

Logistic regression

Michael Friendly Psych 6136

http://friendly.github.io/psy613

Model-based methods: Overview

Structure

- Explicitly assume some probability distribution for the data, e.g., binomial, Poisson, ...
- Distinguish between the systematic component— explained by the model— and a random component, which is not
- Allow a compact summary of the data in terms of a (hopefully) small number of parameters

Advantages

- Inferences: hypothesis tests and confidence intervals
- Can test individual model terms (anova ())
- Methods for model selection: adjust balance between goodness-of-fit and parsimony
- Predicted values give model-smoothed summaries for plotting
- ullet \implies Interpret the fitted model graphically

loglm() vs. glm()

With loglm() you can only test overall fit (anova()) or difference between models (Lrstats())

```
> berk.mod1 <- loglm(~ Dept * (Gender + Admit),
data=UCBAdmissions)
> berk.mod2 <- loglm(~(Admit + Dept + Gender)^2,
data=UCBAdmissions)
> anova(berk.mod2)
Call:
loglm(formula = ~(Admit + Dept + Gender)^2, data =
UCBAdmissions)
```

Statistics:

X^2 df P(> X^2) Likelihood Ratio 20.20 5 0.001144 Pearson 18.82 5 0.00207

What we can say:

Even the model with all pairwise associations fits poorly

Comparing models with anova () and LRstats ()

```
> anova(berk.mod1, berk.mod2, test="Chisq")
LR tests for hierarchical log-linear models
```

Model 1: ~Dept * (Gender + Admit) Model 2: ~(Admit + Dept + Gender)^2

		Deviance	df	Delta(Dev)	Delta(df)	P(>	Delta(Dev)	
Model	1	21.74	6					
Model	2	20.20	5	1.531	1		0.21593	
Satura	ated	0.00	0	20.204	5		0.00114	

loglm() vs. glm()

With glm() you can test individual terms using anova() or car:: Anova()

> berkeley <- as.data.frame(UCBAdmissions)
> berk.glm2 <- glm(Freq ~ (Dept+Gender+Admit)^2, data=berkeley,
+ family="poisson")
> anova(berk.glm2, test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log Response: Freq

Terms added sequentially (first to last)

	Df	Deviance	Resid. D:	E Resid	l. Dev	Pr(>Chi)	
NULL			23	3	2650		
Dept	5	160	18	3	2491	<2e-16	* * *
Gender	1	163	17	7	2328	<2e-16	* * *
Admit	1	230	10	5	2098	<2e-16	* * *
Dept:Gender	5	1221	11	L	877	<2e-16	* * *
Dept:Admit	5	855	(5	22	<2e-16	* * *
Gender:Admit	1	2	I.	5	20	0.22	
Signif. code	s:	0 **** (0.001 `**	0.01	·*/ 0.	.05 '.' 0	.1 `

Objects & methods

1

How this works:

- Model objects have a "class" attribute:
 - loglm(): "loglm"
 - glm():c("glm", "lm") inherits also from lm()
- Class-specific methods have names like method.class, e.g., plot.glm(), mosaic.loglm()
- Generic functions (print(), summary(), plot() ...) call the appropriate method for the class

arth.mod <- glm(Better ~ Age + Sex + Treatment, data=Arthritis)
class(arth.mod)</pre>

[1] "glm" "lm"

Fitting & graphing models: Overview

Object-oriented approach in R:

- Effect plots: plot (Effect (obj)) for nearly all linear models
- Influence plots (car): influencePlot (obj) for "glm" objects

Objects & methods

Methods for "glm" objects

> library(MASS); library(vcdExtra)

> met	chods(class="glm")			
[1]	add1	addterm	anova	Anova
[5]	asGnm	assoc	avPlot	avPlot3d
[9]	Boot	bootCase	brief	ceresPlot
[13]	coerce	confidenceEllipse	confint	Confint
[17]	cooks.distance	deviance	drop1	dropterm
[21]	effects	extractAIC	family	formula
[25]	gamma.shape	influence	initialize	leveragePlot
[29]	linearHypothesis	logLik	mcPlot	mmp
[33]	model.frame	modFit	mosaic	ncvTest
[37]	nobs	predict	print	profile
[41]	qqPlot	residualPlot	residualPlots	residuals
[45]	rootogram	rstandard	rstudent	S
[49]	show	sieve	sigmaHat	slotsFromS3
[53]	summary	VCOV	weights	
see	'?methods' for acce	essing help and sou	irce code	

There are many, many **plot()** methods for different types of objects e.g., **plot()** for a "glm" object \rightarrow **plot.glm()**

