

Correspondence analysis

Michael Friendly

Psych 6136
http://friendly.github.io/psy6136

Correspondence analysis: Basic ideas

Analog of PCA for frequency data

- Account for maximum $\%$ of χ^{2} in few (2-3) dimensions
- Finds scores for row (x_{im}) and col $\left(\mathrm{y}_{\mathrm{jm}}\right)$ categories on these dimensions
- Uses Singular Value Decomposition of residuals from independence,

$$
d_{i j}=\left(n_{i j}-\widehat{m}_{i j}\right) / \sqrt{\hat{m}_{i j}} \quad \Longrightarrow d_{i j}=\sqrt{n} \sum_{m=1}^{M} \lambda_{m} x_{i m} y_{j m} \quad \leftrightarrow \quad \boldsymbol{D}=\boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{Y}^{\top}
$$

- Optimal scaling: each pair of scores for rows $\left(\mathrm{x}_{\mathrm{im}}\right)$ and $\operatorname{col}\left(\mathrm{y}_{\mathrm{jm}}\right)$ have highest possible correlation ($=\lambda_{m}$)
- Plots of the row and column scores show associations
- Row point (x_{im}) near col point $\left(\mathrm{y}_{\mathrm{j} \mathrm{m}}\right) \rightarrow$ positive association $\mathrm{d}_{\mathrm{ij}}>0$

CA software for R

- ca package
- ca() - two-way tables; plot(ca()) for graphs
- mjca() - multiple \& joint CA
- FactoMineR \& factoextra packages
- CA()

Example: Hair color, eye color

```
> library(ca)
> haireye <- margin.table(HairEyeColor, 1:2)
> (haireye.ca <- ca(haireye))
    Principal inertias (eigenvalues):
\begin{tabular}{lllll} 
& 1 & 2 & 3 & \\
Value & 0.208773 & 0.022227 & 0.002598 \\
Percentage & \(89.37 \%\) & \(9.52 \%\) & \(1.11 \%\) & \(\chi^{2} \%\) for dimensions
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Rows:} \\
\hline & Black & Brown & & d Blond & \\
\hline Mass & 0.1824 & 0.4831 & 10.119 & 990.215 & \\
\hline ChiDist & 0.5512 & 0.1595 & 50.354 & 480.838 & \\
\hline Inertia & 0.0554 & 0.0123 & 30.015 & 510.151 & \\
\hline Dim. 1 & -1.1043 & -0.3245 & 5-0.283 & 351.828 & \\
\hline Dim. 2 & 1.4409 & -0.2191 & 1-2.144 & 400.467 & Hair category scores, Dim1-2 \\
\hline \multicolumn{6}{|l|}{Columns:} \\
\hline & Brown & Blue & Hazel & Green & \\
\hline Mass & 0.3716 & 0.363 & 0.1571 & 0.1081 & \\
\hline ChiDist & 0.5005 & 0.554 & 0.2887 & 0.3857 & \\
\hline Inertia & 0.0931 & 0.111 & 0.0131 & 0.0161 & \\
\hline Dim. 1 & -1.0771 & 1.198 & -0.4653 & 0.3540 & \multirow[t]{2}{*}{J Eye category scores, Dim1-2} \\
\hline Dim. 2 & 0.5924 & 0.556 & -1.1228 & -2.2741 & \\
\hline
\end{tabular}
```


- Rough interpretation: row/col points "near" each other are positively associated (independence residuals $\mathrm{d}_{\mathrm{ij}} \gg 0$)
- Dim 1: 89.4\% of χ^{2} (dark \rightarrow light)
- Dim 2: 9.5\% of χ^{2} (Red/Green vs. others)

Hair color, Eye color data: Compare with mosaic display

- The main dark-light dimension is reflected in the opposite-corner pattern of residuals
- The 2nd dimension is reflected in deviations from this pattern (e.g., Red hair-Green eyes)
- CA is "accounting for" residuals (deviations) from independence

Row \& column profiles

- For a two-way table, row profiles \& column profiles give relative proportions of the categories
- An association is present to the extent that the row/col profiles differ
- Profiles add to 1.0 (100\%), and can be visualized in profile space

Example: Toothpaste purchases by region

120 people in three regions where asked which of four brands of toothpaste, $A-D$, they had most recently purchased. Is there a difference among regions?

toothpaste

\#\#	Region			
\#\#	Brand	R1	R2	R3
\#\#	Brand A	5	5	30
\#\#	Brand B	5	25	5
\#\#	Brand C	15	5	5
\#\#	Brand D	15	5	0

- Row profiles pertain to the differences among brand preference
- Column profiles pertain to the differences among regions

Region Brand					Region				
	R1	R2	R3	Sum	Brand		R1	R2	R3
Brand	A 12.5	12.5	75.0	100	Brand	A	12.5	12.5	75.0
Brand	B 14.3	71.4	14.3	100	Brand	B	12.5	62.5	12.5
Brand	C 60.0	20.0	20.0	100	Brand	C	37.5	12.5	12.5
Brand	D 75.0	25.0	0.0	100	Brand	D	37.5	12.5	0.0
					Sum		100.0	100.0	100.0

