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Correspondence analysis

Psy 6136
Categorical Data
Analysis

Psy 6136
Categorical Data
Analysis

Correspondence analysis: Basic ideas

Analog of PCA for frequency data

* Account for maximum % of %2 in few (2-3) dimensions

* Finds scores for row (x;,,) and col (y;,) categories on these dimensions
* Uses Singular Value Decomposition of residuals from independence,

M
dj = (nj — M)/ /My = djl= VN AmXim¥m < D=XAYT

m=1

* Optimal scaling: each pair of scores for rows (x;;,) and col (y;,,) have
highest possible correlation (= )

* Plots of the row and column scores show associations

® Row point (x,) near col point (y;,,) —> positive association d;; >0

CA software for R

° ca package
® ca() — two-way tables; plot(ca() ) for graphs
" mjca() — multiple & joint CA

* FactoMineR & factoextra packages
= CA()

Example: Hair color, eye color

> library(ca)
> haireye <- margin.table (HairEyeColor, 1:2)
> (haireye.ca <- ca(haireye)

Principal inertias (eigenvalues):

1 2 3
Value 0.208773 0.022227 0.002598 20 . .
Percentage 89.37% 9.52% 1.11% X % for dimensions
Rows:
Black Brown Red Blond
Mass 0.1824 0.4831 0.1199 0.215
Chibist 0.5512 0.1595 0.3548 0.838
Inertia 0.0554 0.0123 0.0151 0.151
Dim. 1 -1.1043 -0.3245 -0.2835 1.828 . .
Dim. 2 1.4409 -0.2191 -2.1440 0.467 ]‘ Hair category scores, Dim1-2
Columns:
Brown Blue Hazel Green
Mass 0.3716 0.363 0.1571 0.1081
Chibist 0.5005 0.554 0.2887 0.3857
Inertia 0.0931 0.111 0.0131 0.0161
Dim. 1 -1.0771 1.198 -0.4653 0.3540 } Eye categoryscores, Dim1-2
Dim. 2 0.5924 0.556 -1.1228 -2.2741




plot (haireye.ca, lines=TRUE)
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Dimension 1 (89.4%)

* Rough interpretation: row/col points “near” each other are positively
associated (independence residuals d; >> 0)

* Dim 1: 89.4% of y? (dark — light)

* Dim 2:9.5% of 2 (Red/Green vs. others)

Hair color, Eye color data: Compare with mosaic display

3 -3.1
(i1}
e—
0 S — ‘ @ The main dark—light dimension is
N I reflected in the opposite-corner
I pattern of residuals
@ The 2nd dimension is reflected in
deviations from this pattern (e.qg.,
g — Red hair—Green eyes)
: I @ CA is “accounting for” residuals
777777777 (deviations) from independence
L 22 |
L
Black Browhn Red Blond

Row & column profiles

* For a two-way table, row profiles & column profiles give relative
proportions of the categories

® An association is present to the extent that the row/col profiles differ
* Profiles add to 1.0 (100%), and can be visualized in profile space

Example: Toothpaste purchases by region

120 people in three regions where asked which of four brands of toothpaste,
A-D, they had most recently purchased. Is there a difference among regions?

toothpaste
$# Region
## Brand R1 R2 R3

i Brand 2 5 5 30
## Brand B 5 25 5
## Brand C 15 5 5
i Brand D 15 5 0

° Row profiles pertain to the differences among brand preference
* Column profiles pertain to the differences among regions

Region Region
Brand R1 R2 R3 Sum Brand R1 R2 R3
Brand A 12.5 12.5 75.0 100 Brand A 12.5 12.5 75.0
Brand B 14.3 71.4 14.3 100 Brand B 12.5 62.5 12.5
Brand C 60.0 20.0 20.0 100 Brand C 37.5 12.5 12.5
Brand D 75.0 25.0 0.0 100 Brand D 37.5 12.5 0.0
Sum 100.0 100.0 100.0

There is clearly an association: the row (& column) profiles differ

> chisqg.test (toothpaste)
Pearson's Chi-squared test

data: toothpaste
X-squared = 79.6, df = 6, p-value = 4.3e-15




Plotting profiles

Plotting profiles

In this simple example we can plot the row profiles as points in 3D space, with Analogous 2D plot is a trilinear plot that automatically scales the R1-R3
axes corresponding to regions, R1, R2, R3 values so they sum to 100%
@ The Avg profile has coordinates of

_ 33.3% for each region
” @ Brand preferences by region can
be seen by their positions wrt the

R1-R3 axes

@ Each brand is positioned in this
space according to its proportions

for the regions
@ Because proportions sum to ; T~ s 3
0, i i i 0 verage -
;ﬂ,onf’paggo'ms lle In the dashed é sof | - : @ This suggests that differences
among brands can be measured
by their (squared) distances from
the centroid, weighted by their row