> methods("plot")

[1] plot, ANY-method plot, color-method [4] plot.ca* [7] plot.decomposed.ts* plot.default [10] plot.density* plot.ecdf [13] plot.formula* plot.function [16] plot.goodfit* plot.hcl palettes* [19] plot.histogram* plot.HLtest* [22] plot.isoreg* plot.lda* [25] plot.loddsratio* plot.loglm* [28] plot.medpolish* plot.mjca* [31] plot.ppr* plot.prcomp* plot.profile.gnm* [34] plot.profile* [37] plot.qv* plot.raster* [40] plot.rootogram* plot.shingle* plot.stl* [43] plot.stepfun [46] plot.table* plot.trellis* [49] plot.tskernel* plot.TukeyHSD*

plot.acf* plot.correspondence* plot.data.frame* plot.dendrogram* plot.factor* plot.gnm* plot.hclust* plot.HoltWinters* plot.lm* plot.mca* plot.mlm* plot.princomp* plot.profile.nls* plot.ridgelm* plot.spec* plot.structable* plot.ts plot.zoo*

see '?methods' for accessing help and source code

9

Modeling approaches: Overview

Association models

- Loglinear models (contingency table form) [Admit][Gender Dept] [Admit Dept][Gender Dept] [AdmitDept][AdmitGender][GenderDept]
- Poisson GLMs (Frequency data frame) Freq ~ Admit + Gender * Dept Freq ~ Admit*Dept + Gender*Dept Freq ~ Admit*(Dept + Gender) + Gender*Dept
- Ordinal variables Freq ~ right + left + Diag(right, left) Freq ~ right + left + Symm(right, left)

Response models

- Binary response
- Categorical predictors: logit models logit(Admit) ~ 1 logit(Admit) ~ Dept logit(Admit) ~ Dept + Gender
- Continuous/mixed predictors
- Logistic regression models Pr(Admit) ~ Dept + Gender + Age + GRE
- Polytomous response
- Ordinal: proportional odds model Improve ~ Age + Sex + Treatment
- General multinomial model WomenWork ~ Kids + HusbandIncome

Logistic regression

Response variable

- Binary response: success/failure, vote: yes/no
- Binomial data: x successes in n trials (grouped data)
- Ordinal response: none < some < severe depression
- Polytomous response: vote Liberal, Tory, NDP, Green

Explanatory variables

- Quantitative regressors: age, dose
- Transformed regressors: (age, log(dose)
- Polynomial regressors: age², age³, ... (or better: splines)
- Categorical predictors: treatment, sex (dummy variables, contrasts)
- Interaction regessors: treatment × age, sex × age

This is exactly the same as in classical ANOVA, regression models

- The response variable, Improved is ordinal: "None" < "Some" <</pre> "Marked"
- A binary logistic model can consider just Better = (Improved>"None")
- Other important predictors: Sex, Treatment
- Main Q: how does treatment affect outcome?
- How does this vary with Age and Sex?
- This plot shows the binary observations, with several model-based smoothings

Example: Berkeley admissions

- Admit/Reject can be considered a binomial response for each Dept and Gender
- Logistic regression here is analogous to an ANOVA model, but for log odds(Admit)
- (With categorical predictors, these are often called logit models)
- Every such model has an equivalent loglinear model form.
- This plot shows fitted logits for the main effects model, Dept + Gender

Example: Survival in the Donner party

- Binary response: survived
- Categorical predictors: sex, family
- Quantitative predictor: age
- Q: Is the effect of age linear?
- Q: Are there interactions among predictors?
- This is a generalized pairs plot, with different plots for each pair

Binary response: What's wrong with OLS?

- For a binary response, Y ∈ (0, 1), want to predict π = Pr(Y = 1 | x)
- A linear probability model uses classical linear regression (OLS)
- Problems:
 - Gives predicted values and CIs outside $0 \le \pi \le 1$
 - Homogeneity of variance is violated: V(π̂) = π̂(1 − π̂) ≠ constant
 - Inferences, hypothesis tests are wrong!

Linear regression vs Logistic regression

y linear with x constant residual variance

Assume Pr(y=1|x) ~ binomial(p)

Fig. 2.2. Graphical representation of a simple linear logistic regression

y ~ logit (x) non-constant residual variance ~ p (1-p)

14

Logistic regression

- Logistic regression avoids these problems
- Models logit(π_i) $\equiv \log[\pi/(1 \pi)]$
- logit is interpretable as "log odds" that Y = 1
- A related probit model gives very similar results, but is less interpretable
- For 0.2 ≤ π ≤ 0.8 fitted values are close to those from linear regression.

