / col margins

$$\widehat{m}_{ij} = \frac{n_{i+}n_{+j}}{n_{++}} = n_{++}$$
row %col %

 \rightarrow Row and col tiles align when variables are independent

8

Mosaic displays: Residuals & shading

• Pearson residuals:

$d_{ij} = \frac{n_{ij} - \widehat{m}_{ij}}{\sqrt{\widehat{m}_{ij}}}$

• Pearson
$$\chi^2 = \Sigma \Sigma d_{ij}^2 = \Sigma \Sigma rac{(n_{ij} - \hat{m}_{ij})^2}{\hat{m}_{ij}}$$

 Other residuals: deviance (LR), Freeman-Tukey (FT), adjusted (ADJ), ...

• Shading:

- Sign: negative in red; + positive in blue
- Magnitude: intensity of shading: |d_{ij}| > 0, 2, 4, ...
- → Independence: rows align, or cells are empty!

UCB Admissions: ~ Admit + Gender

Loglinear models: Perspectives

Loglinear models grew up and developed from three different ideas and ways of thinking about notions of independence in frequency data

- Loglinear approach: analog of ANOVA; associations are interactions
- glm() approach: analog of general regression model, for log(Freq), with Poisson distn of errors
- Logit models: Loglinear simplified for a binary response

Loglinear approach

First developed as analog of classical ANOVA models, where multiplicative relations are re-expressed in additive form as models for log(Freq)

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_j^{B} \equiv [A][B] \equiv \sim A + B$$

- This expresses the independence model for a 2-way table as no A*B association
- Short-hand notations: $[A][B] = A \perp B = ~A + B$
- Fit by simple iterative proportional scaling: MASS::loglm()

glm() approach

Extension of classical linear models recognized loglinear models as a model for log(Freq), with Poisson distⁿ for cell counts

$$\log m = X \beta$$

- Looks like std ANOVA/regression model, but for log(Freq)
- This allows quantitative predictors and special ways to treat ordinal factors
- Fit by maximum likelihood using glm(..., family=poisson)
- Standard diagnostic methods available

glm(Freq ~ A + B + C, family = poisson # [A] [B] [C] glm(Freq ~ A * B + C, family = poisson) # [A B] [C]

Logit models

When one variable is a binary response, a logit model is a simpler way to specify a loglinear model

 $\log(m_{1jk}/m_{2jk}) = \alpha + \beta_j^B + \beta_k^C \equiv [AB][AC][BC]$

- log(m_{1jk}/m_{2jk}) is the log odds of response 1 vs 2
- The model only includes terms for the effect of A on B & C
- Equivalent loglinear model: [AB][AC][BC]
- The logit models assumes the [BC] association;

 $[AB] \rightarrow \beta_{j}{}^{B} \quad [AC] \rightarrow \beta_{k}{}^{C}$

Fit using family=binomial

```
glm(outcome=="survived" ~ B + C, family = binomial)
```

Two-way tables: loglinear approach

For two discrete variables, *A* and *B*, suppose a multinomial sample of total size *n* over the *IJ* cells of a two-way $I \times J$ contingency table, with cell frequencies n_{ij} , and cell probabilities $\pi_{ij} = n_{ij}/n$.

• The table variables are statistically independent when the cell (joint) probability equals the product of the marginal probabilities, $Pr(A = i \& B = j) = Pr(A = i) \times Pr(B = j)$, or,

$$\pi_{ij} = \pi_{i+}\pi_{+j} \; .$$

• An equivalent model in terms of expected frequencies, $m_{ij} = n\pi_{ij}$ is

$$m_{ij} = (1/n) m_{i+} m_{+j}$$
.

 This multiplicative model can be expressed in additive form as a model for log m_{ij},

$$\log m_{ij} = -\log n + \log m_{i+} + \log m_{+j} .$$
 (1)

Two-way tables: loglinear approach

Independence model

By anology with ANOVA models, the independence model (1) can be expressed as

$$\log m_{ij} = \mu + \lambda_i^{\mathcal{A}} + \lambda_j^{\mathcal{B}} , \qquad (2)$$

- μ is the grand mean of log m_{ij}
- the parameters λ_i^A and λ_j^B express the marginal frequencies of variables A and B — "main effects"
- typically defined so that $\sum_i \lambda_i^A = \sum_j \lambda_j^B = 0$ as in ANOVA

Two-way tables: loglinear approach

Saturated model

Dependence between the table variables is expressed by adding association parameters, λ_{ii}^{AB} , giving the *saturated model*,

$$\log m_{ij} = \mu + \lambda_i^{A} + \lambda_j^{B} + \lambda_{ij}^{AB} \equiv [AB] \equiv \sim A * B .$$
(3)

• The saturated model fits the table perfectly ($\hat{m}_{ij} = n_{ij}$): there are as many parameters as cell frequencies. Residual df = 0.