@ The Average profile is at the

(weighted) centroid
@ If no association, all brands would

appear at the centroid

margins (mass)
. @ Physical analogy suggests the
term inertia for this weighted

variation

ol d

CA solution

CA solution

res <— plot(tp.ca)
border="red", lwd=2)

The CA solution has at most min(r— 1, ¢ -1) dimensions
The 2D solution here is exact, i.e., accounts for 100% of Pearson y? polygon (resScols,
> tp.ca <- ca(toothpaste) g _ +P1 Brandl
> summary (tp.ca, rows=FALSE, columns=FALSE) fandc .
’ ’ . /s’ ,"
S T |
Principal inertias (eigenvalues): /
dim value % cum$ scree plot © < ‘gymwr’ ;
1 0.410259 61.8 61.8 *kxskkxkkxkkxxk 8 o |
2 0.253134 38.2 100.0 *Fk*xkkxkkx ~ ° . |
————————————— 5w . /
o
Total: 0.663393 100.0 g . /
E = ~— |
=] <|:> — - |
© . |
Pearsony? =5 A2/ N S ~_ |Rr2
! rande
> # reproduce chi-square T T
-1.0 -05 0.0 05
Dimension 1 (61.84%)

> sum(tp.ca$sv”2) * sum(toothpaste)

[1] 79.607




Profiles & inertia

Exhibit 4.2:

A series of data
tables with
increasing total
inertia. The higher
the total inertia, the
greater is the
assocjation between
the rows and
columns, displayed
by the higher
dispersion of the
profile points in the
profile space. The
values in these
tables have been
chosen specifically
so that the column
sums are all equal,
so the weights in the
x*-distance
formulation are the
same, and hence
distances we observe
in these maps are
true x?-distances.
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Singular value decomposition

The singular value decomposition (SVD) is a basic technique for factoring a matrix and

for matrix approximation
For an m x n matrix X of rank r < min(m, n) the SVD of X is:

X=UAV’

Observations Singular Variables
A d f

n u, " }alue - a

— _), S'*-A
U 0 0

g g

mxn m=n nxn nxn

Properties of the SVD SVD: Matrix approximation

* U: columns are eigenvectors of XX" and form an orthonormal

basis for observation profiles such that UTU =1

* A:diagonal, r singular values = sqgrt eigenvalues of both XX'
and X™X

* V:columns are eigenvectors of XX, orthonormal: V'V = 1|

X=UAV’

Observations Singular Variables
-~ Value “a’,
n u, n / ron l n
— I NG,
— LEi*
ANERS
U 0
. 0 VT
n 0 n
g
m

* Let X be an m x n matrix such that rank(X) = r

* IfA;zA, = ... = A, are the singular values of X,
then X , the rank q approximation of X
that minimizes || X-X|| ,is

. column scores
g U e
Vip ) = /LIU1V1 oot /T.QUQVQ

" row scores

a sum of g rank=1 (outer) products. The variance in
X accounted for each term is A12




CA notation & terminology

Notation:
@ Contingency table: N = {n;}
@ Correspondence matrix (cell probabilities): P = {p;} = N/n
@ Row/column masses (marginal probabilities): ¥ = Z)- pjand ¢ =3, pj
@ Diagonal weight matrices: D, = diag (r) and D, = diag (¢)

The SVD is then applied to the correspondence matrix of cell probabilities as:
P = AD,B"

where

@ Singular values: D, = diag (\) is the diagonal matrix of singular values
M2z 2 Ay

@ Row scores: A, y, normalized so that AD; 'AT = |

@ Column scores: By, normalized so that BD; 'BT = |

Principal & standard coordinates

Two types of coordinates are used in CA, based on re-scalings of A and B.
Principal coordinates are most commonly used in plotting CA solutions.

Principal coordinates

Coordinates of the row (F) and column (G) profiles wrt their own principal
axes

F = D7'AD, scaledsothat F'D,F=D,
G = D.'BD, scaledsothat G'D.G = D,

@ Defined so that the inertia along each axis is the corresponding singular
value, A;,

@ i.e., weighted average of squared principal coordinates = A; on dim. i

@ The joint plot in principal cocrdinates, F and G, is called the symmetric
map because both row and column profiles are overlaid in the same
coordinate system.

Standard coordinates
Standard coordinates |

Standard coordinates

The standard coordinates (®. T') are a rescaling of the principal coordinates to
unit inertia along each axis,

& — D 'A scaledsothat &'D,& =1
I' = D;'B scaledsothat T''D.I' =/

@ The weighted average of squared standard coordinates = 1 on each
dimension

@ An asymmetric map shows one set of points (say, the rows) in principal
coordinates and the other set in standard coordinates.