There is clearly an association: the row (\& column) profiles differ

```
> chisq.test(toothpaste)
    Pearson's Chi-squared test
data: toothpaste
X-squared = 79.6, df = 6, p-value = 4.3e-15
```


Plotting profiles

Plotting profiles

In this simple example we can plot the row profiles as points in 3D space, with axes corresponding to regions, R1, R2, R3

- Each brand is positioned in this space according to its proportions for the regions
- Because proportions sum to 100%, all points lie in the dashed plane PQRThe Average profile is at the (weighted) centroid
- If appear at the centroid

CA solution

The CA solution has at most $\min (r-1, c-1)$ dimensions The 2D solution here is exact, i.e., accounts for 100% of Pearson χ^{2}
tp.ca <- ca(toothpaste)
> summary(tp.ca, rows=FALSE, columns=FALSE)
Principal inertias (eigenvalues)

dim	value	$\%$	cum\%	scree plot
1	0.410259	61.8	61.8	$* * * * * * * * * * * * * *$
2	0.253134	38.2	100.0	$* * * * * * * * *$

Pearson $\chi^{2}=\Sigma \lambda^{2} / N$
> \# reproduce chi-square
$>$ sum(tp.ca\$sv^2) * sum(toothpaste)
[1] 79.607

Analogous 2D plot is a trilinear plot that automatically scales the R1-R3 values so they sum to 100%

- The Avg profile has coordinates of 33.3\% for each region
- Brand preferences by region can be seen by their positions wrt the R1-R3 axes
- This suggests that differences among brands can be measured by their (squared) distances from the centroid, weighted by their row margins (mass)
- Physical analogy suggests the term inertia for this weighted variation
res <- plot (tp.ca)
polygon(res\$cols, border="red", lwd=2)

Profiles \& inertia

Properties of the SVD

- U: columns are eigenvectors of $\mathbf{X X}^{\top}$ and form an orthonormal basis for observation profiles such that $\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}$
- Λ : diagonal, r singular values $=$ sqrt eigenvalues of both $\mathbf{X X}^{\top}$ and $\mathbf{X}^{\top} \mathbf{X}$
- \mathbf{V} : columns are eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$, orthonormal: $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$

Singular value decomposition

The singular value decomposition (SVD) is a basic technique for factoring a matrix and for matrix approximation
For an $m \times n$ matrix \mathbf{X} of rank $r \leq \min (m, n)$ the SVD of \mathbf{X} is:

SVD: Matrix approximation

- Let \mathbf{X} be an $m \times n$ matrix such that $\operatorname{rank}(\boldsymbol{X})=r$
- If $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}$ are the singular values of \mathbf{X}, then $\hat{\mathbf{X}}$, the rank q approximation of \mathbf{X} that minimizes $\|\mathbf{X}-\hat{\mathbf{X}}\|$, is

$$
\hat{\mathbf{X}}_{m \times n}=\sum_{i=1}^{q} \lambda_{i}\left(\begin{array}{c}
u_{i 1} \\
\vdots \\
u_{i m}
\end{array}\right) \underbrace{\left(v_{i 1}\right.}_{\text {row scores }} \quad \cdots v_{i n})=\lambda_{1} u_{1} v_{1}^{T}+\cdots+\lambda_{q} u_{q} v_{q}^{\top}
$$

a sum of q rank=1 (outer) products. The variance in \mathbf{X} accounted for each term is $\lambda_{1}{ }^{2}$

CA notation \& terminology

Notation:

- Contingency table: $\boldsymbol{N}=\left\{n_{i j}\right\}$
- Correspondence matrix (cell probabilities): $\boldsymbol{P}=\left\{p_{i j}\right\}=\boldsymbol{N} / n$
- Row/column masses (marginal probabilities): $\boldsymbol{r}=\sum_{j} p_{i j}$ and $\boldsymbol{c}=\sum_{i} p_{i j}$
- Diagonal weight matrices: $\boldsymbol{D}_{r}=\operatorname{diag}(\boldsymbol{r})$ and $\boldsymbol{D}_{c}=\operatorname{diag}(\boldsymbol{c})$

The SVD is then applied to the correspondence matrix of cell probabilities as:

$$
\boldsymbol{P}=\boldsymbol{A} \boldsymbol{D}_{\lambda} \boldsymbol{B}^{\top}
$$

where

- Singular values: $\boldsymbol{D}_{\lambda}=\operatorname{diag}(\boldsymbol{\lambda})$ is the diagonal matrix of singular values $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{M}$
- Row scores: $\boldsymbol{A}_{I \times M}$, normalized so that $\boldsymbol{A D _ { r } ^ { - 1 }} \boldsymbol{A}^{\top}=\boldsymbol{I}$
- Column scores: $\boldsymbol{B}_{J \times M}$, normalized so that $\boldsymbol{B D}_{c}^{-1} \boldsymbol{B}^{\boldsymbol{\top}}=\boldsymbol{I}$

Principal \& standard coordinates

Two types of coordinates are used in CA, based on re-scalings of A and B.
Principal coordinates are most commonly used in plotting CA solutions.