Logistic regression: One predictor

For a single quantitative predictor, x, the simple linear logistic regression model posits a linear relation between the *log odds* (or *logit*) of Pr(Y = 1) and x,

$$\operatorname{logit}[\pi(x)] \equiv \operatorname{log}\left(\frac{\pi(x)}{1-\pi(x)}\right) = \alpha + \beta x$$

- When β > 0, π(x) and the log odds increase as x increases; when β < 0 they decrease with x.
- This model can also be expressed as a model for the probabilities $\pi(x)$

$$\pi(x) = \text{logit}^{-1}[\pi(x)] = \frac{1}{1 + \exp[-(\alpha + \beta x)]}$$

Thinking logistically:

 τ

- Model is for the log odds of the marked response, Y = 1
- Can always back transform with logit⁻¹ to get probability of Y = 1

Logistic regression: One predictor

The coefficients, $\ ,\,\beta$ of this model have simple interpretations in terms of odds & log odds

$$\operatorname{logit}[\pi(x)] \equiv \log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \alpha + \beta x \qquad \operatorname{odds}(Y=1) \equiv \frac{\pi(x)}{1-\pi(x)} = \exp(\alpha + \beta x) = e^{\alpha}(e^{\beta})^{x}$$

 $\beta \;$ is the change in log odds for a unit increase in x

 \rightarrow The odds of Y=1 are multiplied by e^{β} for each unit increase in x

 $\alpha~$ is the log odds when x=0

 \rightarrow The odds of Y=1 when x=0 is e

In R, use exp(coef(model)) to get these values

Another interpretation: In terms of probability, the slope of the logistic regression curve is $\beta\pi(1-\pi)$ This has the maximum value $\beta/4$ when $\pi = \frac{1}{2}$

Logistic regression: Multiple predictors

- For a binary response, $Y \in (0, 1)$, let **x** be a vector of *p* regressors, and π_i be the probability, $\Pr(Y = 1 | \mathbf{x})$.
- The logistic regression model is a linear model for the *log odds*, or *logit* that Y = 1, given the values in **x**,

$$\operatorname{ogit}(\pi_i) \equiv \log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha + \mathbf{x}_i^{\mathsf{T}} \beta$$
$$= \alpha + \beta_1 \mathbf{x}_{i1} + \beta_2 \mathbf{x}_{i2} + \dots + \beta_p \mathbf{x}_{ip}$$

 An equivalent (non-linear) form of the model may be specified for the probability, π_i, itself,

$$\pi_i = \{\mathbf{1} + \exp(-[\alpha + \mathbf{x}_i^{\mathsf{T}} \beta])\}^{-1}$$

The logistic model is also a *multiplicative* model for the odds of "success,"

$$\frac{\pi_i}{1-\pi_i} = \exp(\alpha + \mathbf{x}_i^{\mathsf{T}} \beta) = \exp(\alpha) \exp(\mathbf{x}_i^{\mathsf{T}} \beta)$$

Increasing x_{ij} by 1 increases logit(π_i) by β_j , and multiplies the odds by e^{β_j} .

20

18

Fitting the logistic regression model

Logistic regression models are the special case of generalized linear models, fit in R using glm(..., family=binomial) For this example, we define **Better** as any improvement at all

> data(Arthritis, package="vcd") > Arthritis\$Better <- as.numeric(Arthritis\$Improved > "None")

Fit and print:

> (arth.logistic <- qlm(Better ~ Age, data=Arthritis, family=binomial))</pre>

Call: glm(formula = Better ~ Age, family = binomial, data = Arthritis)

Coefficients: (Intercept) -2.6421 0.0492

Degrees of Freedom: 83 Total (i.e. Null); 82 Residual Null Deviance: 116 Residual Deviance: 109 AIC: 113

Age

22

Interpreting coefficients

> coef(arth.logistic) (Intercept) Age -2.64207 0.04925

> exp(coef(arth.logistic)) (Intercept) Age 0.07121 1.05048 > exp(10*coef(arth.logistic)[2]) Age 1.636

Interpretations:

- log odds(Better) increase by $\beta = 0.0492$ for each year of age
- odds(Better) multiplied by $e^{\beta} = 1.05$ for each year of age— a 5% increase
- over 10 years, odds(Better) are multiplied by $exp(10 \times 0.0492) = 1.64$, a 64% increase.
- Pr(Better) increases by $\beta/4 = 0.0123$ for each year (near $\pi = \frac{1}{2}$)