°

Geometric & statistical properties

* Nested solutions: CA solutions are nested, meaning that the first two
dimensions of a 3D solution will be identical to the 2D solution (similar to
PCA)

° Centroids at origin: In both principal coordinates and standard
coordinates the points representing the row and column profiles have
their centroids (weighted averages) at the origin.

= The origin represents the (weighted) average row profile and column profile.
° Chi-square distances: In principal coordinates, distances between two row
profiles, r,and r, are 2 distances
® The squared difference (r;—r; )2 between two row profiles is inversely
weighted by the column frequency, to account for the different relative
frequency of the column categories.

* Plotting: For distances to be interpretable, it’s crucial to scale the axes
equally, so 1°™ is the same on both axes (aspect ratio = 1). This is standard
in most packages.




The ca package in R

ca () calculates CA solutions, returninga “ca” object with all the details

> names (haireye.ca)

[1] "sv" "nd" "rownames" "rowmass" "rowdist"
[6] "rowinertia" "rowcoord" "rowsup" "colnames" "colmass"
[11] "coldist" "colinertia" "colcoord" "colsup" "N
[16] "call"

The result contains the standard row coordinates (rowcoord: @ ) and column
coordinates (colcoord:T) used in plotting

> haireye.ca$rowcoord > haireye.caS$colcoord

Diml Dim2 Dim3 Diml Dim2 Dim3
Black -1.104 1.441 -1.089 Brown -1.077 0.592 -0.4240
Brown -0.324 -0.219 0.957 Blue 1.198 0.556 0.0924
Red -0.283 -2.144 -1.631 Hazel -0.465 -1.123 1.9719
Blond 1.828 0.467 -0.318 Green 0.354 -2.274 -1.7184

The p1ot () method provides a wide variety of scalings (map= ),
with different interpretative properties. Some of these:
* “symmetric” —bothrows & cols in principal coordinates (default)

°* “rowprincipal” or “colprincipal” —asymmetric maps with rows in
principal coordinates and cols in std coordinates, or vice versa

* “symbiplot” —scales both rows and cols to have variances equal to the
singular value

The mjca() function is used for multiple correspondence analysis (MCA) for 3+
way tables. Has analogous print(), summary() and plot() methods

* vcdExtra::mcaplot () does a nicer job of plotting MCA solutions

Asymmetric row/col principal plots are biplots — can interpret the projection of points
on vectors for the other variable

plot (haireve.ca, map="rowprincipal", arrows=c(FALS

plot (haireye.ca, map="colprincipal", arrows=c(TRUE,FALSE))
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Dimension 1 (89.4%) Dimension 1 (89.4%)

Optimal category scores

* CA has a close relation to canonical correlation analysis,
applied to dummy variables representing the categories

* The singular values, A,, are the correlations between the
category scores

= Assign Dim 1 scores, X1 and Y1 to the row/column categories: — Max.
possible correlation, A,

= Assign Dim 2 scores, X2 and Y2 to the row/column categories: — Max.
possible correlation, ,, but uncorrelated with X1, Y1

= All association between row/col categories is captured by the scores
* This optimal scaling interpretation can be used to quantify
categorical variables, particularly if Dim 1 is large




Optimal category scores

Optimal category scores

> haireye.ca <- ca(haireye)
> round (haireye.ca$sv, 3)
[1] 0.457 0.149 0.051

The singular values A; = canonical
correlations

To demonstrate category scores, extract row/col coordinates to a data frame

HE.df <- as.data.frame (haireye)

RC <- haireye.ca$rowcoord # row coordinates
CC <- haireye.ca$colcoord # col coordinates

Y1l <- RC[match(HE.df$Hair, haireye.ca$rownames), 1] # Dim 1
X1 <- CC[match(HE.df$Eye, haireye.ca$colnames), 1]
Y2 <- RC[match (HE.df$Hair, haireye.ca$rownames), 2] # Dim 2
X2 <- CC[match(HE.df$Eye, haireye.ca$colnames), 2]

HE.df <- cbind(HE.df, X1, Y1, X2, Y2)

> HE.df <- cbind(HE.df, X1, Y1, X2, Y2)
> print (HE.df, digits=3)
Hair Eye Freq X1 Y1 X2 Y2

1 Black Brown 68 -1.077 -1.104 0.592 1.441
2 Brown Brown 119 -1.077 -0.324 0.592 -0.219
3 Red Brown 26 -1.077 -0.283 0.592 -2.144
4 Blond Brown 7 -1.077 1.828 0.592 0.467
13 Black Green 5 0.354 -1.104 -2.274 1.441
14 Brown Green 29 0.354 -0.324 -2.274 -0.219
15 Red Green 14 0.354 -0.283 -2.274 -2.144
16 Blond Green 16 0.354 1.828 -2.274 0.467