• A global test for association tests $H_0: \lambda_{ii}^{AB} = \mathbf{0}$.

- If reject H_0 , which $\lambda_{ij}^{AB} \neq 0$?
- For ordinal variables, the λ_{ij}^{AB} may be structured more simply, giving tests for ordinal association.

Example: Independence

Generate a table of Education by Party preference, strictly independent

Perfect fit:

Both sieve diagrams and mosaic plots show what independence "looks like"

> sieve(table, shade=TRUE)

> mosaic(table, shade=TRUE)

Two-way tables: glm approach

In the GLM approach, the vector of cell frequencies, $\mathbf{n} = \{n_{ij}\}$ is specified to have a Poisson distribution with means $\mathbf{m} = \{m_{ij}\}$ given by

 $\log m = X\beta$

- X is a known design (model) matrix, expressing the table factors
- β is a column vector containing the unknown λ parameters.
- This is the same as the familiar matrix formulation of ANOVA/regression, except that
 - The response, log *m* makes multiplicative relations additive
 - The distribution is taken as Poisson rather than Gaussian (normal)

Example: 2 x 2 table

For a 2×2 table, the saturated model (3) with the usual zero-sum constraints can be represented as

• only the linearly independent parameters are represented. $\lambda_2^A = -\lambda_1^A$, because $\lambda_1^A + \lambda_2^A = 0$, and so forth.

- association is represented by the parameter λ_{11}^{AB}
- can show that $\lambda_{11}^{AB} = \frac{1}{4} \log(\theta)$ (log odds ratio)
- Advantages of the GLM formulation: easier to express models with ordinal or quantitative variables, special terms, etc. Can also allow for over-dispersion.

Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G²,

$$G^{2} = 2\sum_{i} n_{i} \log\left(\frac{n_{i}}{\widehat{m}_{i}}\right) , \qquad (4)$$

or the Pearson X^2 ,

$$X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} ,$$

with degrees of freedom df = # cells - # estimated parameters.

- E.g., for the model of independence, [A][B], df = IJ [(I-1) + (J-1)] = (I-1)(J-1)
- The terms summed in (4) and (5) are the squared cell residuals
- Other measures of balance goodness of fit against parsimony, e.g., *Akaike's Information Criterion* (smaller is better)

$$AIC = G^2 - 2df$$
 or $AIC = G^2 + 2$ # parameters

(5)

R functions for loglinear models

- vcd::assocstats() only χ2 tests for two-way tables; not a model (no parameters; no residuals)
- MASS::loglm() general loglinear models for n-way tables
 loglm(formula, data, subset, na.action, ...)
- glm() all generalized linear models; loglinear with family = poisson

glm(formula, data, weights, subset, ...)

- Formulas have the form:
 - table form: ~ A + B + ... (independence);
 - A * B + C (allow A*B association)
 - frequency data frame: Freq ~ A * B + C

R functions

 loglm() and glm() return an R object with named components and with a class()

```
> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)
> names(arth.mod)
[1] "lrt" "pearson" "df" "margin" "fitted" "param"
[7] "call" "formula" "frequencies" "deviance" "nobs" "terms"
class(arth.mod)
[1] "loglm"
```

- They have methods: print(), summary, coef(), residuals(), plot() and other methods
 - Methods are specific to the class of the object
 - E.g., residuals(arth.mod) → residuals.loglm(arth.mod)

Model-based methods: Fitting & graphing

Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

```
> data(Arthritis, package="vcd")
> str(Arthritis)
'data.frame': 84 obs. of 5 variables:
  $ ID : int 57 46 77 17 36 23 75 39 33 55 ...
  $ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 2 ...
  $ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
  $ Age : int 27 29 30 32 46 58 59 59 63 63 ...
  $ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...</pre>
```

For now, ignore Age; consider the 2 x 3 table of Treatment x Improved

Arthritis treatment

```
Fit the independence model, ~ Treatment + Improved
```

Some methods:

```
> coef(arth.mod)
$`(Intercept)`
[1] 2.543
```

```
$Treatment
Placebo Treated
0.02381 -0.02381
```

```
$Improved
    None Some Marked
    0.50136 -0.59725 0.09589
```

Arthritis treatment: Plots

Visualization: mosaic() or plot() the model or table

Splits by the response, Treatment first

Custom scheme for shading levels; normally c(2, 4) for |residual|

Cells can be labeled by freq, residual, ...