Principal coordinates

Coordinates of the row (\boldsymbol{F}) and column (\boldsymbol{G}) profiles wrt their own principal axes

$$
\begin{array}{lll}
\boldsymbol{F}=\boldsymbol{D}_{r}^{-1} \boldsymbol{A} \boldsymbol{D}_{\lambda} & \text { scaled so that } & \boldsymbol{F}^{\top} \boldsymbol{D}_{r} F=\boldsymbol{D}_{\lambda} \\
\boldsymbol{G}=\boldsymbol{D}_{c}^{-1} \boldsymbol{B} \boldsymbol{D}_{\lambda} & \text { scaled so that } & \boldsymbol{G}^{\top} \boldsymbol{D}_{c} \boldsymbol{G}=\boldsymbol{D}_{\lambda}
\end{array}
$$

- Defined so that the inertia along each axis is the corresponding singular value, λ_{i},
- i.e., weighted average of squared principal coordinates $=\lambda_{i}$ on dim. i
- The joint plot in principal coordinates, \boldsymbol{F} and \boldsymbol{G}, is called the symmetric map because both row and column profiles are overlaid in the same coordinate system.

Standard coordinates

Geometric \& statistical properties

Standard coordinates

The standard coordinates (Φ, Γ) are a rescaling of the principal coordinates to unit inertia along each axis,

$$
\begin{aligned}
& \boldsymbol{\Phi}=\boldsymbol{D}_{r}^{-1} \boldsymbol{A} \text { scaled so that } \Phi^{\top} \boldsymbol{D}_{\boldsymbol{r}} \Phi=\boldsymbol{I} \\
& \Gamma=\boldsymbol{D}_{c}^{-1} \boldsymbol{B}
\end{aligned} \text { scaled so that } \Gamma^{\top} \boldsymbol{D}_{c} \Gamma=\boldsymbol{I}
$$

- The weighted average of squared standard coordinates $=1$ on each dimension
- An asymmetric map shows one set of points (say, the rows) in principal coordinates and the other set in standard coordinates.
-

The ca package in R

ca() calculates CA solutions, returning a "ca" object with all the details

The result contains the standard row coordinates (rowcoord: Φ) and column coordinates (colcoord: Г) used in plotting
> haireye.ca\$rowcoord
Dim1 Dim2 Dim3

Black -1. 104 1.441-1.089 Brown -0.324-0.219 0.957 Red -0.283-2.144-1.631 Blond 1.828 0.467-0.318

> haireye.ca\$colcoord			
	Dim1	Dim2	Dim3
Brown	-1.077	0.592	-0.4240
Blue	1.198	0.556	0.0924
Hazel	-0.465	-1.123	1.9719
Green	0.354	-2.274	-1.7184

ca plots

The plot () method provides a wide variety of scalings (map=), with different interpretative properties. Some of these:

- "symmetric" - both rows \& cols in principal coordinates (default)
- "rowprincipal" or "colprincipal" - asymmetric maps with rows in principal coordinates and cols in std coordinates, or vice versa
- "symbiplot" - scales both rows and cols to have variances equal to the singular value

The mjca() function is used for multiple correspondence analysis (MCA) for 3+ way tables. Has analogous print(), summary() and plot() methods

- vcdExtra: :mcaplot() does a nicer job of plotting MCA solutions

Asymmetric row/col principal plots are biplots - can interpret the projection of points on vectors for the other variable

```
plot (haireye.ca, map="rowprincipal", arrows=c(FALSE,TRUE))
plot(haireye.ca, map="colprincipal", arrows=c(TRUE,FALSE))
```


Optimal category scores

- CA has a close relation to canonical correlation analysis, applied to dummy variables representing the categories
- The singular values, λ_{i}, are the correlations between the category scores
- Assign Dim 1 scores, $\mathbf{X} 1$ and $\mathbf{Y} 1$ to the row/column categories: \rightarrow Max. possible correlation, λ_{1}
- Assign $\operatorname{Dim} 2$ scores, $\mathbf{X} 2$ and $\mathbf{Y} 2$ to the row/column categories: \rightarrow Max. possible correlation, λ_{2}, but uncorrelated with $\mathbf{X} 1, \mathbf{Y} 1$
- All association between row/col categories is captured by the scores
- This optimal scaling interpretation can be used to quantify categorical variables, particularly if Dim 1 is large

Optimal category scores

Optimal category scores

> haireye.ca <- ca(haireye)
round(haireye.ca\$sv, 3)
[1] 0.4570 .1490 .051

The singular values $\lambda_{i}=$ canonical correlations

To demonstrate category scores, extract row/col coordinates to a data frame

```
HE.df <- as.data.frame(haireye)
```

RC <- haireye.ca\$rowcoord \# row coordinates
CC <- haireye.ca\$colcoord \# col coordinates
Y1 <- RC[match(HE.df\$Hair, haireye.ca\$rownames), 1] \# Dim 1
X1 <- CC[match(HE.df\$Eye, haireye.ca\$colnames), 1]
X 2 <- CC[match(HE.df\$Eye, haireye.ca\$rownames), 2]
HE.df <- cbind(HE.df, X1, Y1, X2, Y2)
> HE.df <- cbind(HE.df, X1, Y1, X2, Y2)