Calculate Freg-weighted correlations. All are zero except r(X1, Y1) =, & r(X2, Y2) =2,

> corr <- cov.wt (HE.df[,4:7], wt=HE.df$Freq, cor=TRUE) S$cor
> round(zapsmall (corr), 3)

X1 Y1l X2 Y2
X1 1.000 0.457 0.000 0.000
Yl 0.457 1.000 0.000 0.000
X2 0.000 0.000 1.000 0.149
Y2 0.000 0.000 0.149 1.000

Simultaneous linear regressions

@ Lines connecting the weighted
srown () (» o O, (conditional) means of Y1 | X1

5]

5 - *f-**f———oi”-’""s and X1 | Y1 are not-linear
6 | @ The scatterplot uses bubble
g2) moaox O S ° O symbols showing frequency in
g / each cell
~ @ Is it possible to assign row and
Weewo ()% o i 1o column scores so that both

regressions are linear?

Blue Brown Green Hazel

2
X1 (Eye Color)

Yes, use CA scores on the first dimension

BLOND O

@ The regression of Y1 on X1 is
linear, with slope A4

@ The regression of X1 on Y1 is
linear, with slope 1/A;

@ )\, is the (canonical) correlation
between X1 and Y1

@ The angle between the two lines
would be 0 if perfect correlation

@ The conditional means (dots) are
the principal coordinates

0.6

¥1 (Hair Color)
4
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°

reo ()
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Example: Mental impairment & parent’ SES

Data on mental health status of 1660 young NYC residents, by parents’ SES, a 6 x 4
table. Is higher SES associated with better kids” mental health?

> data("Mental", package="vcdExtra")

> str (Mental)

'data.frame': 24 obs. of 3 variables:

$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<,.:
$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1
$ Freq : int 64 94 58 46 57 94 54 40 57 105 ...

1111222233...
234123412 ...

Both ses and mental are ordered factors in a frequency data frame
* For ca(), convert this to a table using xtabs()

> (mental.tab <- xtabs(Freq ~ ses + mental, data=Mental))

mental

ses Well Mild Moderate Impaired
1 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6 21 71 54 71

Mental data: CA solution

> mental.ca <- ca(mental.tab)
> summary (mental.ca, rows=FALSE, columns=FALSE)

Principal inertias (eigenvalues):

dim value % cum$ scree plot

l 0.026025 93.9 93.9 khkkhkkhkhkhkhkkhkkhkhkhkkhkkhkhkhkhkkhkkhkkkkk*
2 0.001379 5.0 98,9 =

3 0.000298 1.1 100.0

Total: 0.027702 100.0

* The exact CA solution requires min(r-1, c-1) = 3 dimensions
* Total Pearson x2is nZ A.2 = 1660 x 0.0277 = 45.98 with 15 df
* Of this, 93.9% is accounted for by the 15t dimension

Mental data: CA plot

plot (mental.ca, lines = TRUE)

[fp]

; Category spacing:
. _
a@ 8 | 4 5 _ SES: perhaps collapse
~ O ‘Vﬂ’/&nﬂmpa“d categories (1,2) ??
c 3
S ~
c S Modt&rate 6/ Mental: Smaller diff
o O ;
E o betw. Mild, Moderate ??
0 [fp]

g

' T T T | |

-0.2  -01 0.0 0.1 0.2 0.3

Dimension 1 (93.9%)

Looking ahead

* CAislargely an exploratory method — row/column scores are
not parameters of a statistical model; no confidence intervals

® Only rough tests for the number of CA dimensions

* Can’t test a hypothesis that the row/column scores are have
some particular spacing (e.g., are mental and ses equally
spaced?)

* These questions can be answered with specialized loglinear
models

* Nevertheless, plot (ca(table)) gives an excellent quick
view of associations




Multi-way tables

Correspondence analysis can be extended to n-way tables in several ways:

Stacking approach

@ n-way table flattened to a 2-way table, combining several variables
“interactively”

@ Each way of stacking corresponds to a loglinear model

@ Ordinary CA of the flattened table — visualization of that model

@ Associations among stacked variables are nof visualized

Multiple correspondence analysis (MCA)

@ Extends CA to n-way tables

@ Analyzes all pairwise bivariate associations

@ Can plot all factors in a single plot

] A|n extension, joint correspondence analysis, gives a better account of
inertia for each dimension

Multi-way tables: Stacking

A 3-way table of size / x J x K can be sliced and stacked as a two-way table in
several ways

@ The variables combined are
treated “interactively”

@ Each way of stacking
corresponds to a loglinear model

o (IxJ) x K = [AB][C]