The summary() method gives details and tests of coefficients

> summary(arth.logistic)

```
Call:
glm(formula = Better ~ Age, family = binomial, data = Arthritis)
```

Deviance Residuals: Min 10 Median 30 Max -1.5106 -1.1277 0.0794 1.0677 1.7611

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) -2.6421 1.0732 -2.46 0.014 * 0.0492 0.0194 2.54 0.011 * Age ___ Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 116.45 on 83 degrees of freedom Residual deviance: 109.16 on 82 degrees of freedom

23

Multiple predictors

The main interest here is the effect of Treatment. Sex and Age are control variables. Fit the main effects model (no interactions):

$$\operatorname{logit}(\pi_i) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_2 x_{i2}$$

where x_1 is Age and x_2 and x_3 are the factors representing Sex and Treatment, respectively. R uses dummy (0/1) variables for factors.

$$x_2 = \begin{cases} 0 & \text{if Female} \\ 1 & \text{if Male} \end{cases} \qquad x_3 = \begin{cases} 0 & \text{if Placebo} \\ 1 & \text{if Treatment} \end{cases}$$

- α doesn't have a sensible interpretation here. Why?
- β_1 : increment in log odds(Better) for each year of age.
- β_2 : difference in log odds for male as compared to female.
- β_3 : difference in log odds for treated vs. the placebo group

Multiple predictors: Fitting

Fit the main effects model. Use I(Age – 50) to center Age, making interpretable

arth.logistic2 <- glm(Better ~ I(Age - 50) + Sex + Treatment, data=Arthritis, family=binomial)

lmtest::coeftest() gives just the tests of coefficients provided by summary()

- > lmtest::coeftest(arth.logistic2)
- z test of coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-0.5781	0.3674	-1.57	0.116	
I(Age - 50)	0.0487	0.0207	2.36	0.018	*
SexMale	-1.4878	0.5948	-2.50	0.012	*
TreatmentTreated	1.7598	0.5365	3.28	0.001	* :

broom::glance() gives model fit statistics

> broom::glance(arth.logistic2)										
# A tibble: 1 x	8									
null.deviance	df.null	logLik	AIC	BIC	deviance	df.residual	nobs			
<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>			
1 116.	83	-46.0	100.	110.	92.1	80	84			

Hypothesis testing: Questions

Overall test: How does my model, logit(π) = α + x^Tβ compare with the null model, logit(π) = α?

$$H_0:\beta_1=\beta_2=\cdots=\beta_p=0$$

• **One predictor**: Does *x_k* significantly improve my model? Can it be dropped?

 $H_0: \beta_k = 0$ given other predictors retained

• Lack of fit: How does my model compare with a perfect model (saturated model)?

For ANOVA, regression, these tests are carried out using *F*-tests and *t*-tests. In logistic regression (fit by maximum likelihood) we use

- *F*-tests → likelihood ratio *G*² tests
- *t*-tests \rightarrow Wald *z* or χ^2 tests

Interpreting coefficients

<pre>> cbind(coef=coef(arth.logistic2),</pre>									
<pre>+ OddsRatio=exp(coef(arth.logistic2)),</pre>									
<pre>exp(confint(arth.logistic2)))</pre>									
Waiting for profiling to be done									
	coef	OddsRatio	2.5 %	97.5 %					
(Intercept)	-0.5781	0.561	0.2647	1.132					
I(Age - 50)	0.0487	1.050	1.0100	1.096					
SexMale	-1.4878	0.226	0.0652	0.689					
TreatmentTreated	1.7598	5.811	2.1187	17.727					

- $\alpha = -0.578$: At age 50, females given placebo have odds(Better) of $e^{-0.578} = 0.56$.
- $\beta_1 = 0.0487$: Each year of age multiplies odds(Better) by $e^{0.0487} = 1.05$, a 5% increase.
- β₂ = -1.49: Males e^{-1.49} = 0.26 × less likely to show improvement as females. (Or, females e^{1.49} = 4.437 × more likely than males.)
- $\beta_3 = 1.76$: Treated $e^{1.76} = 5.81 \times \text{more}$ likely Better than Placebo

Maximum likelihood estimation

In classical linear models using lm(), we fit using ordinary least squares. All glm() models use maximum likelihood estimation– better properties

Likelihood, L = Pr(data | model), as function of model parameters
For case i,

$$\mathcal{L}_{i} = \begin{cases} p_{i} & \text{if } Y = 1 \\ 1 - p_{i} & \text{if } Y = 0 \end{cases} = p_{i}^{Y_{i}} (1 - p_{i}^{Y_{i}}) \quad \text{where} \quad p_{i} = 1 / (1 + \exp(\mathbf{x}_{i} \boldsymbol{\beta})) \end{cases}$$

