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Today’s topics

Mosaic displays: basic ideas
Models for count data

" Fitting loglinear models
Two-way tables
Three-way tables
Sequential plots & models
Marginal & partial displays



Mosaic displays

* Similar to sieve plot, tile plot, using area ~ frequency

* Mosaic plots generalize more readily to n-way tables
(subject to resolution of the display)

* Intimately connected to loglinear & generalized
linear models

" Can fit sequential models as variables are entered

= Show the pattern of association not accounted for in a
given model



Mosaic displays: basic ideas

Mosaic displays theory: Hartigan & Kleiner (1981); Friendly (1994, 1999)

UCB Admissions: Gender frequencies

Gender

Mlale Female

Area proportional display for an n-way
table
Tiles: recursive splits of a unit square,
alternating H, V
V,: width ~ marginal frequencies, n ;. 2691 1835

99.5% 40.5%

]'4 IHF -




Mosaic displays: basic ideas

Area proportional display for an n-way
table

Tiles: recursive splits of a unit square,
alternating H, V

V;: width ~ marginal frequencies, n ,,
V,: height ~ cond freq: V,| V,=n;/n,,

Admit

UCB Admissions: Gender x Admit

Fejected

Aodmitted

Gerder
Mal= Female
99.5% _L 40.5%
1493
1278
t 445%
1198 =8 dun

557




Mosaic displays: basic ideas

Gender x Admit x Dept frequencies

Gender

Mzla Famala
Area proportional display for an n-way
table . s || 124

g 12 253 12011134
Tiles: recursive splits of a unit square, : —r —
alternating H, V

:E

V;: width ~ marginal frequencies, n ,, <

V,: height ~ cond freq: V,| V,=n;/n,,
V3: width ~ cond freq: V5 | V,, V, =y / ny,

391 |[244]| 299 || 217
M3 ||1207 || 205 || 279 | 138 259

Fejectad

— Area ~ cell frequency, n;,




Mosaic displays: Independence

Expected frequencies if Admit L Gender

Gender

. Male Female
Expected frequencies under 3 -, =
independence are products of the row 59.5% 40.5%
/ col margins

: 1647.5 1123.5
—~ NNy 2 . -
m; = T — pL . row %col % &
Nyt
E
N 61.2%
k. 4
LY
— Row and col tiles align when
variables are independent 5
E 1043.5 711.5
=
38.8%
hJ




Mosaic displays: Residuals & shading

@ Pearson residuals:

n; — Fﬁg UCB Admissions: ~ Admit + Gender

-
A/ M ii Gender
l hiale Female

o Pearson \? = Zng. — ZZ(”U;}*"‘WV

@ Other residuals: deviance (LR),
Freeman-Tukey (FT), adjusted
(ADJ), ...

@ Shading:

e Sign: — negative in red; +
positive in blue

o Magnitude: intensity of shading:
dj| >0.2,4,...

dj =

Paarson
residuals.

4.78
ﬁ 4.00
2.00

~ 0.00

Rejectad

Admit

—-2.00

[-4.00
579

Admitied

@ = Independence: rows align, or
cells are empty!



Loglinear models: Perspectives

Loglinear models grew up and developed from three
different ideas and ways of thinking about notions of
independence in frequency data

* Loglinear approach: analog of ANOVA; associations
are interactions

* glm() approach: analog of general regression model,
for log(Freq), with Poisson distn of errors

* Logit models: Loglinear simplified for a binary
response



Loglinear approach

First developed as analog of classical ANOVA models, where
multiplicative relations are re-expressed in additive form as
models for log(Freq)

logmj =+ M\ + 2’ =[A][B| =~ A+ B

° This expresses the independence model for a 2-way table as no A*B
association

* Short-hand notations: [A][B]=ALB="A+B
° Fit by simple iterative proportional scaling: MASS::loglm()

loglm(Freqg ~ A + B + C) #
loglm(Freqg ~ A * B + C ) # [A B][C]
loglm(Freq ~ A * B * C) #

10



glm() approach

Extension of classical linear models recognized loglinear models
as a model for log(Freq), with Poisson dist" for cell counts

logm = X f

* Looks like std ANOVA/regression model, but for log(Freq)

* This allows quantitative predictors and special ways to treat
ordinal factors

* Fit by maximum likelihood using gIlm(..., family=poisson)
* Standard diagnostic methods available

poisson

glm( Fregq ~ A + B + C, family i
poisson) # [A B] [C]

glm( Freg ~ A * B + C, family

11



Logit models

When one variable is a binary response, a logit model is a
simpler way to specify a loglinear model

log(mijk/majk) = a + 38 + 3¢ = [AB][AC][BC]

* log(my;/my,) is the log odds of response 1 vs 2
°* The model only includes terms for the effect of Aon B & C
° Equivalent loglinear model: [AB][AC][BC]
* The logit models assumes the [BC] association;
[AB] - B8 [AC] — B,
® Fit using family=binomial

glm (outcome=="survived” ~ B + C, family = binomial)

12



Two-way tables: loglinear approach

For two discrete variables, A and B, suppose a multinomial sample of total
size n over the IJ cells of a two-way [ x J contingency table, with cell
frequencies nj, and cell probabilities 7; = n;/n.

@ The table variables are statistically independent when the cell (joint)
probability equals the product of the marginal probabillities,
Pr(A=i&B=j)=Pr(A=1i) x Pr(B=)), or,

Tjj = MigTyj -
@ An equivalent model in terms of expected frequencies, m; = nmj; is

mj = (1/n) miy my; .
@ This multiplicative model can be expressed in additive form as a model

for log my,
log mjj = —logn+log mjy +logm,; . (1)

13



Two-way tables: loglinear approach

Independence model

By anology with ANOVA models, the independence model (1) can be
expressed as
log mjj = p+ M+ A7 (2)

@ /. is the grand mean of log my;

@ the parameters }\f‘ and AJB express the marginal frequencies of variables
A and B — “main effects”

e typically defined so that >, M = > Af — 0 as in ANOVA

14



Two-way tables: loglinear approach

Saturated model

Dependence between the table variables is expressed by adding association
parameters, \;®, giving the saturated model,

logmj=p+ M+ 2P+ MF = [AB] =~ AxB . (3)

@ The saturated model fits the table perfectly (ﬁ‘: n;): there are as many
parameters as cell frequencies. Residual df =

@ A global test for association tests Hp : A;?B D.