(1J )x K table
I xJ x K table J

[ e [ x (Jx K)—[A]BC]
f _ y e Jx (I x K)— [B][AC]
J - : @ Only the associations in separate
7 [ ] terms are analyzed and
7 J displayed

@ The stacked table is analyzed
with ordinary CA of the two-way
stacked table

Interactive coding in R

* Datain table or array form: use

as.matrix (structable (rows ~ cols))
matl <- as.matrix(structable(A + B ~ C, data=mytable)) # [A B]I[C]
mat2 <- as.matrix(structable(A + C ~ B + D, data=mytable)) # [A C][B D]
ca (mat2)

Data as frequency data frame: use interaction() or
paste () followed by xtabs ()

mydf$SAB <- interaction (mydf$A, mydf$B, sep='.’) # levels: A.B
mydf$AB <- paste (mydf$A, mydfs$B, sep=':"') # levels: A:B
mytab <- xtabs(Freq ~ AB + C, data=mydf) # [A B] [C]

Example: suicide rates in Germany

°* vcd::Suicide givesa2x5x8table of sexbyage.group by
method for 53,158 suicides in Germany, in a frequency data frame

°* Usepaste() tojoinage.group and sex — age sex intheform
'10-20 M’

> Suicide <- within(Suicide, {
age_sex <- paste(age.group, toupper (substr(sex,1,1)))
})
> head (Suicide)
Freg sex method age age.group method2 age sex

1 4 male poison 10 10-20 poison 10-20 M
2 0 male cookgas 10 10-20 gas 10-20 M
3 0 male toxicgas 10 10-20 gas 10-20 M
4 247 male hang 10 10-20 hang 10-20 M
5 1 male drown 10 10-20 drown 10-20 M
6 17 male gun 10 10-20 gun 10-20 M




Suicide rates in Germany

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data=Suicide)
> suicide.tab

method?2
age_sex poison gas hang drown gun knife jump other
10-20 F 921 40 212 30 25 11 131 100
10-20 M 1160 335 1524 67 512 47 189 464
25-35 F 1672 113 575 139 64 41 276 263
25-35 M 2823 883 2751 213 852 139 366 775
40-50 F 2224 91 1481 354 52 80 327 305
40-50 M 2465 625 3936 247 875 183 244 534
55-65 F 2283 45 2014 679 29 103 388 296
55-65 M 1531 201 3581 207 4717 154 273 294
70-90 F 1548 29 1355 501 3 74 383 106
70-90 M 938 45 2948 212 229 105 268 147

* The CA analysis will be that of the loglinear model [Age Sex] [Method]

* It will show associations between the age—sex combinations and method of
suicide

* Associations between age and sex will not be shown in this analysis

37

Suicide rates in Germany

> suicide.ca <- ca(suicide.tab)
> summary (suicide.ca, rows=FALSE, columns = FALSE)

Principal inertias (eigenvalues):

dim value % cum$ scree plot

1 0.09G151L F7.2 57,2 HHwwiwiiwinwis
2 0.059692 35.5 92.6 | kkkxkkkkx

3 0.008183 4.9 97.5 *

4 0.002158 1.3 98.8

5 0.001399 0.8 99.6

6 0.000557 0.3 100.0

7 6.7e-050 0.0 100.0

Total: 0.168207 100.0

For this table x2 (63) = 8946. Of this, 92.6% is accounted for in the first two dimensions

Dimension 2 (35.5%)

> plot (suicide.ca)

[J]
7090 M .
< _| £ . * Dim 1: Sex
© + Dim 2: Age
o dronn LPE5M ¢ Caninterpret method use
- — 70-90 F nife ~ . .
o " S565F £ by age-sex combination
*  young M: gas, gun,
< ump 40-50 M Sex . o
P 050 F » young F: poison
o~ EJOISOH
S 10.20 M g
' 535 M
2535F el
<t
S Jo20F
Agas
T T T T T T

-06 -04 -02 00 0.2 0.4 0.6

Dimension 1 (57.2%)

39

Compare with a mosaic plot, also fitting the model [Age Sex][Method]

suicide.tab3 <- xtabs (Freq ~ sex + age.group + method2, data=Suicide)
mosaic(suicide.tab3, shade=TRUE, legend=FALSE,
expected=~age.group*sex + method2, ... )

age.group
10-20 40-50

DDAR Fig 6.7, p 238

(I permuted methods
by CA Dim1 & deleted
“Other”)

male

sex

female

40




Marginal tables & supplementary variables

Also have data on relation of sex and method

* Supplementary variables provide a way to include more info in CA > (suicide.sup <- xtabs(Freq ~ sex + method2, data=Suicide))
. . . . method2
= An n-way table is collapsed to a marginal table by ignoring factors cex poison gas hang drown gun knife Jjump other
] mitt varia | n in |U treatin th m a u | mentar male 8917 2089 14740 946 2945 628 1340 2214
© ed bles can be included by treating them as supplementary female 8648 318 5637 1703 173 309 1505 1070
® These are projected into the space of the marginal CA > suicide.tab2s <- rbind(suicide.tab2, suicide.sup)