• Under independence, joint likelihood is the product over all cases

$$\mathcal{L} = \prod_{i}^{n} p_{i}^{Y_{i}} (1 - p_{i}^{Y_{i}})$$

• \implies Find estimates $\hat{\beta}$ that maximize log \mathcal{L} . Iterative, but this solves the "estimating equations"

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{X}^{\mathsf{T}}\widehat{\boldsymbol{p}}$$

28

Overall model tests

Likelihood ratio test (G²)

- Compare nested models, similar to F tests in OLS
- Let L_1 = maximized value for our model logit(π_i) = $\beta_0 + \mathbf{x}^T_i \boldsymbol{\beta}$ w/ k predictors
- Let L_0 = maximized likelihood for the null model logit(π_i) = β_0 under H_0 : $\beta_1 = \beta_2 = ... = \beta_k$
- Likelihood ratio test statistic:

$$G^{2} = -2\log\left(\frac{L_{0}}{L_{1}}\right) = 2(\log L_{1} - \log L_{0}) \sim \chi_{k}^{2}$$

Wald tests & confidence intervals

- Analogous to *t*-tests in OLS
- Test $H_0: \beta_i = 0$ $z = \frac{b_i}{s(b_i)} \sim \mathcal{N}(0, 1)$ or $z^2 \sim \chi_1^2$
- Confidence interval $b_i \pm z_{1-lpha/2} \ s(b_i)$

> r1 <- lmtest::c	coeftest(a	irth.	logisti	ic2	2)					
<pre>> r2 <- confint(arth.logistic2)</pre>										
Waiting for profi	ling to b	e doi	ne							
> cbind(r1, r2)										
	Estimate	Std.	Error	Z	value	Pr(> z)	2.5 %	97.5		
(Intercept)	-0.578		0.367		-1.6	0.116	-1.33	0.124		
I(Age - 50)	0.049		0.021		2.4	0.018	0.01	0.092		
SexMale	-1.488		0.595		-2.5	0.012	-2.73	-0.372		
TreatmentTreated	1.760		0.536		3.3	0.001	0.75	2.875		

LR, Wald & Score tests

	Testing	Global	Null	Hypothesis:	BETA	-0
Test		Chi-Squ	are	DF	Pr >	ChiSq
Likelihood Score Wald	Ratio	24.3 22.0 17.5	3859 0051 5147	3 3 3		<.0001 <.0001 0.0006

H0: $\beta_1 = \beta_2 = \beta_3 = 0$

Different ways to measure departure from H_0 : $\beta = 0$

- LR test: diff^{ce} in log L
- Wald test: $(\boldsymbol{\beta} \boldsymbol{\beta}_0)^2$
- Score test: slope at **β** = 0

Plotting logistic regression data

Plotting a binary response together with a fitted logistic model can be difficult because the 0/1 response leads to much overplottting.

- Need to jitter the points
- Useful to show the fitted logistic curve
- Confidence band gives a sense of uncertainty
- Adding a non-parametric (loess) smooth shows possible nonlinearity
- NB: Can plot either on the response scale (probability) or the link scale (logit) where effects are linear

30

Types of plots

 Conditional plots: Stratified plot of Y or logit(Y) vs. one X, conditioned by other predictors--- only that subset is plotted for each

Types of plots

• Full-model plots: Plot of fitted response surface, showing all effects; usually shown in several panels

Types of plots

• Effect plots: plots of predicted effects for terms in the model, averaged over predictors not shown in a given plot

Conditional plots with ggplot2

Plot Arthritis data by Treatment, ignoring Sex; overlay fitted logistic reg. lines

Placebo Treated

80

1 12 1 1 1

60

Age

Fitted lines use method="glm", family=binomial

36

Better 0.50

0.25

0.00

20

. . .

40

34

Conditional plots with ggplot2

Can show the conditional plots for M & F, simply by faceting by Sex

gg + facet wrap(~ Sex)

Only the data for each Sex is used in each plot

Plotting the data points shows that the data for males is too thin to give good estimates of separate regression

41

Full-model plots

Full-model plots show the fitted values on the logit scale or on the response scale (probability), usually with confidence bands. This often requires a bit of custom programming.