@ If reject Ho, which M8 3£ 0 ? '

@ For ordinal variables, the /\;-j-‘B may be structured more simply, giving tests
for ordinal association.

15



Example: Independence

Generate a table of Education by Party preference, strictly independent

> educ <- c¢ (50, 100, 50) # marginal frequencies
> names (educ) <- c("Low", "Med", "High")
> party <- c (20, 50, 30) # marginal frequencies
> names (party) <- c("NDP", "Liberal", "Cons")
> table <- outer (educ, party) / sum(party) # cell = row * col / n
> names (dimnames (table)) <- c("Education", "Party")
> table
Party

Education NDP Liberal Cons

Low 10 25 15

Med 20 50 30

High 10 25 15
Perfect fit:
> MASS::loglm(~ Education + Party, table)
Call:
MASS::loglm(formula = ~Education + Party, data = table)
Statistics:

X"2 df P(> X"2)

Likelihood Ratio 0 4 1
Pearson 0 4 1



Education

Both sieve diagrams and mosaic plots show what independence “looks like”

> sieve (table, shade=TRUE) > mosaic (table, shade=TRUE)
Party Party
NDP Liberal Cons NDP Liberal Cons
2 z
S S
[ o
S
3 w9
= S=
=
L

High
High




Two-way tables: glm approach

In the GLM approach, the vector of cell frequencies, n = {n;} is specified to
have a Poisson distribution with means m = {m;} given by

logm = X3

@ X is a known design (model) matrix, expressing the table factors
@ 3 is a column vector containing the unknown \ parameters.

@ This is the same as the familiar matrix formulation of ANOVA/regression,
except that

o The response, log m makes multiplicative relations additive
@ The distribution is taken as Poisson rather than Gaussian (normal)

18



Example: 2 x 2 table

For a 2 x 2 table, the saturated model (3) with the usual zero-sum constraints
can be represented as

My 4 1 1 1 1 fL total n

log M2 | _ 1 1 -1 —1 )\g margin A
Mo 1 —1 1 —1 Aq margin B
Moo 1 -1 -1 T /\ﬂg association

@ only the linearly independent parameters are represented. \5 = —\%,
because \{ + \§ = 0, and so forth.

@ association is represented by the parameter Afﬁ
@ can show that \{P = X log(#) (log odds ratio)

@ Advantages of the GLM formulation: easier to express models with
ordinal or quantitative variables, special terms, etc. Can also allow for
over-dispersion.

19



Assessing goodness of fit

Goodness of fit of a specified model may be tested by the likelihood ratio G?,
G*=2) njlog (i) . (4)
j M

or the Pearson X2,

xe =y (ol ©

with degrees of freedom|df = # cells - # estimated parameters.

@ E.g., for the model of independence, [A||B], df =
IJ—[(I—1)+(J—-1)]=(U—-1)(J—-1)

@ The terms summed in (4) and (5) are the squared cell residuals

@ Other measures of balance goodness of fit against parsimony, e.g.,
Akaike’s Information Criterion (smaller is better)

AIC = G? — 2df or AIC = G? + 2 # parameters

20



R functions for loglinear models

ved: :assocstats () —only x2 tests for two-way tables; not a
model (no parameters; no residuals)

MASS: :loglm() —general loglinear models for n-way tables
loglm(formula, data, subset, na.action, ..)

glm() —all generalized linear models; loglinear with family =
poisson

glm(formula, data, weilghts, subset, ..)

Formulas have the form:
= table form:~ A+ B+ ... (independence);
: ~A*B+C (allow A*B association)

= frequency data frame: Freq~A*B+C

21



loglm() and glm() return an R object with named
components and with a class ()

> arth.mod <- loglm(~Treatment+Improved, data=arth.tab, fitted=TRUE)
> names (arth.mod)

> names (arth.mod)

[1] "1rt" "pearson" "df" "margin" "fitted" "param"
[7] "call" "formula" "frequencies" "deviance" "nobs" "terms™

class (arth.mod)
[1] "loglm"

They have methods: print (), summary, coef(), residuals(),
plot () and other methods

= Methods are specific to the class of the object

" E.g., residuals(arth.mod) — residuals.loglm(arth.mod)

22



Model-based methods: Fitting & graphing

[residuals(mod%—» e
gim() :
- lot(mod
input oolr() model | plot(mod)
) plot(f(mod))
data multinom() object
\ coef(mod)
confint(mod)
model

data . object method output
function

23



Example: Arthritis treatment

Data on effects of treatment for rheumatoid arthritis (in case form)

> data (Arthritis, package="vcd")
> str (Arthritis)

'data.frame': 84 obs. of b5 variables:

$ ID : int 57 46 77 17 36 23 75 39 33 55

S Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2
S Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2

$ Age : int 27 29 30 32 46 58 59 59 63 63

$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 31311

For now, ignore Age; consider the 2 x 3 table of Treatment x Improved

> arth.tab <- with (Arthritis, table(Treatment, Improved))
> arth.tab

Improved
Treatment None Some Marked
Placebo 29 7 7
Treated 13 7 21

24



Arthritis treatment

Fit the independence model, ~ Treatment + Improved

> (arth.mod <- loglm(~Treatment + Improved, data = arth.tab, fitted=TRUE))
Call:
loglm(formula = ~Treatment + Improved, data = arth.tab, fitted = TRUE)

Statistics:

