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Model-based methods: Overview
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loglm() vs. glm()

3

> berk.mod1 <- loglm(~ Dept * (Gender + Admit), 
data=UCBAdmissions)
> berk.mod2 <- loglm(~(Admit + Dept + Gender)^2, 
data=UCBAdmissions)
> anova(berk.mod2)
Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data = 
UCBAdmissions)

Statistics:
X^2 df P(> X^2)

Likelihood Ratio 20.20  5 0.001144
Pearson          18.82  5 0.00207

With loglm() you can only test overall fit (anova()) or difference between 
models (Lrstats() )

What we can say:
Even the model with all pairwise associations fits poorly
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Comparing models with anova() and LRstats()

> anova(berk.mod1, berk.mod2, test="Chisq")
LR tests for hierarchical log-linear models

Model 1:
~Dept * (Gender + Admit) 
Model 2:
~(Admit + Dept + Gender)^2 

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1      21.74  6                                    
Model 2      20.20  5      1.531         1        0.21593
Saturated     0.00  0     20.204         5        0.00114

> LRstats(berk.mod1, berk.mod2)
Likelihood summary table:

AIC BIC LR Chisq Df Pr(>Chisq)   
berk.mod1 217 238     21.7  6     0.0014 **
berk.mod2 217 240     20.2  5     0.0011 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



loglm() vs. glm()
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> berkeley <- as.data.frame(UCBAdmissions)
> berk.glm2 <- glm(Freq ~ (Dept+Gender+Admit)^2, data=berkeley,
+                  family="poisson")
> anova(berk.glm2, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log
Response: Freq

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
NULL                            23       2650             
Dept          5      160        18       2491   <2e-16 ***
Gender        1      163        17       2328   <2e-16 ***
Admit         1      230        16       2098   <2e-16 ***
Dept:Gender 5     1221        11        877   <2e-16 ***
Dept:Admit 5      855         6         22   <2e-16 ***
Gender:Admit 1        2         5         20     0.22    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

With glm() you can test individual terms using anova() or car::Anova()

Fitting & graphing models: Overview
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input 

data

glm()
polr()

multinom()
model 
object

plot(mod)
plot(f(mod))

Object-oriented approach in R: 

Objects & methods
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Objects & methods
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Methods for “glm” objects

> library(MASS); library(vcdExtra)
> methods(class="glm")
[1] add1              addterm anova Anova
[5] asGnm assoc avPlot avPlot3d         
[9] Boot              bootCase brief             ceresPlot

[13] coerce            confidenceEllipse confint Confint
[17] cooks.distance deviance          drop1             dropterm
[21] effects           extractAIC family            formula          
[25] gamma.shape influence         initialize        leveragePlot
[29] linearHypothesis logLik mcPlot mmp
[33] model.frame modFit mosaic            ncvTest
[37] nobs              predict           print             profile          
[41] qqPlot residualPlot residualPlots residuals        
[45] rootogram         rstandard rstudent S                
[49] show              sieve             sigmaHat slotsFromS3      
[53] summary           vcov weights          
see '?methods' for accessing help and source code
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> methods("plot")
[1] plot,ANY-method      plot,color-method    plot.acf*           
[4] plot.ca*             plot.correspondence* plot.data.frame*    
[7] plot.decomposed.ts*  plot.default plot.dendrogram*    

[10] plot.density*        plot.ecdf plot.factor*        
[13] plot.formula*        plot.function plot.gnm*           
[16] plot.goodfit*        plot.hcl_palettes*   plot.hclust*        
[19] plot.histogram*      plot.HLtest*         plot.HoltWinters*   
[22] plot.isoreg*         plot.lda*            plot.lm*            
[25] plot.loddsratio*     plot.loglm*          plot.mca*           
[28] plot.medpolish*      plot.mjca*           plot.mlm*           
[31] plot.ppr*            plot.prcomp*         plot.princomp*      
[34] plot.profile*        plot.profile.gnm*    plot.profile.nls*   
[37] plot.qv*             plot.raster*         plot.ridgelm*       
[40] plot.rootogram*      plot.shingle*        plot.spec*          
[43] plot.stepfun plot.stl*            plot.structable*    
[46] plot.table*          plot.trellis*        plot.ts
[49] plot.tskernel*       plot.TukeyHSD*       plot.zoo*           
see '?methods' for accessing help and source code

There are many, many plot() methods for different types of objects
e.g., plot() for a “glm” object plot.glm()