Arthritis treatment: glm()

glm() for loglinear models easiest with the data as a data.frame in frequency form

```
> arth.df <- as.data.frame(xtabs(~ Treatment + Improved,
                             data=Arthritis))
> arth.df
 Treatment Improved Freq
                    29
1
   Placebo
              None
2
  Treated None 13
3
 Placebo Some 7
4 Treated
                  7
              Some
5
 Placebo Marked
                     7
6
   Treated Marked
                   21
```

More on glm() models later

Example: Hair color & Eye color

```
> haireye <- margin.table(HairEyeColor, 1:2)</pre>
> (HE.mod <- loglm(~ Hair + Eye, data=haireye))</pre>
Call:
loglm(formula = ~Hair + Eye, data = haireye)
Statistics:
                  X^{2} df P(> X^{2})
Likelihood Ratio 146.4 9
                                ()
Pearson 138.3 9
                                \cap
> round(residuals(HE.mod), 2)
Re-fitting to get frequencies and fitted values
      Eye
Hair Brown Blue Hazel Green
 Black 4.00 -3.39 -0.49 -2.21
 Brown 1.21 -2.02 1.31 -0.35
 Red -0.08 -1.85 0.82 2.04
 Blond -7.33 6.17 -2.47 0.60
```

Mosaic displays: Seeing patterns

- In two-way models, residuals contain the info on lack of independence
 - Equivalently: help to understand the pattern of association
 - Effect ordering: permuting the rows / cols often makes the pattern more apparent
- Correspondence analysis: \rightarrow reorder by scores on Dim 1
 - seriation::permute(order="CA") does this for two-way tables

> haireye								
Iye								
Brown	Blue	Hazel	Green					
68	20	15	5					
119	84	54	29					
26	17	14	14					
7	94	10	16					
	lye Brown 68 119	Eye Brown Blue 68 20 119 84 26 17	Eye Brown Blue Hazel 68 20 15 119 84 54 26 17 14					

<pre>> library(seriation) > permute(haireye, "CA")</pre>								
Еуе								
Hair	Brown	Hazel	Green	Blue				
Black	68	15	5	20				
Brown	119	54	29	84				
Red	26	14	14	17				
Blond	7	10	16	94				

mosaic(haireye, shade=TRUE, labeling=labeling_residuals) mosaic(permute(haireye, "CA"), shade=TRUE, labeling=labeling_residuals)

Bee abundance data

A study by Taylor Kerekes examined the abundance of bee species in Ontario over three periods of time.

Q: Does relative abundance of species differ over years?

A: Do a chi-square test

chisq.test(bees[,-1])
Pearson's Chi-squared test
data: bees[, -1]
X-squared = 1981, df = 26, p-value <2e-16</pre>

# P	A tibble: 14 x	4		
	species	`2002`	`2005`	`2021`
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Affinis	508	0	0
2	Bimaculatus	362	345	137
3	Borealis	30	6	11
4	Fervidus	634	19	10
5	Griseocollis	35	21	21
6	Impatiens	638	564	616
7	Pensylvanicus	112	0	0
8	Perplexus	160	57	9
9	Rufocinctus	51	46	17
10	Ternarius	9	16	9
11	Terricola	119	1	4
12	Vagans	713	82	39
13	Ashtoni (M)	27	0	0
14	Citrinus (M)	234	38	5

How to understand the pattern of association?

mosaic(bees.mat, shade=TRUE, ...)

Bees Abundance Data

Alphabetic order of species: No clear pattern

Correspondence analysis finds scores for the row & col categories to account for maximum χ^2

Dimension 1 (91.5%)

mosaic(permute(bees.mat, "CA"), shade=TRUE, ...)

Bees Abundance Data

Three-way tables

Saturated model

For a 3-way table, of size $I \times J \times K$ for variables A, B, C, the saturated loglinear model includes associations between all pairs of variables, as well as a 3-way association term, λ_{iik}^{ABC}

$$\log m_{ijk} = \mu + \lambda_i^{A} + \lambda_j^{B} + \lambda_k^{C} + \lambda_{ijk}^{AB} + \lambda_{ik}^{ABC} + \lambda_{ijk}^{ABC} + \lambda_{ijk}^{ABC}.$$
(6)

- One-way terms (λ^A_i, λ^B_j, λ^C_k): differences in the marginal frequencies of the table variables.
- Two-way terms $(\lambda_{ij}^{AB}, \lambda_{ik}^{AC}, \lambda_{jk}^{BC})$ pertain to the *partial association* for each pair of variables, *controlling* for the remaining variable.
- The three-way term, λ_{ijk}^{ABC} allows the partial association between any pair of variables to vary over the categories of the third variable.
- Fits perfectly, but doesn't *explain* anything, so we hope for a simpler model!