X"2 df P(> X"2)
Likelihood Ratio 13.53 2 0.001154
Pearson 13.06 2 0.001463

Some methods:

> round (residuals (arth.mod), 3) > coef (arth.mod)
Improved S’ (Intercept)

Treatment None Some Marked [1] 2.543

Placebo 1.535 -0.063 -2.152

Treated -1.777 0.064 1.837 STreatment

Placebo Treated
# Likelihood ratio chisquare 0.02381 -0.02381
> deviance (arth.mod)
[1] 13.53 SImproved
None Some Marked

0.50136 -0.59725 0.09589 -



Arthritis treatment: Plots

Visualization: mosaic () orplot() the model ortable

> mosaic (arth.mod, shade=TRUE, gp args=list(interpolate=1:4),

labeling = labeling values)
Improved
None Some Marked
Pearson )
rESIduaéﬁa Splits by the response,
. ' Treatment first
e
S 29 7 7
o - 10 Custom scheme for
£ shading levels; normally
E L 00 c(2, 4) for |residual |
Q
=
= ‘o Cells can be labeled by
m I - - .
© 13 7 21 freq, residual, ...
=
19
p-value =

0.0015



Arthritis treatment: glm()

glm() for loglinear models easiest with the data as a data.frame in frequency form

> arth.df <- as.data.frame (xtabs(~ Treatment + Improved,
data=Arthritis))
> arth.df
Treatment Improved Freq
1 Placebo None 29
2 Treated None 13
3 Placebo Some 7
4 Treated Some 7
9! Placebo Marked 7
6 Treated Marked 21

> arth.glm <- glm(Freq ~ Treatment + Improved, data = arth.df,
family = poisson)

More on glm () models later

27



Example: Hair color & Eye color

> haireye <- margin.table (HairEyeColor,
> (HE.mod <- loglm(~ Hair + Eye,

Call:
loglm(formula

Statistics:

~Hair + Eye,

Likelihood Ratio 146.4 9
138.3 9

Pearson

> round(residuals (HE.mod),
Re-fitting to get frequencies and fitted values

Evye
Hair Brown
Black 4.00
Brown 1.21
Red -0.08
Blond -7.33

Rlue Hazel Green

-3.39
-2.02
-1.85

6.17

-0.49
1.31
0.82

-2.47

X*2 df P (> X*2)

2)

-2.21
-0.35
2.04
0.60

data=haireye))

data haireye)

28



Mosaic displays: Seeing patterns

* In two-way models, residuals contain the info on lack of
independence
= Equivalently: help to understand the pattern of association
= Effect ordering: permuting the rows / cols often makes the pattern
more apparent
* Correspondence analysis: — reorder by scores on Dim 1
= seriation::permute(order=“CA”) does this for two-way tables

> library(seriation)

> haireye
> permute (haireye, "CA")

Evye

Hair Brown Blue Hazel Green Eye
Black 68 20 15 5 Hair Brown Hazel Green Blue
Brown 119 84 54 29 Black 68 15 5 20
Red 26 17 14 14 Brown 119 54 29 84
Blond 7 94 10 16 Red 26 14 14 17

Blond 7 10 16 94

29



mosaic (haireye, shade=TRUE, labeling=labeling residuals)
mosaic (permute (haireye, "CA"), shade=TRUE, labeling=labeling residuals)

Eye Eye
Brown Blue HazelGreen Brown HazelGreen Blue
S o
(] L)
@ -31 o -31
m m
[ [
= =
e o
[ o
T T
L&) o
i¥] Lib]
1 r

Blond
Blond
o
%]




Bee abundance data

A study by Taylor Kerekes # A tibble: 14 x 4
examined the abundance of bee species "2002° "2005° "2021°
.. . <chr> <dbl> <dbl> <dbl>
spe'C|es in Qntarlo over three vy c08 0 0
periods of time. 2 Eimacullatis 362 345 137
3 Borealis 30 o 11
Q: Does relative abundance of 4 Fervidus 634 19 10
. diff 5 5 Griseocollis 35 21 21
SPEcIes aifter over years: 6 Impatiens 638 564 616
7 Pensylvanicus 112 0 0
A: Do a chi-square test 8 Perplexus 160 577 9
9 Rufocinctus 51 46 17
10 Ternarius 9 16 9
elnaligel, ERSE (sees [, =11 11 Terricola 119 1 4
Pearson's Chi-squared test 12 Vagans 713 82 39
data: bees[, -1] 13 Aéhtsnri (M) 277 0 0
X-squared = 1981, df = 26, p-value <2e-16 14 Citrinus (M) 234 38 >

How to understand the pattern of association?

31



mosaic(bees.mat, shade=TRUE, ...)

Affinis

aculatus

Borealis
“ervidus

seocollis

npatiens

Ivanicus
erplexus

ocinctus
ernarius
Terricola

Vagans

itoni (M)
inus (M)

Bees Abundance Data

2002

year

2005 2021

Alphabetic order of
species:
No clear pattern
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Correspondence analysis finds scores for the row & col categories to account
for maximum y?

bees.ca <- ca(bees.mat)
plot (bees.ca,
lines=c (FALSE, TRUE), # join years with lines
mass = c (TRUE, TRUE)) # symbol size ~ marginal frequency

0.4

Perplexus 5 _
. : o rEmnarius

Citrinus (M
. (M)

§ 1B AR AR AR AR A a A A a A a A aa s aadh i aaaaaaaas

sissssisdlh
et SR

o Terricola
.

'G riseocollis
Impatiens

L

Dimension 2 (8.5%)
0.0
:

Borealis
i 2031

T i |
-0.5 0.0 0.5

Dimension 1 (91.5%)
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mosaic(permute(bees.mat, “CA”), shade=TRUE, ...)