> print (HE.df, digits=3)						
Hair	Eye Freq	X1	Y1	X2	Y2	
1	Black Brown	68	-1.077	-1.104	0.592	1.441
2	Brown Brown	119	-1.077	-0.324	0.592	-0.219
3	Red Brown	26	-1.077	-0.283	0.592	-2.144
4	Blond Brown	7	-1.077	1.828	0.592	0.467
B.						
13	Black Green	5	0.354	-1.104	-2.274	1.441
14	Brown Green	29	0.354	-0.324	-2.274	-0.219
15	Red Green	14	0.354	-0.283	-2.274	-2.144
16 Blond Green	16	0.354	1.828	-2.274	0.467	

Calculate Freq-weighted correlations. All are zero except $r(X 1, Y 1)=\lambda_{1} \& r(X 2, Y 2)=\lambda_{2}$

```
> corr <- cov.wt(HE.df[,4:7], wt=HE.df$Freq, cor=TRUE) $cor
```

$>$ round (zapsmall(corr), 3)
$\begin{array}{lllll}\text { X1 } & \text { Y1 } & \text { X2 } & \text { Y2 }\end{array}$
$\begin{array}{lllll}\mathrm{X} 1 & 1.000 & 0.457 & 0.000 & 0.000\end{array}$
$\begin{array}{lllll}\mathrm{Y} 1 & 0.457 & 1.000 & 0.000 & 0.000\end{array}$
X2 $0.000 \quad 0.000 \quad 1.000 \quad 0.149$
Y2 $0.000 \quad 0.000 \quad 0.1491 .000$

Simultaneous linear regression

Assign linear scores (1-4) X1 to eye color and Y 1 to hair color

- Lines connecting the weighted (conditional) means of $Y_{1} \mid X 1$ and $X 1 \mid Y 1$ are not-linear
- The scatterplot uses bubble symbols showing frequency in each cell
- Is it possible to assign row and column scores so that both regressions are linear?

Simultaneous linear regressions

Yes, use CA scores on the first dimension

- The regression of Y 1 on X 1 is linear, with slope λ_{1}
- The regression of X 1 on Y 1 is linear, with slope $1 / \lambda_{1}$
- λ_{1} is the (canonical) correlation between X 1 and Y 1
- The angle between the two lines would be 0 if perfect correlation
- The conditional means (dots) are the principal coordinates

Example: Mental impairment \& parent' SES

Data on mental health status of 1660 young NYC residents, by parents' SES, a 6×4 table. Is higher SES associated with better kids' mental health?

```
> data("Mental", package="vcdExtra")
```

```
> mental.ca <- ca(mental.tab)
> summary(mental.ca, rows=FALSE, columns=FALSE)
```

> str (Mental)
\$ ses $\quad 24$ obs. of 3 variables.
S mentar: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 111111222233 ...
Frequ: ord.factor w/ 4 levels "Well"<"Mild"<..: 12234123412 ...

Both ses and mental are ordered factors in a frequency data frame

- For ca(), convert this to a table using xtabs()
> (mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)) mental
ses Well Mild Moderate Impaired

1	64	94	58	46
2	57	94	54	40
3	57	105	65	60
4	72	141	77	94
5	36	97	54	78
6	21	71	54	71

6	21	71	54	78

Mental data: CA plot

```
plot(mental.ca, lines = TRUE)
```


Looking ahead

- CA is largely an exploratory method - row/column scores are not parameters of a statistical model; no confidence intervals
- Only rough tests for the number of CA dimensions
- Can't test a hypothesis that the row/column scores are have some particular spacing (e.g., are mental and ses equally spaced?)
- These questions can be answered with specialized loglinear models
- Nevertheless, plot(ca(table)) gives an excellent quick view of associations

Multi-way tables

Multi-way tables: Stacking

A 3-way table of size $I \times J \times K$ can be sliced and stacked as a two-way table in several ways

Stacking approach

- n-way table flattened to a 2-way table, combining several variables "interactively"
- Each way of stacking corresponds to a loglinear model
- Ordinary CA of the flattened table \rightarrow visualization of that model
- Associations among stacked variables are not visualized

Multiple correspondence analysis (MCA)

- Extends CA to n-way tables
- Analyzes all pairwise bivariate associations
- Can plot all factors in a single plot
- Aln extension, joint correspondence analysis, gives a better account of inertia for each dimension
- The variables combined are treated "interactively"
- Each way of stacking corresponds to a loglinear model
- $(I \times J) \times K \rightarrow[\mathrm{AB}][\mathrm{C}]$
- $I \times(J \times K) \rightarrow[A][B C]$
- $J \times(I \times K) \rightarrow[B][A C]$
- Only the associations in separate [] terms are analyzed and displayed
- The stacked table is analyzed with ordinary CA of the two-way stacked table