Reduced models

- Goal: fit the smallest model sufficient to explain/describe the observed frequencies
 - Similar to Anova models, ~(A + B + C)³ with all interactions
- Hierarchical models
 - A high-order term, like $\lambda_{ijk} \xrightarrow{ABC} \rightarrow all$ lower order terms included
 - E.g. $[ABC] \rightarrow A + B + C + AB + AC + BC$
 - $[AB][AC] \rightarrow A + B + C + AB + AC$
- Thus, a shorthand notation for a loglinear model lists only the high-order terms

Reduced models

- For a three-way table there is a range of models between mutual independence, [A][B][C], and the saturated model, [ABC]
- Each model has an independence interpretation:

 $[A][B] \equiv A \perp B \equiv A \text{ independent of } B$

• Special names for various submodels

Model	Model symbol	Interpretation
Mutual independence	[A][B][C]	$A \perp B \perp C$
Joint independence	[AB][C]	$(A B) \perp C$
Conditional independence	[AC][BC]	$(A \perp B) \mid C$
All two-way associations	[AB][AC][BC]	homogeneous assoc.
Saturated model	[ABC]	ABC interaction

Table: Log-linear Models for Three-Way Tables

Model types

 Joint independence: (AB) ⊥ C, allows A*B association, but asserts no A*C and B*C associations

$$[AB][C] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB}$$

• **Conditional independence**: $A \perp B$, controlling for C

$$[AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ik}^{AC} + \lambda_{jk}^{BC}$$

 Homogeneous association: All two-way, but each two-way is the same over the other factor

$$[AB][AC][BC] \equiv \log m_{ijk} = \mu + \lambda_i^A + \lambda_j^B + \lambda_k^C + \lambda_{ij}^{AB} + \lambda_{ik}^{AC} + \lambda_{jk}^{BC}$$

Model types: logIm()

Each of these have simple translations into the model formulae for loglm()

- loqlm(~A + B + C)loglm(~A * B + C)loqlm(~ A * B * C)
- # mutual independence [A][B][C] # joint independence [AB][C] loglm(~ A*C + B*C) # conditional independence [AC][BC] loglm(~ (A + B + C)^2) # homogeneous, all 2-way [AB][AC][BC] # saturated model [ABC]

Collapsibility: Marginal & conditional associations

- Q: When can we legitimately collapse a table, ABC over some variable (C)?
- A: When the marginal association of AB is the same as the conditional association, AB | C
- Recall the Berkeley data
 - Margin of Admit, Gender ignoring Dept showed strong association
 - The partial assoc. within Dept were mostly NS
 - This is an example of Simpson's paradox
- Three-way tables: The AB marginal and AB | C conditional associations are the same, if either:
 - A & C are conditionally independent, $A \perp C \mid B = [AB][CB]$
 - B & C are conditionally independent, B \(\box) C \) A = [AB][AC]
 - \rightarrow no three-way association

Response vs. Association models

- In association models, the interest is just on *which* variabels are associated, and *how*
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
 - \implies fit the homogeneous association model (or the saturated model)
 - Test the individual terms, delete those which are NS
- In response models, the interest is on which predictors are associated with the response
 - The minimal (null or baseline) model is the model of joint independence of the response (say, A) from all predictors, [A] [B C D ...]
 - Associations among the predictors are fitted exactly (not analyzed)
 - Similar to regression, where predictors can be arbitrarily correlated
 - e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]

Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by the likelihood ratio G^2 , or the Pearson X^2 ,

$$G^2 = 2\sum_i n_i \log\left(\frac{n_i}{\widehat{m}_i}\right) \qquad X^2 = \sum_i \frac{(n_i - \widehat{m}_i)^2}{\widehat{m}_i} ,$$

with residual degrees of freedom $\nu = \#$ cells - # estimated parameters.

- \bullet These measure the lack of fit of a given model— a large value \implies a poor model
- Both are distributed as $\chi^2(\nu)$ (in large samples: all $\hat{m}_i > 5$)
- *ε*(χ²(ν)) = ν, so G²/ν (or X²/ν) measures lack of fit per degree of freedom (overdispersion)
- But: how to compare or test competing models?