Affinis

Ivani((‘Mz
on|
erricol

“ervidus

Vagans

inus (M)

erplexus

Borealis
ocinctus
seocollis

aculatus

npatiens

ernarius

Bees Abundance Data

i

2002

2005
year

2021
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Three-way tables
Saturatedmodel

Saturated model

For a 3-way table, of size | x J x K for variables A, B, C, the saturated

loglinear model includes associations between all pairs of variables, as well

as a 3-way association term, \}°¢

log My = pu 4 A\ + /\B!- + Af .

AB AC BC ABC
+ }‘fj + /\H{ + }‘jk u }"uk '

@ One-way terms (A, A\?, \{): differences in the marginal frequencies of
the table variables.

@ Two-way terms (M5, M€, \€) pertain to the partial association for each
pair of variables, confmﬂmg for the remaining variable.

@ The three-way term, )\ABC allows the partial association between any pair
of variables to vary cwer the categories of the third variable.

@ Fits perfectly, but doesn’t explain anything, so we hope for a simpler
model!



Reduced models

Goal: fit the smallest model sufficient to explain/describe the
observed frequencies

= Similar to Anova models, ~(A + B + C)3 with all interactions
Hierarchical models

" A high-order term, like A; A*¢ — all lower order terms included
= Eg.[ABC]>A+B+C+AB+AC+BC
= [AB][AC] >A+B+C+AB+AC

Thus, a shorthand notation for a loglinear model lists only the
high-order terms

36



Reduced models

For a three-way table there is a range of models between mutual
independence, [A][B][C], and the saturated model, [ABC]

Each model has an independence interpretation:
[A][B] = ALB = Aindependent of B

Special names for various submodels

Table: Log-linear Models for Three-Way Tables

Model Model symbol Interpretation
Mutual independence Al|B]|C] ALB1C

Joint independence AB][C] (AB) L C
Conditional independence [AC][BC] (ALB)|C

All two-way associations AB|[AC][BC] homogeneous assoc.
Saturated model ABC] ABC interaction

37



Model types

@ Joint independence: (AB) L C, allows A*B association, but asserts no
A*C and B*C associations

[AB][C] = log mjx = 1 + A\’ +A},B+ AC +)\;;7'B

@ Conditional independence: A L B, controlling for C

[AC][BC] = log mijx = ju+ X + AP + A¢ + XNi& + A\j°

@ Homogeneous association: All two-way, but each two-way is the same
over the other factor

[ABJ[AC][BC] = log mjg = 1+ M + AP + A¢ + M8 + ME + A€

38



Model types: loglm()

Each of these have simple translations into the model formulae
for loglm()

loglm(~ A + B + C) # mutual independence [A] [B] [C]
loglm(~ A * B + C) # joint independence [AB] [C]
loglm(~ A*C + B*C) # conditional independence [AC] [BC]
loglm(~ (A + B + C)"2) # homogeneous, all 2-way [AB] [AC] [BC]
loglm(~ A * B * C) # saturated model [ABC]

39



Collapsibility: Marginal & conditional associations

Q: When can we legitimately collapse a table, ABC over some
variable (C)?

A: When the marginal association of AB is the same as the
conditional association, AB | C

Recall the Berkeley data
= Margin of Admit, Gender ignoring Dept showed strong association
" The partial assoc. within Dept were mostly NS
® This is an example of Simpson’s paradox

Three-way tables: The AB marginal and AB | C conditional
associations are the same, if either:

= A & Care conditionally independent, A L. C| B = [AB][CB]

= B & C are conditionally independent, B L. C | A = [AB][AC]

" — no three-way association

40



Response vs. Association models

@ |n association models, the interest is just on which variabels are
associated, and how
e Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye Sex]
e — fit the homogeneous association model (or the saturated model)
@ Test the individual terms, delete those which are NS

@ In response models, the interest is on which predictors are associated
with the response

@ The minimal (null or baseline) model is the model of joint independence of
the response (say, A) from all predictors, [A][BC D ...]

e Associations among the predictors are fitted exactly (not analyzed)

e Similar to regression, where predictors can be arbitrarily correlated

e e.g., Berkeley data: fit the baseline model [Admit] [Gender Dept]

o lack-of-fit = associations [Admit Gender] and/or [Admit Dept]

41



Goodness of fit tests

As noted earlier, overall goodness of fit of a specified model may be tested by
the likelihood ratio G?, or the Pearson X2,

. , .\ 2
G=2%nl (i) xz =y e My

i

with residual degrees of freedom 1 = # cells — # estimated parameters.

@ These measure the lack of fit of a given model— a large value — a
poor model

@ Both are distributed as \?(v) (in large samples: all m; > 5)

e £(\%(v)) = v, so G?/v (or X2 /i) measures lack of fit per degree of
freedom (overdispersion)

@ But: how to compare or test competing models?

42



Nested models & ANOVA-type tests

Two models, M; and M, are nested when one (say, M,) is a special case of the
other

° Model M, (w/ v, df) fits a subset of the parameters of M1 (w/ v, df)
° M, is more restrictive — cannot fit better than M,: G3(M,) > G*(M,)
* The least restrictive model is the saturated model [ABC ...], w/ G2=0

Therefore, we can test the difference in G? as a specific test of the added
restrictions in M, compared to M,.