Interactive coding in R

- Data in table or array form: use
as.matrix(structable(rows ~ cols))

mat1 <- as.matrix(structable $(A+B \sim C, ~ d a t a=m y t a b l e))$	$\#[A B][C]$
mat2 <- as.matrix(structable $(A+C \sim B+D, ~ d a t a=m y t a b l e))$	$\#[A C][B D]$
ca(mat2)	

- Data as frequency data frame: use interaction() or paste() followed by xtabs()

```
mydf$AB <- interaction(mydf$A, mydf$B, sep='.')
mydf$AB <- paste(mydf$A, mydf$B, sep=':')
mytab <- xtabs(Freq ~ AB + C, data=mydf)
mytab <- xtabs(Freq ~ AB + C, data=mydf)
\# [A B] [C]
```


Example: suicide rates in Germany

- vcd: : Suicide gives a $2 \times 5 \times 8$ table of sex by age. group by method for 53,158 suicides in Germany, in a frequency data frame
- Use paste () to join age.group and sex \rightarrow age_sex in the form
'10-20 M'

```
> Suicide <- within(Suicide,
    age_sex <- paste(age.group, toupper(substr(sex,1,1)))
})
> head(Suicide)
    Freq sex method age age.group method2 age_sex
1 4 male poison 10 10-20 poison 10-20 M
2 0 \text { male cookgas 10 10-20 gas 10-20 M}
3 0 male toxicgas 10 10-20 gas 10-20 M
4 247 male toxicgas 10 hang 10 10-20 gas ga 10-20 hang 10-20 M
4 247 male hang 10 drown 10 10-20 nang 10-20 M
6 17 male drown gun 10 10 10-20 gun 10-20 M
17 male gun 10 10-20 gun 10-20 M
```


Suicide rates in Germany

Suicide rates in Germany

> suicide.tab <- xtabs(Freq ~ age_sex + method2, data=Suicide)
$>$ suicide.tab
age_sex poison gas hang drown gun knife jump other

| $10-20$ | F | 921 | 40 | 212 | 30 | 25 | 11 | 131 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 10

$10-20$	M	1160	335	1524	67	512	47	189	464

$25-35$	F	1672	113	575	139	64	41	276
263								

$\begin{array}{lllllllll}25-35 & \text { M } & 2823 & 883 & 2751 & 213 & 852 & 139 & 366 \\ 775\end{array}$
$40-50$ F $\quad 2224 \quad 91 \quad 1481 \quad 354 \quad 52 \quad 80 \quad 327 \quad 305$
$40-50$ M $\quad 2465 \quad 625 \quad 3936 \quad 247 \quad 875 \quad 183 \quad 244 \quad 534$

$55-65$	F	2283	45	2014	679	29	103	388
$55-65$	M	1531	201	3581	207	477	154	273

$70-90$ F $1548 \quad 291355 \quad 501 \quad 3 \quad 74 \quad 383-106$
$\begin{array}{lllllllll}70-90 & \text { M } & 938 & 45 & 2948 & 212 & 229 & 105 & 268 \\ 147\end{array}$

- The CA analysis will be that of the loglinear model [Age Sex] [Method]
- It will show associations between the age-sex combinations and method of suicide
- Associations between age and sex will not be shown in this analysis
> suicide.ca <- ca(suicide.tab)
> summary(suicide.ca, rows=FALSE, columns = FALSE)
Principal inertias (eigenvalues):

dim	value	\%	cum\%	scree plot
1	0.096151	57.2	57.2	**************
2	0.059692	35.5	92.6	*********
3	0.008183	4.9	97.5	*
4	0.002158	1.3	98.8	
5	0.001399	0.8	99.6	
6	0.000557	0.3	100.0	
7	$6.7 \mathrm{e}-050$	0.0	100.0	
Total:	0.168207	100.0		

For this table $\chi 2(63)=8946$. Of this, 92.6% is accounted for in the first two dimensions
> plot(suicide.ca)

- Dim 1: Sex
- Dim 2: Age
- Can interpret method use by age-sex combination
- young M: gas, gun,
- young F: poison

Compare with a mosaic plot, also fitting the model [Age Sex][Method]

```
suicide.tab3 <- xtabs(Freq ~ sex + age.group + method2, data=Suicide mosaic(suicide.tab3, shade=TRUE, legend=FALSE,
``` expected=~age.group*sex + method2, ... )


DDAR Fig 6.7, p 238
(I permuted methods by CA Dim1 \& deleted "Other")

\section*{Marginal tables \& supplementary variables}
- Supplementary variables provide a way to include more info in CA
- An n-way table is collapsed to a marginal table by ignoring factors
- Omitted variables can be included by treating them as supplementary
- These are projected into the space of the marginal CA
- E.g., age by method, ignoring sex as the main analysis
> suicide.tab2 <- xtabs(Freq ~ age.group + method2, data=Suicide)
> suicide.tab2
method2
\begin{tabular}{rrrrrrrrr}
age.group & poison & gas hang & drown & gun & knife jump & other \\
\(10-20\) & 2081 & 375 & 1736 & 97 & 537 & 58 & 320 & 564 \\
\(25-35\) & 4495 & 996 & 3326 & 352 & 916 & 180 & 642 & 1038 \\
\(40-50\) & 4689 & 716 & 5417 & 601 & 927 & 263 & 571 & 839 \\
\(55-65\) & 3814 & 246 & 5595 & 886 & 506 & 257 & 661 & 590 \\
\(70-90\) & 2486 & 74 & 4303 & 713 & 232 & 179 & 651 & 253
\end{tabular}