Steps:

- Obtain fitted values with predict (model, se.fit=TRUE) type="link" (logit) is the default
- Can use type="response" for probability scale
- Join this to your data (cbind())
- Plot as you like: plot(), ggplot(), ···

> arth.fit2 <- cbind(Arthritis, $^+$ predict(arth.logistic2, se.fit = TRUE)) > head(arth.fit2[,-9], 4) ID Treatment Sex Age Improved Better fit se.fit Treated Male 27 Some 1 -1.43 0.758 1 57 2 46 None 0 -1.33 0.728 Treated Male 29 3 77 Treated Male 30 None 0 -1.28 0.713 4 17 Treated Male 32 Marked 1 -1.18 0.684

Plotting with ggplot2

Plot the fitted log odds, confidence band and observations

Using color=Treatment gives separate points and lines for the two groups

Full-model plot

Plotting on the logit scale shows the additive effects of age, treatment and sex NB: easier to compare the treatment groups within the same panel

These plots show model uncertainty (confidence bands) Jittered points show the data

Full-model plot

Plotting on the probability scale may be simpler to interpret Use **predict** (... **type** = "**response**") to get fitted probabilities

arth.fit2r <- cbind(Arthritis, predict(arth.logistic2, se.fit = TRUE, type="response"))

Models with interactions

Is the linear effect of age the same for females, males?

- We can test this by adding an interaction of Sex x Age
- update () makes it easy to add/subtract terms from a model
- **car::** Anova () gives partial tests of each term after all others •

> arth.logistic4 <- update(arth.logistic2, . ~ . + I(Age-50):Sex)</pre> > car::Anova(arth.logistic4) Analysis of Deviance Table (Type II tests)

Response:	Better
-----------	--------

	LF	< Chisq	Df	Pr(>Chisq))						
I(Age - 50)		6.16	1	0.01308	3 *						
Sex		6.98	1	0.00823	3 **						
Treatment		11.90	1	0.00050	5 ***						
I(Age - 50):Sex		3.42	1	0.06430).						
Signif. codes:	0	1 * * * /	0.00	0.0)1 `*'	0.05	۱.′	0.1	١	′	1

The interaction term Age:Sex is not quite significant, but plot the fitted model anyway

46

48

Models with interactions

- Only the model changes
- predict () automatically incorporates the revised model terms
- Plotting steps remain the same
- This interpretation is quite different!

47

Effect plots: Basic ideas

Show a given marginal effect, controlling / adjusting for other model effects

Data

	x1	x2	sex	x1x2	У	yhat
1	1	1	F	1	4.73	4.46
2	2	1	м	0	6.10	5.55
3	3	1	F	-1	4.32	4.34
4	1	1	F	1	4.84	4.46
5	2	1	F	0	4.73	4.40
				–	1	
29	2	2	м	0	6.10	6.15
30	3	2	F	1	6.71	7.14

31

32

33

34

35

36

	77	Sev	XIXZ	¥	Vila
1	1	F	1	4.73	4.46
2	1	М	0	6.10	5.55
з	1	F	-1	4.32	4.34
1	1	F	1	4.84	4.46
2	1	F	0	4.73	4.40
			–	1	
2	2	м	0	6.10	6.15
3	2	F	1	6.71	7.14
	1 2 3 1 2 2 3	1 1 2 1 3 1 1 1 2 1 	1 1 F 2 1 M 3 1 F 1 1 F 2 1 F 2 2 M 3 2 F	1 1 F 1 2 1 M 0 3 1 F -1 1 1 F 1 2 1 F 0 2 2 M 0 3 2 F 1	1 1 F 1 4.73 2 1 M 0 6.10 3 1 F -1 4.32 1 1 F 1 4.84 2 1 F 0 4.73 2 2 M 0 6.10 3 2 F 1 6.71

Score data

•Score data $X * \hat{\beta} \Rightarrow \hat{y} *$ plot vars: vary over range control vars: fix at means

Effect plots: Details

- For simple models, full model plots show the complete relation between response and all predictors.
- Fox(1987)— For complex models, often wish to plot a specific main effect or interaction (including lower-order relatives)— controlling for other effects
 - Fit full model to data with linear predictor (e.g., logit) $\eta = \mathbf{X}\beta$ and link function $g(\mu) = \eta \rightarrow \text{estimate } \boldsymbol{b}$ of β and covariance matrix $\widehat{V(\boldsymbol{b})}$ of \boldsymbol{b} . Construct "score data"
 - - Vary each predictor in the term over its' range
 - Fix other predictors at "typical" values (mean, median, proportion in the data)
 - \rightarrow "effect model matrix," X^*
 - Use predict () on X*
 - Calculate fitted effect values,
 ^ˆ
 ^{*} = X^{*} b.
 - Standard errors are square roots of diag $X^* \widehat{V(b)} X^{*T}$
 - Plot $\hat{\eta}^*$, or values transformed back to scale of response, $g^{-1}(\hat{\eta}^*)$.
- Note: This provides a general means to visualize interactions in all linear and generalized linear models.