* E.g., age by method, ignoring sex as the main analysis

method2
age.group poison gas hang drown gun knife jump other

> suicide.tab2 <- xtabs(Freq ~ age.group + method2, data=Suicide)

> suicide.tab? 10-20 2081 375 1736 97 537 58 320 564
25-35 4495 996 3326 352 916 180 642 1038 . .
method?2 40-50 4689 716 5417 601 927 263 571 839 Main analysis table
age.group poison gas hang drown gun knife jump other 59765 3814 246 5595 BA6 506 257 661 590

70-50 2486 74 4303 713 232 179 651 253
10-20 2081 375 1736 97 537 58 320 564

sex poison  gas hang drown gun knife Jjump other
25-35 4495 996 3326 352 916 180 642 1038 male 8917 2089 14740 946 2945 628 1340 2214 } Supplementary rows
female 8648 318 5637 1703 173 309 1505 1070

40-50 4689 716 5417 601 927 263 571 839
55=65 3814 246 5595 886 506 257 661 590
70-90 2486 74 4303 713 232 179 651 253

Supplementary variables e ————— Plotting the solution

pch=c (16, 15, 17, 24), )
lines = c(FALSE, TRUE)) shows points for row, col
Call ca(table, suprow =) to treat some rows as supplementary variables lines(resSrows([1:5,], col = "blue", lty=2) & supplementary rows

"black", lwd=3)

lines (resSrows[6:7,], col

> suicide.ca2s <- ca(suicide.tab2s, suprow=6:7)

> summary (suicide.ca2s, rows=FALSE, columns = FALSE) — Tfemale
T o |
Principal inertias (eigenvalues): N © Jump
< -
dim value % cum% scree plot c; o gas 25-35 .TO—QOdF wn
1 0-060429 93_9 93.9 khkhkkkhkkkhkhkhkkhkkkhkhkkkhkkkk*k .9 ‘—1401:'1&'.'19(2? 50 L
2 0.002090 3.2 971 = @ &
5 gun hE -50---7
3 0.001479 2.3 99.4 ~* g - NS
4 0.000356 0.6 100.0 5 o ale
_____________ 1
Total: 0.064354 100.0 \ I I I \
-0.6 -0.4 -0.2 0.0 0.2 0.4
The relation of age and method is now essentially 1 dimensional Dimension 1 (93.9%)

The inertia of Dim 1 here (0.604) is nearly the same as that of Dim 2 (0.596) for age

in the stacked table Ignoring Sex has collapsed Sim 1 (Sex) of the [Age Sex][Method] analysis

Supp. points for Sex show the association of Method with Sex in this space




Multiple correspondence analysis

@ Extends CA to n-way tables

@ Useful when simpler stacking approach doesn't work well, e.g., 10
categorical attitude items

@ Analyzes all pairwise bivariate associations. Analogous to:

@ Correlation matrix (numbers)
e Scatterplot matrix (graphs)

o All pairwise 2 tests (numbers)
@ Mosaic matrix (graphs)

@ Provides an optimal scaling of the category scores for each variable

@ Can plot all factors in a single plot

@ An extension, joint correspondence analysis, gives a better account of
inertia for each dimension

Example: Titanic data

Factor Plot of MCA for the Titanic
< ® Class data
o 7| A Sex 2
* Age : All 4 variables represented
= ® Survived in a single plot
2
s Y
5 ° Dim 1: Sex
5 Dim 2: Class & Age
@ No
2 51 - :
£ © = Yes
a Jr:ewale Adult Femal
Ist
o~
S

I I I I I
-0.2 0.0 02 0.4 0.6

Dimension 1 (76.8%)

CA —> MCA: Indicator & Burt

Two ways to think about MCA:

Indicator matrix (dummy variables)

@ A given categorical variable, g, can be represented by an indicator matrix
Z(n x Jg) of dummy variables, z; = 1 if case / is in category j
o letZ,. 2, ... Z,be the indicator matrices for Q variables

@ MCA is then a simple CA applied to the partitioned matrix
Z2=1[2,,2,,..., Zg]

@ The Bert matrix is the product of the indicator matrix Z and its transpose
B-2'2

@ MCA can be defined using the SVD of B, giving category scores for all
variables accounting for the largest proportion of all bivariate
associations.