Also have data on relation of sex and method

Main analysis table

Supplementary rows

\section*{Supplementary variables}

Call ca(table, suprow =) to treat some rows as supplementary variables
```

> suicide.ca2s <- ca(suicide.tab2s, suprow=6:7)
> summary(suicide.ca2s, rows=FALSE, columns = FALSE)
Principal inertias (eigenvalues):

dim	value	\%	cum\%	scree plot
1	0.060429	93.9	93.9	**********
2	0.002090	3.2	97.1	*
3	0.001479	2.3	99.4	*
4	0.000356	0.6	100.0	

Total: 0.064354100 .0

```

The relation of age and method is now essentially 1 dimensional
The inertia of \(\operatorname{Dim} 1\) here (0.604) is nearly the same as that of \(\operatorname{Dim} 2\) (0.596) for age in the stacked table
res <- plot(suicide.ca2s, pch \(=\mathrm{c}(16,15,17,24)\), pch=c (16, 15, 17, 24),
lines = c(FALSE, TRUE))
lines(res\$rows[1:5,], col = "blue", lty=2)
lines(res\$rows[6:7,], col = "black", lwd=3)

Ignoring Sex has collapsed Sim 1 (Sex) of the [Age Sex][Method] analysis Supp. points for Sex show the association of Method with Sex in this space

\section*{Multiple correspondence analysis}
- Extends CA to \(n\)-way tables
- Useful when simpler stacking approach doesn't work well, e.g., 10 categorical attitude items
- Analyzes all pairwise bivariate associations. Analogous to:
- Correlation matrix (numbers)
- Scatterplot matrix (graphs)
- All pairwise \(\chi^{2}\) tests (numbers)
- Mosaic matrix (graphs)
- Provides an optimal scaling of the category scores for each variable
- Can plot all factors in a single plot
- An extension, joint correspondence analysis, gives a better account of inertia for each dimension

Plot of MCA for the Titanic data

All 4 variables represented in a single plot

Dim 1: Sex
Dim 2: Class \& Age

\section*{CA \(\rightarrow\) MCA: Indicator \& Burt}

Two ways to think about MCA:

\section*{Indicator matrix (dummy variables)}
- A given categorical variable, \(q\), can be represented by an indicator matrix \(\boldsymbol{Z}\left(n \times J_{q}\right)\) of dummy variables, \(z_{i j}=1\) if case \(i\) is in category \(j\)
- Let \(\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{Q}\) be the indicator matrices for \(Q\) variables
- MCA is then a simple CA applied to the partitioned matrix \(\boldsymbol{Z}=\left[\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{\boldsymbol{Q}}\right]\)

\section*{Burt matrix}
- The Bert matrix is the product of the indicator matrix \(\boldsymbol{Z}\) and its transpose
\[
\boldsymbol{B}=\boldsymbol{Z}^{\top} \boldsymbol{Z}
\]
- MCA can be defined using the SVD of \(\boldsymbol{B}\), giving category scores for all variables accounting for the largest proportion of all bivariate associations.

\section*{Indicator matrix: Hair Eye color}
- For the hair-eye data, the indicator matrix \(\mathbf{Z}\) has \(\mathrm{n}=592\) rows (observations) and \(4+4=8\) columns (categories).
- Shown below in frequency form: h1 - h4 indicators for hair color, e1-e4 for eye color
- E.g., \(1^{\text {st }}\) row represents 68 observations with black hair and brown eyes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Hair & Eye & Freq & h1 & h2 & h3 & h4 & e1 & e2 & e3 & e4 \\
\hline 1 & Black & Brown & 68 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 2 & Brown & Brown & 119 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 3 & Red & Brown & 26 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
\hline 4 & Blond & Brown & 7 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 5 & Black & Blue & 20 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 6 & Brown & Blue & 84 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 7 & Red & Blue & 17 & 0 & 0 & 1 & 0 & - & 1 & 0 & 0 \\
\hline 8 & Blond & Blue & 94 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}

\section*{Expand this to case form to get \(\mathbf{Z}(592 \times 8)\)}
\(>\mathrm{Z}<-\) expand.dft(haireye.df)[,-(1:2)]
> vnames <- c(levels(haireye.df\$Hair), levels(haireye.df\$Eye))
> colnames(Z) <- vnames
> dim(Z)
[1] 592