° This test has a y? distribution with df = v, - v,

AG* = G*(Mx|My) = G*(Mz)— G*(My) (7)
— ZZ n; |Dg(ﬁ?f'1,.f'ﬁ71'2)

43



Example: Berkeley admissions

For the UC Berkeley data, with table variables [A]dmit, [D]ept and [G]ender
the following models form a nested chain

IAIDIG] C [AlIDG] C [AD]AG]IDG] C [ADG]

Table: Hierarchical G? tests for loglinear models fit to the UC Berkeley data

Type LLM terms G df  A(GY) A(df) Pr(> A(G?))
Mutual ind  [A][D][G] 2097.67 16

Joint [A][DG] 877.06 11 1220.62 5 0.0000
All2-way  [ADJJAG][DG] 2020 5 1128.70 5 0.0000
Saturated [ADG] 0.0 0 20.20 5 0.0011

Only testing the decrease in G2 from one model to the next

Here, each model is significantly better than the previous

Joint vs. all two-way: Does Admit depend on Dept and/or Gender?
Absolut fit of all 2-way model is not terrible. Investigate this further!
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Fitting these in R

e P2 —

L

- data in contingency table form (MASS package)

data (UCEAdmissions)
## conditional independence (AD, DG) in Berkeley data

mod.1l <-— loglm(~ (Admit + Gender) * Dept, data=UCBAdmissions)
## all two-way model (AD, DG, AG)

mod.2 <— loglm(~ (Admit + Gender + Dept) "2, data=UCBAdmissions)

- data in frequency form

1
2
3

berkeley <- as.data.frame (UCBAdmissions)
mod.3 <— glm(Freq = (Admit + Gender) = Dept, data=berkeley,
family='poisson')

@ loglm() simpler for nominal variables

@ glm () allows a wider class of models and quantitative predictors
(covariates)

@ gnm () fits models for structured association and generalized non-linear
models

@ vcdExira package provides visualizations for all.
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Example: Berkeley admissions

Fit the model of mutual independence, using loglm()

> berk.loglm0 <- loglm(~ Admit + Dept + Gender, data=UCBAdmissions)
> berk.loglm0

Call:
loglm(formula = ~Admit + Dept + Gender, data = UCBAdmissions)
Statistics:
X*2 df P (> X*2)
Likelihood Ratio 2097.7 16 0
Pearson 2000.3 10 0

Conditional independence [AD] [AG]

> berk.loglml <- loglm(~ Admit * (Dept + Gender), data=UCBAdmissions)
> berk.loglml

Call:
loglm(formula = ~Admit * (Dept + Gender), data = UCBAdmissions)
Statistics:
X"2 df P(> X"2)
Likelihood Ratio 1148.9 10 0
Pearson 1015.7 10 0
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Conditional independence, [AD] [AG]

> berk.loglm2 <- loglm(~ Admit + (Dept * Gender), data=UCBAdmissions)
> berk.loglm?2

Call:
loglm(formula = ~Admit + (Dept * Gender), data = UCBAdmissions)
Statistics:
X*2 df P(> X*2)
Likelihood Ratio 877.060 11 0
Pearson 797.70 11 0

All two-way model, [AD] [AG] [DG]

> berk.loglm3 <-loglm(~ (Admit+Dept+Gender) "2, data=UCBAdmissions)
> berk.loglm3

Call:

loglm(formula = ~(Admit + Dept + Gender) "2, data = UCBAdmissions)

Statistics:

X"2 df P(> X"2)
Likelihood Ratio 20.204 5 0.0011441
Pearson 18.823 5 0.0020740
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ANOVA tests

These are nested. Compare with anova ()

> aovl <- anova(berk.loglm0O, berk.loglml, berk.loglm3, test="Chisqg")
> aovl
LR tests for hierarchical log-linear models

Model 1:

~Admit + Dept + Gender
Model 2:

~Admit * (Dept + Gender)
Model 3:

~(Admit + Dept + Gender) "2

Deviance df Delta(Dev) Delta(df) P (> Delta (Dev)
Model 1 2097.0671 16

Model 2 1148.901 10 948.770 6 0.00000
Model 3 20.204 5 1128.697 5 0.00000
Saturated 0.000 O 20.204 5 0.00114

These are tests of relative fit, AG2 = G2 (M, | M, )
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LRstats

vedExtra: :LRstats () gives one-line summaries of a collection of models
These are tests of absolute goodness of fit

> LRstats (berk.loglm0O, berk.loglml, berk.loglm2, berk.loglm3)
Likelihood summary table:

AIC BIC [LR Chisg Df Pr (>Chisq)
berk.loglmO| 2273 2282 2098 16 <2e-16 ***
berk.loglml| 1336 1352 1149 10 <2e-16 ***
berk.loglm2| 1062 1077 877 11 <2e-16 ***
berk.loglm3| 217 240 20 5 0.0011 **

Signif. codes: (0 ‘***r (0,001 ‘**’ (0.01 ** 0.05 . 0.1 Y " 1

@ AIC and BIC are GOF measures adjusted for model parsimony
@ Not not significance tests, but smaller is better
@ Also apply to non-nested models

AIC = G?+2 x #parameters
BIC = G?+2log(n)x # parameters
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Mosaic displays: Predictor variables

Berkeley data: Departments x Gender (ignoring Admit):
@ Did departments differ in the total number of applicants?

@ Did men and women apply differentially to departments?
Model: (Dept){Gendear)

In response models, the mosaic of
L the predictors gives a graphic
summary of background variables

@ Model [Dept] [Gender]: Gﬁﬁi =
1220.6.

@ Note: Departments ordered A—F
by overall rate of admission.

@ Men more likely to apply to

departments A,B; women more
likely in depts C—F

Male Females
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Mosaic displays: Visual fitting

* Each mosaic shows:
= The DATA - size of tiles
= (some) marginal frequencies — initial splits (visual grouping)
= RESIDUALS (shading) — what associations have been omitted?