Modeling approaches: Overview
Association models
• Loglinear models

(contingency table form)
[Admit][Gender Dept]
[Admit Dept][Gender Dept]
[AdmitDept][AdmitGender][GenderDept]

• Poisson GLMs
(Frequency data frame)
Freq ~ Admit + Gender * Dept
Freq ~ Admit*Dept + Gender*Dept
Freq ~ Admit*(Dept + Gender) + 

Gender*Dept

• Ordinal variables
Freq ~ right + left + Diag(right, left)
Freq ~ right + left + Symm(right, left)

Response models
• Binary response
• Categorical predictors: logit models

logit(Admit) ~ 1
logit(Admit) ~ Dept
logit(Admit) ~ Dept + Gender

• Continuous/mixed predictors
• Logistic regression models

Pr(Admit) ~ Dept + Gender + Age + GRE

• Polytomous response
• Ordinal: proportional odds model

Improve ~ Age + Sex + Treatment

• General multinomial model
WomenWork ~ Kids + HusbandIncome
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Logistic regression
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Example: Arthritis treatment

13



Example: Berkeley admissions
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Example: Survival in the Donner party
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Binary response: What’s wrong with OLS?
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Linear regression vs Logistic regression
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y linear with x
constant residual variance

y ~ logit (x)
non-constant residual variance ~ p (1-p)



Logistic regression 

18

Logistic regression: One predictor
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Thinking logistically:
• Model is for the log odds of the marked response, Y = 1
• Can always back transform with logit-1 to get probability of Y = 1

Logistic regression: One predictor
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The coefficients, �, of this model have simple interpretations in terms of odds & log 
odds

is the change in log odds for a unit increase in x
The odds of Y=1 are multiplied by e for each unit increase in x

is the log odds when x=0
The odds of Y=1 when x=0 is e�

In R, use exp(coef(model)) to get these values

Another interpretation: In terms of probability, the slope of the logistic regression 
curve is (1- )
This has the maximum value /4 when = ½

Logistic regression: Multiple predictors
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Fitting the logistic regression model
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Logistic regression models are the special case of generalized linear models, fit in R 
using glm(..., family=binomial)
For this example, we define Better as any improvement at all

> data(Arthritis, package="vcd")
> Arthritis$Better <- as.numeric(Arthritis$Improved > "None")

Fit and print:

> (arth.logistic <- glm(Better ~ Age, data=Arthritis, family=binomial))

Call:  glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Coefficients:
(Intercept)          Age  

-2.6421       0.0492  

Degrees of Freedom: 83 Total (i.e. Null);  82 Residual
Null Deviance: 116 
Residual Deviance: 109 AIC: 113
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> summary(arth.logistic)

Call:
glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-1.5106  -1.1277   0.0794   1.0677   1.7611  

Coefficients:
Estimate Std. Error z value Pr(>|z|)  

(Intercept)  -2.6421     1.0732   -2.46    0.014 *
Age           0.0492     0.0194    2.54    0.011 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.45  on 83  degrees of freedom
Residual deviance: 109.16  on 82  degrees of freedom

The summary() method gives details and tests of coefficients

Interpreting coefficients
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> coef(arth.logistic)
(Intercept)         Age 

-2.64207     0.04925

> exp(coef(arth.logistic))
(Intercept)         Age 

0.07121     1.05048 
> exp(10*coef(arth.logistic)[2])

Age 
1.636 

Multiple predictors
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Multiple predictors: Fitting
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arth.logistic2 <- glm(Better ~ I(Age - 50) + Sex + Treatment, 
data=Arthritis, family=binomial)

Fit the main effects model.  Use I(Age – 50) to center Age, making � interpretable

lmtest::coeftest() gives just the tests of coefficients provided by summary()

> lmtest::coeftest(arth.logistic2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)   
(Intercept)       -0.5781     0.3674   -1.57    0.116   
I(Age - 50)        0.0487     0.0207    2.36    0.018 * 
SexMale -1.4878     0.5948   -2.50    0.012 * 
TreatmentTreated 1.7598     0.5365    3.28    0.001 **

> broom::glance(arth.logistic2)
# A tibble: 1 x 8

null.deviance df.null logLik AIC   BIC deviance df.residual nobs
<dbl>   <int>  <dbl> <dbl> <dbl>    <dbl>       <int> <int>

1          116.      83  -46.0  100.  110.     92.1          80    84

broom::glance() gives model fit statistics

Interpreting coefficients
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> cbind(coef=coef(arth.logistic2), 
+       OddsRatio=exp(coef(arth.logistic2)), 
exp(confint(arth.logistic2)))
Waiting for profiling to be done...