If the indicator matrix is partitioned as \(\mathbf{Z}=\left[\mathbf{Z}_{1} ; \mathbf{Z}_{2}\right]\), corresponding to the hair, eye categories, then the contingency table is given by \(\mathbf{N}=\mathbf{Z}^{\top}{ }_{1} \mathbf{Z}_{2}\).
\(>\) Z1 <- as.matrix(Z[,1:4])
\(>\) Z2 <- as.matrix(Z[,5:8])
\(>(\mathrm{N}<-\mathrm{t}(\mathrm{Z1})\) \%*\% Z2)
Brown Blue Hazel Green
\begin{tabular}{lrrrr}
Black & 68 & 20 & 15 & 5 \\
Brown & 119 & 84 & 54 & 29 \\
Red & 26 & 17 & 14 & 14
\end{tabular}
- We can then use ordinary CA on the indicator matrix, \(\boldsymbol{Z}\)
- Except for scaling, this is the same as the CA of \(\boldsymbol{N}\)
- The inertia contributions differ, and this is handled better by MCA
```

Z.ca <- ca(Z)
res <- plot(Z.ca, what=c("none", "all")) \# plus customization

```


\section*{The Burt matrix}

For two categorical variables, the Burt matrix is
\[
\boldsymbol{B}=\boldsymbol{Z}^{\top} \boldsymbol{Z}=\left[\begin{array}{ll}
\boldsymbol{N}_{1} & \boldsymbol{N} \\
\boldsymbol{N}^{\top} & \boldsymbol{N}_{2}
\end{array}\right]
\]
- \(\boldsymbol{N}_{1}\) and \(\boldsymbol{N}_{2}\) are diagonal matrices containing the marginal frequencies of the two variables
- The contingency table, \(\boldsymbol{N}\) appears in the off-diagonal block

A similar analysis to that of the indicator matrix \(\boldsymbol{Z}\) is produced by:
```

Burt <- t(as.matrix(Z)) %*% as.matrix(Z)
rownames(Burt) <- colnames(Burt) <- vnames
Burt.ca <- ca(Burt)
plot(Burt.ca)

```
- Standard coords are the same
- Singular values of \(\boldsymbol{B}\) are the squares of those of \(\boldsymbol{Z}\)

\section*{Multivariate MCA}

For \(Q\) categorical variables, the Burt matrix is
\[
\boldsymbol{B}=\boldsymbol{Z}^{\top} \boldsymbol{Z}=\left[\begin{array}{llll}
\boldsymbol{N}_{1} & \boldsymbol{N}_{[12]} & \cdots & \boldsymbol{N}_{[1 Q]} \\
\boldsymbol{N}_{[21]} & \boldsymbol{N}_{2} & \cdots & \boldsymbol{N}_{[2 Q]} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{N}_{[Q 1]} & \boldsymbol{N}_{[Q 2]} & \cdots & \boldsymbol{N}_{Q}
\end{array}\right]
\]
- The diagonal blocks \(\boldsymbol{N}_{i}\) contain the one-way marginal frequencies
- The off-diagonal blocks \(\boldsymbol{N}_{[i j]}\) contain the bivariate contingency tables for each pair \((i, j)\) of variables.
- Classical MCA can be defined as a SVD of the matrix \(\boldsymbol{B}\)
- It produces scores for the categories of all variables accounting for the greatest proportion of the bivariate associations in off-diagonal blocks in a small number of dimensions.

\section*{MCA properties}
- The inertia contributed by a given variable increases with the number of response categories:
- inertia \(\left(Z_{q}\right)=J_{q}-1\)
- The centroid of the categories for each variable is at the origin of the display.
- For a given variable, the inertia contributed by a given category increases as the marginal frequency in that category decreases.
- Low frequency points therefore appear further from the origin.
- The category points for a binary variable lie on a line through the origin.

\section*{MCA example: pre- and extramarital sex}
- PreSex data: the \(2 \times 2 \times 2 \times 2\) table of gender, premarital sex, extramatrial sex and marital status (divorced, still married)
- The function mjca () provides several scalings for the singular values
- Here I use lambda="Burt"
data("PreSex", package="vcd")
PreSex <- aperm(PreSex, 4:1)
presex.mca <- mjca(PreSex, lambda="Burt")
summary (presex.mca, rows=FALSE, columns = FALSE)
Principal inertias (eigenvalues):
\begin{tabular}{llrll}
dim & value & \multicolumn{1}{c}{\(\%\)} & \multicolumn{1}{c}{ cum\% } & scree plot \\
1 & 0.149930 & 53.6 & 53.6 & \(* * * * * * * * * * * *\) \\
2 & 0.067201 & 24.0 & 77.6 & \(* * * * * *\) \\
3 & 0.035396 & 12.6 & 90.2 & \(* * *\) \\
4 & 0.027365 & 9.8 & 100.0 & \(* *\) \\
& ------- & ---- &
\end{tabular}

\section*{MCA example: pre- and extramarital sex}
vcdExtra::mcaplot (presex.mca,
legend=TRUE, legend.pos = "bottomright")

\section*{Accounts for 76\% of total} inertia

Women less likely to report pre- and/or extra-marital sex

Divorced associated with preand extra- sex

Gender \(\perp\) Marital
NB: This only analyzes bivariate associations, i.e., no 3-way associations