* Visual fitting

= Start with a simple model: mutual independence or joint
independence for response models

= Pattern of residuals: suggest a better model — smaller residuals
= Add terms: — smaller residuals, less shading: “cleaning the mosaic”
= Good fitting model will have mostly unshaded tiles



For the Berkeley data, start with the model of joint independence, [A][DG]
Fits badly: G* ;;,=877.1

Model: (DeptGendear){Admit)

model when Admit is the

response variable.

| | Allows assoc. of [Dept
a | Gender], not shown in shading
Remaining shading suggests:

[AD] : Admit varies w/ Dept
[AG] : Admit varies w/ Gender

C

@

.
|
i
i
!
i

Admitted Fejected
Male Female
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Conditional independence, [AD] [DG]:

Model: (DeptGender){DeptAdmit)

3 I —

N | | @ E.g., Add [Admit Dept]
IL association — Conditional
; independence:
a | o Fits poorly: (G, = 21.74)
L o But, only in Department Al
@ GLM approach allows fitting a

C

special term for Dept. A

@ Note: These displays use
| standardized residuals:

better statistical properties.
< 4.2 42 424

Admitted Rejected
Male Female

| ——
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Double decker plots

Visualize dependence of one response variable (typically binary) on combinations of predictors
Formally: mosaic plots with vertical splits for all predictors, highlighting the response by shading

doubledecker (Admit ~ Dept + Gender, data = UCBAdmissions([2:1, ,1)

] Admit
Rejected
il o
[Male | [F] [Mal= || (Male_] [Female | [Male | [Female] [Mall [Female] (Male | [Femal] Gender
(& | [B | [ | [ | [E | [E | Dept

An exploratory plot

Highlights the M-F
diff® in Admit for
Dept A

DDAR Fig 5.34, p 211
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Survival on the Titanic
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4-way tables: Survival on the Titanic

Data on the fate of passengers & crew on the HMS Titanic: a4 x 2 x 2 x 2 table

> data (Titanic,
> str(Titanic)

package=“datasets”)

2, 1:2]1 0 0 35 0 0 0 17 0 118 154

'table' num [1:4, 1:2, 1:

- attr(*, "dimnames")=List of 4
..S Class chr [1:4] "1st" "2nd" "3rd"
..$ Sex chr [1:2] "Male" "Female"
..S Age chr [1:2] "Child" "Adult"
..S Survived: chr [1:2] "No" "Yes"

"Crew"

What proportion survived? Ans: 711/2201 =32.3%

> addmargins (margin.table (Titanic, 4))

Survived
No Yes Sum
1490 711 2201

> margin.table (Titanic, 4)

Survived
No Yes
0.677 0.323

/ sum(Titanic)
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Zero cells

> structable (Titanic)

Sex Male Female
Survived No Yes No Yes
Class Age
1st Child 0 5 0 1
Adult 118 57 4 140
2nd Child 0O 11 O 13
Adult 154 14 13 80
3rd Child 35 13 17 14
Adult 387 75 89 76
Crew Child 0 0 0 0
Adult 670 192 3 20

Two types of zero cells:
e Structural zeros: could not occur (children in crew)
« Sampling zeros: did not happen to occur (children in 15t & 2"d who died)
* Beware: zeros can cause problems:
e Loss of df
* 0/0 > NaNin %2 tests
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Exploratory plots

One-way doubledecker plots against survival show what might be expected:

doubledecker (Survived ® Sex, data=Titanic)
doubledecker (Survived ® Class, data=Titanic)

Survived Survived

No

Mo

Yes

Yes

[Mals | [Female | Sex [1=t | [Znd | [Zrd |[Crew | Class
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Exploratory plots

Two-way doubledecker plot against survival shows different effects of C1ass
for men and women:

doubledecker (Survived © Sex + Class, data=Titanic)

Survived
No

Yes

[1st  |[2nd  ][3rd | [Crew | (st ][2nd[3rd ][] Class
[(Male | [Female | Sex
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Fitting & visualizing models

modO0 <- loglm(~ 1 + 2 + 3 + 4, data=Titanic)
mosaic(mod0, main="Titanic: Model [C][G][A][S]")

Class

1st

2nd

3rd

Crew

Titanic: Model [C][G][A][S]

Male

Sex

Female

<

ke

No

Survived

Yes

Ntes

Child AdulChild AdultChild

Adult
Age

Child

Adult

Pearson
residuals:

26

AN ON M

-11

p-value =
=2e-16

In the model formulas, I’'m
using variable numbers 1-4
for Class, Gender, Age and

Survived

The independence model
serves only as a
background for the total
associations in the table

Let’s clean this mosaic!!

Note the scale of residuals:
+26 ---11
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Baseline model for Survived

mod1 <- loglm(~ 1*2*3 + 4, data=Titanic)
mosaic(mod1, main="Titanic: Model [CGA][S]")

Titanic: Model [CGA][S]

Sex With S as response, the
Male Female . .
5 . baseline model includes all
- earson L
2 |_ residuals. association s among [CGA]

e

2nd

But this model asserts
survival is independent of

Child AdulChild AdultChild

all of these
©w® . 40
87 35 | 20
3] 2
oo G? (15) = 671.96, a very
% - 20 poor fit

40

3 5

o z
95
A

MNo Yes Mes
Survived
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Adding associations: Main effects

mod2 <- loglm(~ 1*2*3 + (1+2+3)*4, data=Titanic)
mosaic(mod2, main="Titanic: Model [CGA][CS][GS][AS]")

Titanic: Model [CGA][CS][GS][AS]

Sex
Male Female

[
D

@ This model allows associations of
waas  each of C, G, A with Survived
T *° e G?*(10) = 112.57, still not good

1st

2nd

@ Pattern of residuals suggests
- 20 2-way interactions (3-way terms):
@ “Women & children first”:
suggests a term [GAS]

Child AdulChild AdultChild

3rd

Class
Adult
Age

@ Allow interactions of Class with
Gender [CGS] and Class with Age
- 20 [CAS]

Child

Crew

Adult

Y

p-value =
«2e-16

No Yes Nfes

Survived
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Final model

mod3 <- loglm(~ 1*2*3 + (1*2)*4 + (1*3)*4, data=Titanic)
mosaic(mod3, main="Titanic: Model [CGA][CGS][CAS]")

Titanic: Model [CGA][CGS][CAS]

Sex
Male Female

L=l
° =
- Q Pearson
Lz 2 residuals:
< T 0.75
o
QL s
o D o
= 3
(] Lo
B 3
I ] =
| [ —
g
@ @ Se
S =4
© — 0.00
o
T
O
= E=
9 =]
o b
—— 060
p-value =
i 08
MNo Yes Mfes

Survived

Nice & clean!