Indicator matrix: Hair Eye color

* For the hair-eye data, the indicator matrix Z has n=592 rows
(observations) and 4 + 4 = 8 columns (categories).

= Shown below in frequency form: hl — h4 indicators for hair color, el—e4 for
eye color

= E.g., 15t row represents 68 observations with black hair and brown eyes

Hair Eye Freq|hl h2 h3 h4|el e2 e3 e4
1 Black Brown 68 1 0 O 0Off 1 o 0 O
2 Brown Brown 1191 0 1 0 0Off 1 0 0 O
3 Red Brown 26 0 0 1 0Jffr 0o O O
4 Blond Brown 710 0 O 1)l 1 O O O
5 Black Blue 2001 0 O Of O 1 0 O
6 Brown Blue 841 0 1 0 0ff 0 1 0 O
7 Red Blue 1710 0 1 00 1 0 O
8 Blond Blue 940 0 0 1)f0 1 0 O




Expand this to case form to get Z (592 x 8)

> 7 <- expand.dft (haireye.df) [,-(1:2)]

> vnames <- c(levels(haireye.df$Hair), levels (haireye.dfS$Eye))
> colnames (Z) <- vnames

> dim(2Z)

[1] 592 8

If the indicator matrix is partitioned as Z = [Z,; Z,], corresponding to the hair, eye
categories, then the contingency table is given by N = 2T, Z,.

> 71 <- as.matrix(z[,1:4])
> 72 <- as.matrix (z[,5:8])
> (N <- t(Z21) %*% z2)
Brown Blue Hazel Green

Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

@ We can then use ordinary CA on the indicator matrix, Z
@ Except for scaling, this is the same as the CA of N
@ The inertia contributions differ, and this is handled better by MCA

Z.ca <- cal(z)

res <- plot(Z.ca, what=c("none", "all")) # plus customization

o | Black

T w

& o Brown Blugmnd

> o

o Bro n

cC w

L o

w ]

o i Hazel

E

[
: ‘ | Red/€en ‘ | ‘

-2 -1 0 1 2 3

Dimension 1 (24.3%)

The Burt matrix

For two categorical variables, the Burt matrix is
N, N

_ 2T 1

B=2'Z= [ NT N }

@ N; and N: are diagonal matrices containing the marginal frequencies of
the two variables
@ The contingency table, N appears in the off-diagonal block

A similar analysis to that of the indicator matrix Z is produced by:

Burt <- t(as.matrix(Z)) %*% as.matrix(Z)
rownames (Burt) <- coclnames (Burt) <— wnames
Burt.ca <- ca (Burt)

plot (Burt.ca)

@ Standard coords are the same
@ Singular values of B are the squares of those of Z

Multivariate MCA

For Q categorical variables, the Burt matrix is

N; Nz -+ Npug
g_ziz_ | Nen Ne - Nea
Nioy Niaz -+ No

@ The diagonal blocks N; contain the one-way marginal frequencies
@ The off-diagonal blocks Nj;; contain the bivariate contingency tables for
each pair (i,j) of variables.

@ Classical MCA can be defined as a SVD of the matrix B

@ |t produces scores for the categories of all variables accounting for the
greatest proportion of the bivariate associations in off-diagonal blocks in
a small number of dimensions.




MCA properties

* The inertia contributed by a given variable increases with the
number of response categories:
" inertia (Z,)=J,-1
* The centroid of the categories for each variable is at the origin
of the display.

* For a given variable, the inertia contributed by a given

category increases as the marginal frequency in that category
decreases.

= Low frequency points therefore appear further from the origin.
* The category points for a binary variable lie on a line through
the origin.

MCA example: pre- and extramarital sex

@ Presex data: the 2 x 2 x 2 x 2 table of gender, premarital sex,
extramatrial sex and marital status (divorced, still married)

@ The function mjca () provides several scalings for the singular values

@ Here luse 1ambda="Burt"

data ("PreSex", package="vcd")
PreSex <- aperm(PreSex, 4:1) # order variables G, P, E, M
presex.mca <- mjca(PreSex, lambda="Burt")

summary (presex.mca, rows=FALSE, columns FALSE)

Principal inertias (eigenvalues):

dim value % cum$ scree plot

1 0.149930 53,6 53,6 wevisrisdrisdiriiming
2 0.067201 24.0 77.6 | Kxxxk*kx

3 0.035396 12.6 90.2 ***

4 0.027365 9.8 100.0 **

Total: 0.279892 100.0

MCA example: pre- and extramarital sex

vcdExtra: :mcaplot (presex.mca,
legend=TRUE, legend.pos = "bottomright")

06

Accounts for 76% of total
inertia

Women less likely to report
pre- and/or extra-marital sex

Divorced associated with pre-
and extra- sex

Dimension 2

Gender 1 Marital

NB: This only analyzes
bivariate associations, i.e., no
3-way associations

Factor
Gender
PreSex
ExtraSex
Marital

T T

oo 05 10

-0,
1
LB ]