coef OddsRatio 2.5 % 97.5 %
(Intercept)      -0.5781     0.561 0.2647  1.132
I(Age - 50)       0.0487     1.050 1.0100  1.096
SexMale -1.4878     0.226 0.0652  0.689
TreatmentTreated 1.7598     5.811 2.1187 17.727

Hypothesis testing: Questions
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Maximum likelihood estimation
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In classical linear models using lm(), we fit using ordinary least squares.
All glm() models use maximum likelihood estimation– better properties



Overall model tests
Likelihood ratio test (G2)
• Compare nested models, similar to F tests in OLS
• Let L1 = maximized value for our model

logit( i) = 0 + xT
i w/ k predictors

• Let L0 = maximized likelihood for the null model
logit( i) = 0 under H0: 1 = 2 = … = k       

• Likelihood ratio test statistic:
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Wald tests & confidence intervals
• Analogous to t-tests in OLS
• Test H0 i = 0

• Confidence interval
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> r1 <- lmtest::coeftest(arth.logistic2)
> r2 <- confint(arth.logistic2)
Waiting for profiling to be done...
> cbind(r1, r2)

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept)        -0.578      0.367    -1.6    0.116 -1.33  0.124
I(Age - 50)         0.049      0.021     2.4    0.018  0.01  0.092
SexMale -1.488      0.595    -2.5    0.012 -2.73 -0.372
TreatmentTreated 1.760      0.536     3.3    0.001  0.75  2.875

LR, Wald & Score tests
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Different ways to measure 
departure from H0: = 0

• LR test: diffce in log L
• Wald test: ( – 0)2

• Score test: slope at = 0

H0: 1 = 2 = 3 = 0

Plotting logistic regression data
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Types of plots
• Conditional plots: Stratified plot of Y or logit(Y) vs. one X, 

conditioned by other predictors--- only that subset is plotted 
for each
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Types of plots
• Full-model plots: Plot of fitted response surface, showing all 

effects; usually shown in several panels
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Types of plots
• Effect plots: plots of predicted effects for terms in the model, 

averaged over predictors not shown in a given plot
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Conditional plots with ggplot2
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Plot Arthritis data by Treatment, ignoring Sex; overlay fitted logistic reg. lines

gg <- ggplot(Arthritis, aes(Age, Better, color=Treatment)) +
xlim(15, 85) + 
geom_jitter(height = 0.02, width = 0, size=2) +
stat_smooth(method = "glm", family = binomial, alpha = 0.2,

aes(fill=Treatment), size=2.5, fullrange=TRUE) +
theme_bw(base_size = 16) + theme(legend.position = c(.85, .2))  

gg   # show the plot

geom_jitter() shows the observations 
more distinctly

Fitted lines use method=“glm”, 
family=binomial



Conditional plots with ggplot2
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Can show the conditional plots for M & F, simply by faceting by Sex

gg + facet_wrap(~ Sex)

Only the data for each 
Sex is used in each plot

Plotting the data points 
shows that the data for 
males is too thin to 
give good estimates of 
separate regression 

Full-model plots
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> arth.fit2 <- cbind(Arthritis,
+                   predict(arth.logistic2, se.fit = TRUE))
> head(arth.fit2[,-9], 4)
ID Treatment  Sex Age Improved Better   fit se.fit

1 57   Treated Male  27     Some      1 -1.43  0.758
2 46   Treated Male  29     None      0 -1.33  0.728
3 77   Treated Male  30     None      0 -1.28  0.713
4 17   Treated Male  32   Marked      1 -1.18  0.684

Plotting with ggplot2
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arth.fit2 <- arth.fit2 |>
mutate(obs = ifelse(Better==0, -4, 4))   # show obs at -4, 4

ggplot( arth.fit2, aes(x=Age, y=fit, color=Treatment)) +               
geom_line(size = 2) +
geom_ribbon(aes(ymin = fit - 1.96 * se.fit,

ymax = fit + 1.96 * se.fit,
fill = Treatment), alpha = 0.2,

color = "transparent") +
labs(x = "Age", y = "Log odds (Better)") +
geom_jitter(aes(y=obs), height=0.25, width=0) +
facet_wrap(~ Sex) + 
theme_bw(base_size = 16)

Plot the fitted log odds, confidence band and observations

Using color=Treatment gives separate points and lines for the two groups

Full-model plot
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Plotting on the logit scale shows the additive effects of age, treatment and sex
NB: easier to compare the treatment groups within the same panel