G2(4) = 1.69, p=0.79
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Comparing models

As usual, anova () give compact relative comparisons of a set of nested models

> anova (mod0, modl, mod2, mod3)
LR tests for hierarchical log-linear models

Model 1

~1 + 2 + 3 + 4
Model 2:

~1 * 2 * 3 + 4
Model 3:

~1 * 2 * 3 + (1 + 2 + 3) * 4
Model 4:

~1 * 2 * 3 + (1 * 2y * 4 + (1 = 3) * 4

Deviance df Delta(Dev) Delta(df) P (> Delta (Dev)

Model 1 1243.66 25
Model 2 671.96 15 571.70 10 0.000
Model 3 112.57 10 559.40 5 0.000
Model 4 1.69 4 110.88 6 0.000
Saturated 0.00 O 1.69 4 0.793
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Comparing models

LRstats () gives absolute GOF tests; also provides AIC, BIC stats: model parsimony

> LRstats (mod0, modl, modZ2, mod3)
Likelihood summary table:
AIC BIC LR Chisg Df Pr (>Chisq)

mod0 1385 1395 1244 25 <2e-16 ***
modl 833 858 672 15 <2e-1l6 **~*
mod2 284 316 113 10 <2e-16 **~*
mod3 185 226 2 4 0.79

Signif. codes: 0 ‘***/ (0,001 ‘**" 0.01 “*’

mod3 [CGA] [CGS] [CAS] wins!
* Acceptable G2
* Looks best by AIC & BIC

0.05

\

14

0.1

\

14

1
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Model interpretation

Recall that the goal of analysis is to tell a story

Greatest impact: lower class — decreased survival, regardless
of Gender & Age

Differences in survival by Class were moderated by both
Gender & Age

= Term [CGS]: Women in 3™ class did not have an advantage, while men
in 1%t class did vs. other classes

= Term [CAS]: No children in 15t or 2" class died, but nearly 2/3 in 3™
class did

Summary:
= Not so much “women & children first”, rather
= Women & children, ordered by class, and 15t class men!

66



Sequential plots & models

°* Mosaic for an n-way table — hierarchical decomposition of association
* Joint cell probabilities are decomposed as:

{viva}
e
Pijke... = Pi X Pjji X Pk|ij X Pejijk X -+ X Pnlijk--.

T

{1.*’1 1.*’21.4’3}

= First 2 terms: — mosaic forv,, v,

= First 3 terms: — mosaic for vy, v,, v,

= ..andsoon
* Roughly analogous to sequential fitting in regression: X; ; X, | X;; X5| X, X,
® Order of variables matters for interpretation

"=  Mosaics: 15t split: easiest to see the marginal proportions
= Mosaics: 2" variable seen as conditional proportions, given the 1st
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Sequential plots & models

* Sequential models of joint independence

= Give an additive decomposition of total association — mutual

independence [vy][v,] ... [v/]

2 2
G[w][v’z]...[vp] = G[2v1][1,z2] + G[2v1 vol[va] T G[,HF1 wvslva] T T G

°* E.g., for Hair Eye color data

Model Model symbol G?
Marginal [Hair] [Eye] 146.44
Joint [Hair, Eye] [Sex] 19.86
Mutual [Hair] [Eye] [SexX] 166.30

2
[vi...vp—1][Vo]
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Sequential plots & models

Hair color x Eye color marginal table (ignoring Sex)

(Hair)(Eye), G2 (9) = 146 44

Blue

Hazel Green

Brown

Black Brown Red Elond 69
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3-way table, Mutual independence [Hair] [Eye][Sex]

(Hair)(Eye)(Sex), G2 (24)

166.30
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Sequential plots & models

Putting these together:

Marginal

[Hain(Eye). B2 (B) = 148,45

Blus

Gt

B

Hazal

[ 1

Brown

[Hair] [Eye]
Gfg] — 146.44

[Hair Eye] [Sex]
wa) = 19.86

Mutual (total)

[Hair){Eye)(Sax), G2 [24) = 166.30

g [

I 1 .

1]
UL |

M F
Blac: Broan Red Siond

[Hair] [Eye] [Sex]
Gy = 166.30
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Sequential models: Applications

Response models

@ When one variable, R, is aresponse and Eq, Ez. ... are explantory, the
baseline model is the model of joint independence, [E;. Es. ... ||R]
@ Sequential mosaics then show the associations among the predictors
@ The last mosaic shows all associations with R
@ Better-fitting models will need to add associations of the form
|EiR], [EiEjR] . ..

Causal models

@ Sometimes there is an assumed causal ordering of variables:

A—-B—=C—=D

@ Each path of arrows: A — B, A— B — C is a sequential model of joint
independence: [A][B], [AB] [C], [ABC] [D].
@ Testing these decomposes all joint probabilities



Example: Marital status, pre- & extra-marital sex

Thornes and Collard (1979) studied divorce patterns in relation to premarital
and extramarital sex, a 2 table, PreSexinvcd (GxPxEx M)

> data ("PreSex", package="vcd")
> structable (Gender + PremaritalSex + ExtramaritalSex ~
MaritalStatus, data = PreSex)

Gender Women Men
PremaritalSex Yes No Yes No
ExtramaritalSex Yes No Yes No Yes No Yes No
MaritalStatus
Divorced 17 54 36 214 28 60 17 68
Married 4 25 4 322 11 42 4 130
Submodels:
* [G][P]: Do men & women differ by pre-marital sex?
** [GP][E]: Given G & P, are there differences in extra-marital sex?