Nested models & ANOVA-type tests

Two models, M_1 and M_2 are nested when one (say, M_2) is a special case of the other

- Model M₂ (w/ v_2 df) fits a subset of the parameters of M1 (w/ v_1 df)
- M_2 is more restrictive cannot fit better than $M_1: G^2(M_2) \ge G^2(M_1)$
- The least restrictive model is the saturated model [ABC ...], w/ $G^2 = 0$

Therefore, we can test the difference in G^2 as a specific test of the added restrictions in M_2 compared to M_1 .

• This test has a χ^2 distribution with df = $v_2 - v_1$

$$\Delta G^{2} \equiv G^{2}(M_{2} | M_{1}) = G^{2}(M_{2}) - G^{2}(M_{1})$$

$$= 2 \sum n_{i} \log(\widehat{m}_{i1}/\widehat{m}_{i2})$$
(7)

Example: Berkeley admissions

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender the following models form a nested chain

```
[A][D][G] \subset [A][DG] \subset [AD][AG][DG] \subset [ADG]
```

Table: Hierarchical G^2 tests for loglinear models fit to the UC Berkeley data

Туре	LLM terms	G^2	df	$\Delta(G^2)$	$\Delta(df)$	$\Pr(>\Delta(G^2))$
Mutual ind	[A][D][G]	2097.67	16			
Joint	[A][DG]	877.06	11	1220.62	5	0.0000
All 2-way	[AD][AG][DG]	20.20	5	1128.70	5	0.0000
Saturated	[ADG]	0.0	0	20.20	5	0.0011

- Only testing the decrease in G2 from one model to the next
- Here, each model is significantly better than the previous
- Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
- Absolut fit of all 2-way model is not terrible. Investigate this further!

Fitting these in R

loglm() - data in contingency table form (MASS package)

```
1 data(UCBAdmissions)
2 ## conditional independence (AD, DG) in Berkeley data
3 mod.1 <- loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
4 ## all two-way model (AD, DG, AG)
5 mod.2 <- loglm(~ (Admit + Gender + Dept)^2, data=UCBAdmissions)</pre>
```

glm() - data in frequency form

```
berkeley <- as.data.frame(UCBAdmissions)
mod.3 <- glm(Freq ~ (Admit + Gender) * Dept, data=berkeley,
family='poisson')</pre>
```

- loglm() simpler for nominal variables
- glm() allows a wider class of models and quantitative predictors (covariates)
- gnm() fits models for structured association and generalized non-linear models
- vcdExtra package provides visualizations for all.

Example: Berkeley admissions

Fit the model of mutual independence, using logIm()

Conditional independence [AD] [AG]

Conditional independence, [AD] [AG]

All two-way model, [AD] [AG] [DG]

ANOVA tests

These are nested. Compare with anova ()

```
> aov1 <- anova(berk.loglm0, berk.loglm1, berk.loglm3, test="Chisq")</pre>
> aov1
LR tests for hierarchical log-linear models
Model 1:
~Admit + Dept + Gender
Model 2:
 ~Admit * (Dept + Gender)
Model 3:
 ~ (Admit + Dept + Gender) ^2
         Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 2097.671 16
Model 2 1148.901 10 948.770
                                                 0.00000
                                        6
Model 3 20.204 5 1128.697
                                        5
                                                 0.00000
Saturated 0.000 0 20.204
                                        5
                                                 0.00114
```

These are tests of relative fit, $\Delta G^2 = G^2 (M_i | M_{i-1})$

LRstats

vcdExtra::LRstats() gives one-line summaries of a collection of models These are tests of absolute goodness of fit

> LRstats(b	erk.lo	oglm0,	berk.ld	oglm	1, berk.loglm2, berk.loglm3)
Likelihood summary table:					
	AIC	BIC	LR Chiso	l Df	Pr(>Chisq)
berk.loglm0	2273	2282	2098	3 16	<2e-16 ***
berk.loglm1	1336	1352	1149) 10	<2e-16 ***
berk.loglm2	1062	1077	87	7 11	<2e-16 ***
berk.loglm3	217	240	20) 5	0.0011 **
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1					

- AIC and BIC are GOF measures adjusted for model parsimony
- Not not significance tests, but smaller is better
- Also apply to non-nested models

$$AIC = G^2 + 2 \times \#$$
 parameters
 $BIC = G^2 + 2\log(n) \times \#$ parameters

Mosaic displays: Predictor variables

Berkeley data: Departments × Gender (ignoring Admit):

- Did departments differ in the total number of applicants?
- Did men and women apply differentially to departments?