These plots show model uncertainty (confidence bands)
Jittered points show the data



Full-model plot
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Plotting on the probability scale may be simpler to interpret
Use predict(… type = “response”) to get fitted probabilities

arth.fit2r <- cbind(Arthritis,
predict(arth.logistic2, se.fit = TRUE, type="response"))

Models with interactions
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Is the linear effect of age the same for females, males?
• We can test this by adding an interaction of Sex x Age
• update() makes it easy to add/subtract terms from a model
• car::Anova() gives partial tests of each term after all others

> arth.logistic4 <- update(arth.logistic2, . ~ . + I(Age-50):Sex)
> car::Anova(arth.logistic4)
Analysis of Deviance Table (Type II tests)

Response: Better
LR Chisq Df Pr(>Chisq)    

I(Age - 50)         6.16  1    0.01308 *  
Sex                 6.98  1    0.00823 ** 
Treatment          11.90  1    0.00056 ***
I(Age - 50):Sex     3.42  1    0.06430 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The interaction term Age:Sex is not quite significant, but plot the fitted model anyway

Models with interactions
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Effect plots: Basic ideas
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Show a given marginal effect, controlling / adjusting for other model effects



Effect plots: Details
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Plotting main effects
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library(effects)
arth.eff2 <- allEffects(arth.logistic2)
plot(arth.eff2, rows=1, cols=3, lwd=2)

Averaged Sex                                             Age                                                Age
over:                       Treatment                               Treatment Sex

allEffects() calculates effects for all high-order terms in the model
The response is plotted on the logit scale, but labeled with probabilities

Full-model plot
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The full-model plot is simply the Effect() of the highest-order interaction of factors

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)
plot(arth.full, multiline=TRUE, ci.style="bands",

colors = c("red", "blue"), lwd=3,  . . .)
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Model with interaction of Age × Sex

arth.eff4 <- allEffects(arth.logistic4)
plot(arth.eff4, lwd=2)

Only the high-order terms: Treatment & Age * Sex are shown & need to be interpreted
Q: How would you describe this?



Race & 
Crime

Toronto Star investigation of 
racial disparities in treatment 
by Toronto Police Services

FOI request > ½ M arrests, 
1997—2002

Evidence for racial profiling?

Only look at discretionary 
charges:

Simple marijuana possession
Non-moving auto infractions

Case study: Arrests for marijuana
• In Dec. 2002, the Toronto Star examined the issue of racial 

profiling, by analyzing a data base of 600,000+ arrest records 
from 1997-2002.

• They focused on a subset of arrests for which police action 
was discretionary, e.g., simple possession of small quantities 
of marijuana, where the police could:

Release the arrestee with a summons – like a parking ticket
Bring to police station, hold for bail, … -- harsher treatment

• Response variable: released: “Yes”, “No”
Main predictor of interest: skin-colour of arrestee (black, white)
Other predictors: year, age, sex, …
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Toronto Star meets mosaic displays
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How to communicate these results most effectively?
• What is the message?  What features are directly comprehensible to the audience?

Graphic designer’s 
early attempts

My early 
attempts

Racial profiling: Presentation graphic
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Together, we created this (nearly) self-explaining infographic

Title gives the 
main conclusion

Legend gives a layman’s 
description of shading levels

Bar width ~ charges
Divided by % release

Text description 
gives details

numbers shown in 
the cells



Arrests for marijuana: Data
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> library(car)        # for Anova()
> data(Arrests, package = "carData")
> some(Arrests)

released colour year age  sex employed citizen checks
218       Yes  White 2000  24 Male      Yes     Yes 0
1301       No  Black 1999  17 Male      Yes      No      1
1495      Yes  White 1998  23 Male      Yes     Yes 0
1732      Yes  Black 2000  18 Male      Yes     Yes 2
1838      Yes  Black 1997  27 Male       No     Yes      5
2257       No  White 2001  19 Male       No     Yes      2
3100       No  Black 2000  19 Male       No     Yes      4
3843      Yes  White 1999  20 Male      Yes     Yes 0
4580      Yes  Black 1999  26 Male      Yes     Yes 1
4833      Yes  Black 1998  38 Male      Yes     Yes 0

Response variable: released
Control variables:
• year, age, sex
• employed, citizen: Yes, No
• checks: # of police databases (previous arrests, convictions, parole status) where the 

arrestee’s name was found

Arrests for marijuana: Model
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year is numerical. But may be non-linear. Convert to a factor
Fit model with all main effects, but allow interactions of colour:year and colour:age