** [GPE][M]: Are there differences in divorce among the G, P, E groups?
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Example: Marital status, pre- & extra-marital sex

Order the table variablesasG - P—> E > M

> names (dimnames (PreSex) ) # table variable names
[1] "MaritalStatus" "ExtramaritalSex" "PremaritalSex" "Gender™“
> PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M

Fit each sequential model to the marginal sub-table. vedExtra: :seq loglm()
generates these models of joint independence

PreSex.mods <- seq_ loglm(PreSex,
type="joint",
marginals = 2:4)
LRstats (PreSex.mods)

Model df G?
G] [P] 1 75.259
GP] [E] 3 48.929
GPE] [M] 7 107.956
GI[P][E][M] 11 232.142
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Gender

Mosaic plots

Women

hen

# (Gender Pre)

mosaic (margin. table (PreSex, 1:2), shade=TRUE,
main = "Gender and Premarital Sex")

Gender and Premarital Sex

Premarital Sex

Yes Mo

Twice as many women in this sample

Pearson Men far more likely to report pre-

residuals:

63 marital sex than women (odds ratio =
3.7)

4.0
20
0.0

2.0

46
p-value =
= 222e-16
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Mosaic plots

Gender

# (Gender Pre) (Extra)
mosaic (margin. table (PreSex, 1:3),

expected = ~Gender * PremaritalSex + ExtramaritalSex,
main = "Gender*Pre + ExtramaritalSex")

Gender*Pre + ExtramaritalSex

Premarital Sex

Yes MNo
| | & Pearson
> residuals:
[ 56
c 4.0
£
2 Zx
0
® — 2.0
b
E
w
k] — 0.0
o L
-—
c — -2.0
= F
— 33
p-value =
2.8719e-12

Men & women who reported Pre-
far more likely to report Extra- sex

Odds ratio of Extra- given Pre-

about the same for men & women
(3.61 vs. 3.56)
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Gender

Mosaic plots

mosaic (PreSex,
expected = ~Gender * PremaritalSex * ExtramaritalSex

+ MaritalStatus,

main = "Gender*Pre*Extra + MaritalStatus")
# (GPE) (PEM)

mosaic (PreSex,
expected = ~ Gender * PremaritalSex * ExtramaritalSex

+ MaritalStatus * PremaritalSex * ExtramaritalSex,

main = "G*P*E + P*E*M")

Gender*Pre*Extra + MaritalStatus

PremaritalSex

Yes Mo
I o
|: | ]
[
ik}
£ o
= =
0
o
=
=
£
[+]
=
Iy =
oW
I [ ] @
-
o
= Z

Divarced Married Divorced

Married
Marital Status

Pearsan
residuals:

39

2.0

0.0

3.7

p-value =
< 2.22e-16

Gender

Waomen

hen

Yes

G*P*E + P*E*M

Premarital Sex
No

Divorced Married Divorced

Marital Status

Married

Yes

MNo

Yes

No

ExtramaritalSex

Pe

arson

residuals:

— 0.75

— 0.00

—-0.93

p-value =
0.26369



Gender

Women

hen

Mosaic plots

mosaic (PreSex,

expected = ~Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus,
main = "Gender*Pre*Extra + MaritalStatus")

Gender*Pre*Extra + MaritalStatus

PremaritalSex

Yes Mo

1

Divarced Married Divorced
Marital Status

Married

@
-—

Y es Mo
ExtramaritalSex

MNo

Pe

arson

residuals:

— 39

— 3.7

p-value =
< 2.22e-16

In the model [GPE][M], marital
status depends in a complex way

Among women, those reporting Pre-
more likely to be divorced

Among men, those reporting Pre-
only more likely to be divorced if
Extra-

This suggests adding associations of
M with P and E: [PEM] term



Mosaic plots

# (GPE) (PEM)
mosaic (PreSex,

expected = ~ Gender * PremaritalSex * ExtramaritalSex
+ MaritalStatus * PremaritalSex * ExtramaritalSex,

main = "G*P*E + P*E*M")

G*P*E + P*E*M

Premarital Sex

Yes Mo
[14]
© Pearson
| ] > residuals:
— 0.75
[
£
2 Z x
n
5 £ |} o000
: :
o ©
L 1L =
oW
11 ] o
a
[
3 2
— -0.93
p-value =
0.26369
Divarced Married Divorced Married

Marital Status

This model fits well, G2(4) = 5.26,
p=0.26

Loglinear thinking: once we take
GPE into account, are there simpler
models for association with M?

Looking forward: logit models for
MaritalStatus often provide an
easier path



Partial association, partial mosaics

Sometimes useful to do a stratified analysis

How does association between two (or more) variables vary over levels of other
variables?

Mosaic plots for main variables show partial association at each level of others
E.g., Hair color, Eye color, subset by Sex

Sex: Male Sex: Female
R © '
@ I
3 | | I | b=
a2 T -
|_ - . | l | c
| | | QO
o N L o
5 Lo | 3.3 S
— T T T T T T T T T | e
e A 1 g
I
=
S 5
ol 28 T m
@ I R
T ——
L__ 1183 4
Black Brown Red Blond Black Brown Hed Blond
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Partial association, partial mosaics

Stratified analysis: conditional decomposition of G2

@ Fit models of partial (conditional) independence, A | B| Ck at each level
of (controlling for) C.

@ = partial G?s add to the overall G? for conditional
independence,A | B|C

GﬁJ_EH c= Z G;%J_B|C{k]
k

Table: Partial and Overall conditional tests, Hair L Eye | Sex

Model df G*° p-value
|Hair]|Eye| | Male 9  44.445 0.000
|Hair]|Eye] | Female | 9 112.233 0.000
|Hair]|Eye| | Sex 18 156.668 0.000
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Hazel Green Blue

Brown

2.8

-l 3-3

__________

Black

Sex: Female

35

Black

Partial association: Summary

* OQverall, there is a strong association of hair color and eye
color, controlling for sex, G%(18) = 156.67
" For F, G%(9) = 112.23 accounts for 72% of this association

* The pattern of association is similar for M & F

= The largest difference is for blue-eyed blonds, much more prevalent
among F than M. Is there a hair dye effect?

6.4

]

20

%

/1

Hed Blond



Summary: What we’ve learned
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