\section*{Inertia in MCA}
- In simple CA, total inertia \(=\Sigma \lambda_{i}^{2}=\chi^{2} / n\)
- \(\Longrightarrow\) sensible to consider \% inertia for each dimension

Not so straight-forward in MCA:
- For a given indicator matrix, \(\boldsymbol{Z}_{q}\), the inertia is \(J_{q}-1\)
- For all variables, with \(J=\Sigma J_{q}\) categories, the total inertia of
\(\boldsymbol{Z}=\left[\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{Q}\right]\) is the average of the inertias of the sub-tables
\[
\operatorname{inertia}(\boldsymbol{Z})=\frac{1}{Q} \sum_{q} \operatorname{inertia}\left(\boldsymbol{Z}_{q}\right)=\frac{1}{Q} \sum_{q}\left(J_{q}-1\right)=\frac{J-Q}{Q}
\]
- The average inertia per dimension is therefore \(1 / Q\)
- \(\Longrightarrow\) Interpret dimensions with inertia \(>1 / Q\) (as in PCA: \(\lambda>1\))
- In analysis of the Burt matrix, average inertia is inflated by the diagonal blocks

\section*{Inertia in MCA}

Two solutions:

\section*{Adjusted inertia}
- Ignores the diagonal blocks in the Burt matrix
- Calculates adjusted inertia as
\[
\left(\lambda_{i}^{\star}\right)^{2}=\left[\frac{Q}{Q-1}\left(\lambda_{i}^{Z}-\frac{1}{Q}\right)\right]^{2}
\]
- Express contributions of dimensions as \(\left(\lambda_{i}^{\star}\right)^{2} / \sum\left(\lambda_{i}^{\star}\right)^{2}\), with summation over only dimensions with \(\left(\lambda^{Z}\right)^{2}>1 / Q\).

\section*{Joint correspondence analysis}
- Start with MCA analysis of the Burt matrix
- Replace diagonal blocks with values estimated from that solution
- Repeat until solution converges, improving the fit to off-diagonal blocks

NB: JCA solutions aren't nested. I generally use adjusted inertia

Plot the solution with vcdExtra: :mcaplot()

\section*{Biplots for contingency tables}

The biplot is a related visualization that also uses the SVD to give a low-rank (2D) approximation.
- In CA, the weighted \(\chi^{2}\) distances between row (column) points reflect the differences among row (column) profiles
- In the biplot, rows (columns) are represented by vectors from the origin, with an innerproduct (projection) interpretation - row point \(\mathbf{a}_{\mathbf{i}}\) is fit by projection on col point \(\mathbf{b}_{\mathbf{j}}\)
\[
\boldsymbol{Y} \approx \boldsymbol{A} \boldsymbol{B}^{\top} \Longleftrightarrow y_{i j} \approx \mathbf{a}_{i}^{\top} \boldsymbol{b}_{j}
\]

\section*{MCA example: Survival on the Titanic}

Analyse the Titanic data using ca::mcja()
- The default inertia method is lambda = "adjusted"
- Other methods: "indicator", "Burt", "JCA"
data(Titanic)
titanic.mca <- mjca(Titanic)
summary(titanic.mca, columns = FALSE)

Principal inertias (eigenvalues):
\begin{tabular}{|c|c|c|c|c|}
\hline dim & value & \% & cum\% & scree plot \\
\hline 1 & 0.067655 & 76.8 & 76.8 & *********************** \\
\hline 2 & 0.005386 & 6.1 & 82.9 & ** \\
\hline 3 & 00000000 & 0.0 & 82.9 & \\
\hline Tota & 0.088118 & & & \\
\hline
\end{tabular}

Using adjusted inertia, the 2D solution accounts for \(\sim 83 \%\) of total, bivariate association.

Dim 1 perfectly aligned with Sex Also strongly aligned \(w /\) survival \& class

Dim 2: reflects class \& age
\(\rightarrow\) Survival associated with Female, \(1^{\text {st }}\) vs \(3^{\text {rd }}\) class, child

\section*{Example: Suicide rates}

There are different scalings for CA biplots. Here I use the 'contribution' biplot I find the plot less messy to plot arrows for only rows or cols and imagine the projection
plot(suicide.ca, map="colgreen", arrows=c (FALSE, TRUE), lwd=2)

Associations between age-sex categories and suicide methods can be read as projections of the points on the vectors

Lengths of vectors for suicide reflect their contributions to this 2D plot

\section*{Summary}
- CA is an exploratory method designed to account for association (Pearson \(\chi^{2}\)) in a small number of dimensions
- Row and column scores provide an optimal scaling of the category levels
- Plots of these can suggest an explanation for association
- CA uses the singular value decomposition to approximate the matrix of residuals from independence
- Standard and principal coordinates have different geometric properties, but are essentially re-scalings of each other
- Multi-way tables can be handled by:
- Stacking approach-collapse some dimensions interactively to a 2-way table
- Each way of stacking \(\rightarrow\) a loglinear model
- MCA analyzes the full \(n\) - way table using an indicator matrix or the Burt matrix

Given a new 2-way table, my first thought is nearly always: plot (ca (mytable))```