> Arrests$year <- as.factor(Arrests$year)
> arrests.mod <- glm(released ~ employed + citizen + checks +

colour*year + colour*age,
family=binomial, data=Arrests)

> Anova(arrests.mod)

Analysis of Deviance Table (Type II tests)

Response: released
LR Chisq Df Pr(>Chisq)    

employed        72.7  1    < 2e-16 ***
citizen         25.8  1    3.8e-07 ***
checks         205.2  1    < 2e-16 ***
colour 19.6  1    9.7e-06 ***
year             6.1  5    0.29785    
age              0.5  1    0.49827    
colour:year 21.7  5    0.00059 ***
colour:age 13.9  1    0.00019 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Effect plot: Skin colour

59

plot(Effect("colour", arrests.mod), lwd=3, ci.style="bands”, ...)

• Effect plot for colour shows 
average effect controlling
(adjusting) for all other factors 
simultaneously

• (The Star analysis controlled for 
these one at a time.)
Evidence for different treatment 
of blacks & whites

• Even Francis Nunziata could 
understand this.

• However, effect smaller than 
reported by the Star

Effect plots: Interactions
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The story turned out to be more nuanced than reported by the Toronto Star

Up to 2000, strong evidence for 
differential treatment of blacks & 
whites

Also: evidence to support Police 
claim of effect of training to 
reduce racial effects in treatment

plot(Effect(c("colour","year"), arrests.mod), multiline=TRUE, ...) 



Effect plots: Interactions
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plot(Effect(c("colour","year"), arrests.mod), multiline=TRUE, ...) 

A more surprising finding …

Opposite age effects for blacks & 
whites:

• Young blacks treated more
harshly than young whites

• Older blacks treated less
harshly than older whites

Effect plots: allEffects
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All high-order terms can be viewed together using plot(allEffects(mod))

arrests.effects <- allEffects(arrests.mod, 
xlevels=list(age=seq(15,45,5)))
plot(arrests.effects, ylab="Probability(released)", …)

Model diagnostics

63

Diagnostic plots in R
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In R, plotting a glm object gives the “regression quartet” – 4 basic diagnostic plots

arth.mod1 <- glm(Better ~ Age + Sex + Treatment, data=Arthritis,
family='binomial')

plot(arth.mod1) 

These plots often look peculiar for logistic regression models
Better versions are available in the car package
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Unusual data: Leverage & Influence
• “Unusual” observations can have dramatic effects on least-squares 

estimates in linear models
• Three archetypal cases:

Typical X (low leverage), bad fit        -- Not much harm
Unusual X (high leverage), good fit   -- Not much harm
Unusual X (high leverage), bad fit     -- BAD, BAD, BAD

• Influential observations: unusual in both X & Y
• Heuristic formula:

Influence = X leverage × Y residual

Influence plots
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Influence (Cook’s D) measures impact of individual obs. on coefficients, fitted values

Influence Residual (y - ) × Hat-value 2(X - X)

Bad fit

Bad fit

High 
leverage

High 
influence

Bubble size ~ influence

influencePlot(mod1)

Influence plots in R
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library(car)
influencePlot(arth.logistic2, …)

X axis: Leverage (“hat values”)
notable values: > 2k/n, 3k/n

Y axis: Studentized residuals

Bubble size ~ Cook’s D 
(influence on coefficients)

2k/n 3k/n

Which cases are influential?
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Treatment    Sex Age Better StudRes Hat  CookD
1    Treated   Male  27      1    1.92 0.0897 0.1128
4    Treated   Male  32      1    1.79 0.0840 0.0818
15   Treated Female  23      0   -1.18 0.1416 0.0420
16   Treated Female  32      0   -1.36 0.0926 0.0381
39   Treated Female  69      0   -2.17 0.0314 0.0690

case 1: younger male: moderate Hat, 
better than predicted large Cook D

case 39: older female: small Hat, but did 
not improve with treatment



Looking ahead
• Logistic regression models need not always have 

linear effects– models nonlinear in Xs sometimes 
useful

• Polytomous outcomes can be handled as well
e.g., Improved = {“None”, “Some”, “Marked”}

• If ordinal, 
the proportional odds model is a simple extension
nested dichotomies provides an alternative approach

• Otherwise, multinomial logistic regression is the way
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Summary
• Model-based methods provide hypothesis tests, CIs 

& tests for individual terms
• Logistic regression: A glm() for a binary response

linear model for the log odds Pr(Y=1)
All similar to classical ANOVA, regression models
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