Plotting main effects

allEffects () calculates effects for all high-order terms in the model The response is plotted on the logit scale, but labeled with probabilities

library(effects) arth.eff2 <- allEffects(arth.logistic2)</pre> plot(arth.eff2, rows=1, cols=3, lwd=2)

Full-model plot

The full-model plot is simply the **Effect**() of the highest-order interaction of factors

arth.full <- Effect(c("Age", "Treatment", "Sex"), arth.logistic2)</pre> plot(arth.full, multiline=TRUE, ci.style="bands", colors = c("red", "blue"), lwd=3, . . .)

49

arth.eff4 <- allEffects(arth.logistic4)</pre> plot(arth.eff4, lwd=2)

Only the high-order terms: Treatment & Age * Sex are shown & need to be interpreted Q: How would you describe this?

Toronto Star meets mosaic displays

How to communicate these results most effectively?

early attempts

What is the message? What features are directly comprehensible to the audience?

Case study: Arrests for marijuana

- In Dec. 2002, the Toronto Star examined the issue of racial profiling, by analyzing a data base of 600,000+ arrest records from 1997-2002.
- They focused on a subset of arrests for which police action was discretionary, e.g., simple possession of small quantities of marijuana, where the police could:
 - Release the arrestee with a summons like a parking ticket
 - Bring to police station, hold for bail, ... -- harsher treatment
- Response variable: released: "Yes", "No" ٠
 - Main predictor of interest: skin-colour of arrestee (black, white)
 - Other predictors: year, age, sex, ...

Racial profiling: Presentation graphic

Together, we created this (nearly) self-explaining infographic

Title gives the main conclusion								Lege descriptio	nd give on of s	es a lay hading	man's levels
4	Sam	ie cl	narge	, diffe	rent	treati	mei	nt	1		
Text description gives details	Statistica that blac and muc Darker co skin colo	tistical analysis of single drug possession charges shows it blacks are much less likely to be released at the scene d much more likely to be held in custody for a bail hearing. rker colours represent a stronger statistical link between in colour and police treatment.						Degree of likelihood Much less likely to occur Much more likely to occur More likely to occur			
		Whit	es are mo	re likely to b	e released	l at the sce	ene			_	_
Bar width ~ charges Divided by % release -	6,662 charges laid	78% relea	sed at th	e scene					14.5 release at stat	5% 7 ed h ion fo	.5% eld or ail
		Blac	(S are mu	ch more like	ly to be he	eld for bail	hearin	igs			
numbers shown in	2,446 charges laid	64% released at the scene						20% released at station 16% for			eld
the cens		0%	10 2	D 30	40	50	60	70	80	90	100
	SOURCE: Toron	to police an	est records 1996	-2002							56

Chrétien

expected

to keep

cabinet

minister

Ethics report has 'wiggle room' to

e MacAula

Arrests for marijuana: Data

Response variable: released

Control variables:

- year, age, sex
- employed, citizen: Yes, No
- checks: # of police databases (previous arrests, convictions, parole status) where the arrestee's name was found

> library(car) # for Anova()													
	> data(Arrests, package = "carData")												
	> some(Arrests)												
		released	colour	year	age	sex	employed	citizen	checks				
	218	Yes	White	2000	24	Male	Yes	Yes	0				
	1301	No	Black	1999	17	Male	Yes	No	1				
	1495	Yes	White	1998	23	Male	Yes	Yes	0				
	1732	Yes	Black	2000	18	Male	Yes	Yes	2				
	1838	Yes	Black	1997	27	Male	No	Yes	5				
	2257	No	White	2001	19	Male	No	Yes	2				
	3100	No	Black	2000	19	Male	No	Yes	4				
	3843	Yes	White	1999	20	Male	Yes	Yes	0				
	4580	Yes	Black	1999	26	Male	Yes	Yes	1				
	4833	Yes	Black	1998	38	Male	Yes	Yes	0				

57

Arrests for marijuana: Model

year is numerical. But may be non-linear. Convert to a factor Fit model with all main effects, but allow interactions of colour:year and colour:age

> Arrests\$year <- as.factor(Arrests\$year)
> arrests.mod <- glm(released ~ employed + citizen + checks +</pre>

colour*year + colour*age,

family=binomial, data=Arrests)

> Anova(arrests.mod)

Analysis of Deviance Table (Type II tests)

Response: relea	ased										
LR	Chisq	Df	Pr(>Chisq)								
employed	72.7	1	< 2e-16	* * *							
citizen	25.8	1	3.8e-07	* * *							
checks	205.2	1	< 2e-16	* * *							
colour	19.6	1	9.7e-06	* * *							
year	6.1	5	0.29785								
age	0.5	1	0.49827								
colour:year	21.7	5	0.00059	* * *							
colour:age	13.9	1	0.00019	* * *							
Signif. codes:	0 **	* * 1	0.001 `**'	0.01	۱*/	0.05	۰.٬	0.1	`	′	1

58

Effect plot: Skin colour

plot(Effect("colour", arrests.mod), lwd=3, ci.style="bands", ...)