Model: (Dept)(Gender)

In response models, the mosaic of the predictors gives a graphic summary of background variables

- Model [Dept] [Gender]: G²₍₅₎ = 1220.6.
- Note: Departments ordered A–F by overall rate of admission.
- Men more likely to apply to departments A,B; women more likely in depts C–F

Mosaic displays: Visual fitting

- Each mosaic shows:
 - The DATA size of tiles
 - (some) marginal frequencies initial splits (visual grouping)
 - RESIDUALS (shading) what associations have been omitted?
- Visual fitting
 - Start with a simple model: mutual independence or joint independence for response models
 - Pattern of residuals: suggest a better model \rightarrow smaller residuals
 - Add terms: \rightarrow smaller residuals, less shading: "cleaning the mosaic"
 - Good fitting model will have mostly unshaded tiles

For the Berkeley data, start with the model of joint independence, [A][DG] Fits badly: $G^{2}_{(11)} = 877.1$

Model: (DeptGender)(Admit)

This is the null, or baseline model when Admit is the response variable.

Allows assoc. of [Dept Gender], not shown in shading

Remaining shading suggests: [AD] : Admit varies w/ Dept [AG] : Admit varies w/ Gender

- E.g., Add [Admit Dept] association → Conditional independence:
 - Fits poorly: $(G_{(6)}^2 = 21.74)$
 - But, only in Department A!
- GLM approach allows fitting a special term for Dept. A
- Note: These displays use standardized residuals: better statistical properties.

Double decker plots

Visualize dependence of one response variable (typically binary) on combinations of predictors Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

doubledecker(Admit ~ Dept + Gender, data = UCBAdmissions[2:1, ,])

Survival on the *Titanic*

4-way tables: Survival on the *Titanic*

Data on the fate of passengers & crew on the HMS Titanic: a $4 \times 2 \times 2 \times 2$ table

```
> data(Titanic, package="datasets")
> str(Titanic)
'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4
   ..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
   ..$ Sex : chr [1:2] "Male" "Female"
   ..$ Age : chr [1:2] "Child" "Adult"
   ..$ Survived: chr [1:2] "No" "Yes"
```

What proportion survived? Ans: 711/2201 = 32.3%

```
> addmargins(margin.table(Titanic, 4))
Survived
   No Yes Sum
1490 711 2201
> margin.table(Titanic, 4) / sum(Titanic)
Survived
   No Yes
0.677 0.323
```

Zero cells

> structable(Titanic)						
		Sex	Male		Female	
		Survived	No	Yes	No	Yes
Class	Age			_		
1st	Child		0	5	0	1
	Adult		118	57	4	140
2nd	Child		0	11	0	13
	Adult		154	14	13	80
3rd	Child		35	13	17	14
	Adult	-	387	75	89	76
Crew	Child		0	0	0	0
	Adult		670	192	3	20

Two types of zero cells:

- Structural zeros: could not occur (children in crew)
- Sampling zeros: did not happen to occur (children in 1st & 2nd who died)
- Beware: zeros can cause problems:
 - Loss of df
 - $0/0 \rightarrow NaN$ in $\chi 2$ tests

Exploratory plots

One-way doubledecker plots against survival show what might be expected:

```
doubledecker(Survived ~ Sex, data=Titanic)
doubledecker(Survived ~ Class, data=Titanic)
```


Exploratory plots

Two-way doubledecker plot against survival shows different effects of Class for men and women:

doubledecker(Survived ~ Sex + Class, data=Titanic)

Fitting & visualizing models

mod0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic)
mosaic(mod0, main="Titanic: Model [C][G][A][S]")</pre>

Titanic: Model [C][G][A][S]

In the model formulas, I'm using variable numbers 1-4 for *C*lass, *G*ender, *A*ge and *S*urvived

The independence model serves only as a background for the total associations in the table

Let's clean this mosaic!!

Note the scale of residuals: +26 -- -11

Baseline model for Survived

mod1 <- loglm(~ 1*2*3 + 4, data=Titanic)
mosaic(mod1, main="Titanic: Model [CGA][S]")</pre>

Titanic: Model [CGA][S]

With S as response, the baseline model includes all association s among [CGA]

But this model asserts survival is independent of all of these

*G*² (15) = 671.96, a very poor fit

Adding associations: Main effects

4.0

2.0

0.0

-2.0

-34

mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic)mosaic(mod2, main="Titanic: Model [CGA][CS][GS][AS]")

Sex Male Female AdulChild AdultChild Pearson 1st residuals: 2nd Child Class ^{3rd} Adult Age Child Crew Adult p-value = <2e-16 Yes Noes No Survived

Titanic: Model [CGA][CS][GS][AS]

- This model allows associations of each of C, G, A with Survived
- $G^2(10) = 112.57$, still not good
- Pattern of residuals suggests 2-way interactions (3-way terms):
- Women & children first": suggests a term [GAS]
- Allow interactions of Class with Gender [CGS] and Class with Age [CAS]