Dimension 1

Inertia in MCA

@ In simple CA, total inertia = £A? = y2/n
@ — sensible to consider % inertia for each dimension

Not so straight-forward in MCA:

@ For a given indicator matrix, Zg, the inertia is Jg — 1
@ For all variables, with J = ¥~ J; categories, the total inertia of
Z=1Z, ..., Zg] is the average of the inertias of the sub-tables

. ) 1 . ) 1 J—Q
inertia(Z) = rol zq: inertia(Z;) = 5 ;(Jq, —1) = 5
@ The average inertia per dimension is therefore 1/Q

@ — Interpret dimensions with inertia > 1/Q (as in PCA: A > 1)

@ In analysis of the Burt matrix, average inertia is inflated by the diagonal
blocks




Inertia in MCA

Two solutions:

Adjusted inertia

@ Ignores the diagonal blocks in the Burt matrix
@ Calculates adjusted inertia as

o0t = [o270 - o]

@ Express contributions of dimensions as (A*)?/>"(\7)?, with summation
over only dimensions with (A%)2 > 1/Q.

Joint correspondence analysis

@ Start with MCA analysis of the Burt matrix
@ Replace diagonal blocks with values estimated from that solution
@ Repeat until solution converges, improving the fit to off-diagonal blocks

NB: JCA solutions aren’t nested. | generally use adjusted inertia

MCA example: Survival on the Titanic

Analyse the Titanic data using ca::mcja()
* The default inertia method is lambda = “adjusted”
e Other methods: “indicator”, “Burt”, “JCA”

data (Titanic)

titanic.mca <- mjca(Titanic)
summary (titanic.mca, columns = FALSE)

Principal inertias (eigenvalues):

dim value % cum$ scree plot

l 0.067655 76 8 76.8 R R I R I b I I I I i I I b i b
2 0.005386 6.1 82.9 **

3 00000000 0.0 82.9

Total: 0.088118

Using adjusted inertia, the 2D solution accounts for ~ 83% of total, bivariate
association.

Plot the solution with vedExtra: :mcaplot ()

mcaplot (titanic.mca, legend=TRUE, legend.pos = "topleft")
Factor Dim 1 perfectly aligned with Sex
® Class ) Also strongly aligned w/ survival
< | e Sex Child
S & class
& Age
. + Survived
g Dim 2: reflects class & age
£ o 3rd
™ . . .
5 g — Survival associated with
w ni .
5 o &&’5 &7 c Female  Female, 1%t vs 3™ class, child
g S rf/W/ es
st
o
S
T I T I T
02 0.0 0.2 0.4 06

Dimension 1 (76.8%)

Biplots for contingency tables

The biplot is a related visualization that also uses the SVD to give a low-rank (2D)

approximation.

* In CA, the weighted 2 distances between row (column) points reflect the differences among
row (column) profiles

* Inthe biplot, rows (columns) are represented by vectors from the origin, with an inner-
product (projection) interpretation — row point a; is fit by projection on col point b;
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Dimension 2 (35.5%)
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Dimension 1 (57.2%)




Example: Suicide rates Summary

There are different scalings for CA biplots. Here | use the ‘contribution’ biplot
| find the plot less messy to plot arrows for only rows or cols and imagine the projection

@ CA is an exploratory method designed to account for association
(Pearson \?) in a small number of dimensions

plot (suicide.ca, map="colgreen", arrows=c(FALSE, TRUE), lwd=2) @ Row and column scores provide an optimal scaling of the category levels

@ Plots of these can suggest an explanation for association

0.6

@ CA uses the singular value decomposition to approximate the matrix of

- 70-90 M s . ]
* Associations between age-sex residuals from independence

=+ categories and suicide methods can L . . . .
e ST05M & o ) @ Standard and principal coordinates have different geometric properties,
g drown hang be read as projections of the points ) .
& « 980 F . but are essentially re-scalings of each other
8 o ) on the vectors
N jump . @ Multi-way tables can be handled by:
c o . -
g ° 00T ¢ Lengths of vectors for suicide e Stacking approach— collapse some dimensions interactively to a 2-way
S« on aln reflect their contributions to this table
£ 5 10-20 M . .
5 7 Lel20F S 2D plot e Each way of stacking — a loglinear model

* . . . .

g ) o MCA analyzes the full n — way table using an indicator matrix or the Burt

' ¢ gas matrix

©

N \ \ | \ |

06 04 -02 00 02 04 06 Given a new 2-way table, my first thought is nearly always: plot (ca (mytable))

Dimension 1 (57.2%)