- Effect plot for colour shows average effect controlling (adjusting) for all other factors simultaneously
- (The *Star* analysis controlled for these one at a time.)
- \rightarrow Evidence for different treatment of blacks & whites
- Even Francis Nunziata could understand this.
- However, effect smaller than reported by the *Star*

Effect plots: Interactions

The story turned out to be more nuanced than reported by the Toronto Star

plot(Effect(c("colour","year"), arrests.mod), multiline=TRUE, ...)

colour*year effect plot

Up to 2000, strong evidence for differential treatment of blacks & whites

Also: evidence to support Police claim of effect of training to reduce racial effects in treatment

Effect plots: Interactions

A more surprising finding ...

plot(Effect(c("colour","year"), arrests.mod), multiline=TRUE, ...)

Effects of skin colour and age on release

Opposite age effects for blacks & whites:

- Young blacks treated more harshly than young whites
- Older blacks treated less harshly than older whites

Effect plots: allEffects

All high-order terms can be viewed together using plot(allEffects(mod))

```
arrests.effects <- allEffects(arrests.mod,
xlevels=list(age=seq(15,45,5)))
plot(arrests.effects, ylab="Probability(released)", ...)
```


Model diagnostics

As in regression and ANOVA, the validity of a logistic regression model is threatened when:

- Important predictors have been omitted from the model
- Predictors assumed to be linear have non-linear effects on Pr(Y = 1)
- Important interactions have been omitted
- A few "wild" observations have a large impact on the fitted model or coefficients

Model specification: Tools and techniques

- Use non-parametric smoothed curves to detect non-linearity
- Consider using polynomial terms (X², X³,...) or regression splines (e.g., ns (X, 3))
- \bullet Use <code>update(model, ...)</code> to test for interactions— formula: . \sim .^2

Diagnostic plots in R

In R, plotting a glm object gives the "regression quartet" – 4 basic diagnostic plots

plot(arth.mod1)

These plots often look peculiar for logistic regression models Better versions are available in the car package

Unusual data: Leverage & Influence

- "Unusual" observations can have dramatic effects on least-squares estimates in linear models
- Three archetypal cases:
 - Typical X (low leverage), bad fit -- Not much harm
 - Unusual X (high leverage), good fit -- Not much harm
 - Unusual X (high leverage), bad fit -- BAD, BAD, BAD
- Influential observations: unusual in both X & Y
- Heuristic formula:

Influence = X leverage × Y residual

Influence plots

Influence (Cook's D) measures impact of individual obs. on coefficients, fitted values

Influence plots in R

X axis: Leverage ("hat values") notable values: > 2k/n, 3k/n

Y axis: Studentized residuals

Bubble size ~ Cook's D (influence on coefficients)

Which cases are influential?

	Treatment	Sex	Age	Better	StudRes	Hat	CookD
1	Treated	Male	27	1	1.92	0.0897	0.1128
4	Treated	Male	32	1	1.79	0.0840	0.0818
15	Treated	Female	23	0	-1.18	0.1416	0.0420
16	Treated	Female	32	0	-1.36	0.0926	0.0381
39	Treated	Female	69	0	-2.17	0.0314	0.0690

case 1: younger male: moderate Hat, better than predicted \rightarrow large Cook D

case 39: older female: small Hat, but did not improve with treatment

Looking ahead

- Logistic regression models need not always have linear effects
 – models nonlinear in Xs sometimes useful
- Polytomous outcomes can be handled as well
 - e.g., Improved = {"None", "Some", "Marked"}
- If ordinal,
 - the proportional odds model is a simple extension
 - nested dichotomies provides an alternative approach
- Otherwise, multinomial logistic regression is the way

69

Summary

- Model-based methods provide hypothesis tests, CIs & tests for individual terms
- Logistic regression: A glm() for a binary response
 - linear model for the log odds Pr(Y=1)
 - All similar to classical ANOVA, regression models