Final model

mod3 <- loglm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic) mosaic(mod3, main="Titanic: Model [CGA][CGS][CAS]")

Titanic: Model [CGA][CGS][CAS]

Sex Male Female AdulChild AdultChild Pearson 1st Nice & clean! residuals: 0.75 2nd $G^{2}(4) = 1.69, p=0.79$ Child **Class** 3rd Adult Age 0.00 Child Crew Adult -0.60 p-value = 0.8 No Yes Nkoes Survived

63

Comparing models

As usual, **anova** () give compact relative comparisons of a set of nested models

```
> anova(mod0, mod1, mod2, mod3)
LR tests for hierarchical log-linear models
Model 1:
\sim 1 + 2 + 3 + 4
Model 2:
~1 * 2 * 3 + 4
Model 3:
~1 * 2 * 3 + (1 + 2 + 3) * 4
Model 4:
~1 * 2 * 3 + (1 * 2) * 4 + (1 * 3) * 4
         Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 1243.66 25
Model 2 671.96 15 571.70 10
                                               0.000
Model 3 112.57 10 559.40
                                     5
                                               0.000
Model 4 1.69 4 110.88
                                     6
                                               0.000
Saturated 0.00 0 1.69
                                     4
                                               0.793
```

Comparing models

LRstats () gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

```
> LRstats(mod0, mod1, mod2, mod3)
Likelihood summary table:
        AIC BIC LR Chisq Df Pr(>Chisq)
mod0 1385 1395        1244 25        <2e-16 ***
mod1 833 858        672 15        <2e-16 ***
mod2 284 316        113 10        <2e-16 ***
mod3 185 226        2 4        0.79
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

mod3 [CGA] [CGS] [CAS] wins!

- Acceptable *G*²
- Looks best by AIC & BIC

Model interpretation

Recall that the goal of analysis is to tell a story

- Greatest impact: lower class → decreased survival, regardless of Gender & Age
- Differences in survival by Class were moderated by both Gender & Age
 - Term [CGS]: Women in 3rd class did not have an advantage, while men in 1st class did vs. other classes
 - Term [CAS]: No children in 1st or 2nd class died, but nearly 2/3 in 3rd class did
- Summary:
 - Not so much "women & children first", rather
 - Women & children, ordered by class, and 1st class men!

- Mosaic for an n-way table \rightarrow hierarchical decomposition of association
- Joint cell probabilities are decomposed as:

$$p_{ijk\ell\cdots} = \underbrace{\underbrace{p_i \times p_{j|i} \times p_{k|ij}}_{\{v_1v_2v_3\}} \times p_{\ell|ijk} \times \cdots \times p_{n|ijk\cdots}}_{\{v_1v_2v_3\}}$$

- First 2 terms: \rightarrow mosaic for v₁, v₂
- First 3 terms: \rightarrow mosaic for v₁, v₂, v₃
- ... and so on
- Roughly analogous to sequential fitting in regression: X₁; X₂ | X₁; X₃ | X₁, X₂
- Order of variables matters for interpretation
 - Mosaics: 1st split: easiest to see the marginal proportions
 - Mosaics: 2nd variable seen as conditional proportions, given the 1st

- Sequential models of joint independence
 - Give an additive decomposition of total association mutual independence [v₁][v₂] ... [v_p]

$$G^{2}_{[v_{1}][v_{2}]\dots[v_{p}]} = G^{2}_{[v_{1}][v_{2}]} + G^{2}_{[v_{1}v_{2}][v_{3}]} + G^{2}_{[v_{1}v_{2}v_{3}][v_{4}]} + \dots + G^{2}_{[v_{1}\dots v_{p-1}][v_{p}]}$$

• E.g., for Hair Eye color data

Model	Model symbol	df	G^2
Marginal	[Hair] [Eye]	9	146.44
Joint	[Hair, Eye] [Sex]	15	19.86
Mutual	[Hair] [Eye] [Sex]	24	166.30

Hair color × Eye color marginal table (ignoring Sex)

(Hair)(Eye), G2 (9) = 146.44

3-way table, Joint independence model [Hair Eye][Sex]

(HairEye)(Sex), G2 (15) = 19.86

3-way table, Mutual independence [Hair] [Eye][Sex]

(Hair)(Eye)(Sex), G2 (24) = 166.30

Putting these together:

[Hair Eye] [Sex] $G_{(15)}^2 = 19.86$

[Hair] [Eye] [Sex] $G_{(24)}^2 = 166.30$

Sequential models: Applications

Response models

- When one variable, *R*, is a response and *E*₁, *E*₂,... are explantory, the baseline model is the model of joint independence, [*E*₁, *E*₂,...][*R*]
- Sequential mosaics then show the associations among the predictors
- The last mosaic shows all associations with R
- Better-fitting models will need to add associations of the form
 [E_iR], [E_iE_jR] ...

Causal models

Sometimes there is an assumed causal ordering of variables:

$$A \rightarrow B \rightarrow C \rightarrow D$$

- Each path of arrows: A → B, A → B → C is a sequential model of joint independence: [A][B], [AB] [C], [ABC] [D].
- Testing these decomposes all joint probabilities

Example: Marital status, pre- & extra-marital sex

Thornes and Collard (1979) studied divorce patterns in relation to premarital and extramarital sex, a 2^4 table, **PreSex** in vcd (G × P × E × M)

```
> data("PreSex", package="vcd")
```

	Gender	Women				Men			
	PremaritalSex	Yes		No		Yes		No	
	ExtramaritalSex	Yes	No	Yes	No	Yes	No	Yes	No
MaritalStatus									
Divorced		17	54	36	214	28	60	17	68
Married		4	25	4	322	11	42	4	130

Submodels:

- G][P]: Do men & women differ by pre-marital sex?
- GP][E]: Given G & P, are there differences in extra-marital sex?
- [GPE][M]: Are there differences in divorce among the G, P, E groups?

Example: Marital status, pre- & extra-marital sex

```
Order the table variables as G \rightarrow P \rightarrow E \rightarrow M
```

```
> names(dimnames(PreSex))  # table variable names
[1] "MaritalStatus" "ExtramaritalSex" "PremaritalSex" "Gender"
> PreSex <- aperm(PreSex, 4:1)  # order variables G, P, E, M</pre>
```

Fit each sequential model to the marginal sub-table. vcdExtra::seq_loglm() generates these models of joint independence

LRstats(PreSex.mods)

Model	df	G^2		
[G] [P]	1	75.259		
[GP] [E]	3	48.929		
[GPE] [M]	7	107.956		
[G] [P] [E] [M]	11	232.142		

Gender and Premarital Sex

Twice as many women in this sample

Men far more likely to report premarital sex than women (odds ratio = 3.7)

Gender*Pre + ExtramaritalSex

Men & women who reported Prefar more likely to report Extra- sex

Odds ratio of Extra- given Preabout the same for men & women (3.61 vs. 3.56)

Gender*Pre*Extra + MaritalStatus

G*P*E + P*E*M


```
mosaic(PreSex,
    expected = ~Gender * PremaritalSex * ExtramaritalSex
    + MaritalStatus,
    main = "Gender*Pre*Extra + MaritalStatus")
```

Gender*Pre*Extra + MaritalStatus

In the model [GPE][M], marital status depends in a complex way

Among women, those reporting Premore likely to be divorced

Among men, those reporting Preonly more likely to be divorced if Extra-

This suggests adding associations of M with P and E: [PEM] term

This model fits well, G²(4) = 5.26, p=0.26

Loglinear thinking: once we take GPE into account, are there simpler models for association with M?

Looking forward: logit models for MaritalStatus often provide an easier path

Partial association, partial mosaics

Sometimes useful to do a stratified analysis

- How does association between two (or more) variables vary over levels of other variables?
- Mosaic plots for main variables show partial association at each level of others
- E.g., Hair color, Eye color, subset by Sex

Partial association, partial mosaics

Stratified analysis: conditional decomposition of G²

- Fit models of partial (conditional) independence, A ⊥ B | C_k at each level of (controlling for) C.
- \Rightarrow partial G^2 s add to the overall G^2 for conditional independence, $A \perp B \mid C$

$$G_{A\perp B\mid C}^2 = \sum_k G_{A\perp B\mid C(k)}^2$$

Table: Partial and Overall conditional tests, $Hair \perp Eye | Sex$

Model	df	G^2	<i>p</i> -value
[Hair][Eye] Male	9	44.445	0.000
[<i>Hair</i>][<i>Eye</i>] Female	9	112.233	0.000
[<i>Hair</i>][<i>Eye</i>] Sex	18	156.668	0.000

Partial association: Summary

- Overall, there is a strong association of hair color and eye color, controlling for sex, G²(18) = 156.67
 - For F, G²(9) = 112.23 accounts for 72% of this association
- The pattern of association is similar for M & F
 - The largest difference is for blue-eyed blonds, much more prevalent among F than M. Is there a hair dye effect?

Summary: What we've learned